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Theoretical Underpinnings: Axiomatic Constructions [MD]

The Intuition: What are Categories? (1)

Categories are a remarkably mathematical way of defining abstract
objects, and ways to morph between those objects.

The power of categories, and the associated theories, lie in their
generality: objects can be any mathematically definable structure, and
morphisms may be any process or algorithm by which you move from
one object to another.

At first glance, morphisms appear indistinguishable from functions.
Whilst traditional sets and their functions certainly do form a
category, as we will see later, the expanse of Category Theory extends
far beyond naive Set Theory!
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Theoretical Underpinnings: Axiomatic Constructions [MD]

The Intuition: What are Categories? (2)

A useful feature in Category Theory arrives in the form of commutative
diagrams. Objects are shown as labels, and morphisms are shown,
intuitively, as directed arrows between their domain (source object) and
codomain (destination object).

A B

D C

1A
a

1B

b

1D

d

1C
c

Figure 1.1: A commutative diagram for a simple, four-object category.

Identity morphisms are shown explicitly here, however they are usually
omitted to maintain brevity.
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Theoretical Underpinnings: Axiomatic Constructions [MD]

The Definition: The Axioms of a Category

For any category C, we need to consider two important sets:

The obset: The set of objects in C, denoted ob C.

The homset: The set of (homeo)morphisms in C, denoted hom C.
Morphisms are sometimes called “arrows”.

In practice, the morphisms are the defining feature of any given category.
As with existing algebraic structures, we do need to satisfy some laws to
have a well-defined category:

Each object A must have an identity morphism 1A : A→ A.

The composition of morphisms, where applicable, must be an
associative operation.

The usual unit law must hold: f ◦ 1A = f = 1B ◦ f for all f : A→ B.
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Theoretical Underpinnings: Axiomatic Constructions [MD]

Functors (1)

Being able to define multiple categories, it would be useful to have a
method of going between them. Just as functions serve as mappings
between sets, and linear maps serve as mappings between vector spaces,
functors can define relationships between categories.

A functor F : C → D maps the objects and morphisms of C to
corresponding entities in D.

These mappings may be chosen arbitrarily, subject to three coherence
conditions:

1 Preservation of domains and codomains:
F (f : a→ b) = F (f ) : F (A)→ F (B)

2 Preservation of identity: F (1A) = 1F (A)
3 Preservation of composition: F (f ◦ g) = F (f ) ◦ F (g)
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Theoretical Underpinnings: Axiomatic Constructions [MD]

Functors (2)

A pair of connected commutative diagrams can pictorially demonstrate the
role of a functor F : C → D:

A B

C

f

g◦f
g

︸ ︷︷ ︸
Domain Category C

F

F (B) F (A)

F (C )

F (g)

F (f )

F (g◦f )

︸ ︷︷ ︸
Codomain Category D

Figure 1.2: A functor F between simple categories C and D

An endofunctor is a functor whose domain and codomain is the same.
This concept is simple, but it will become very important shortly!
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Theoretical Underpinnings: Axiomatic Constructions [MD]

The Category Product

It would be similarly useful to combine two categories in some meaningful
way to produce a new category.

Analogous to the Cartesian product, we have the category product,
denoted C × D.

The objects of C ×D have the form (c, d) for c ∈ ob C and d ∈ obD.
Morphisms have the form (f , g) : (c , d)→ (c ′, d ′), where
f : c → c ′ ∈ ob C and g : d → d ′ ∈ obD.

C ×D can be easily shown to satisfy the category axioms; hence, × is
capable of producing a new category.

We also have two obvious projection functors πC and πD from the
product to the original constituent categories:

C C × D D
πC πD
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Theoretical Underpinnings: Axiomatic Constructions [MD]

Natural Transformations

In the standard tune of categorical thinking, we can push the abstraction
further, and consider the category of functors between two fixed categories
C and D.

Consider categories C, D, and functors F ,G : C → D. Then, consider
the category formed with these functors as objects. Denote this with
Fun (C,D).

The formal definition of natural transformations is slightly technical,
however, for intuition, it suffices to think of natural transformations
as morphisms between functors in Fun (C,D).

As usual, these morphisms meet certain coherence conditions; most of
the time these are trivially satisfiable.
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Category-Theoretic Interpretations of Familiar Structures [BB]

Category of Sets

Let A,B,C ,D be sets, and let f , g , h be (set-theoretic) functions
such that f : A→ B, g : B → C , and h : C → D.

Immediately, we have that

(f ◦ g) ◦ h = f ◦ (g ◦ h) ,

due to the normal associativity property of function composition. We
also have the obvious identity morphism i ∈ hom(A,A) for some
object A, henceforth denoted as 1A.

Hence, the category axioms are satisfied, and there is a category
whose objects are sets and morphisms are the functions between
those sets. We’ll denote this category Set moving forwards.

Dixon, Drury & Brook Elementary Category Theory Spring Term, 2023 12 / 27



Category-Theoretic Interpretations of Familiar Structures [BB]

Category of Sets

Let A,B,C ,D be sets, and let f , g , h be (set-theoretic) functions
such that f : A→ B, g : B → C , and h : C → D.

Immediately, we have that

(f ◦ g) ◦ h = f ◦ (g ◦ h) ,

due to the normal associativity property of function composition. We
also have the obvious identity morphism i ∈ hom(A,A) for some
object A, henceforth denoted as 1A.

Hence, the category axioms are satisfied, and there is a category
whose objects are sets and morphisms are the functions between
those sets. We’ll denote this category Set moving forwards.

Dixon, Drury & Brook Elementary Category Theory Spring Term, 2023 12 / 27



Category-Theoretic Interpretations of Familiar Structures [BB]

Category of Sets

Let A,B,C ,D be sets, and let f , g , h be (set-theoretic) functions
such that f : A→ B, g : B → C , and h : C → D.

Immediately, we have that

(f ◦ g) ◦ h = f ◦ (g ◦ h) ,

due to the normal associativity property of function composition. We
also have the obvious identity morphism i ∈ hom(A,A) for some
object A, henceforth denoted as 1A.

Hence, the category axioms are satisfied, and there is a category
whose objects are sets and morphisms are the functions between
those sets. We’ll denote this category Set moving forwards.

Dixon, Drury & Brook Elementary Category Theory Spring Term, 2023 12 / 27



Category-Theoretic Interpretations of Familiar Structures [BB]

Category of Partially Ordered Sets (“Posets”)

A poset is a set A with a relation, ∼A, that is reflexive, transitive, and
antisymmetric.

A monotone map m : A→ B is an order-preserving function such that

(∀a, b ∈ A) (a ∼A b) =⇒ m(a) ∼B m(b).

We have a category Pos whose objects are posets and morphisms are
monotone maps between those posets. The identity morphism exists
for all objects due to the reflexivity of ∼A, and composition follows
similarly due to transitivity.

Analogous connexions can be drawn for sets equipped with preording
relations (Ord), pointed sets (Based), etc.
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Category-Theoretic Interpretations of Familiar Structures [BB]

Category of Vector Spaces

We have a category, K -Vect, whose objects are vector spaces over
some field K and morphisms are linear mappings between those
vector spaces.

We take a linear map to be a function, f , between two vector spaces,
such that vector addition and scalar multiplication in K is preserved.
That is,

f (~u + ~v) = f (~u) + f (~v); [Additivity]

f (λ~u) = λf (~u), [Homogeinity]

where ~u, ~v ∈ Kn and λ ∈ K .

This only applies to finite-dimensional vector spaces. Banach spaces
and Functional Analysis are out of the scope of this talk! (n ∈ N)
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Category-Theoretic Interpretations of Familiar Structures [BB]

The Category of Deduction and Deducability

All of these examples are taken, more or less directly, from constructs
expressable purely in non-categorical/algebraic terms. The power of
Category Theory lies in its ability to abstract arbitrarily, so what type of
non-algebraic structures might we want to represent?

How about the Category of Deducability? Objects are mathematical
statements embedded in some proof system, and morphisms represent
the existence of a deduction, in a fixed theory, between antecedents
and consequents.

A richer category is the Category of Deduction, Deduce. For every
pair of objects, a corresponding morphism in the homset represents a
specific manner of deduction between its domain and codomain.
Deductive cancelling is equivalent to morphism composition!
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Category-Theoretic Interpretations of Familiar Structures [BB]

The True Isomorphism! (1)

Although pervasive throughout Abstract Algebra and Set Theory, the
“correct” definition of a general isomorphism is expressed in purely
category-theoretic terms, demonstrating the existence of an undo
morphism, such that we have elements in hom(A,C ) and hom(C ,A).

A B C

f

g h

i

Figure 2.1: f and i are isomorphisms; A and C are isomorphic.

Isomorphisms are easy to spot with well-drawn commutative diagrams!
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Category-Theoretic Interpretations of Familiar Structures [BB]

The True Isomorphism! (2)

In certain categories, this isomorphic equivalence can be used to deduce
particular properties of objects in the corresponding category. Here we
consider the Category of Deduction, Deduce:

φ ψ θ
α β

γ

Figure 2.2: φ and θ are logically equivalent through deductions [α, β] and γ.

Using deductive cancelling, α and β can be forged into a single morphism,
with ψ being embedded into the environmental axioms of φ. Given our
knowledge of the nature of ob (Deduce), we know that

(φ ` θ) ∧ (θ ` φ) ⇐⇒ φ ≡ θ ⇐⇒ φ ∼= θ.

Dixon, Drury & Brook Elementary Category Theory Spring Term, 2023 17 / 27



Category-Theoretic Interpretations of Familiar Structures [BB]

The True Isomorphism! (2)

In certain categories, this isomorphic equivalence can be used to deduce
particular properties of objects in the corresponding category. Here we
consider the Category of Deduction, Deduce:

φ ψ θ
α β

γ

Figure 2.2: φ and θ are logically equivalent through deductions [α, β] and γ.

Using deductive cancelling, α and β can be forged into a single morphism,
with ψ being embedded into the environmental axioms of φ. Given our
knowledge of the nature of ob (Deduce), we know that

(φ ` θ) ∧ (θ ` φ) ⇐⇒ φ ≡ θ ⇐⇒ φ ∼= θ.

Dixon, Drury & Brook Elementary Category Theory Spring Term, 2023 17 / 27



Category-Theoretic Interpretations of Familiar Structures [BB]

The True Isomorphism! (2)

In certain categories, this isomorphic equivalence can be used to deduce
particular properties of objects in the corresponding category. Here we
consider the Category of Deduction, Deduce:

φ ψ θ
α β

γ

Figure 2.2: φ and θ are logically equivalent through deductions [α, β] and γ.

Using deductive cancelling, α and β can be forged into a single morphism,
with ψ being embedded into the environmental axioms of φ. Given our
knowledge of the nature of ob (Deduce), we know that

(φ ` θ) ∧ (θ ` φ) ⇐⇒ φ ≡ θ ⇐⇒ φ ∼= θ.

Dixon, Drury & Brook Elementary Category Theory Spring Term, 2023 17 / 27



Further Applications: Functional Programming [OD]

Presentation Overview

1 Theoretical Underpinnings: Axiomatic Constructions [MD]

2 Category-Theoretic Interpretations of Familiar Structures [BB]

3 Further Applications: Functional Programming and λ-Calculus [OD]

Dixon, Drury & Brook Elementary Category Theory Spring Term, 2023 18 / 27



Further Applications: Functional Programming [OD]

Monoidal Categories (1)

To construct a monoidal category C, we need to consider six elements:

A base category C0

A bifunctor ⊗ : C0 × C0 → C0
An identity from our base category, I ∈ ob C0
An associativity natural transformation:
αA,B,C : (A⊗ B)⊗ C → A⊗ (B ⊗ C )

A left-identity natural transformation: λA : I ⊗ A→ A

A right-identity natural transformation: ρA : A⊗ I → A.

Then, C = (C0,⊗, I , α, λ, ρ), or just C = (C0,⊗, I ).
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Further Applications: Functional Programming [OD]

Monoidal Categories (2)

[(A⊗ B)⊗ C ]⊗ D (A⊗ B)⊗ (C ⊗ D) A⊗ [B ⊗ (C ⊗ D)]

[A⊗ (B ⊗ C )]⊗ D A⊗ [(B ⊗ C )⊗ D]

α

α⊗ idD

α

α

idA⊗α

Figure 3.1: Associativity induced by α

(B ⊗ I )⊗ C B ⊗ (I ⊗ C )

B ⊗ C

α

ρ⊗ idC idB ⊗λ

Figure 3.2: Left- and right-identities induced by λ and ρ
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Further Applications: Functional Programming [OD]

Monoids (1)

A monoid (M, µ, η) is composed of:

Some object M ∈ ob C0

An associated “multiplication” bifunctor µ ∈ homC(M ⊗M,M)

An associated “unit” identity η ∈ homC(I ,M).

Dixon, Drury & Brook Elementary Category Theory Spring Term, 2023 21 / 27



Further Applications: Functional Programming [OD]

Monoids (1)

A monoid (M, µ, η) is composed of:

Some object M ∈ ob C0
An associated “multiplication” bifunctor µ ∈ homC(M ⊗M,M)

An associated “unit” identity η ∈ homC(I ,M).

Dixon, Drury & Brook Elementary Category Theory Spring Term, 2023 21 / 27



Further Applications: Functional Programming [OD]

Monoids (1)

A monoid (M, µ, η) is composed of:

Some object M ∈ ob C0
An associated “multiplication” bifunctor µ ∈ homC(M ⊗M,M)

An associated “unit” identity η ∈ homC(I ,M).

Dixon, Drury & Brook Elementary Category Theory Spring Term, 2023 21 / 27



Further Applications: Functional Programming [OD]

Monoids (2)

(M ⊗M)⊗M M ⊗ (M ⊗M) M ⊗M

M ⊗M M

α

µ⊗ idM

idM ⊗µ

µ

µ

Figure 3.3: Associativity of the monoid

I ⊗M M ⊗M M ⊗ I

M

η⊗ idM

λ

µ

idM ⊗ η

ρ

Figure 3.4: Left- and right-identities of the monoid
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Further Applications: Functional Programming [OD]

Monoids (2)

(M ⊗M)⊗M M ⊗ (M ⊗M) M ⊗M

M ⊗M M

α

µ⊗ idM

idM ⊗µ

µ

µ

Figure 3.3: Associativity of the monoid

I ⊗M M ⊗M M ⊗ I

M

η⊗ idM

λ

µ

idM ⊗ η

ρ

Figure 3.4: Left- and right-identities of the monoid
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Further Applications: Functional Programming [OD]

Functional Programming Languages

In purely functional programming languages, functions must not
cause side-effects: for some input, they must always return the same
output, independent of the state of the wider environment.

There is no allowance for a shared mutable state. At first glance, this
causes problems, since many common operations that are made easy
in the imperative world, are in direct contravention with this safety
principle.

How can monoids and monodial categories help us with printing
“Hello World”?
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Further Applications: Functional Programming [OD]

An Especially Useful Monoidal Category

Let’s consider an example: the category of endofunctors! We have already
encountered endofunctors in the first section.

The endofunctors form a (strict) monoidal category.

The normal functor composition operation becomes the associated
bifunctor ⊗.

The identity functor becomes the identity element I .

By our previous definitions, an endofunctor can be interpreted as a
monoid.

A monad is a monoid in this category.

We can specify the base category C0 with Endo (C0).
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Further Applications: Functional Programming [OD]

Haskell, Hask, and Endo(Hask)

The Haskell language is a useful demonstration tool,
however the type systems of most languages will be
equally valid for these purposes. (Early versions of
Haskell weren’t capable of I/O!)

Consider the category Hask: its objects are Haskell types, and its
morphisms are functions between types. Haskell is a purely functional
language, so Hask is well-defined.

What about Endo(Hask)?

Its objects are endofunctors on Hask, and its morphisms are natural
transformations between these functors.

Thus, endofunctors on Hask with natural transformations µ and η
form monads.
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Further Applications: Functional Programming [OD]

In Closing: Practical Notes

We have established a tangential, perhaps contrived, link between
Category Theory and functional programming, the latter of which is based
on the λ-calculus. Why is this interdisciplinary observation useful?

Akin to “following the arrows” on a commutative diagram of
Endo (Hask), we use the category product Hask×Hask to pass the
desired parameter with the current state, and returning the
transformed state, recalling that the endofunctors are morphisms in
Hask.

In practice, monads allow stateful calculation. Unlike the mindless
emulation of imperative languages, this is achieved without breaking
function purity. This can be seen intuitively as threading state though
a chain of functions.
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Further Applications: Functional Programming [OD]

Any Questions?

A A′ A′′

B B ′ B ′′

α

µ

α′ α′′

µ′′

β β′

µ′

β′′

. . .

An

Bn

α(n−1)

β(n−1)

µn

“The Categorical Snake of Morphistic Infinitude”
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