
This contents of this document, excluding any images embedded within, are hereby released
into the Public Domain. You are encouraged to copy, modify, and redistribute this text.

ShockSoc C Programming Support

Sessions

Oliver Dixon

ShockSoc Technical Officer

od641@york.ac.uk

P/T/401 2pm–5pm

Spring Term, 2021–2022

Lab Script 01: Configuring the

Environment and Understanding

the Build Process

LATEX document built January 31, 2022 on Linux.

od641@york.ac.uk

Configuring the Environment and Understanding the Build Process 2

Table of Contents

1 Introduction & Motivation 2
1.1 A Criminally Abbreviated History of UNIX and C 3
1.2 A Far Cry from Python: Why Use C at All? 5

2 A Simplified Build Process: Step-by-Step 6
2.1 The Compiler . 7
2.2 The Linker . 9
2.3 Diving into the Build Stages: A Practical Example 10

3 Configuring and Testing the Environment 11
3.1 Booting Linux and Accessing the Terminal Emulator 11
3.2 Selecting a Text Editor . 12
3.3 Writing a “Hello, World!” Test Program 13
3.4 Next Week. 14

1 Introduction & Motivation

Welcome to the first Programming Support Session! Assuming the COVID-19
situation remains reasonably stable (i.e., we are not issued with another stay-at-
home order), these sessions will be taking place every Wednesday afternoon in
P/T/401, during the standard additional lab time. During this first script, you
will be establishing a half-decent programming environment on a lab computer1,
understanding the build process of a simple C program, and finally writing and
executing some short programs.

As the lab sessions progress into the Spring term, you are encouraged to
cherish the time in the labs, undertaking one of three tasks (in descending order
of importance).

• Work on your own projects;

• Progress through these lab scripts;

• Complete work from the Introduction to Programming module.

All PDF lab scripts, along with supplementary material such as code sam-
ples, is released under the public domain and published on-line at https:

//www-users.york.ac.uk/~od641/pss/, for the convenience of those prefer-
ring to work in their own time (as programmers often do)2. Should you have
any remarks concerning these lab scripts, especially suggestions, corrections, or

1Almost all departmental computers, such as those on the first floor, will have exactly the
same installation; these instructions are not limited to the fourth-floor labs.

2For the purposes of avoiding unnecessary confusion amongst first-year undergraduates,
the raw LATEX source code (.tex) files are not normally placed on the public HTTP instance.
However, these can be quickly obtained by e-mailing Oliver Dixon for those with a special
interest.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

https://www-users.york.ac.uk/~od641/pss/
https://www-users.york.ac.uk/~od641/pss/

Configuring the Environment and Understanding the Build Process 3

improvements, you are very welcome to contact Oliver Dixon using the e-mail
address on the title page.

Please be aware that you are not expected to understand everything in these
lab scripts. Some of the remarks, especially those contained in footnotes, are
intended for readers already proficient in Linux and familiar with operating
system internals to a reasonable degree. You may notice that footnotes are used
very heavily, especially in the first few scripts. This is intentional and necessary,
since this is a very large topic which may overwhelm less-competent readers.
However, as we do not want advanced readers to be dissatisfied, ‘interesting
asides’ are placed in footnotes.

1.1 A Criminally Abbreviated History of UNIX and C

In order to understand the development of C, you must first understand the
development of the UNIX operating system. In the mid-1960s, Dennis Ritchie
(dmr) and Ken Thompson (ken) were working alongside many computer sci-
entists, electronic engineers, and mathematicians employed by Bell Telephone
Laboratories in New Jersey to develop a revolutionary operating system: Mul-
tics. Whilst Multics was the first OS to implement many of the concepts still
used today, such as a time-sharing process and memory scheduler alongside
hugely increased data access abstraction, the implementation was large and
messy, and also written for a bespoke GE-645 mainframe. After departing from
the Multics team at Bell Labs, Ritchie and Thompson started work on a new
operating system3 that was small and clean, but retained the novel concepts in-
troduced in Multics. Instead of being designed for a bespoke mainframe, Ritchie
and Thompson decided to target the PDP-7 computer (and later PDP-11), as it
was a machine rife with powerful hardware features, such as byte-addressability;
see Figure 1 for a famous photograph of our two protagonists.

Although UNIX itself was written in assembly language for the PDP ma-
chines, Ritchie and Thompson needed a higher-level language in which simple
UNIX utilities could be written. Thompson experimented with various tech-
niques, and eventually settled on a simplified version of an informally speci-
fied systems programming language called BCPL, Thompson’s simplification of
which was called B. In the early 1970s, Ritchie became steadily dissatisfied with
B ’s performance problems and lack of full compatibility with the PDP-11 hard-
ware architecture, and begun the development of a slightly improved version:
‘B’++, if you will. Fittingly, with the help of Brian Kernighan, another Bell
Labs engineer, the name of C was chosen. By 1973, C was adequately robust to
warrant the reimplementation of many core UNIX operations in the language,
abstracting away from the dreadful PDP assembly language. (The various ad-

3The name “UNIX” was originally coined from Uniplexed Information and Computing

Service, for which Unics is an acronym. This is a pun on Multics, which stood for the
Multiplexed Information and Computer Services. Such technologically inspired comedic genius
is second only to the Generalised Information Retrieval Language System, introduced by Dick
Pick around the same time as UNIX.

4Image taken under CC-BY-SA-2.0 from Magnus Manske on Wikimedia Commons.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Configuring the Environment and Understanding the Build Process 4

Figure 1: Ken Thompson and Dennis Ritchie—two of many original UNIX and
C architects—working via teletypewriter (Teletype ASR 33) on a PDP-11 at
Bell Labs in New Jersey, U.S.A.4

vantages and shortcomings of platform-independence shall be discussed shortly.)
At this point, it is worth noting that Kernighan and Ritchie published a book

under Prentice Hall Software Series entitled The C Programming Language [3].
Colloquially referred to as ‘K&R’, this book is the greatest programming text
ever released. In fact, it may be the greatest book ever released in any tech-
nical discipline, second only to Russell & Whitehead’s Principia Mathematica

or Donald Knuth’s The Art of Computer Programming in an unfortunate joint
first5. If you are a student looking forward to doing further reading, K&R is
the only textbook you will need: it is rife with increasingly complex explana-
tions and examples, and also written for programmers with no experience of C
(although low-level programming experience is always helpful). The ISBN of
the Second Edition is 978-0-131103627, and is available from any reasonable
bookseller for around fifty pounds6. Any technical/university library will also
stock copies available for borrowing, and, as an absolute last resort, free PDF
scans of varying quality are easily found on the net.

5Electronic engineers true to their craft are likely to argue in favour of Horowitz & Hill
over Russell & Whitehead. Thankfully, this course focuses on correctness.

6Make sure to avoid the first edition of this text, as it describes a version of C that is
significantly different to the one in modern use. Specifically, it was before any sort of external
standardisation (such as ANSI) had taken place, and was purely from the designs of Bell Labs
engineers. Whilst very good, ‘K&R C’, as it is now termed, is no longer used in any aspect,
aside from in obfuscated C competitions and the occasional round of code golf.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Configuring the Environment and Understanding the Build Process 5

1.2 A Far Cry from Python: Why Use C at All?

Until now, many students have been exposed to only a tiny selection of very
high-level languages; the typical list includes Python, Java, C#, Visual Basic,
and perhaps even JavaScript. With the entertaining exception of Microsoft’s
VB.NET, all of these languages have their place, however none of them do
anything to serve the needs of an embedded software engineer, as Electronic
Engineering students tend to be. When writing software for embedded or
performance-critical applications, layers of abstraction begin to present as more
of a hindrance than anything else, as they tend to consist of three major issues:

1. With very rare exceptions, the above list of typically taught high-level
languages all run under a hosted environment, as opposed to natively.
This means that instead of being compiled into the native machine code of
a particular processor (for example, ARM or x86), code is converted to an
easier-to-parse intermediary form and executed under a virtual machine,
which itself runs natively. In many ways, the ‘intermediary form’ (called
bytecode in many communities, such as the Java Virtual Machine, or JVM)
can be seen as an assembly language for the virtual machine7. In any case,
for embedded applications, virtual machines tend to have far too much
performance overhead and too large of a memory footprint, rendering
them a completely unneeded layer of abstraction. (There are a plethora of
advantages to execution under hosted environments, such as the existence
of sandboxing and massively increased symbol-introspection capabilities
for dynamic analysis and in situ debugging, however the overhead is still
far too significant when working with system-on-chip boards with memory
measured in the kilobytes. We will visit hosted execution again, but only
for the purposes of debugging memory errors with Valgrind.)

2. As above, execution under a virtual machine tends to drastically reduce
execution speed and increase power consumption. For example, research
popularised by El Reg shows that when compared to C, Python is over
seventy-five times less energy-efficient in performing a simple binary search,
takes almost seventy-two times as long, and uses 2.4 times the amount of
memory [4]. For embedded applications, this is simply unacceptable.

3. Platform-independence is not always desirable. By definition, platform-
independence abstracts away from architecture-specific elements of a pro-
gramming language, delegating them to various other intermediaries, such
as vendor libraries implemented in assembly language with bindings to a
target language, with the obvious examples being the AVX and SSE pro-
cessor extensions. While increased portability tends to improve the lives
of programmers and users alike, in the context of embedded systems, soft-
ware and hardware work very intimately: far more than anything seen

7Hopefully it goes unsaid that this introduction is very crude and criminally oversimplified,
as was the historical overview of UNIX. There are many distinctions between an “interpreter”
and a virtual machine, however they are beyond the scope of the material at this stage.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Configuring the Environment and Understanding the Build Process 6

in typical user-space applications. As such, this layer of abstraction can
prove unhealthy, and may render some common heavy optimisations im-
possible, such as writing to individual registers or working with processor
jump tables. Some operations, such as disabling interrupts or switching
to supervisor mode, are seldom possible outside of a processor’s assembly
language8.

While far from perfect, the use of lower-level languages eliminates many of
these issues by using a compiler, linker, assembler, and various other utilities,
to convert and combine human-readable source code into executable native ma-
chine code for a specified architecture. We will now discuss the build process of
a typical program in slightly more detail.

2 A Simplified Build Process: Step-by-Step

The build process typically consists of two major stages: compilation and link-
ing. Respectively, these discrete stages can be abstractly defined as “converting
the source files to machine code”, and then “combining all the machine code to-
gether to produce a single binary, resolving cross-references and aligning data”.
(There are a few different types of linking in common use, however we will only
consider static linking in the text body9.) In any case, the general purpose of
a build is to take one or more source files and combine them into a single exe-
cutable; this resultant binary may or may not have a well-defined entry point10.
This is a long and arduous task with many considerations to be made, a slim
minority of which will be covered here. Formal compiler theory is a very active

8Do not worry if these particular examples don’t make sense yet; their meanings will
become clear in time.

9In this introductory document, static linking is assumed for reasons of simplicity. In
reality, static linking is rarely used for common user-space applications, since resultant bina-
ries become extremely large for the most simple of programs. Dynamic linking and shared
linking are more common approaches, in which libraries are either loaded on-demand via an
OS-provided API, or immediately linked upon execution of the client program. The latter
approach is especially popular in UNIX-like systems, with shared object (.so) files typically re-
siding in /usr. To find all of them, try running “find /usr/lib{,64} -type f -name *.so
2>/dev/null” in a shell. Interestingly, the linker binary is still termed ld on the vast majority
of systems, due to its original name of “the loader ”.

10In the context of binaries, an “entry point” is the address of the function to be called
upon execution of the program. Binaries need not have an entry point to be valid. In fact,
most binaries installed on most computers do not have entry points, as they are libraries
designed to be called from client code, and not to be executed as standalone programs. In the
context of C, compilers normally use the main function as an entry point to be encoded into
the _start routine. For truly embedded applications, simple microcontrollers tend to jump
to address 0x00, interpret the data as instructions, and execute. In that sort of situation,
it is the responsibility of the programmer to write a linker script that ensures the desired
entry function (of an arbitrary name) is located at 0x00 in the flashed binary. Furthermore, it
may be helpful to realise the entirely decoupled nature of the compiler and the linker: almost
every toolchain allows executing the compiler but not the linker, or the other way around.
We explore this later when requesting the builder to output the ARM assembly language as
opposed to a well-formatted ELF binary.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Configuring the Environment and Understanding the Build Process 7

area of research and comprises a significant portion of Computer Science de-
gree courses; a strong pure mathematical background is also required for a full
understanding.

2.1 The Compiler

The compiler is typically a very large program, tasked with performing a few
major subtasks: pre-processing, lexical analysis, syntax analysis, optimisation,
and finally code generation. As steps are executed in-sequence, a basic descrip-
tion of each stage is an appropriate way to think about the role of a compiler:

• Pre-processing. “Preprocessor directives” are an integral part of any C
program. They serve as simple, compile-time instructions to be evaluated
at the first stage of the build, and are identified with a leading pound sign.
Types of preprocessor directives are few in number, but are enormously
useful for declaring named global constants (#define), including external
source files inside an independent translation unit (#include), and also
forming basic conditionals (#if, #else, and #endif). They also tend to be
used to implement compiler-specific extensions, such as #warning to issue
a build-time warning to the shell, usually as the result of a conditional.
(The fatal analogue #error is standard, and will immediately halt a build.)

• Lexical Analysis. All programming languages are composed of ‘tokens’,
where a ‘token’ is the most primitive unit of an expression. C has five
types of tokens, all of which must be recognised by the lexer:

1. Primitive keywords, such as if, for, else, and while;

2. Identifiers, such as variable and function names;

3. Operators, such as +, -, &, and |;

4. Literals, such as ‘magic numbers’, or those defined with #define

(after the pre-processing stage, these two are identical). These may
also include strings encapsulated between a couple of speech marks;

5. Special characters, such as parentheses of various forms.

The lexer also identifies comments, which, unless instructed otherwise by
the compiler, will be removed along with any unnecessary whitespace11.

• Syntax Analysis. At this stage, an ordered array of tokens has been
compiled, however the compiler has no notion of their validity. The pur-
pose of the ‘parser’ is to perform syntax analysis on the tokens, ensuring

11It may be worth noting that non-standard keywords are allowed in the implementation
namespace, or after the inclusion of a non-standard header. For example, after the inclu-
sion of 8086.h, far and huge are defined as non-standard keywords to describe a pointer.
Various compilers may also define additional keywords, such as GCC’s long long, however
these should generally be avoided unless you have an absolute certainty of the build system’s
extensions.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Configuring the Environment and Understanding the Build Process 8

they are all of correct form, and are organised in accordance with the spec-
ification of the language [2]. At this point, any syntax issues will be raised
by the compiler. Once the source is known to be valid, it can be con-
verted into an intermediary representation (IR), as mentioned earlier. At
the time of writing, every moderately serious C compiler uses an abstract
syntax tree (AST) to store the IR12.

Use of an IR also allows for great versatility in toolchains, such that devel-
opers are spared the pain of writing new build systems for every language.
In the case of GCC or Clang, adding support for a new language requires
only the implementation of the tokeniser and the syntax analyser. Once
a translation unit is in the IR, optimisations and code-generation can be
unified.

• Context-Sensitive Analysis. Having the program in its IR also al-
lows quick binary traversal of all execution paths, enabling the compiler
to perform checks for redundant variables or obviously superfluous code,
such as ‘if (0) x = 0;’. Depending on compiler flags, this may result in
the silent removal of redundant expressions, or an explicit warning being
reported. Potential trouble-sources, including the likes of declaring unini-
tialised pointers or obvious errors13, are also reported at this stage, but
are not typically presented as errors.

Debugging information can also be packed into the binary at this stage, if
requested by the compiler. As C does not support introspection, unobfus-
cated names and types can be placed into the global symbol table, which
may be interpreted by a debugger to look-up identifiers and types. If a
very high level of debugging information is requested, the original source
code with line numbers, whitespace, and commenting intact may also be
packed into the binary.

• Optimisation. Optimisation is an extremely heavily researched area of
compiler theory, and for good reason. Optimising an AST is not a black-
and-white situation, as have all the previous stages. A compiler, unless
told otherwise, will typically choose a sensible balance between binary size
and execution speed, often veering towards the latter. Common optimisa-
tions include loop-unrolling, the reduction of mathematical precision, and
the omission of various safety features; all of these will be examined in
detail throughout the coming sessions, as it is very difficult to understand
these techniques before learning any C.

For those interested in further reading, many impressive bit-level optimisa-
tions for very common operations (such as calculating log

2
(2n), n ∈ Z) are

12Use of an AST is advantageous for various reasons, however the primary lure of a tree-
like structure is shown in its ability to implicitly represent many details that would have
to be expressed explicitly in source code, such as parenthetical structures. Similarly, many
common constructions are easy to represent in the form of a tree, as typical statements such
as if-then-else compounds may be represented as single nodes with multiple branches.

13. . . such as dereferencing NULL or accessing an array with an unreasonable index.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Configuring the Environment and Understanding the Build Process 9

available on the net [1]. Intelligent compilers will spot cases in which these
optimisations may be useful, and substitute an appropriate compound.
Iterative optimisation is also often performed, such that optimised com-
pounds may have their loops unrolled, or branchless substitutions made.

• Code Generation. Finally, with a correct and optimised IR AST, native
code with architecture-specific opcodes and syntax must be generated and
packed into a binary. These binaries are known as ‘object files’, as they
have yet to be linked into a single executable by the linker.

A compiler will usually generate native code for its host architecture (e.g.,
compiling on x86 would create x86 binaries), however cross-compilation is
also possible, such that a compiler generating 32-bit ARM binaries could
be executed on a SPARC machine. In the context of embedded software
engineering, in which development work is typically undertaken on an x86
machine with a non-x86 target, cross-compilation is a vital part of the
toolchain14.

2.2 The Linker

After compilation of the source files, the linker is executed with an array of
relocatable object files. Akin to the compiler, the linker performs a number of
major subtasks to combine the provided object files and libraries into a single
program: symbol resolution, section alignment, and initialisation. Again, these
are typically conducted in sequence.

• Symbol Resolution. As previously mentioned, out-of-scope symbols
remain as foreign unknowns, of which the compiler is only aware by name.
At this stage, the linker iteratively cross-references symbol names between
object files and ensures they all have a unique address. Assuming all
symbol references can be resolved and mapped to a unique address, the
sections from the object files are now concatenated.

• Section Alignment. All concatenated sections must now be aligned and
assigned a unique address, usually derived from a single base address15.
(The concept of a ‘section’ will be explored in more detail shortly, once
we start inspecting compiler behaviour by decompiling binaries and cross-
referencing the C source.)

• Initialisation. Despite being one of the most important stages for linking
binaries to be flashed to embedded systems, data section initialisation is
far beyond the scope of an introductory document of this nature. For an
elementary understanding, you just need to know that initialised data is

14Students familiar with Arduino boards will, likely unknowingly, have used a cross-compiler
embedded into the Arduino IDE to compile for an ARM or AVR target on an x86-based host.

15Section base addresses may be plentiful, and do not usually float. Non-volatile memory
typically stores base addresses for code and data sections, such as the program and the call
stack.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Configuring the Environment and Understanding the Build Process 10

usually moved to non-volatile flash memory, and that constant data (such
as code) may be occasionally moved to RAM for increased fetch-execute
performance.

Assuming nothing untoward occurs, the linker will output a binary in a
target-independent common format. The usual list of contenders includes ELF
(for UNIX-like systems), DWARF (for enhanced debugging), COFF (for legacy
UNIX-like systems), or PE (for Microsoft Windows)16.

2.3 Diving into the Build Stages: A Practical Example

NOTE: this section is intended for advanced readers interested in practical in-

spections and decompilations of simple programs. If this does not describe you,

please skip this section, as there is a non-zero chance of you becoming irrec-

oncilably confused for little benefit. A basic knowledge of C and ARM is also

assumed, although not necessary.

While the primary function of any build system is to take a collection of source
files (or ‘translation units’) and output a binary, virtually every compiler will
contain options for outputting its intermediary stages. In addition to proving
rather useful for debugging and performance-analysis, such options are invalu-
able teaching tools. In GCC and Clang, the -S option can be used to “only run
the preprocessing and compilation steps”; the result being an assembly language
(.s) file. For a quick example, consider the following C function to swap two
words in situ: *c1 and *c2 (this algorithm should never be used in practice):

1 #include <stdint.h>

2 typedef uint32_t word;

3

4 /* Swap the words referenced by c1 and c2, assuming c1 != c2. */

5 void swap (register word * c1, register word * c2)

6 {

7 *c1 ^= *c2;

8 *c2 ^= *c1;

9 *c1 ^= *c2;

10 }

Listing 1: A reasonably ridiculous swap function, valid for differing c1 and c2.

Requesting a decompilation from an ARM compiler17 results in the following

16ELF: Extensible Linking Format; DWARF: Debugging With Arbitrary Record Formats
(debated); COFF: Common Object File Format; PE: Portable Executable. Before flashing
these onto a microcontroller with a programmer, these target-independent binaries must be
converted to a native format, which inconveniently differs between microcontroller vendors.

17This particular example was compiled for an ARM7TDMI 32-bit processor, which is a
decent processor with a pleasant instruction set. This proves very useful for educational
purposes; more information can be found on-line: https://www.ecs.csun.edu/~smirzaei/

docs/ece425/arm7tdmi_instruction_set_reference.pdf. Further technical documentation
can be found on the infinitely useful ARM Developer website: https://developer.arm.com/

documentation/dvi0027/b/arm7tdmi. This particular assembly listing was produced with
GCC, on a Gentoo Linux x86_64 host: “arm-none-eabi-gcc -S -c -O3 swap.c”.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

https://www.ecs.csun.edu/~smirzaei/docs/ece425/arm7tdmi_instruction_set_reference.pdf
https://www.ecs.csun.edu/~smirzaei/docs/ece425/arm7tdmi_instruction_set_reference.pdf
https://developer.arm.com/documentation/dvi0027/b/arm7tdmi
https://developer.arm.com/documentation/dvi0027/b/arm7tdmi

Configuring the Environment and Understanding the Build Process 11

exciting listing (overzealous comments have been added for clarity):

1 swap:

2 ldr r2, [r1] ; Dereference a parameter into r2

3 ldr r3, [r0] ; Dereference the other parameter into r3

4 eor r3, r3, r2 ; XOR the two dereferenced parameters into r3

5 str r3, [r0] ; Store the XOR into the original first param.

6 ldr r2, [r1] ; Superfluous. (A weakness of C pointers .)

7 eor r3, r3, r2 ; XOR r2 and the result of the last XOR into r3

8 str r3, [r1] ; Store the XOR into the original second param.

9 ldr r2, [r0] ; Dereference r0 into r2.

10 eor r3, r3, r2 ; XOR the results with each other

11 str r3, [r0] ; Store this final result into the first param.

12 bx lr ; Return to the caller (the address of which is

13 ; stored in the link register)

Listing 2: An ARM assembly language representation of the swap function.

While we are not going to go deeper into this particular example, these short
listings hopefully provide a taste of the potential power that can be derived from
exploiting the internal representations of a build system18. What do you think
the assembly listing would look like without the register keyword in the C
source, or if we were to add a c1 != c2 sanity check? What about if we were
to replace the parameter datatypes with something not equal to the size of a
native word, such as a char?

3 Configuring and Testing the Environment

By this stage, the studious of readers may have noticed a preference towards
UNIX-like systems. Indeed, virtually all low-level systems and embedded pro-
grammers have a strong bias toward UNIX clones, coupled with a particular
hatred for all things Microsoft. While Linux is a monolithic and politicised
mess of an operating system19, it is very ubiquitous and a decent clone of the
original UNIX principles, which render low-level development very pleasurable
(or relatively painless). A distribution of Linux (Debian) is also installed on all
computers in the Department of Physics, hence its use in these lab sessions.

3.1 Booting Linux and Accessing the Terminal Emulator

In order to access Linux, restart the computer from Windows and use the arrow
keys to select “Ubuntu Linux” (or some trivial variation thereof) from the GRUB
bootloader menu, which can be identified by its trademark purple background.
With the correct entry highlighted, hit the enter key to boot into Linux. After

18. . . for which you should always RTFM.
19For those infatuated with UNIX principles but tired of Linux’s nonsense, perhaps you may

find love with an open-source version of BSD, or even a copy of Andy Tanenbaum’s MINIX 3?
The latter is a particularly interesting clone of UNIX with a microkernel design, designed to be
small, clean, and secure by running programs in the highest possible protection ring. If you are
a member of the chosen few, installing a copy of Bell Labs’ Plan9 inside a virtual machine may
prove amusing; it is occasionally well-described as “UNIX on [anabolic-androgenic] steroids”.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Configuring the Environment and Understanding the Build Process 12

a few seconds, you should be able to log in with your standard University ID
and password (for example, od641 or mkw525)20. Once you have navigated to
the desktop, it is a good idea to familiarise yourself with the terminal emulator
(named as such due to not being a physical serial port connected to a teletype-
writer21); most of the work during these labs will be conducted via a textual
command-line interface, as opposed to a GUI. To launch the standard GNOME
terminal emulator, depress the Control, Alt, and T keys simultaneously. (An
alternative and slightly more ‘authentic’ solution is the use of the /dev/ttyN

devices, which can be accessed with Control, Alt, and F<1-6>, with F7 used
to return to X11. However, if you wish to use any graphical applications, such
as a web browser or GUI text editor, this solution becomes fairly impractical
rather quickly. If you are in favour of using the /dev/ttyN devices, you may
find the tmux or screen programs useful for terminal pseudo-multiplexing.)

Once you have a terminal emulator at your disposal, ensure the core develop-
ment programs are available in the $PATH by executing the following command:
whereis -b gcc gdb valgrind. If any lines draw a blank (such as “gcc: ”),
please inform the PSS author, as you will be incapable of doing development
work on the machine.

3.2 Selecting a Text Editor

One’s choice of text editor has long proven to be a contentious point in techni-
cal circles, with all sides of the debate insisting the validity of their preference;
or, more amusingly, the ridiculousness of everyone else’s. In particular, pro-
grammers tend to be divided between Bill Joy’s vi (or more precisely, Bram
Moolenaar’s vim), and GNU’s emacs22.

Unless you already have a preferred editor, you are recommended to use a
simple graphical editor with good syntax-highlighting support out-of-the-box.
For Ubuntu/GNOME systems, this is gedit. (If you are sensible, you will grow
to hate gedit with the passion of one-thousand O-type stars, however it is an
adequate starting point for those new to development on Linux.) To execute
gedit, enter gedit & at a shell (with the ampersand used to detach the process
from the shell), or use the GNOME Launcher. From there, the operation of the
editor is reasonably self-explanatory. For the first stage, you must ensure that
your compiler is functional and capable of locating the standard libraries; this
can be achieved with a simple “Hello, World!” test program.

20We have occasionally experienced issues with logging into the Linux machines in the first-
floor Physics PC labs. If this is the case, please contact IT Services, as there is little anyone
can do, aside from forwarding your complaint to IT.

21The PSS author has a Tekade FS 200Z teletypewriter capable of connecting via USB to a
Linux machine on the V.10 interface; he would be pleased to discuss it with anyone interested.
The 1970s-era dot-matrix TTY is currently situated in a Halifax College first-floor bedroom
and weighs almost 70kg!

22This feud has given rise to the so-called ‘Editor War’, which has a rather entertaining
Wikipedia article by the same name. Campaigning for the superiority of emacs, GNU founder
Richard Stallman has founded the ‘Church of Emacs’, over which he presides. Conversely,
Bram Moolenaar has declared himself the ‘Benevolent Dictator for Life’ of matters concerning
vim.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Configuring the Environment and Understanding the Build Process 13

3.3 Writing a “Hello, World!” Test Program

1 #include <stdio.h>

2

3 int main (int argc , char ** argv)

4 {

5 puts ("Hello , World!");

6

7 for (int i = 1; i < argc; i++)

8 puts (argv [i]);

9

10 return 0;

11 }

Listing 3: A typical “Hello, World!” test program, printing any command-line
arguments in sequence.

To build this program23, save it in a sensible location on your University
filesystem, such as ~/pss/helloworld.c (where ~/ is your home directory), and
navigate to the same location in a terminal using the cd <path> command; to
view the contents of a directory in a pleasant format with human-readable file
sizes (using SI multipliers as opposed to a number of bytes), use ls -alh24.
To build this program, execute “gcc helloworld.c” in the same directory as
the source, which is assumed to be named helloworld.c. If GCC returns any
output, make sure you have copied everything correctly; if compilation still fails,
please contact the PSS author, as there is likely an issue with your machine.

To run the program, enter “./a.out”. You should get a pleasing message:
“Hello, World!”. To ensure command-line arguments are received correctly
from the shell environment, try executing “./a.out PSS Test”. If all goes well,
each command-line argument—delimited by spaces for every entry after the
executable name—should be printed on a new line after the initial message. If
you still have time, try the following short exercises:

• Change the “Hello, World!” message to something slightly more exciting
and cultured, such as “G’day mate!”.

• Try to output a multi-lined fixed message. You may want to read about
‘ANSI escape sequences’, and how they are interpreted in C strings.

• (Difficult.) Can you find a way to print the list of command-line argu-
ments in reverse order? [Hint: argc stores the number of arguments.]

23You are not expected to understand this program; it is merely used to test ensure that
the compiler is working to some acceptable degree. Although you are encouraged to input
the program manually, to get a feel for writing C, you may also copy-and-paste helloworld.c

from the PSS lab scripts website.
24It may prove useful to ‘alias’ this to a shorter command, since you will be typing it

relatively often. To do this for the current session, enter “alias ll='ls -alh'”. If you
would prefer this persist throughout every Bash session, append it to your ~/.bashrc file with
“echo "alias ll='ls -alh'" >>> ~/.bashrc”. Be careful to use a triple greater-than sign
here; using only two of the symbol will irreparably overwrite the entire file, and it is rather
important!

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Configuring the Environment and Understanding the Build Process 14

3.4 Next Week. . .

During next session, we will start writing some C. We will be examining the
meaning of a data type, the concept of scope, correct conventions regarding
commenting, and also introducing the idea of a function to write modular code.

See you then, I hope you enjoyed the first PSS script.
PSS Author, Oliver Dixon

XKCD #303: “Compiling”. https://xkcd.com/303/

I would also like to extend my gratitude to Adam Gottesmann, Tom Mason, and Will
Hinton, for reading drafts while providing invaluable and continuous feedback.

Referenced Works

[1] Sean Eron Anderson. Bit-Twiddling Hacks. 2005. url:
https://graphics.stanford.edu/~seander/bithacks.html.

[2] ISO/IEC JTC 1/SC 22. The C18 Standard. ISO 9899. June 2018. url:
https://www.iso.org/standard/74528.html.

[3] Brian W. Kernighan and Dennis M. Ritchie. The C Programming

Language. 2nd ed. Englewood Cliffs, N.J.: Prentice Hall, 1988. isbn:
978-0-131103627.

[4] Rui Pereira et al. “Energy Efficiency across Programming Languages:
How Do Energy, Time, and Memory Relate?” In: Proceedings of the 10th

ACM SIGPLAN International Conference on Software Language

Engineering. SLE 2017. Vancouver, BC, Canada: Association for
Computing Machinery, 2017, pp. 256–267. isbn: 978-1-450355254. doi:
10.1145/3136014.3136031.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

https://xkcd.com/303/
https://graphics.stanford.edu/~seander/bithacks.html
https://www.iso.org/standard/74528.html
https://doi.org/10.1145/3136014.3136031

	Introduction & Motivation
	A Criminally Abbreviated History of UNIX and C
	A Far Cry from Python: Why Use C at All?

	A Simplified Build Process: Step-by-Step
	The Compiler
	The Linker
	Diving into the Build Stages: A Practical Example

	Configuring and Testing the Environment
	Booting Linux and Accessing the Terminal Emulator
	Selecting a Text Editor
	Writing a ``Hello, World!'' Test Program
	Next Week…

