
AN INVESTIGATION OF ELEMENTARY CATEGORY THEORY,

WITH APPLICATIONS IN PURE MATHEMATICS AND

THEORETICAL COMPUTER SCIENCE

MATTHEW DRURY, BEN BROOK, AND OLIVER DIXON

Abstract. In this preliminary investigation of elementary Category Theory,
we discuss the foundational concepts of analytical abstraction, coupled with an
exploration of the methods by which the study of categories facilitate the dis-
covery of fundamental insights into complex networks of mathematical struc-
ture. We exploit this understanding to establish basic parallels between cate-

gorical instantiations of structure and modern concepts in Abstract Algebra,
Set Theory, and Logic. A commentary of Category Theory in Computer Sci-

ence and Functional Programming is also included, throughout which we in-
terlace theoretical discourse with concrete examples in the purely functional

Haskell programming language.

Contents

1. [MD] Theoretical Underpinnings: Axiomatic Constructions 1
2. [BB] Category-Theoretic Interpretations of Familiar Structures 5
3. [OD] Further Applications: Functional Programming and λ-Calculus 8

Cited Works 12

1. Theoretical Underpinnings: Axiomatic Constructions

[Written by Matthew Drury]

Prose, Excluding Floats: 3–1/2 pages
Word Count of Prose: Approx. 1839 words

1.1. The Essence of Categorical Thinking. A category is a mathematical
structure that links a collection of objects with non-symmetric relationships called
morphisms. Each morphism can be said to traverse from one object to another.
They are used to create abstract models of mathematical theories based on the role
each object plays. Categories have the versatility to talk about different areas of
mathematics in the same language, which is why it is sometimes said to be the
mathematics of mathematics. The objects and morphisms have little restriction
as to what they can represent which can be seen in the commutative diagrams
illustrated in Figure 1.1 (Figure 1.1a is adapted from [Che22]).

These diagrams are usually used to give a sample of a category to demonstrate
these properties. Mathematicians like to generalise with categories and consider
infinite objects and morphisms, meaning we want categories to link all types of

Department of Mathematics, University of York, United Kingdom
E-mail addresses: md1499@york.ac.uk, bb1170@york.ac.uk, od641@york.ac.uk.
Date: Spring–Summer Term, 2023.

Compilation Date: 13th March 2023 Page 1 of 12

mailto:md1499@york.ac.uk
mailto:bb1170@york.ac.uk
mailto:od641@york.ac.uk


An Investigation of Elementary Category Theory

2 6

3 10 30

5 15

(a) Factors

York

Leeds Hull

Manchester Sheffield

(b) Train routes from York to Sheffield

Figure 1.1. Intuitive Examples of Categories

objects that we can define. The most valuable mathematical facts tend to be those
that apply to the widest range of situations. For instance, uncovering the quadratic
formula being more important than solving a particularly difficult quadratic. It
makes all non-trivial quadratics easier to solve and uncovers a method to determine
whether the solutions are real or complex using the discriminant term “b2−4ac”. By
doing this we have found a relationship between all quadratics and their solutions.
From there we could generalise even further and think about how this is significant
for higher order polynomials.

Morphisms are combined together in a process called composition. It means to do
one morphism and then another, given that the target object of the first morphism
is the same as the source of the second morphism. Above we can see that we can go
from York to Leeds to Manchester. This means we have a morphism that goes from
York to Manchester. There are four different ways to get to Sheffield, meaning four
morphisms. These may not be the same morphisms, as they only share in source
and target, not necessarily meaning. When two different composite morphisms are
equal, we say they commute, hence the name commutative diagram.

There are also identity morphisms. These go from an object to itself and are
equivalent to not doing a morphism at all, as when they are composed with another
morphism f , the resulting composite morphism is equal to f . The morphism has
done nothing, like how multiplying a number by 1(The multiplicative identity) does
not change its value. It is similar to stating that something is equal to itself which
is a trivial fact but an important feature of the structure of categories. It should
be noted that it may not be the only morphism from one object to itself. These
are called endomorphisms and the identity is just one of them.

Categories illuminate subtle similarities. By creating categories we abstract
things to their roles and by comparing categories or spotting patterns and struc-
tures within them, we can see properties shared by things that would initially seem
very different. Lines of thought in one context can be more easily translated into
another by seeing equivalent structural features. Mathematicians can then try new
methods to solve problems and prove new facts or describe multiple problems as
one that is more general.

1.2. Axioms and Notation. We will now formally define a category. The follow-
ing axioms are necessary for a structure to be considered a category.

(1) Objects: In a category C there is ob(C), which is a collection of all the
objects of C.

Compilation Date: 13th March 2023 Page 2 of 12



An Investigation of Elementary Category Theory

A

B C

D

g◦f

f

g

h◦g

h

(a) Composition

A

B

C

1A

f

1B

g

1C

(b) Identities

A B C D
f

g◦f

h◦(g◦f)

(h◦g)◦f

g

h◦g

h

(c) Associativity

Figure 1.2. Essential Properties of Categorical Structures

(2) Morphisms: For each pair ordered pair of objects (A,B) in a category C
we have homC(A,B), also written as C(A,B). This is the collection of all
morphisms from A to B, short for “homomorphism set”. Homomorphisms
are those that preserve the structure of objects and for many useful cate-
gories they are necessary for the axioms to hold. However, this property
does not need to hold to use this notation. A morphism f is notated to
map A to B by f : A → B.

(3) Composition: For objects A,B,C ∈ ob(C) if there exists morphisms
(f : A → B) ∈ homC(A,B) and (g : B → C) ∈ homC(B,C), then there
exists (g ◦ f : A → C) ∈ homC(A,C)

(4) Identities: Every object A in a category C has an identity morphism
which maps from A to itself. It is notated 1A : A → A for A ∈ ob(C), 1A ∈
homC(A,A). For f ∈ homC(A,B), g ∈ homC(B,A), the identity has the
property that f ◦ 1A = f, 1A ◦ g = g. Each identity is unique to its object.
If there were two identities I1, I2 ∈ A then (f ◦I1 = f = f ◦I2) =⇒ I1 = I2

(5) Associativity: A morphism h ◦ (g ◦ f) = (h ◦ g) ◦ f . This means that
two morphisms are equal if they are composed from the same morphisms in
the same order regardless of the order in which we compute the individual
composite pairs.

1.3. Size of Categories. The collection ob(C) and the collections homC(A,B) do
not have to be finite. The idea of category size means to place categories in a
hierarchy of containment. This is to accommodate how ob(C) and homC(A,B) do
not have to be sets either.

When defining an infinite collection of objects by their properties, it can create
contradictions. Famously in set theory there is Russell’s paradox [Rus03]. It states
that if you have a set S that contains every set which doesn’t contain itself, then
suppose that S does not contain S, it would imply that S is in fact in S as it does
not contain itself and vice versa. Formally,

S = {x is a set | x /∈ x}, (S ∈ S) ⇐⇒ (S /∈ S) (1.1)

There were many examples of these paradoxes that were uncovered in the early
20th century. Mathematicians are too rigorous to allow such a thing, so to solve
the issue they devised axiomatic systems to limit the properties that members of
sets can be said to follow. This makes some sets very convoluted to define and

Compilation Date: 13th March 2023 Page 3 of 12



An Investigation of Elementary Category Theory

means there are well defined collections of objects that cannot be put into a set.
Categories address this issue in a more elegant way. Firstly, categories do not claim
to contain elements; the core concept is instead relationships. Secondly, categories
have a hierarchy of containment such that they only contain categories “smaller”
than themselves. It follows then that categories are not defined in a self referential
manner like in Russell’s paradox.

A small category is where ob(C) and each homC(A,B) can be described as a set.
A locally small category is where ob(C) does not form a set but each homC(A,B)
does. A large category is where nether ob(C) nor homC(A,B) are a set. The
hierarchy means that if one wanted a category where small categories are objects,
it would have to be a large category. Then, if you wanted a category of large
categories, you would need a super-large category and so on. This can be used to
formally think about multiple layers of generalization and abstraction.

We can easily avoid Russell’s paradox and create categories of categories. This
is a sign that categories are a robust idea, as we can think about a collection of
categories using the same language as within individual categories.

1.4. Functors. A functor maps between the objects of two categories, similarly
to how a function maps between two sets. Functors preserve the structure of the
category, so we want equivalent morphisms between the equivalent objects that
have been chosen. This relationship is illustrated in Figure 1.3.

A B

C

f

g◦f

g

︸ ︷︷ ︸

Domain Category C

F

F (B) F (A)

F (C)

F (g)

F (f)

F (g◦f)

︸ ︷︷ ︸

Codomain Category D

Figure 1.3. A functor F between simple categories C and D

For categories C, D, if we have a functor F : C → D between them:

(1) Objects: For every A ∈ ob(C), FA ∈ ob(D). Thus, A is mapped to F (A).

(2) Morphisms: For every f ∈ homC(A,B), we have F (f) ∈ homD(FA, FB).
Thus, f is mapped to F (f).

(3) Identities: For every A ∈ ob C, we have 1A. For every 1A, there is corre-
sponding morphism F (1A) ∈ homD(F (A), F (A)). Thus, the identity of A
is mapped to the identity of F (A).

(4) Composites: For every f ∈ homC(A,B), g ∈ homC(B,C), we have that
F (g ◦ f) = Fg ◦ Ff . This means that the order in which compositions and
functors are applied is unimportant. This implies that composition in each
category has an equivalent effect on its morphisms.

The commutative diagram above shows how from A we can traverse g ◦ f : A → C
and then apply F , or we can apply F , then traverse F (g ◦ f) : F (A) → F (C).

In general, a functor is a way of finding the structure of one category in another.
For instance, a category with two objects and one morphism between them f : A →
B can have a functor to any category by selecting any morphism in it, which could

Compilation Date: 13th March 2023 Page 4 of 12



An Investigation of Elementary Category Theory

even be the identity of an object. This principle extends to categories of infinite
objects.

1.5. Non-Small Categories. The large category Cat has objects which are all
small categories and homomorphisms which are all functors between them. Each
functor F : C → D can be seen as a function between sets ob(C) and ob(D). It
could be injective, meaning that each object of C maps to a different object of D.
Otherwise, the functor is showing that one object in D has the same categorical
properties as a structure of objects in C.

If it is bijective, then the functor is an isomorphism, a morphism that has an in-
verse which composes to form the identity. This implies that C and D can reach the
same categories with functors and be reached by the same categories with functors.
In general, isomorphisms are a way of saying that objects indistinguishable from
the perspective of the category they are in. However, it is not a suitable notion of
equivalence between categories.

The identities in Cat are identity functors which map a category to a copy of
itself with the exact same objects, morphisms, compositions. More generally it is
one of the endofunctors which map categories to themselves.

Composition is simply doing one functor after another. For functors F : C → D,
G : D → E , we can describe a single functor G ◦ F : C → E . When a lot of functors
have been composed together we can get an increasingly subtle structural similarity
between categories that we would not be able to notice by laying out diagrams next
to each other and seeing a pattern.

2. Category-Theoretic Interpretations of Familiar Structures

[Written by Ben Brook]

Prose, Excluding Floats: 2–1/2 pages
Word Count of Prose: Approx. 1294 words

2.1. Introductory Examples. Now that we have established an axiomatic defi-
nition of the category, the natural next step involves the exploration of some simple
applications of categories in a familiar context.

For the first three of these examples, our objects will be nothing but sets and
morphisms nothing but functions (both with some additional restrictions). Cate-
gories of this type are sometimes called concrete [Awo10]. However, it’s important
to remember that categories need not contain functions nor sets. In fact, we will
see this in our final introductory example, where we do away with both entirely!

All the exemplary categories that we are going to touch on will be infinite. This
means that we won’t be using any diagrams for this section of the report.

2.2. Category of Sets. To begin, an easily digestible example is the category
of sets, whose objects are sets, and morphisms are total functions between sets.
These are the set-theoretic functions with which we are familiar and have been
using throughout the Autumn Term. We will follow a common denotation for this
category: Set [Lei14]. We can easily verify that this category satisfies the category
axioms seen in Section 1.2.

• There are objects, which are sets.

Compilation Date: 13th March 2023 Page 5 of 12



An Investigation of Elementary Category Theory

• There are morphisms between those objects, which are functions. Remem-
ber, however: morphisms are not necessarily functions! In fact, there are
an abundance of examples where this is not the case.

• The composition of two functions is also a function, with its domain and
codomain coming from the functions involved in the composition operation.
Hence, the axiom of composition is satisfied.

• Let A ∈ ob (Set). We have that the identity morphism for A is (1A : A →
A) ∈ hom(A,A), which maps each element of A to itself.

• The morphisms of Set are associative due to the native associativity of
function composition. Let A,B,C,D ∈ ob (Set) be distinct. Also, let
f ∈ hom(A,B), g ∈ hom(B,C), and h ∈ hom(C,D). Thus,

(f ◦ g) ◦ h = f ◦ (g ◦ h). (2.1)

Hence, all the category axioms are satisfied. Going forwards, we will avoid the
pedantry of listing that our category contains morphisms and objects.

2.3. Category of Partially Ordered Sets. A nice path to advance down is the
exploration of a category whose objects are sets that satisfy certain properties. In
other words, the objects are sets that have additional structure imposed upon them.
We will also assign functions that preserve this structure to be the morphisms of
our category. In this case, let’s think about partially ordered sets, or posets. We
must first establish some definitions:

• A poset is a set, A, with a relation, ∼A, that is reflexive, transitive, and
antisymmetric. We covered these properties in the Autumn Term.

• Let A and B be posets. A monotone map m : A → B is an order-preserving
function such that

∀ a, b ∈ A a ∼A b =⇒ m(a) ∼B m(b). (2.2)

We have a category Pos whose objects are posets and morphisms are monotone
maps between those posets. Once more, we can verify the satisfaction of the relevant
axioms.

• Let A,B,C ∈ ob (Pos) be distinct. Also, let f ∈ hom(A,B) and g ∈
hom(B,C). Since monotone maps are functions, we can compose them to
get g ◦ f : A → C. Is this new function also a monotone map? Well, for all
a1, a2 ∈ A, we have that

a1 ∼A a2 =⇒ f(a1) ∼B f(a2) (2.3)

=⇒ g(f(a1)) ∼C g(f(a2)). (2.4)

Thus, g ◦ f is a monotone map, and the composition axiom is satisfied.

• The identity morphism for any fixed object, A, is the monotone map
1A : A → A, such that a 7→ a.

• The associativity axiom is satisfied since our morphisms are functions, and
function composition is associative.

2.4. Category of Finite-Dimensional Vector Spaces. We can look to Lin-
ear Algebra to provide another simple infinite category. The category of finite-
dimensional R-vector spaces is often denoted FinVectR [HHP08].

• A finite-dimensional R-vector space is an element of {Rn |n ∈ N}.

Compilation Date: 13th March 2023 Page 6 of 12



An Investigation of Elementary Category Theory

• A linear map is a function, f , between two vector spaces, such that vector
addition and scalar multiplication is preserved. That is,

f(~u+ ~v) = f(~u) + f(~v); [Additivity] (2.5)

f(λ~u) = λf(~u), [Homogeneity] (2.6)

with λ ∈ R and ~u,~v ∈ Rn for some n ∈ N.

The objects of FinVectR are finite-dimensional real-valued vector spaces, and its
morphisms are linear maps between them. We will verify that FinVectR satisfies
the category axioms:

• Let Ra,Rb,Rc ∈ ob (FinVectR) be distinct. Additionally, suppose that
f ∈ hom(Ra,Rb) and g ∈ hom(Rb,Rc). Trivially, g ◦ f : Ra → Rc is a
map. Now, let ~u,~v ∈ Ra and λ ∈ R. We have that

(g ◦ f)(~u+ ~v) = g(f(~u)) + g(f(~v))

= (g ◦ f)(~u) + (g ◦ f)(~v) [By Eqn. 2.5] (2.7)

(g ◦ f)(λ~u) = λg(f(~u))

= λ(g ◦ f)(~u), [By Eqn. 2.6] (2.8)

so the axiom of composition is met.

• The identity morphism for any object is the linear map such that ~u 7→ ~u.

• The associativity axiom is satisfied due to functional nature of the maps.

2.5. Category of Propositions. As mentioned at the start of this section, the
final exemplary category that we cover is not concrete. In this regard, it is similar
to the categories we will see later in this report. Here we leverage how objects and
morphisms can be anything such that the category axioms are met.

In this case, we are going to explore a category whose objects are propositions
and morphisms are proofs, which we will denote Prop. We will consider this
category informally, by employing our well-established intuition of proofs. Suppose
P,Q ∈ ob (Prop). If there is a proof which, under P , gives Q – or a proof leading
from P to Q – then this gives a morphism (f : P → Q) ∈ hom(P,Q) (which is not
a function!) We will use P ` Q to denote this. We can confirm the categorical
nature of this structure:

• Let P,Q,R ∈ ob (Prop) be distinct and let f ∈ hom(P,Q), g ∈ hom(Q,R).
Then P ` Q∧Q ` R so, intuitively, P ` R and g◦f belongs to the category.

• We can also intuitively reason that there is a proof leading from any propo-
sition to itself, so each object has an identity morphism.

• Finally, we know that morphism composition is associative, again through
our intuition. Let P,Q,R, S ∈ ob (Prop) be distinct. Let f ∈ hom(P,Q),
g ∈ hom(Q,R), and h ∈ hom(R,S). That (h ◦ g) ◦ f is a morphism asserts
both that there is a proof leading from Q to S, and that P leads to Q.
Likewise, that h ◦ (g ◦ f) is a morphism asserts both the existence of a
proof leading from P to R, and that R leads to S. These two assertions
are identical, thus morphism composition is associative.

We covered this category informally in that some facts stated above do not hold
for every conceivable system of logic, but just some particularly well-behaved con-
structions1. Our intuition was hopefully enough to take value from the example. A
further, and more rigorous, exploration of this concept is detailed by [BS09].

1In the scope of this report, the distinctions between varying systems of logic is unimportant.

Compilation Date: 13th March 2023 Page 7 of 12



An Investigation of Elementary Category Theory

3. Further Applications: Functional Programming and λ-Calculus

[Written by Oliver Dixon]

Prose, Excluding Floats: 3–1/2 pages
Word Count of Prose: Approx. 1072 words

3.1. Functional Programming and Haskell. In purely functional languages,
there is no allowance for context, or mutable variables of any kind. Each function
must accept some data, perform some strict transformation upon the data—as de-
fined by the algorithm—and return the result. Whilst this robust paradigm does
open a wide range of mathematical avenues involving proof, safety, and reproducibil-
ity, the prohibition of stateful computation renders many common tasks, such as
I/O or socket communication, largely impossible, as these imperatively defined op-
erations inherently contravene the purity principles of functional programming.

Haskell is a commonly used purely functional programming language, and suffers,
as do all languages in the same class, from this blaring issue. Indeed, early ver-
sions of Haskell did not support the chaining of stateful computation in any sense,
due to the obligatory absence of a fixed execution order in functional paradigms;
programmers were forced to resort to breaking the purity of the language through
aesthetically unpleasant techniques, ultimately obviating the mathematical essence
of the Haskell formal type system.

Due to the strength of the Haskell type system and function interface, we may
define a corresponding category, Hask, within which the objects are Haskell types,
and the morphisms are functions2. By analysing the structure of Hask, its end-
ofunctors, and the categories formed by taking product, we can draw a swathe of
parallels between generic purely functional paradigms; these connexions will even-
tually reveal the powerful concept ofmonads, allowing stateful computation, control
flow, and error-handling.

3.2. Monoidal Categories and Monoids. Before fully exploiting the structure
of Hask, we must develop the theory of monoidal categories and their correspond-
ing monoids. Monoidal categories can be regarded as a six-tuple (C0,⊗, I, α, λ, ρ),
containing various components [Kel82]:

• A base category, C0;

• A bifunctor ⊗ : C0 × C0 → C0;

• An identity object I ∈ ob C0;

• An associativity natural transformation αA,B,C : (A⊗B)⊗C → A⊗(B⊗C);

• A left-identity natural transformation λA : I ⊗A → A;

• A right-identity natural transformation ρA : A⊗ I → A.

To maintain brevity, the natural transformations are often omitted from the
tuple-descriptions of monoidal categories: (C0,⊗, I). In this context, the natural
transformations α, λ, and ρ are used to induce certain properties on ⊗—up to iso-

morphism—which it may not possess natively; the effects of these transformations
can be illustrated as morphisms on a pair of abstracted commutative diagrams (c.f.
Figure 3.1).

2Due to the λ-Calculus concept of currying, named after Haskell Curry, functions taking mul-
tiple arguments may be decomposed into a chain of function compositions, in which each function
strictly accepts and returns a single argument. This is made explicit in Haskell, where the type

signature of a function f may be defined as f :: a -> b -> c , invoked as f a b , and ex-

pected to return a value of type c . This function signature is trivially equivalent to the uncurried

form of f , defined as f :: (a -> b) -> c .

Compilation Date: 13th March 2023 Page 8 of 12



An Investigation of Elementary Category Theory

Then, monoids can be considered as three-tuples, consisting of an object in a
monoidal category (C,⊗, I), coupled with two transformations:

• A base object M ∈ ob C0;

• A multiplication transformation µ ∈ homC(M ⊗M,M);

• A unit transformation η ∈ homC(I,M).

Once more, the natural transformations from the parent monoidal category C can
be used to induce properties on µ, as in Figure 3.2.

[(A⊗B)⊗ C]⊗D (A⊗B)⊗ (C ⊗D) A⊗ [B ⊗ (C ⊗D)]

[A⊗ (B ⊗ C)]⊗D A⊗ [(B ⊗ C)⊗D]

α

α⊗ idD

α

α

idA⊗α

(a) Associativity on ⊗ induced by α

(B ⊗ I)⊗ C B ⊗ (I ⊗ C)

B ⊗ C

α

ρ⊗ idC idB⊗λ

(b) Left- and right-identities of objects A,B,C,D induced by λ and ρ

Figure 3.1. (Monoidal Categories) The natural transforma-
tions invoke commutativity on the bifunctor ⊗.

(M ⊗M)⊗M M ⊗ (M ⊗M) M ⊗M

M ⊗M M

α

µ⊗ idM

idM ⊗µ

µ

µ

(a) Associativity on µ induced by α

I ⊗M M ⊗M M ⊗ I

M

η⊗ idM

λ

µ

idM ⊗ η

ρ

(b) Left- and right-identities of M induced by λ and ρ

Figure 3.2. (Monoids) The natural transformations from the
parent monoidal category also apply within the monoid.

Compilation Date: 13th March 2023 Page 9 of 12



An Investigation of Elementary Category Theory

It is important that the domain of the µ transformation is a product combination

of the monoidal object; this will allow the imperative-like threading of state in
functional paradigms.

3.2.1. Examples of Monoidal Categories: Set Theory. The canonical example of a
monoidal category whose bifunctor/tensor product is not associative is Set, with
the cross product; this is not naturally associative, but can be made associative up to
isomorphism with a suitable choice of the natural transformation α. The details are
established in [FS18], using an associativity transform as described in Equation 3.1,
providing a monoidal category of the form (Set,×, I), where I represents some fixed
singleton.

αA,B,C : (A×B)× C → A× (B × C) (3.1)

3.2.2. Examples of Monoidal Categories: Haskell. In Haskell, the simplest practical
implementation of a monoidal category is outlined in Listing 3.1, where the base
category is Hask, the identity is the empty tuple, and the bifunctor is the tuple-
building native function.

1 type (,) :: * -> * -> * -- The type signature of the tuple-builder

2 cross :: a -> b -> (a, b) -- Uncurried function signature

3 cross = (,) -- A trivial application of the binary packing function

Listing 3.1. A binary Haskell function cross that encodes its
arguments into a tuple. In category-theoretic language, the corre-
sponding monoidal category could be expressed as the three-tuple
(Hask, cross , () ).

3.3. The Category of Endofunctors. For the purposes of Functional Program-
ming, and the wider formal treatment of functional type systems, a particularly
useful monoidal category concerns the category of endofunctors over some fixed
base category C0. Denoted as Endo (C0), this forms a monoidal category with the
associated bifunctor being the standard operation of endofunctor composition; the
identity element is the obligatory identity endofunctor. Objects in Endo (C0) are
the endofunctors over C0, and morphisms are the natural transformations between
these objects. Monoids in the category of endofunctors are sometimes called mon-
ads. Thus, endofunctors over C0 with appropriately selected morphisms µ and η
are henceforth termed as monads [Mac98].

3.3.1. Monads in Haskell. An abbreivated definition of a Haskell Monad is given in
Listing 3.2; here we see the semi-curried form of the bind operator. The importance
of >>= is reflected by its inclusion in the Haskell logo!

1 type Monad :: (* -> *) -> Constraint

2 class Applicative m => Monad m where

3 (>>=) :: m a -> (a -> m b) -> m b -- The fabled "bind" operator!

4 return :: a -> m a -- Inject unstructured data into a monad

Listing 3.2. The Haskell >>= and return functions allow pro-
grammers to interact with the Monad class in the categorical sense.

Compilation Date: 13th March 2023 Page 10 of 12



An Investigation of Elementary Category Theory

a b c

f

f.g

g

[]

[a] [b] [c]

map f

map $ f.g

map g

Figure 3.3. The action of the [] functor on Hask. The list

constructor functor lifts the Haskell types a , b , and c into the
list context.

a b c

f

f.g

g

F

F a F b F c

fmap f

fmap $ f.g

fmap g

Figure 3.4. The action of the generic functor F on some Hask.
The mappings of the objects are implicit in the mappings of the
morphisms, as domains and codomains must be preserved between
isomorphic categories.

3.4. Functors in Haskell. This interdisciplinary review of Category Theory and
Functional Programming becomes useful when considering the category of endo-
functors over the Hask category, Endo (Hask), thus forming a monoidal category
with monads as endofunctors over Hask [MT19]. In Haskell, these are simply typed
as Functor , defined as a typeclass providing appropriate mappings from Hask to
Hask for types and functions, as shown in Listing 3.3. The Haskell function fmap

is used to lift a function a -> b , embedded in Hask as the domain category, to
the functorial context f a -> f b , embedded in Hask as the codomain category.

Haskell Functors can be solidified with the most trivial example: the list con-

structor, which takes types A,B,C ∈ obHask and lifts them into the list structure
with the fmap endofunctor3. This process is illustrated in case of lists in Figure 3.3,
and in the general case in Figure 3.4.

3.5. Controlling State with Haskell Monads. To address our original problem
of stateless computation, how might a specific usage of Monad allow the threading
of state through pseudo-imperative function calls? By recalling the domain of the
multiplication transformation on the monoid, as defined in Section 3.2, we have an
immensely useful functor transformation Endo (Hask), such that µ : M×M → M ,

3In the Haskell [] instantiation of Functor , the fmap field is set to the stricter map

function; this is an unimportant implementation detail in this case.

Compilation Date: 13th March 2023 Page 11 of 12



An Investigation of Elementary Category Theory

1 type Functor :: (* -> *) -> Constraint

2 class Functor (f :: * -> *) where

3 fmap :: (a -> b) -> ( f a -> f b ) -- The curried form of fmap.

4 (<$) :: a -> f b -> f a

5 {-# MINIMAL fmap #-}

6

7 instance Functor [] -- The list constructor is an exemplary Functor!

8 instance Functor Maybe -- Maybe is used for controlling uncertainty.

Listing 3.3. The Haskell Functor type signature, of which the
list type constructor [] is an instance.

whereM is an object in C0 := Hask. This can be implemented as a Haskell function
which allows the merging of two Hask instances into a single combined instance.
By exploiting the lazy evaluation of Haskell, such that functions are only executed
when directly invoked, programmers can enforce an execution order by chaining
evaluations of some transformation µ. Context is achieved by applying a Hask, as
the standard function parameter, to a given context; the function must then return
the transformed context according to the prescribed algorithm or process.

Cited Works

[Che22] Eugenia Cheng. The Joy of Abstraction. Cambridge, UK: Cambridge
University Press, 2022, p. 114. isbn: 978-1-108769389.

[Rus03] Bertrand Russell. The Principles of Mathematics. Cambridge, UK: Cam-
bridge University Press, 1903. isbn: 978-1-282284036.

[Awo10] Steve Awodey. Category Theory. 2nd Ed. Oxford Logic Guides. Oxford,
UK: Oxford University Press, 2010, p. 7. isbn: 978-0-199587360.

[Lei14] Tom Leinster. Basic Category Theory. 1st Ed. Cambridge, UK: Cam-
bridge University Press, 2014, p. 11. isbn: 978-1-107044241.

[HHP08] Masahito Hasegawa, Martin Hofmann, and Gordon Plotkin. “Finite Di-
mensional Vector Spaces Are Complete for Traced Symmetric Monoidal
Categories”. In: Lecture Notes in Computer Science 4800 (2008), p. 367.

[BS09] John Baez and Mike Stay. “Physics, Topology, Logic and Computation:
A Rosetta Stone”. In: New Structures for Physics. Heidelberg, Germany:
Springer, 2009, pp. 39–43. doi: 10.1007/978-3-642-12821-9_2.

[Kel82] Gregory M. Kelly. Basic Concepts of Enriched Category Theory. Cam-
bridge, UK: Cambridge University Press, 1982. isbn: 978-0-521287029.

[FS18] Brendan Fong and David Spivak. Seven Sketches in Compositionality.
arXiv pre-print, 2018, p. 136. doi: 10.48550/ARXIV.1803.05316.

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. 2nd Ed.
Graduate Texts in Mathematics. London, UK: Springer, 1998, p. 138.
isbn: 0-387984038.

[MT19] Bartosz Milewski and Igal Tabachnik. Category Theory for Program-

mers. Blurb, 2019, pp. 229–230. isbn: 978-0-464243878.

[Section 3 is wholly dedicated to MQ.]

Compilation Date: 13th March 2023 Page 12 of 12

https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.48550/ARXIV.1803.05316

	1. Theoretical Underpinnings: Axiomatic Constructions
	1.1. The Essence of Categorical Thinking
	1.2. Axioms and Notation
	1.3. Size of Categories
	1.4. Functors
	1.5. Non-Small Categories

	2. Category-Theoretic Interpretations of Familiar Structures
	2.1. Introductory Examples
	2.2. Category of Sets
	2.3. Category of Partially Ordered Sets
	2.4. Category of Finite-Dimensional Vector Spaces
	2.5. Category of Propositions

	3. Further Applications: Functional Programming and Lambda-Calculus
	3.1. Functional Programming and Haskell
	3.2. Monoidal Categories and Monoids
	3.2.1. Examples of Monoidal Categories: Set Theory
	3.2.2. Examples of Monoidal Categories: Haskell

	3.3. The Category of Endofunctors
	3.3.1. Monads in Haskell

	3.4. Functors in Haskell
	3.5. Controlling State with Haskell Monads

	Cited Works

