
This contents of this document, excluding any images embedded within, are hereby released
into the Public Domain. You are encouraged to copy, modify, and redistribute this text.

ShockSoc C Programming Support

Sessions

Oliver Dixon

ShockSoc Technical Officer

od641@york.ac.uk

P/T/401 2pm–5pm

Spring Term, 2021–2022

Lab Script 02: Variables and

Data-Types

LATEX document built February 1, 2022 on Linux.

od641@york.ac.uk

Variables and Data-Types 2

Table of Contents

1 The Concept of a Variable 2
1.1 Variable Declaration and Manipulation 2

1.1.1 Variables & Datatypes: Declaration and Instantiation . . 2
1.1.2 Post-Declarative Manipulation & Shorthand 6
1.1.3 Exercises: Variable Declaration and Manipulation 6

1.2 Additional Exercises: Casting . 8
1.3 The Stack and the Heap . 9

2 Pointers 11
2.1 An Overview: Pointers are Seldom Difficult 11
2.2 Arrays . 13
2.3 Exercises: Pointers & Arrays . 14

3 Next Week. . . 16

1 The Concept of a Variable

In the previous script, we discussed the concepts of code and data, treating them
as a couple of distinct quantities that must be distinguished by the linker for
correct construction of binaries. However, what is “data”? What is a “variable”?
How do they interrelate with the previously discussed concepts of symbol tables
and extended debugging information? Moreover, how do we define these symbols,
and why do some languages stipulate restrictions on the form of data stored in
certain types of variables? As a matter of fact, where are they stored, and how do
we use variables to refer to other variables? What if we want to compartmentalise
multiple pieces of data into one symbol, and how can attempting to access certain
pieces of data cause our program to crash?

These are all extremely valid and important questions, the answers of which
must be at the forefront of all low-level programmers’ minds. Especially when
working with C, which is fairly strongly typed1 and also allows manual memory
allocation on the heap, a strong foundational knowledge of variables and the
allocations and uses thereof are absolutely essential. For this script, a basic
knowledge of binary is assumed, including an elementary understanding of signed
integer and floating-point arithmetic.

1.1 Variable Declaration and Manipulation

1.1.1 Variables & Datatypes: Declaration and Instantiation

The vast majority of any mildly technical cohort will have encountered, likely
on a regular basis, the concept of a variable: the idea of assigning a symbolic

1The exact meaning of “strong typing” and “weak typing” will be discussed shortly, as will
the definitions of the “stack” and the “heap”. This passing remark was intended for advanced
readers already familiar with typing.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 3

name to a piece of data, the value of which may change over time. In C, and
virtually all languages likely to be used by electronic engineers, all primitive
variables are scalars2. It is often the case that a programmer may have a finite
set of discrete values, in which case an n-dimensional array must be formed.
Arrays are identified with a single symbol name, their members may be accessed
individually through a process called “indexing”.

As you may have expected, different languages have very different approaches
to managing the use of variables: these can roughly be categorised into “strongly
typed” and “weakly typed” languages, with C being a member of the former,
and higher-level languages such as Python and JavaScript being members of
the latter. In the case of strongly typed languages, a variable is declared, from
the beginning, to hold only one specified type of data, and this may never be
changed3; you can always be absolutely certain that the value contained within
a variable is of a form acceptable to its prescribed type. With weakly typed
languages, this is not the case: variables may be defined generically and assigned
any value, the type of which is often guessed by the interpreter or virtual machine
and changed on-the-fly. While the latter category may be perceived as easier
by beginner programmers, seasoned developers will almost-ubiquitously support
strong typing, as it removes the layer of abstraction and completely eliminates
the prospect of working with unknowns. In Electronic Engineering and embedded
programming, having full knowledge of the state of your program is critical4,
and strong typing is hence the preference of many C-like languages.

For declaring a variable in C, the premise is simple: the data-type followed by
the symbol name, followed by an optional initial assignment. A set of qualifier
keywords may also be used, to provide hints to the compiler regarding the
intended use of the variable. Let’s have a look at a few examples, and step
through their meanings in sequence (Listing 1):

a) Declare a an integer with an initial state of a = 2.

b) Declare b as a character with the initial state of b = ‘A’. Assuming the
compiler conforms to the ASCII encoding (or some superset thereof), this
will be stored as b = 65, as all characters must have an integer representa-
tion; the mapping of which is completely unknown to the compiler. The

2Throughout these lab scripts, we will begin to explore non-primitive data-types that may
be defined by the programmer, such as struct or union types. These data structures are
remarkably useful for the collation of variables of differing types. In object-orientated languages
such as C++ or Java, object variables are instantiations of classes, which may contain data
fields and methods (where methods are functions designed to operate on fields allowed by the
scope and inheritance of their parent class). This can be emulated in C to some degree, using
functions taking pointers to struct types, where the struct defines methods as members of
a function pointer table. (In fact, early C++ compilers would generate C and delegate the
actual compilation to a traditional C compiler.)

3It is always possible to force a piece of data to fit within a variable. This is achieved
through a process called casting, in which a value is forcefully (and often crudely) converted
into a state that conforms with the specified type of the assignee. For example, to cast a
four-bit data field to an eight-bit data field would imply padding the four most-significant bits
with zero, assuming little-endian.

4. . . lives may depend on it.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 4

1 int a = 2; register char b = ’A’; float c = 0.01;

2 const int d = 3; static short e = 8; unsigned long f;

3 volatile double g; long long h; char * i = NULL;

Listing 1: Some increasingly complicated C variable declarations.

register keyword informs the compiler that it’s probably a good idea to
place the variable in a CPU register, however this is only a preference, and
is not guaranteed5.

c) Declare c as a floating-point number, with an initial state of c = 0.01.
Floating-point arithmetic is a very complex area of Computer Science, and
deserves an entire volume of lab scripts dedicated to nothing else. (In
fact, the standard describing floating-point—known as IEEE 754—is an
amusingly voluminous document [Com19].) Unless you’re doing something
deserving a great concern over decimal precision, you only need to know
that the float and double types are used to represent rational numbers.

d) Declare a constant integer d of the state d = 3. If this value is changed at
any point, the compiler should report an error (or very strong warning).
Constants are useful for naming fixed values, such as the size of a memory
page or a hard limit for an iterative algorithm6. Although a detailed
analysis of compilers’ treatment toward constants is beyond the scope of
this document, it is worth knowing that only in some cases will a compiler
perform a direct substitution. In the trivial case of “const int d = 3”,
every compiler would certainly do a straight substitution, as though it was
a #define.

e) Declare e = 8 as a short type, which is defined to be no larger than an
int, but is allowed to be smaller; the size of two short values must also
be greater or equal to the size of a single char. While this may be initially
perceived as a useful optimisation, its use should generally be avoided in
practice, unless the use of a smaller type is a hard requirement. These
cautionary words are, again, due to performance concerns, which arise
when dealing with data whose size is not a multiple of the size of a processor
word7. Also note the static qualifier, which forces the persistence of the
variable throughout the execution, even when the variable goes out-of-scope

5This is often used for variables that will be accessed regularly. As selection from main
memory tends to be relatively slow, commonly accessed variables will be placed in CPU
registers, which are (literally) inside the processing unit. However, modern compilers will
typically detect these cases, and attempt to place variables in registers without the explicit
register directive.

6Constants prove especially useful in embedded programming for defining unintuitive
memory addresses defined by the hardware vendor, such as the famous 0x101f1000 UART0
TX memory address for VGA access in QEMU.

7CPUs are always fastest when dealing with their own words. A short may be smaller
than an int, however in a typical 32-bit architecture, loading a 16-bit value requires one bus
cycle to load thirty-two bits, and a further operation to discard the topmost sixteen. (Again,

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 5

and is not (easily) accessible to the rest of the program8. The concept of
scope will be examined shortly.

f) Declare f as an unsigned long with no initial value, where a long is a
value that may be larger than an int. Always be cautious with uninitialised
values, as they may not always be equal to zero: they are equally likely to be
filled with garbage, except in exceptional cases in which the memory arena
has been zeroed prior to allocation (this is commonly used in cryptography
and security applications to avoid private keys poncing around in memory).
Also notice the unsigned qualifier, which instructs that arithmetic and
bitwise operations not consider the existence of a sign bit, as is the case
with one’s and two’s complement numbers, and to avoid performing sign-
extension or shift-checking during numerical manipulation.

g) Declare g as a double, where a double is a float with potentially greater
precision. The volatile keyword is very rarely used for user-space appli-
cations, however embedded engineers must be aware of its usages, since the
programming of embedded devices typically mandates self-management of
unpredictable memory arenas. When a variable is declared as volatile,
the compiler knows that the value of the variable may be changed unex-
pectedly, likely by another process or other external force, of which the
current process has no control or knowledge9. Volatile data is generally
beyond the needs of most first-year undergraduates, however a general
awareness of its presence is useful. (Infuriating bugs requiring disassembly
await. . .)

h) Declare h as a long long type, with no initial value. We have met the
tricky long long type before, albeit briefly in a footnote. Although it is
occasionally useful to store very large integers, long long should generally
be avoided, as it is a non-standard compiler extension defined by GNU
as part of their GCC suite10. Unless you have complete assurance of the

this works under the assumption of a little-endian architecture. For a big-endian machine, the
sixteen bottommost bits would be discarded.) With that said, short types are oft-useful for
networking and file-storage protocols, in which packet/payload size (and hence transmission
performance) usually prevails over processing performance.

8Like a few keywords in C, the static keyword has a double-meaning dependent upon
the context. In the case of variables, static always denotes the persistence of the data, as
described above.

9Despite the use of scheduler-aware interprocess communication mechanisms, data is still
often changed by external execution. In some embedded cases, the sources for these changes
includes memory-mapped hardware, the effects of which is impossible to predict in software.
Multi-threaded applications may also fall afoul of this problem, as improper threading protection
(such as mutexes and semaphores) may facilitate the corruption of relationships between thread-
local and global variables. Processor interrupt routines, which will not be discussed at all, may
also prove troublesome.

10If you need to do anything with very high precision or very large integers, arbitrary precision
may be the best solution. There are a plethora of good libraries, such as GMP, enabling client
programs to arbitrarily grow numerical types, at run-time, as the values contained within them
require more bits. Those wishing to gain a deeper understanding of floating-point and signed
arithmetic may wish to implement the basic features of one manually, although it is not an

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 6

toolchain under which your program will be built, non-standard extensions
absent from the likes of ANSI or POSIX should be avoided, as they severely
limit the portability of programs.

i) Declares i as a pointer to a char. Pointers tend to confuse novice pro-
grammers to no end, despite their concept being extremely simple and
straight-forward: a variable containing a memory address, referring to an-
other piece of data. While the data-type of the referenced data is expected
to be char, the data-type of char * is a memory address, the size of which
can be attained with “sizeof(void *)”. Pointers to pointers (“double
pointers”) are also possible, as are triple, quad, or nth order pointers11.
They will be discussed shortly, hopefully to the satisfaction of all readers.

1.1.2 Post-Declarative Manipulation & Shorthand

With the notable exception of the const type, all variables may be manipulated
after their initial declaration and potential assignment. C follows (and generally
established) many of the common rules for inputting expressions to programming
languages; infix ordering is used, and the standard rules of BIDMAS precedence
are respected. Parentheses are also supported. In additional to arithmetic
operators, we also have bitwise operators, which work on the data at a bit-level.
These are endlessly useful for otherwise-impossible optimisations. As a basic
knowledge of binary is already assumed, descriptions will be sparse. All operators
known to standards-compliant C compilers are listed in Table 1.

It is often useful to combine an operation on a variable with an assignment
to the same variable, using its current value as the left operand. For all binary
operators, C supports a shorthand notation for this purpose, such that an operator
token immediately followed by an equals sign performs the described action. For
example, considering some variables x and y, “x <<= y” is semantically identical
to “x = x << y”: both statements would shift x left by y places, assigning
the new value back to x. Special-case shorthand notations are defined for the
increment- and decrement-by-one operators: “x++” and “y--” are semantically
identical to “x += 1” and “y -= 1”, respectively12.

1.1.3 Exercises: Variable Declaration and Manipulation

1. Declare an integer variable, a, with an initial value of zero. Using the most
compact shorthand in three distinct statements, increment the integer by
five, multiply it by two, and subtract seven.

easy task! (The ShockSoc Technical Officer has written a number of such libraries, and would
be very pleased to discuss this topic with anyone interested.)

11If you’re using pointers of any order greater than two, you’re probably doing something
wrong. In over ten years of C programming, the ShockSoc Technical Officer has used them
twice in production code. In both instances, a double-pointer would have likely sufficed should
the processes have been better-designed.

12These are particularly useful for defining iterative statements, which will be explored soon.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 7

Operator Meaning Example Class

+ Addition 5 + 2 = 7 Arithmetic
- Subtraction 5 - 2 = 3 Arithmetic
* Multiplication 5 * 2 = 10 Arithmetic
/ Integer Division 5 / 2 = 2 Arithmetic
& Conjunction 0xFF & 0x00 = 0x00 Bitwise
| Disjunction 0xFF | 0x00 = 0xFF Bitwise
^ Exclusive Disj. 0xFF ^ 0xFF = 0x00 Bitwise
~ Inversion ~(0xFF) = 0x00 Bitwise
<< Left Shift 0 | (0xFF << 1) = 0xFF0 Bitwise
>> Right Shift 0 | (0xFF >> 1) = 0x00F Bitwise

Table 1: A review of arithmetic and bitwise operators, including the unary
(single-operand) inversion operator, for which no short-hand exists.

2. Declare an unsigned character variable, b. Using only the disjunction
operator, set initial value to have only the first, third, fifth, and seventh
bits set to one, such that its binary string representation is 0101 0101.
Working with pencil and paper may aid you here.

3. In a single statement, reassign b to be equal its is inverse, such that its
binary string representation 1010 1010.

4. Assuming c is an unsigned integer declared elsewhere, construct an assign-
ment on c that sets the individual bit at position n, where n is an unsigned
integer less than to the number of bits in the datatype of c. (You may
also assume that n is defined elsewhere.)

5. Construct an assignment to clear the nth bit of c, again assuming c and n

are defined elsewhere. Could you also construct a declaration of an integer,
d, which stores either zero or one dependent upon the value of the nth bit
in c?

These last couple of questions hint a very common optimisation in C, which
essentially allows the storage of a large number of boolean values without using
an individual variable for each one. For example, if you have a program that
may take a maximum of eight toggle switches (in the form of command-line
arguments), this method allows encoding all of their individually addressable
values into a single eight-bit char, as opposed to eight thirty-two-bit ints13.

13Toggling a bit at an arbitrary position is also occasionally useful, and can be achieved
with an exclusive disjunction. Note that for wider data-types, the statement “x ^= 1UL << n”
should be used, as the “1UL” syntax promotes the integer to a wider type, avoiding undefined
behaviour (UB) when shifting on large n.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 8

0xFF00

0xFF04

0xFF08

0xFF0C

ff d8 ff e1

00 4a 45 78

69 66 00 00

4d 4d 00 2a

{ {
struct image_t {

 uint8_t hdr [2];

 uint32_t size;

 uint8_t res [6];

 uint32_t offset;

}

Figure 1: Through the process of casting, an arbitrarily large chunk of data
can be quickly “reinterpreted” in any fashion, such as a collection of fields in a
compound struct datatype.

1.2 Additional Exercises: Casting

Earlier, a process called casting was mentioned. Casting is a method through
which a variable of any type can be forced into a variable of a differing type.
Casts should be rarely used in well-designed code, however on the rare occasions
in which they do arise, they are exceptionally useful.

A classic example of casting goes as follows: you have a well-defined and
well-packed structure in memory to represent the various fields of a file format,
and you also have a large buffer filled with the bytes of a file corresponding to
exactly the same format. By casting the data buffer to an instance of the struct,
you have transformed the data into an accessible form for no performance penalty,
since casting is a compile-time operation14. (Recall the important point that
the CPU itself has no notion of a “type”.) A simple example of such a case is
illustrated in Figure 1.

1. In order to forge a familiarity with casting, its C syntax will not be described
in this script. With programming, having information-seeking skills is
equally important as remembering the syntax of a particular language. For
this first exercise, your task is to research the C casting syntax.

2. Once you are comfortable with the basic concepts of casting, try performing
a cast between an int and a long, and vise versa. Which one of these
casting operations is more likely to cause an issue? In what circumstances
would this not be dangerous (but still silly)?

3. A cast will never fail, as per the C standard. A compiler may issue warnings
for dangerous operations involving signed and floating-point types, but the
build system is bound to accept any order of ridiculous expressions. What
types of undefined behaviour-inducing errors may occur when “forcing”
data in this way?

To demonstrate the power of casting, some may enjoy reading around “The
Fast Inverse Square Root”, used for calculating an approximation of 1/

√

x. Part
of this algorithm is often hailed as “the greatest line of C ever written”.

14Just be careful to avoid falling afoul of C’s peculiar strict aliasing rules!

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 9

1.3 The Stack and the Heap

In order to fully understand the idea of a ‘variable’, you must also comprehend
the idea of placement. Where is data stored, and how should the programmer
determine which types of data should be stored where? For our purposes,
there are two major abstract locations: the stack and the heap. The actual
organisation of these areas is rather complicated, and often varies by processor
architecture and implementation, however an idea of the abstract interfaces used
to confer with these areas is immensely useful and commonly necessary.

ACTIVE

FRAME

INACTIVE

FRAME

N

N-1

INACTIVE

FRAME
N-2

INACTIVE

FRAME
N-3

AVAILABLE

STACK SPACE

THREAD DATA

LINK TO N-2

THREAD DATA

LINK TO N-1

THREAD DATA

ENTRY POINT

THREAD DATA

LINK TO N-3

Figure 2: A standard downward-growing stack
arrangement, with marked active and inactive
frames.

First, we shall motivate
the stack, which is the region
used for standard variable dec-
larations15, such as those enu-
merated above.

In the field of Computer
Science, a “stack” is a com-
mon word to describe an ab-
stract datatype, such that el-
ements are “pushed” (added)
onto the top of the stack, and
“popped” (taken) from the top;
this model is commonly re-
ferred to as a last-in-first-out
(LIFO) arrangement, for obvi-
ous reasons. In our context of
SMBA (stack-based memory
allocation), the stack is split
into frames, typically with one
frame-per-thread16. With the
stack typically growing down-
wards from its origin (i.e., the
active frame N is the child
of the inactive frame N − 1),
it usually stands as the most
time-efficient method of data
storage due to its LIFO allo-
cation structure. Frames are

15Although the stack is usually manipulated through direct variable instantiation and
assignment, there is a little-known standard library function, alloca, which dynamically
allocates space on the stack, which is automatically freed when the frame becomes redundant.
For more information regarding this obscure and curious function, confer with man alloca. It
is usually a bad idea to use this function, as it has poor error-reporting, and will not inform
the caller if the stack cannot be extended. Also, the conditions under which the data is freed
can often prove ambiguous, and should not have a place in robust user-space code.

16Do not worry if the meaning of a CPU ‘thread’ is not immediately obvious. For this hugely
oversimplified context, these statements can be interpreted as one frame-per-function, with
each frame N containing the return address, which corresponds to the caller responsible for
frame N − 1.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 10

also automatically reclaimed once their data becomes redundant due to an
explicit operation, such as a function returning to the address of its caller17.

0x00

0x04

0x08

0x0C

Allocated

Free

Figure 3: A free store pool region, with
large amounts of external fragmentation.

Conversely, we have the heap.
Sometimes called the “free store”, the
heap is a far less elegant structure,
often being implemented as a large
pool of memory granted to the pro-
cess, by the scheduler, to use as it
wishes; this is heap-based memory al-
location (HBMA, Figure 3). Whilst
being significantly slower and drasti-
cally more complex on an interface-
implementation-level, it does permit
storing very large amounts of data in
memory, limited only by the amount of
the installed physical memory and ad-
dressing capabilities of the CPU; this
often grows into the tens of gigabytes
for modern personal computers, games
consoles, and servers18. Unlike with
SBMA, HBMA must be performed
through an explicit standard interface,
which is typically implemented through the malloc and free functions, to
allocate memory of an arbitrary size and return it to the free store, respectively.

In general, such dynamic HBMA should only be employed when static SBMA
is not an option, as all allocations must be tracked and appropriately freed; doing
this incorrectly often leads to memory leaks, which occur when processes allocate
memory and do not hand it back to the OS before exiting, thus depriving other
processes of using the extraneous blocks19. Other implementation-specific issues
are rife, and often form very difficult problems in Computer Science [Knu97].
One such issue is that of arena fragmentation, in which repeated allocation

17Although remarkably useful, the automatic reclaiming of stack frames is the cause of a very
common bug, in which a function returns a pointer to some local data, which the caller then
attempts to dereference. This will often work without issue, as frames are not immediately
cleared, however this is a prime candidate for a race condition as the integrity of the referenced
data cannot be guaranteed.

18RAM capabilities of embedded systems with on-board memory vary greatly, however they
will be vastly smaller than most non-embedded configurations.

19This is not strictly true: any decent operating system will automatically free (“clean up”)
any malloc’d data upon a process returning from its entry point, however it is terrible practice
to write “leaky code”, as it is affectionately termed. Dynamic allocation tools such as valgrind

are invaluable for tracking such leaks; these tools run a client process under a virtual machine,
which can explicitly track each malloc and free call and quickly detect leaks. Coupled with
unit testing, this type of analysis can develop impenetrable programs. Modern languages,
such as Rust, have been carefully developed to allow complete memory safety by using strong
compiler hints to enable state-of-the-art static analysis. Furthermore, garbage collection can
be implemented without a significant performance penalty due to clever manipulation of the
fetch-execute CPU pipeline and branch predictor with out-of-order execution.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 11

0x00 0xFF03

0xFF08

0xFF0C

0xFF10

0x01

0x02

0x03

0x04 a_ptr_ptr

a_ptr

a

Figure 4: A stack pointer referencing another stack pointer, which ultimately
references some data on the heap. This sort of arrangement becomes exceptionally
useful for handling dynamic allocation of single data regions across functions.

and deallocation result in the creation of many small spaces contiguous blocks,
greatly inhibiting the ability of the allocator to quickly find a set of consecutive
blocks to accommodate the requested region size. The same issue occurs on
permanent storage, and some environments (such as the Java Virtual Machine)
may perform occasional run-time memory defragmentation. This is an extremely
costly operation, however it may obviate future delays on HBMA calls.

2 Pointers

2.1 An Overview: Pointers are Seldom Difficult

Pointers have occasionally been mentioned throughout this document, however
they have yet to be rigorously defined. The mere concept tends to confuse
and discourage novice programmers, however such confusion tends to prove
unwarranted. In their simplest form, a “pointer” is an integer containing a
memory address to refer to another variable, which may or may not be a pointer
itself. While pointers may exist on the stack, their referenced data typically
exists on the heap, although it may exist anywhere, including memory mapped
by peripherals. See Figure 4 for a graphical example.

In C, pointers are used extensively, to the point of it being reasonably
impossible to compute anything awfully useful without employing pointers to
some extent, even if their use is not explicitly known by the programmer. As
previously discussed, they are declared with an asterisk, and also dereferenced
with the same character. A preceding ampersand is used to retrieve the address
of a variable, which is occasionally useful when assigning to a pointer type. This
is illustrated in Listing 2. Functions, especially those concerning HBMA, also use
pointers exclusively in their return type and arguments to refer to heap memory.

As C is strongly typed, its pointers must conform to all of the same rules.
Just as with any other variable declaration, the datatype of the data to which
the pointer refers is specified. Regardless of the size of the referenced data, the
pointer itself will always be an integer of a fixed size (c.f. sizeof(ptr_t)),
which is typically a multiple of the CPU word size; see Listing 3.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 12

1 #include <stdio.h>

2

3 /* Output: a = ff, ptr_a = 0x7ffdf3acf838 , b = ff */

4

5 int main ()

6 {

7 int a = 0xFF;

8 int * ptr_a = &a;

9 int b = *ptr_a; /* b = a */

10

11 printf ("a = %x, ptr_a = %p, b = %x\n", a, ptr_a , b);

12 return 0;

13 }

Listing 2: A simple C program to create an integer and manipulate its pointer.
For now, the printf line can be considered as a (very useful) black box for
pretty-printing and debugging.

1 #include <stdio.h>

2

3 struct my_big_struct {

4 long a, b, c, d, e, f;

5 };

6

7 /* Output: my_big_struct: 48; my_little_pointer: 8 */

8

9 int main ()

10 {

11 struct my_big_struct my_big_struct;

12 struct my_big_struct * my_little_pointer = &my_big_struct;

13

14 printf ("my_big_struct: %ld; my_little_pointer: %ld\n",

15 sizeof (my_big_struct),

16 sizeof (my_little_pointer));

17

18 return 0;

19 }

Listing 3: Even in the case of a larger data type, the size of its pointer remains
constant. Notice the size of the referenced type is forty-eight bytes, whereas the
pointer size remains eight bytes.

Now we have motivated the basic idea of a first-order pointer, it is worth
mentioning second-order pointers, such as the one illustrated in Figure 4. Pointers
may point to other pointers, which tends to be extremely handy for cases where
slightly more complex memory management and abstraction is required; such
examples will appear very often in larger codebases. The syntax involved with
second-order pointers is intuitive: one more asterisk in the declaration indicates
an additional pointer order, and one more asterisk in the dereferencing statement
means “dereference this to get a pointer, and then dereference that”. A simple

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 13

example is shown in Listing 4. n∈N-th order pointers are allowed by the C
syntax and compilers, however any situation in which n > 2 would be worryingly
atypical.

1 #include <stdio.h>

2

3 /* Output: A A A */

4

5 int main ()

6 {

7 char a = ’A’;

8 char * a_ptr = &a;

9 char ** a_ptr_ptr = &a_ptr;

10

11 printf ("%c %c %c\n", a, *a_ptr , ** a_ptr_ptr);

12 return 0;

13 }

Listing 4: In this example, a second-order pointer is used to refer to the same
character three times, through increasing levels of (de)referencing.

Once we start to examine functions in greater detail, pointers shall be covered
again extensively in the context of function arguments and return types (where
they are most useful), however you should now have a basic understanding of
referencing in C.

2.2 Arrays

‘Arrays’ being a subsection of ‘Pointers’ may surprise some, however the C
standard dictates an intricate relationship between the two, the importance of
which cannot be understated. This seems initially unintuitive, but begins to
make perfect sense upon realising that the stack and heap are arrays by their very
nature. Thus, when declaring an array on the stack, the new variable is merely
interpreted as a pointer to the array’s first element, with the compiler ensuring
the stack is adequately extended to accommodate the requested size. As such, the
first element of an array can be accessed with the asterisk dereferencing operator,
and further elements can be accessed through a process called indexing, in which
the position of the desired item, counted from zero, is typed in brackets after the
variable name. Listing 5 contains an exemplar of a simple array assignment and
indexing, coupled with an example of a multi-dimensional array20. Although
the latter array may seem initially daunting, its syntax is a simple and logical
extension of the single-dimension case, with index specifiers for each “row” and
“column”21. When arrays are passed to or returned from functions, they are

20Some may notice that in str, the size is not explicitly given. For standards-compliant
compilers, the size of the first dimension may be omitted. Further dimensions must always be
given explicit bounds.

21Two-dimensional arrays can be visualised as tables, and three-dimensional arrays can be
similarly visualised as tables such that every cell has a “depth”, made up of additional cells.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 14

implicitly converted to a pointers, thus creating a situation of pass-by-reference,
as opposed to the default pass-by-value. There are subtle differences between
the placement of arrays and pointers, however they are beyond the scope of this
document, and of primary concern to compiler developers.

2.3 Exercises: Pointers & Arrays

For these exercises, you may find it useful to investigate the purpose of the
printf function, and the methods through which its various format specifiers
can aid your understanding of variables and pointers. Once you have included
stdio.h and placed some printf calls inside the main function, you can now
print any (primitive) variables that you declare: the %p specifier is especially
useful for printing memory addresses.

1. Declare some variables, and declare their pointers. Try using the printf

function to print the value of the original variable, the contents of the
pointer, and the dereferenced pointer.

2. Investigate the meaning of a void pointer as the C generic type. These
cannot be dereferenced directly, so why are they useful? Can you derefer-
ence some of your previously defined variables through dereferencing some
cast void pointers? What about double void pointers? How many casts
would you need?

3. The stdlib.h header defines NULL to be “zero, cast to a void pointer”: i.e.,
#define NULL ((void *) 0). Try assigning this value of NULL to a
local pointer, and then try to dereference it. What happens? Uninitialised
memory does exist at 0x00, so why might the operating system and
scheduler prevent client programs from accessing memory outside of well-
defined regions? Do you get a similar result when trying to index beyond
the bounds of an array?

4. What are the intricate differences between an array and a pointer? An-
swering this question fully may mandate some independent research.

5. Experiment with the malloc and free functions by including stdlib.h.
The POSIX/Linux programmers’ manuals are fantastic for these purposes,
and can be accessed by executing man function . In later sessions, we will
begin to clearly illustrate memory leaks with the valgrind and memchk
dynamic analysis tools.

6. (Optional.) Those eager to explore next week’s content may be interested
in the concept of a “function pointer”. Consider how these arrangements
may be useful when implementing a simple four-operation two-operand
arithmetic calculator.

Higher dimensions, as in Euclidean geometry, become greatly harder to visualise, and are
rarely used in real code. In fact, strings in C are implemented as character arrays, and all
string functions in string.h operate on types of const char *.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 15

1 #include <stdio.h>

2

3 /* Output:

4

5 H e l l o

6 0 1 2 3

7 4 5 6 7

8 8 9 10 11

9 */

10

11 int main ()

12 {

13 /* The ’str’ array may be alternatively defined as

14 * char * str = "Hello", which would append a

15 * NULL -terminator (’\0’) as the final element.

16 * String -handling functions in <string.h> distinct

17 * themselves from memory -handling functions due to

18 * their special treatment of NULL -terminators. */

19

20 char str [] = { ’H’, ’e’, ’l’, ’l’, ’o’ };

21

22 printf ("%c %c %c %c %c\n",

23 str [0],

24 str [1],

25 str [2],

26 str [3],

27 str [4]);

28

29 int matrix [3] [4] = {

30 { 0, 1, 2, 3 },

31 { 4, 5, 6, 7 },

32 { 8, 9, 10, 11 }

33 };

34

35 printf ("%d %d %d %d\n%d %d %d %d\n"\

36 "%d %d %d %d\n",

37 matrix [0] [0],

38 matrix [0] [1],

39 matrix [0] [2],

40 matrix [0] [3],

41 matrix [1] [0],

42 matrix [1] [1],

43 matrix [1] [2],

44 matrix [1] [3],

45 matrix [2] [0],

46 matrix [2] [1],

47 matrix [2] [2],

48 matrix [2] [3]);

49

50 return 0;

51 }

Listing 5: A program showing the assignment and dereferencing/indexing of
various arrays, the latter of which is multi-dimensional. As mentioned, the line
dereferencing the first element of str may be rewritten as *str.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Variables and Data-Types 16

3 Next Week. . .

Next week, we shall finally examine functions, the concepts around scoping, and
the vital skill of commenting. This is when things start to get interesting, as we
can write modular code across various files and directory structures, allowing
our code to become superbly structured and maintainable.

See you then, I hope you enjoyed the second PSS script.
PSS Author, Oliver Dixon

XKCD #2560: “Confounding Variables”. https://xkcd.com/2560/

PSS script dedicated to M. Q.

Referenced Works

[Com19] IEEE Standards Committee. “IEEE Standard for Floating-Point
Arithmetic”. In: IEEE Std. 754-2019 (Revision of IEEE 754-2008)
(2019). doi: 10.1109/IEEESTD.2019.8766229.

[Knu97] Donald Knuth. “Fundamental Algorithms”. In: 3rd ed. Vol. 1. The
Art of Computer Programming. Addison-Wesley, 1997.
Chap. Dynamic Storage Allocation, pp. 435–456.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

https://xkcd.com/2560/
https://doi.org/10.1109/IEEESTD.2019.8766229

	The Concept of a Variable
	Variable Declaration and Manipulation
	Variables & Datatypes: Declaration and Instantiation
	Post-Declarative Manipulation & Shorthand
	Exercises: Variable Declaration and Manipulation

	Additional Exercises: Casting
	The Stack and the Heap

	Pointers
	An Overview: Pointers are Seldom Difficult
	Arrays
	Exercises: Pointers & Arrays

	Next Week…

