
This contents of this document, excluding any images embedded within, are hereby released

into the Public Domain. You are encouraged to copy, modify, and redistribute this text.

ShockSoc C Programming Support

Sessions

Oliver Dixon

ShockSoc Technical Officer

od641@york.ac.uk

P/T/401 2pm–5pm

Spring Term, 2021–2022

Lab Script 03: Functions and

Headers

LATEX document built February 14, 2022 on Linux.

od641@york.ac.uk

Functions and Headers 2

Table of Contents

1 Functions 2

1.1 Return Values & Arguments . 3
1.1.1 Exercises: Return Values & Arguments 5
1.1.2 Bonus: Variadic Arguments 5

1.2 Function Qualifiers . 7
1.3 Commenting Function Declarations 7
1.4 The Calling and Placement of Functions 9

1.4.1 Exercises: The Calling and Placement of Functions 11
1.5 Pointers to Functions . 11

1.5.1 Exercises: Pointers to Functions 13

2 Header Files and Multiple Translation Units 13

2.1 . . . without Header Files . 14
2.2 . . . with Header Files . 14

2.2.1 Bonus: #include Guards 16
2.3 Exercises: Header Files & Multiple Translation Units 16

3 Next Week. . . 17

1 Functions

In this lab session, we will explore the concept of a fundamental C structure:
the function. At least one function must be declared in every C program, as
executable code must be contained within its scope. For most user-space code,
this function is the “entry point”1, typically termed main, the notion of which was
previously discussed in the first lab script. With that in mind, the vast majority
of useful C programs contain many functions—often hundreds or thousands. As
such, attaining a deep understanding of function declaration and usage is an
integral endeavour for any prospective programmer.

Unlike many things in software development, there is a hard-and-fast rule for
functions, which all programmers should religiously follow: a function must do
one thing, and do it well. If any function in a program is exceeding thirty to forty
lines of code, or contains statements deeper than three levels of indentation, then
it is doing more than one thing, and should be split into auxiliary (or “helper”)
functions. Code should also be wrapped on eighty columns, as longer lines
tend to cause interoperability and readability issues across different displays
and programmers. First, take some time to closely examine the function syntax
in Figure 1.

Heavy use of small and modular functions brings many advantages, which
become increasingly helpful as the size of a codebase grows. Software becomes

1All programs need not contain an entry point. Sometimes, such as in the case of a library,

having an entry point does not make sense, as the program would never be run directly,

but only by a client program to which it was linked. The client program would call certain

functions explicitly as required.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 3

qualifiers return-type name (arg-type arg-name, ...)

Figure 1: The general function declaration syntax. Qualifier keywords and ar-
guments are optional, however the function return type and symbol name are
mandatory. For these syntax declaration figures, grey text indicates the ex-
pected presence of a keyword, as opposed to free-form symbol names. Optional
fields are set in italics.

main (entry point)

get_arg printf fflush

strtoul measure_alg

popcnt32_lupopcnt32_trpopcnt32_bk

Figure 2: A partial call tree of a simple program to benchmark various Hamming
Weight/popcount algorithms, with a simple binary alphabet of Σ = {0, 1}. A
full copy of the program under inspection can be found at https://www-users.
york.ac.uk/~od641/misc-c/popcnt.c.

substantially easier to manage, read, debug, distribute, and reuse. The calling
card of an experienced programmer is often presented by their ability to take
an algorithm and split it into distinct chunks capable of working together in a
tree-like structure (see Figure 2), as functions begin to call other functions2.

1.1 Return Values & Arguments

The constant mention of modularisation begs the important question: how do
functions actually work together? Like any useful algorithm, functions have
inputs and outputs, and these are typically referred to as the arguments and re-
turn value, respectively. They may take any (reasonable) number of arguments,
delimited with commas, and may return a single value. These may be of any
type, as stated in the function declaration, with an arbitrary name by which the
symbol shall be referred within the scope of the function. By default, C passes
arguments by value, such that unless explicitly told otherwise—through the use
of pointers—a function will take a copy of its arguments for its own use; any

2An extreme example of this is known as recursive programming, in which a function calls

itself, iteratively, until the task completes and all functions return to the original instance

of the caller. This is often a bad practice, and often leads to a processor error known as a

stack overflow, such that the call stack, as shown in the previous lab script, cannot grow large

enough to accommodate each function’s frame data and return link address.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

https://www-users.york.ac.uk/~od641/misc-c/popcnt.c
https://www-users.york.ac.uk/~od641/misc-c/popcnt.c

Functions and Headers 4

changes made to an argument in a function will not affect the original symbol
as recognised by the caller. The same is true with return values.

These concepts can be tricky to grasp at first. Listing 1 shows an exam-
ple function designed to perform a multiplication; the operands are passed as
arguments op1 and op2, and the result is returned. To ease into function decla-
rations, recall the outstanding consistency and versatility of C syntax; all of the
techniques in variable type declaration demonstrated in PSS script #2 are used
in exactly the same form for defining function arguments and return values. In
later lab scripts, we will begin to explore methods of passing compound types
across function hierarchies, with pointers to struct types.

1 int multiply (int op1 , int op2)

2 {

3 return op1 * op2;

4 }

Listing 1: A simple function that returns the product of its two arguments. As
a bonus exercise, consider in what situations this function could be dangerous,
invoking a strongly worded letter from the ALU. Think about the width of the
int type.

In some cases, a function may have no reason to return a value, as it may
modify data elsewhere; an exemplar of this is the free function, which never
fails. To declare such a function, state the return type as void3. A void

function will always return to its caller, as do all functions, however a value is not
attached to the return address. In these instances, an explicit return keyword
is not needed at the end of execution, as the compiler will automatically add a
branch-to-the-caller instruction (“bx lr” on ARM) once the function goes out
of scope. However, a return; statement may be used to exit a void function
early; Listing 2 shows an example of this.

1 #include <stdio.h>

2

3 void print_if_odd (int val)

4 {

5 if (val & 1 == 0)

6 return; /* The argument is even. Exit early. */

7

8 puts ("The argument is odd!");

9 }

Listing 2: A function to print “The argument is odd!” to stdout in appropriate
situations. If the argument is even, this function produces no visible output.
The if conditional syntax will be discussed in the next lab script.

3Note that void is not the same as void *. The latter, which is a void pointer, is a value

equal to a memory address which points to data of an undetermined type.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 5

1 int * dodgy_function ()

2 {

3 int i = 0xFF;

4 return &i;

5 }

Listing 3: A mysteriously devious function, containing an unobvious mistake
made by many inexperienced programmers.

1.1.1 Exercises: Return Values & Arguments

1. Write analogues to Listing 1 for the other three basic arithmetic opera-
tions. Given that addition and subtraction are closed under Z, the imple-
mentation of these will be relatively painless. Aside from the potential of
a divisor equal to zero, what sort of unexpected behaviour could be caused
when implementing division? Perhaps a return type other than int may
be helpful? What about the arguments’ type?

2. While these sessions encourage forging a strong familiarity with defining
function signatures, becoming comfortable with reading them is an equally
important skill. At a Linux terminal, try typing man, followed by a space,
followed by a standard library function. This will display the manual page
for the given function through the system pager4, usually headed with the
relevant signatures. Try man malloc, which describes the signatures for
malloc and free, amongst various other related functions. What are the
types of the return values and arguments?

3. Write a function that modifies the original value of its argument. Pointers,
and the dereferencing thereof, may be helpful.

4. Write a function that, given a fixed-width integer from stdint.h, returns
a copy of its argument with the nth bit set, where n is also an argument.
Recalling your answers from exercises in PSS #2 may allow you to com-
plete this exercise quicker.

5. Consider the function shown in Listing 3. Why might this lead to a race

condition bug, in which unexpected behaviour appears only some of the
time?

1.1.2 Bonus: Variadic Arguments

The above sections discuss functions that take a fixed number of arguments,
however the C standard does stipulate the existence of variadic arguments, in

4The system pager is typically defined as an environment variable, $PAGER, storing the

command through which man pipes its output. If manual pages are not scrollable, try executing

“export PAGER=less”, and retyping your man command. If this produces satisfactory results,

append this line to your ~/.bashrc file.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 6

1 #include <stdarg.h>

2

3 int va_multiply (unsigned int n, ...)

4 {

5 int product = 1;

6 va_list operands;

7

8 /* Populate ‘operands ’ with the passed arguments , of

9 * which there are ‘n ’. */

10 va_start (operands , n);

11

12 for (unsigned int i = 0; i < n; i++)

13 product *= va_arg (operands , int);

14

15 /* Destroy the argument processor instance created by

16 * the ‘va_start ’ function. */

17 va_end (operands);

18

19 return product;

20 }

Listing 4: A function to multiply an arbitrary number of operands. The iterative
for construct, along with a few others, will be examined in the next lab script.

which a function may take a fixed number of arguments (at least one), imme-
diately followed by an arbitrary number of arguments, denoted with a literal
ellipses (“. . . ”). These notes are included for completeness, but variadic argu-
ments should be generally avoided wherever possible, and are rarely used in
real code, due to their awkwardness. printf is a perfect example of such a
construct.

To use variadic arguments, include the standard stdarg.h header, which
defines the va_list type, alongside various helper functions, the most important
of which are va_start, va_arg, and va_end. Variadic argument processing
must be explicitly initialised and destroyed, owing to the first and last functions
shown above. va_arg is used to retrieve an argument of the next index in the
va_list vector5.

Listing 4 shows an analogue of Listing 1 for an arbitrary number of operands.
For those interested in the many peculiarities of the variadic argument functions,
try running man stdarg. Advanced students already familiar with C may wish
the delve into the implementation of these functions in one of the common
standard library implementations, such as glibc or musl to determine the strange
methods that enable va_arg to return a general non-pointer type.

5As some may have suspected, the entire variadic argument interface is commonly imple-

mented as a state machine working with globals, hence the requirements to explicitly initialise

and destroy an argument vector, coupled with the lack of support to use va_arg to select

an argument of an arbitrary index. In general, unless absolutely required with no sensible

alternative, this interface should never be used in robust code.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 7

1.2 Function Qualifiers

Figure 1 mentions qualifiers as the first potential modifier to a function decla-
ration. There are only a couple of such (important) qualifiers in C applicable to
functions; these are inline and static6. By declaring a function as static,
the programmer is stipulating that the following function may only be called
from within the same translation unit, and may not be exposed, typically via a
header, to other source files; attempting to do will cause the compiler to throw
an error. The concepts of headers and sharing declarations across files will
become clearer after reading the second half of this script.

The inline directive suggests that a program is likely to perform in less time,
if each function call is replaced with the function itself. This idea may seem
confusing at first. Recall that every function call corresponds to, at the very
minimum, a few instructions on the CPU. In performance critical applications,
or situations in which a function is being called millions of times in a loop, it
often proves advantageous to completely remove the overhead of a function call
and stack realignment. A high-quality modern compiler, such as clang, will
automatically inline functions where a clear performance advantage exists; the
inline keyword, which may not always be obeyed, is a mere suggestion to the
compiler from the knowledgeable and context-aware programmer. (This can
only be excepted with compiler-specific extensions and attributes, which are
used in some later examples. In general, such constructs should be avoided in
portable code.)

To demonstrate the potential performance gains enabled with inline, con-
sider the program shown in Listing 5. The popcnt function, which is not in-
lined7, calculates and returns the number of set bits in its unsigned 32-bit argu-
ment, with the aid of a sixteen-value lookup table. On an Intel® Core™ 2 P8400
CPU @ 2.26GHz, this program typically executes in 36.086 ± 0.5 seconds. Now
consider the replacement popcnt function signature in Listing 6. Supposing this
function is executed by the same caller, under the same conditions, the program
completes in 27.851 ± 0.5 seconds, which clearly demonstrates the potentially
significant overhead of a basic function call with minimal arguments.

1.3 Commenting Function Declarations

As with all constructs in C, effective and consistent commenting is a require-
ment. Unlike with certain languages enjoying de-facto documentation-generation
systems, such as Java with JavaDoc, there is no well-defined rule for comment-
ing C functions. However, competent programmers should ensure that every

function declaration or implementation is preceded with a comment block ex-

6The extern keyword can also be applied to functions, however every compiler adds it as

an implicit keyword, and can only be overrode by the complementing static qualifier.
7The ugly “__attribute__ ((noinline))” syntax prevents the compiler from ever

inlining the function. It should not be generally used, aside from in cases such as this one, in

which we want to create a poorly performing binary. The always_inline attribute does the

exact opposite, regardless of the specified optimisation level. All examples here were compiled

with gcc -O3.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 8

1 #include <stdio.h>

2 #include <stdint.h>

3

4 /* This function will never be inlined. */

5 static __attribute__ ((noinline))

6 uint8_t popcnt (uint32_t v)

7 {

8 static const unsigned char tbl [] =

9 { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };

10

11 asm ("");

12

13 return tbl [v & 0x0F] +

14 tbl [v >> 0x04 & 0x0F] +

15 tbl [v >> 0x08 & 0x0F] +

16 tbl [v >> 0x0C & 0x0F] +

17 tbl [v >> 0x10 & 0x0F] +

18 tbl [v >> 0x14 & 0x0F] +

19 tbl [v >> 0x18 & 0x0F] +

20 tbl [v >> 0x1C];

21 }

22

23 int main ()

24 {

25

26 register uint8_t c;

27 uint64_t i = 0;

28

29 for (; i <= 0xFFFFFFFF; i++)

30 c = popcnt (i);

31

32 printf ("0x%X has %d set bits.\n",

33 (uint32_t) (i - 1), c);

34

35 return 0;

36 }

Listing 5: A simple LUT Hamming Weight implementation for 32-bit values.
This function could be substantially improved with a larger lookup table; a
256-valued table would halve the required number of indexes, as eight bits, as
opposed to four, could be examined at once. The empty asm call is used to pre-
vent the function from being “optimised” away by some unintelligent compilers;
readers needn’t worry about its strange presence.

1 /* This function will always be inlined. */

2 static inline __attribute__ ((always_inline))

3 uint8_t popcnt (uint32_t v)

4 {

5 /* ... */

6 }

Listing 6: A replacement function signature, suggesting—and using a compiler
extension attribute to force—the inlining of the function body.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 9

1 /* multiply: calculate and return the product of its integer

2 * operands ‘op1’ and ‘op2 ’. This function does not check

3 * for cases of overflow or underflow. */

4

5 int multiply (int op1 , int op2)

6 {

7 return op1 * op2;

8 }

Listing 7: A simple multiplication function with an equally simple preceding
synopsis.

plaining its purpose, return value, arguments, and any quirks which may affect
the caller (such as a function that modifies its pointer arguments). Even sim-
ple functions, such as the earlier two-operand arithmetic operation examples,
should have a short synopsis comment. Eager readers may wish to take every
function in this script and write a summarising comment to appear above its
declaration; the PSS Author would be pleased to review any such attempts and
offer advice for improvement. An example for the earlier multiply example is
shown in Listing 7.

For some workflows, a well-defined and easy-to-parse commenting schema
may be used, which can then be scanned by an external program to gener-
ate documentation is a variety of formats such as HTML or PDF. There is
no such standard for C, but common software includes Doxygen, Sphinx, and
Natural Docs. In such cases, defined tokens embedded into comments are used
to enumerate various properties and characteristics of a function, such as the
arguments, the return value, potential errors, and any additional notes.

1.4 The Calling and Placement of Functions

Functions only become useful once they are called! In fact, most compilers with
any reasonable level of intelligence will remove any unused functions during the
first stages of optimisation, once the AST generation and traversal (discussed in
PSS #1) has been completed. Function calls have been used implicitly through-
out this document, however a slightly explicit discussion will prove helpful.

To call a function from another function, type its full symbolic name followed
by parentheses. Any arguments expected by the function, as defined by its
signature, should be entered between the parentheses, delimiting them with
commas. Unless the function call is part of a larger statement, it should be
terminated with a semicolon. For non-void functions, the function call can be
assigned to a value, such that the symbol on the LHS of the assignment operator
takes the function’s return value. Some standard library functions, such as those
marked with the GCC warn_unused_result attribute extension, will generate
a warning if the caller does not check or assign the return value; this is because
errors are commonly indicated through a return statement8.

8An example of warn_unused_result proving useful is shown with the malloc function. It

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 10

On the traditional architectures, the process of calling a function consisted
of various stages. The following is a simplified overview of this process:

1. The call stack is enlarged by an appropriate amount to accommodate the
storage of all arguments. This is typically achieved by moving a value into
the stack pointer register.

2. All arguments are pushed onto the stack in the newly defined region,
typically termed as the stack frame9. This stack frame will also contain
any local data for the function, and will grow (and potentially shrink) at
runtime while new function-local variables are declared; this local data
includes the address of the caller, allowing the return statement to be
translated into an unconditional branch by the compiler. The address of
the most recent caller will usually be stored in a register, often termed the
link register10.

3. The caller will jump to the address of the function, as calculated at build-
time by the linker (assuming static linking). The function will then pop
the arguments from the call stack, ideally onto registers, and begin to
execute its defined instructions, following normal control sequences.

4. Upon returning, the callee will branch back to its caller, which will then
shrink the stack size to its pre-call state. Data local to the callee

could still exist and be accessible, but may be overwritten at

any point. (A potentially troublesome function designed to illustrate
this point is shown in Listing 3.)

The placement of functions is also important, and their declaration across
various translation units will be discussed further in the coming sections, how-
ever it is useful to know a few core concepts. A function must always be declared

before the point at which it is first called, however its implementation may be
anywhere after its declaration, including within a different file. To illustrate the
strong manner in which these actions can be decoupled, see Listing 8. Notice,
that although the function implementation must specify the symbolic names of
each argument, the function declaration syntax makes this extraneous typing
optional. As compilers traditionally read translation units top-to-bottom, local
argument names are of no interest to the caller11, and thus may be omitted12.

is completely useless to call malloc without assigning its return address, since memory leaks

will always occur if the process does not know the addresses of its own heap memory. On

GCC, attempting to discard the return value of marked function generates a -Wunused-result

warning; clang optimises the call away entirely, even with the notoriously aggressive -O0 -g

-Weverything flags.
9The call stack was discussed and illustrated in PSS #2, complete with a diagram contain-

ing stack frames, thread data, and link address information.
10Compiler targeting ARM processors will often translate a return keyword to the “bx lr”

native instruction, where bx is a branch opcode and lr represents the link register.
11Although local argument names are optional, many programmers choose to include them

as a matter of style, purporting their uses in increasing readability without having to locate

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 11

1 #include <stdio.h>

2

3 static int multiply (int , int);

4

5 int main ()

6 {

7 const int test_op1 = 5, test_op2 = 3;

8

9 printf ("%d * %d = %d\n", test_op1 , test_op2 ,

10 multiply (test_op1 , test_op2));

11

12 return 0;

13 }

14

15 static int multiply (int op1 , int op2)

16 {

17 return op1 * op2;

18 }

Listing 8: An example of the multiply function having its declaration and
implementation decoupled. As described, a function declaration must precede
its first call, however the implementation may be anywhere else. This program
could be rewritten to declare and implement multiply above main, in which
case no decoupling would be required.

1.4.1 Exercises: The Calling and Placement of Functions

1. Replicate the decoupling shown in Listing 8 for each of the arithmetic add,
multiply, subtract, and divide functions. Under what circumstances
may this level of separation be seen as appropriate? (This is subjective.)

2. Research other architectures and their stack models. The management of
functions and threads is certainly not a ubiquitously defined process across
all modern processors. The von-Neumann, Harvard, and the “hybrid”
modified Harvard architectures have wildly differing approaches to SBMA
and code-data separation principles.

1.5 Pointers to Functions

The C syntax—as shown in Figure 3—allows the declaration and usage of func-

tion pointers, which store the address of a function, and may be used to indi-
rectly call a subroutine. The value of these pointers, and thus the functions to
which they refer, may change over time, rendering them exceptionally useful for

the function implementation. Both styles of inclusion and omission are common.
12The only other noteworthy differing factor between function implementations and dec-

larations, aside the termination of declarations with a semicolon, concerns functions taking

no parameters. In the implementation case, specifying void between the parentheses is al-

lowed, but not recommended. For declarations, in the interests of avoiding ambiguity, the

void keyword is mandatory.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 12

return-type (* qualifiers name) (arg-type arg-name, ...)

 = &f-name;

Figure 3: The function pointer declaration syntax. As with all other variables,
functions may or may not be initialised at the point of their declaration, but are
certainly not guaranteed to be allocated in zeroed stack space. When referring
to function addresses, the ampersand is optional (for reasons best known to the
standards authorities).

1 #include <stdlib.h> /* Included for ‘malloc ’. */

2

3 /* A constant array of function pointers , named

4 * ‘arithmetic ’, that contains functions returning a single

5 * integer and accepting a couple of integer arguments. In

6 * this case , it is initialised as a standard array with the

7 * optional ampersand. */

8

9 int (* const arithmetic []) (int , int)

10 = { &add , &multiply , &subtract , ÷ };

11

12 /* A function pointer , named ‘allocator ’, that refers to a

13 * function returning a void pointer and taking a single

14 * argument of type ‘size_t ’. This is initialised to the

15 * standard ‘malloc ’ function , omitting the optional

16 * ampersand. This pointer is non -constant , and may be

17 * changed over time. */

18

19 void * (* allocator) (size_t) = malloc;

Listing 9: Various function pointer declaration and initialisation examples.

the iterative calling of similar functions. Function pointers are a secondary con-
cept, however their importance cannot be understated; they often reduce code
size significantly, with only a minute performance hit caused by the additional
dereferencing operation. Modern compilers capable of strong static analysis may
possess the ability to reduce a constant function pointer to a real call, obviating
the dereferencing overhead entirely.

A function pointer declaration must contain compile-time information about
the class of potential functions for which it will be a pointer; namely, the ordered
list of argument types and the return value type. The exact same rules of
standard function declaration apply to pointer declarations, with the notable
addition of pointer qualifiers and a pointer name, both of which pertain to the
function pointer, and not the referenced function. Example pointer qualifiers
may include any keywords attachable to a normal datatype, such as const,
volatile, or static. Arrays of function pointers are also supported, and would
be declared in the usual manner: succeeding the pointer name with a series of
brackets. A couple of examples are presented in Listing 9.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 13

1.5.1 Exercises: Pointers to Functions

1. Try the function pointer syntax for yourself. Copy the declarations in List-
ing 9 and test them in a real program, using allocator to put aside some
heap memory13, and the various indexes of arithmetic to perform some
basic calculations. You will need to include local implementations for the
add, multiply, subtract, and divide functions, with the latter subrou-
tine performing integer-only division. Akin to the optional ampersand in
function referencing, calling pointers can be achieved with or without an
explicit dereference; “(* fptr) ()” and “fptr ()” are semantically
identical.

2. Declare and initialise a function pointer to your earlier divide function,
taking a couple of double arguments and returning a single double. Mark
this pointer to remain on the stack regardless of the active frame.

3. Declare a constant pointer to a hypothetical function that takes a func-
tion pointer of any class, and returns a void pointer. Clearly breaking
declarations of this complexity over multiple lines, potentially with short
comments accompanying particularly difficult instantiations, is a useful
and common tactic. The importance of this will become especially ob-
vious in later sessions, in which we study compound datatypes such as
structs.

4. Think about multi-dimensional function pointer arrays. Do you dare to
declare and initialise one? Although these are used extremely rarely in real
production code, considering their syntax is useful for building a common
familiarity with the versatile and oft-surprisingly consistent syntax of C.

5. Read the manual page for the qsort function in the Linux Programmer’s
Manual. Do you find anything interesting about this function’s signature,
particularly within its argument list? How might a similar construct be
created for a function returning a function pointer?

2 Header Files and Multiple Translation Units

The concept of “modularisation” has been often mentioned as a desirable de-
sign strategy, but non-trivial programs may easily reach thousands of lines in a
relatively small amount of time, and become intractable and difficult to man-
age. Modern IDEs and build chains ease the burden significantly, however the
manual splitting and sharing of data and code between multiple translation
units remains an invaluable skill for any modern high-level programmer. As
mentioned in PSS #1, the primary purpose of the linker concerns symbol reso-
lution, and any linker written in the past half-century will natively support an
arbitrary number of C source files. When we have such powerful build tools, we
should learn to exploit them to the fullest.

13Remember to free all malloc’d memory!

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 14

These symbol declarations may be “glued” together and shared across source
files with special translation units called “header files”, the contents of which may
be prepended to other files with the #include preprocessor directive14. These
files always have the .h filename extension, just as source files always have
the .c filename extension. We have already encountered these, many times, in
the form of pre-defined standard headers, containing variable, function, type,
and macro declarations for POSIX and libc functions; such examples include
stdio.h, stdlib.h, and string.h.

2.1 . . . without Header Files

First, we shall place the notion of a header file to one side, as they are not strictly
required to interlink data and code between multiple translation units. Consider
the programs illustrated in Listing 10, where two source files printer.c and
multiply.c exist. The “printer” code calls a function in the “multiply” file, but
since a valid function definition has been provided for the relevant function, the
compiler assumes the symbol will be resolved during the linking stage, and can
continue without error15.

Similar logic can also be applied to variable definitions, thanks to the extern
keyword. Much like a function declaration lacking an immediately defined im-
plementation, a marking a variable as extern promises the compiler that a
variable of a given type and symbol name will be declared elsewhere, typically
in another file, and should not be absolutely resolved until the linker stage. See
Listing 11 for an example of extern(al) variable resolution.

2.2 . . . with Header Files

In virtually every real-world situation, more than two source files will exist, and
it is desirable to share (“export”) certain chosen symbols between them all. This
can be achieved with header files, which is a type of translation unit typically
containing only function, variable, preprocessor, and type declarations. In later
lab sessions, we will examine some elaborate headers containing struct, enum,
and typedef statements, but for these introductory purposes only function and
variable declarations will be shown.

To include a header file, place an #include directive at the top of a file16,
and with the relative path typed between double quotes; to include a header

14It is possible to #include any file on the filesystem, regardless of its extension. However,

if you are telling the preprocessor to include anything other than an explicit header file, you

have done something very wrong. Redesign your code or throw it away.
15In the unfortunate event of a signature existing without a corresponding implementation,

the compiler will raise no complaint, however the linker will fail, reporting an “unresolved

reference” error, or some variation thereof. Any functions used in this decentralised manner

must also not be marked as static, as they can only be used by the translations units in

which they are declared and implemented.
16Like all preprocessor statements, the #include directive can be placed at any point in the

translation unit, however it is remarkably poor practice to include an external file after any

non-preprocessor statements are issued.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 15

1 /* file: printer.c */

2

3 #include <stdio.h>

4

5 int multiply (int , int);

6

7 void print_multiply_output (int op1 , int op2)

8 {

9 printf ("%d * %d = %d\n", op1 , op2 ,

10 multiply (op1 , op2));

11 }

12

13 /* file: multiply.c */

14

15 int multiply (int op1 , int op2)

16 {

17 return op1 * op2;

18 }

Listing 10: A function declaration and implementation can be decoupled across
multiple files, providing that the declaration appears before any corresponding
calls. To compile this code, one would specify all source files at the command
line: “gcc printer.c multiply.c”. For this example, no entry point (such as
main) is defined, so the linker will not be able to construct a valid binary.

1 /* file: read.c */

2

3 #include <stdio.h>

4 #include <stdint.h>

5

6 extern uint16_t var;

7

8 int main ()

9 {

10 printf ("var is equal to 0x%X\n", var);

11 return 0;

12 }

13

14 /* file: set.c */

15

16 #include <stdint.h>

17

18 uint32_t var = 0xDEADBEEF;

Listing 11: Similar concepts may be applied to variables, where the variable
declaration, marked as extern, is separated from its actual instantiation. At
the time of declaration, the compiler must know its prospective symbolic name
and datatype; the linker will then resolve real memory offsets in the resultant
binary. To compile and run this example, try executing “gcc read.c set.c -o

vartest && ./vartest”.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 16

1 /* file: printer.c */

2

3 /* The preprocessor will copy the content of ‘decls.h’ into

4 * ‘printer.c’, thereby exposing the declaration for the

5 * ‘multiply ’ function , which is then implemented in

6 * ‘multiply.c ’. */

7 #include "decls.h"

8

9 int main ()

10 {

11 printf ("%d * %d = %d\n", op1 , op2 , multiply (op1 , op2)

);

12 return 0;

13 }

14

15 /* file: decls.h */

16

17 int multiply (int , int);

18

19 /* file: multiply.c */

20

21 int multiply (int op1 , int op2)

22 {

23 return op1 * op2;

24 }

Listing 12: An example header file linking two source translation units.

./globals.h, the directive #include "globals.h" would be used. See List-
ing 12.

2.2.1 Bonus: #include Guards

Occasionally, when headers include other headers, which then include a tree
of various other headers, identical code can be superfluously (and often erro-
neously) copied into the final program, increasing build times and substantially
introducing the risk of linker complaints. To prevent this, a de-facto standard
has been agreed upon, using the #ifndef, #define, and #endif preprocessor
directives. With this method, each header exports a unique preprocessor symbol
after its first inclusion, which can then be checked by all subsequent #include

directives. If the symbol has not yet been defined, then define it, and include
the header. Otherwise, do nothing, as the header has already been included. A
minimal example is shown in Listing 13.

2.3 Exercises: Header Files & Multiple Translation Units

Relevant exercises will be provided by the PSS Author and published on-line
shortly.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

Functions and Headers 17

1 /* file: my_header.h */

2

3 #ifndef _MY_HEADER_H

4 #define _MY_HEADER_H

5

6 /* ... header content ... */

7

8 #endif /* _MY_HEADER_H */

Listing 13: A skeleton header file, my_header.h, surrounded by an #include

guard. Exported preprocessor symbols used for guarding should always derive
from the filename of the header file which they guard, with a single leading
underscore to reduce the chances of ambiguity and naming clashes.

3 Next Week. . .

Next week, we will begin to explore various control sequences. These structures
principally include conditionals (if and else) and iterations (for, while, and
do . . . while). We should also begin to examine compound datatypes, such as
structs, and the ways in which they can be used to transport large and complex
data structures around programs with very little effort.

See you then, I hope you enjoyed the third PSS script.
PSS Author, Oliver Dixon

XKCD #1270: “Functional”. https://xkcd.com/1270/

PSS script dedicated to M. Q.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

https://xkcd.com/1270/

	Functions
	Return Values & Arguments
	Exercises: Return Values & Arguments
	Bonus: Variadic Arguments

	Function Qualifiers
	Commenting Function Declarations
	The Calling and Placement of Functions
	Exercises: The Calling and Placement of Functions

	Pointers to Functions
	Exercises: Pointers to Functions

	Header Files and Multiple Translation Units
	… without Header Files
	… with Header Files
	Bonus: #include Guards

	Exercises: Header Files & Multiple Translation Units

	Next Week…

