
The Public Domain licencing notice is removed on inspection copies.

ShockSoc C Programming Support
Sessions

Oliver Dixon
ShockSoc Technical Officer

od641@york.ac.uk

P/T/401 2pm–5pm
Spring Term, 2021–2022

Lab Script 04: Conditionals and
Iteration (Part 1)

Internal ShockSoc Inspection Copy
Please do not disseminate. Direct any comments to Oliver Dixon.

LATEX document built February 23, 2022 on Linux.

od641@york.ac.uk


Conditionals and Iteration (Part 1) 2

Table of Contents
1 Conditionals and Iteration: A Synopsis 2

2 Conditionals 2
2.1 Forming Conditionals: The if Construct . . . . . . . . . . . . . . 2

2.1.1 Extended Footnote: Omission of Braces . . . . . . . . . . 3
2.2 Useful Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 The In-Line Ternary & Comma Operators . . . . . . . . . . . . . 5
2.4 The switch-case Construct . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 A Practical Example: A Four-Operation Digit Calculator 8
2.4.2 A Practical Example: Duff’s Device (Fall-Through) . . . 9

2.5 Exercises: Forming Conditionals . . . . . . . . . . . . . . . . . . 9

3 Next Week. . . 11

Due to formatting and typesetting restrictions, some listings in this doc-
ument have been pushed to the final pages, irrespective of their context.
For readers on a computer, this is not an issue, as all intra-document
references are rendered as PDF hyperlinks, and virtual indexes are com-
piled correctly, however I do offer my heartfelt apologies to all readers
enjoying a physical medium.

1 Conditionals and Iteration: A Synopsis
One of many cornerstones of any modern language lies in its ability to describe
decision and iterative constructs: that is, executing certain code providing an
arbitrary condition holds, and repeatedly executing blocks of code while some
similarly arbitrary condition holds. As many would expect, the free-form syn-
tax of C lends itself extremely well to powerful and versatile conditional and
iterative programming constructs, allowing remarkably concise (albeit readable)
code to perform a network of otherwise-complex tasks. First, we shall examine
basic conditional statements, how to construct them, and work through a few in-
creasingly dense situations in which a working knowledge of C syntax will prove
invaluable. In the second section of the script, we shall move onto the various
flexible iterative structures, which use conditionals extensively to determine to
point at which an iteration should halt.

2 Conditionals

2.1 Forming Conditionals: The if Construct
The if keyword denotes a sequence point. Its syntax is very predictable: the
condition is placed in parentheses to the right-hand size of the if, followed by an

ShockSoc C Programming Support Sessions O.W.D. 2021–2022



Conditionals and Iteration (Part 1) 3

1 #include <stdio.h>
2

3 int main ( int argc , char ** argv )
4 {
5 if ( argc > 1 )
6 puts ( "Some arguments were passed." );
7 else
8 puts ( "No arguments were passed." );
9

10 return 0;
11 }

Listing 1: Sequence Point, Example 1. Notice the argc value stores the number
of arguments passed to the binary. On virtually every modern shell, the first
“argument” will be the name of the executable, in which we are uninterested;
testing for argc > 0 would always return true.

(optional) set of braces. If the condition evaluates to something other than zero,
the code within the braces is executed; if the condition evaluates to zero, the
code surrounded by the braces is skipped. C also supports the else and else
if keywords, allowing a chain of sequence points to be defined. If used, the lone
else keyword must always appear at the end of an if-else chain, as it will only
be executed if no previous expression in the chain has evaluated as true. Before
going any further, let’s examine some examples: Listing 1, Listing 21 (once we
introduce the tenary operator and switch-case statement, we will be able to
write vastly condensed versions of these “algorithms”).

2.1.1 Extended Footnote: Omission of Braces

In the common case of an if statement executing only one statement, then the
braces surrounding the statement may be omitted, although correct indentation
must still be used. Although this is a very common practice, and one preferred
by the PSS author, some oft-embedded programmers will vehemently insist upon
the use of braces in all cases, as careless omission can result in very obscure bugs.
For example, consider the code listed in Listing 8. As the preprocessor will
execute before the compiler proper, the #define will be expanded into multiple
statements, and the call appearing as a normal function call may be explicitly
expanded into multiple. Although this minimal example may seem obvious,
many symbols appearing as functions in larger libraries tend to be implemented
as preprocessor macros, and programmers are often unaware of their real nature.
All modern compilers, with the correct arguments, will raise warnings or errors
in such cases of unguarded constructs; see Listing 9 for an example of a GCC
output script complaining about such a case. Although written in the context

1In the second example, the braces around the outer sequence point could technically be
removed, since the inner chain is a single symbol block, however many compilers would warn
that this may lead to dangerous levels of ambiguity. Compiler designers will often informally
refer to this as a “dangling else”.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022



Conditionals and Iteration (Part 1) 4

1 #include <stdio.h>
2

3 int main ( int argc , char ** argv )
4 {
5 if ( argc > 1 ) {
6 if ( * ( argv [ 1 ] ) == ’+’ )
7 puts ( "Adding ..." );
8 else if ( * ( argv [ 1 ] ) == ’-’ )
9 puts ( "Subtracting ..." );

10 else if ( * ( argv [ 1 ] ) == ’*’ )
11 puts ( "Multiplying ..." );
12 else if ( * ( argv [ 1 ] ) == ’/’ )
13 puts ( "Dividing ..." );
14 else
15 fputs ( "Unknown operation !\n", stderr );
16 } else
17 fputs ( "No argument passed .\n", stderr );
18

19 return 0;
20 }

Listing 2: Sequence Points, Example 2. As with many other scope types in C,
if statements can be nested. With else if/else chains, once one condition
evaluates to true, the corresponding code block is run and the execution jumps
to the end of the entire chain.

of if statements, all of the above also applies for else, else if, for, while,
and do arrangements. We have seen two of these arrangements so far; the latter
three concern iteration, and will be explored shortly.

2.2 Useful Operators
In the previous examples, we have already encountered the ‘>’ (greater-than) and
‘==’ (equivalence test) operators. For the sake of completeness, see Table 1 for a
complete list of similarly useful operators. In every case, employing one of these
operators will reduce the expression to ‘0’ or ‘1’. As mentioned, sequence point
constructs will consider ‘0’ to be false, and non-zero (‘!0’) to be true. Table 2
enumerates the commutative and non-commutative operators, and demonstrates
cases in which multiple compound operators may be simplified into a single
expression. Note that these operators needn’t be contained within a well-defined
sequence point construct, such as an if statement. Demonstrating the power of
C syntax, the use of these operators will reduce the entire statement to a true
or false integer value. For example, the peculiar-looking initialisation statement
int a = ( x > y ); would set a to zero if x is strictly greater than y, or one
otherwise. Although the parentheses are not strictly necessary, it is wise to
enclose any expression involving boolean or order relations within an explicit
parenthetical structure, as that local structure will reduce to its aforementioned
integer representation.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022



Conditionals and Iteration (Part 1) 5

Operator Symbol Example Class

Equivalence == x == y Equality Test
Negated Equivalence != y != z Equality Test

Unary Negation ! !x Boolean Logic
Conjunction && y && z Boolean Logic
Disjunction || x || z Boolean Logic
Greater-Than > a > b Order Relation
Less-Than < b < a Order Relation

G.T. -or-equal-to >= b >= a Order Relation
L.T. -or-equal-to <= a <= b Order Relation

Table 1: Some operators capable of reducing an expression to ‘0’ or ‘1’.

St. Operator(s) Statement Implication Im. Operator(s)

Equivalence x == y y == x Equivalence
Negated Equivalence x != y y != x Negated Equivalence

Unary Negation !x !x Unary Negation
Conjunction x && y y && x Conjunction
Disjunction x || y y || x Disjunction
Greater-Than x > y !(x <= y) Neg. and L.E.Q.
Less-Than x < y !(x >= y) Neg. and G.E.Q.
G.E.Q. x >= y !(x < y) Neg. and L.T.
L.E.Q. x <= y !(x > y) Neg. and G.T.

Table 2: Many operators are commutative, but some may be simplified.

2.3 The In-Line Ternary & Comma Operators
It is ocassionaly useful to perform the equivalent of an if-else statement when
doing something in-line, such as for a variable assignment or within a function
call. Unlike many languages (such as Python), C provides a convenient syntax
for such cases, in the form of the ternary operator. The general syntax of the
ternary operator is “(condition) ? (true-case) : (false-case)”, where
condition is some expression to be tested for non-zero, and the true-case and
false-case blocks contain statements to be executed accordingly for either
case. This helpful operator can often be used to drastically reduce the size of
various comparisons, whilst being functionally equivalent and equally readable.

For a quick example, consider Listing 1. Since we are calling the same func-
tion in each case, with the only differing element being the string literal, this is a
perfect candidate for the ternary operator—see Listing 3. Although very useful
in some cases, they should be used with care, as their nature as “syntactical
sugar” can occasionally create difficult-to-read statements, especially when the
condition is complex. As shown in the example, breaking lines at sensible points
and adding padding requires little effort and creates readable expressions.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022



Conditionals and Iteration (Part 1) 6

1 #include <stdio.h>
2

3 int main ( int argc , char ** argv )
4 {
5 puts ( ( argc > 1 ) ? "Some arguments were passed." :
6 "No arguments were passed." );
7

8 return 0;
9 }

Listing 3: The ternary operator can be used to vastly simplify typical single-
statement if-else blocks.

1 /* ... */
2

3 if ( !success )
4 return ( errno = EINVAL , -1 );
5

6 /* ... */
7

8 if ( !success ) {
9 errno = EINVAL;

10 return -1;
11 }
12

13 /* ... */

Listing 4: Using the comma operator, these blocks are practically identical,
where stmt-1 is ‘errno = EINVAL’ and stmt-2 is ‘-1’.

There is also the seldom-used (yet superbly named) comma operator, de-
noted by the ‘,’ token, and can be used to similarly reduce expression sets
of specific types. The C syntax standard defines the comma syntax as such:
“(stmt-1), (stmt-2)”, where stmt-1 and stmt-2 are evaluated, and the re-
sult of stmt-2 is returned. This has many uses, one of which is shown in
Listing 4.

2.4 The switch-case Construct
Finally, we have the switch-case construct; both of these words are C key-
words, although a case must appear within a parent switch. This construct is
particularly useful for cases in which an integer-like scalar variable consists of
many potential values, all of which should invoke subtlely different behaviour. A
perfect candidate for a switch-case statement was (intentionally) shown with
an equivalent if-else chain in Listing 2. By reviewing Listing 5, try and infer
the general syntax of the switch-case construct.

The syntax itself proves to be fairly simple and intuitive, with the parenthe-
ses following the switch containing the variable under inspection; this variable

ShockSoc C Programming Support Sessions O.W.D. 2021–2022



Conditionals and Iteration (Part 1) 7

1 #include <stdio.h>
2

3 int main ( int argc , char ** argv )
4 {
5 if ( argc < 2 ) {
6 fputs ( "No argument passed .\n", stderr );
7 return 1;
8 }
9

10 switch ( * ( argv [ 1 ] ) ) {
11 case ’+’: puts ( "Adding ..." ); break;
12 case ’-’: puts ( "Subtracting ..." ); break;
13 case ’*’: puts ( "Multiplying ..." ); break;
14 case ’/’: puts ( "Dividing ..." ); break;
15

16 default: fputs ( "Unknown operation !\n", stderr );
17 }
18

19 return 0;
20 }

Listing 5: An algorithmically identical implementation of Listing 2, using a
switch-case block as opposed to an obvious if-else chain. This particular
example alters the “argc > 1” check to its logical inverse (which is valid for all
integers), jumping out early to avoid nesting the entire switch block.

will be implicitly cast to an integer. For each value to handle, a case statement
is inserted, followed by the value for which any code, following the colon, but
before the break, should be executed2. Generally, case statements should be
indented one more than their parent switch, but some coding guidelines, such
as the Linux Kernel standard, advise against this practice3. Finally, much like
the terminating else keyword in an if-else chain, the default keyword can
be used as a pseudo-label to denote code that should execute if none of the
well-defined case conditions were matched. The default case must appear as
the final case, and thus, does not require a break statement.

A further interesting point regarding the switch structure concerns the na-
tive code generation. Whilst many modern compilers will be wildly unpre-

2Although rather common, the break statement is not strictly necessary, and can be used
to create some very interesting algorithms, two of which will be inspected shortly. Unfortu-
nately, many modern languages such as C#, have slightly less freely formed syntax, and do not
support fall-through cases; a .NET compiler will refuse to compile cases without a correspond-
ing break statement. Whilst enforcing against fall-through cases renders JIT compilation of
switch statements significantly easier, an entire class of clever algorithms is excluded from
implementation.

3As lines of code should be limited to seventy-two (ANSI) or eighty characters, the Linux
Kernel standard claims that indenting case labels with another eight spaces is wasteful and
makes code harder to format. Conversely, if you are more than three levels of indentation
deep anyway, your code is probably too complex and should be split into modular functions.
This is a great point of contention, and one which should be decided by the individual author
or team. All examples in PSS scripts will indent such labels.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022



Conditionals and Iteration (Part 1) 8

1 #include <errno.h>
2

3 static int op_add ( int a, int b ) { return a + b; }
4 static int op_sub ( int a, int b ) { return a - b; }
5 static int op_mul ( int a, int b ) { return a * b; }
6 static int op_div ( int a, int b ) { return a / b; }
7

8 int calc ( char op, int a, int b )
9 {

10 int ( * op_func ) ( int , int );
11

12 switch ( op ) {
13 case ’+’: op_func = op_add; break;
14 case ’-’: op_func = op_sub; break;
15 case ’*’: op_func = op_mul; break;
16 case ’/’: op_func = op_div; break;
17

18 default : return ( errno = EOPNOTSUPP , 0 );
19 }
20

21 return op_func ( a, b );
22 }

Listing 6: A function, calc, to take two integer operands and a binary arithmetic
operation, and return the result of the operation applied to the operands.

dictable in this regard, it is useful to know the basic concept. Long if-else
chains are problematic due to their reliance on branching: for a typical if
statement, a traditional processor must perform the condition check, storing
the result in the accumulator or status register, and then jump to a certain in-
struction address depending on the value in the accumulator. In contrast, with
a switch statement, a compiler can generate a jump table and obviate the ini-
tial condition check entirely. On older CPU architectures that tend to branch
relatively slowly, the generation of an immediate jump table will often prove
an invaluable optimisation for iteratively invoked subroutines; for an arbitrary
number of cases, this method of selection runs in O(1) constant time. For more
complex situations, optimisers may generate a binary search for case-selection,
in which case the time complexity becomes logarithmic4: O(log2(n)).

2.4.1 A Practical Example: A Four-Operation Digit Calculator

Listing 6 demonstrates many of the concepts introduced today: the switch
statement, the concept of a default case, and the comma operator.

4Do not worry if you are as-yet unfamiliar with the Big-O notation. It is simply a method
of measuring an execution parameter, often time, of an algorithm as a function of its input
size n. In this instance, n denotes the number of defined cases, and O denotes a measure of
runtime selection performance. Constant time is conferred by O(1), that is to say execution
time is independent of input; this is obviously the desirable case, but is seldom possible for
most algorithms. For the trivial if-else chain, the time complexity of selection will likely be
linear O(n).

ShockSoc C Programming Support Sessions O.W.D. 2021–2022



Conditionals and Iteration (Part 1) 9

1 void duff_send ( short * to, short * from , int count )
2 {
3 int n = ( count + 7 ) / 8;
4

5 switch ( count % 8 ) {
6 case 0: do { *to = *from ++;
7 case 7: *to = *from ++;
8 case 6: *to = *from ++;
9 case 5: *to = *from ++;

10 case 4: *to = *from ++;
11 case 3: *to = *from ++;
12 case 2: *to = *from ++;
13 case 1: *to = *from ++;
14 } while ( --n > 0 );
15 }
16

17 /* WHAT’S GOING ON?! */
18 }

Listing 7: The classical Duff’s device implemented in C99. A modern compiler
might complain about the lack of a default case, but in this instance of applying
the modulo-eight operator, we can be fairly confident that we’ve enumerated all
possibilities!

2.4.2 A Practical Example: Duff’s Device (Fall-Through)

Listing 7 shows a C99 implementation of a very classical and famous construct
in C programming, designed to copy bytes from a source to a sink very quickly;
it first appeared under Tom Duff while working at Lucasfilm. Advanced read-
ers may wish to examine this example, and try and derive how the free-form
syntax of C allows such an odd-looking arrangement of fall-through case state-
ments interleaved with a do. . . while loop. (The various loop constructs will be
introduced next week in the second half of this script.)

2.5 Exercises: Forming Conditionals
If you have managed to get to this stage, you should reward yourself with some
exercises. Complete the following tasks, in order, and present your solutions
to the PSS Author for scrutiny. The Author will be pleased to provide more
exercises if you finish all of these.

1. Without using a nested arrangement, devise an if statement that evalu-
ates to true if, and only if, a and b are non-zero, or c is greater than the
sum of a and b.

2. Investigate assertions in C. The assert.h header file, and the man pages
of the function signatures contained within, may be helpful. In what
situations may an assert(3) call be useful? Why do you think it is
disabled in many build circumstances?

ShockSoc C Programming Support Sessions O.W.D. 2021–2022



Conditionals and Iteration (Part 1) 10

1 #include <stdio.h>
2

3 #define PRINT_ERROR(msg) \
4 puts ( "Logger: system error. See stderr." ); \
5 fputs ( msg , stderr ); \
6 fputc ( ’\n’, stderr )
7

8 void report_status ( const char * msg , int iserror )
9 {

10 /* ... */
11

12 if ( iserror )
13 PRINT_ERROR ( msg );
14

15 /* ... */
16 }

Listing 8: A common mistake involving an unguarded if statement.

1 brace -omission -bug.c: In function ‘report_status ’:
2 brace -omission -bug.c:4:9: warning: macro expands to multiple
3 statements [-Wmultistatement -macros]
4 4 | puts ( "Logger: system error. See stderr ." ); \
5 | ^~~~
6 brace -omission -bug.c:13:17: note: in expansion of macro
7 ‘PRINT_ERROR ’
8 13 | PRINT_ERROR ( msg );
9 | ^~~~~~~~~~~

10 brace -omission -bug.c:12:9: note: some parts of macro expansion are
11 not guarded by this ‘if’ clause
12 12 | if ( iserror )
13 | ^~

Listing 9: The output of gcc -Wall when trying to compile Listing 8. In
the GCC and Clang/LLVM compilers, such errors are categorised under the
-Wmultistatement-macros warning class.

3. What is wrong with the following conditional? “a < b || c && d”. How
might it be fixed? You may want to investigate the precedence of binary
operators in C, and the manners through which such ambiguous arrange-
ments can be converted to unequivocal expressions.

4. Investigate the Duff’s device closer. Why does this work, and what as-
sumptions does it make? What is loop-unrolling, and how does this com-
mon optimisation technique link to the previous discussion regarding slow
branching and jump tables?

5. To force a familiarity with ternary operators, try constructing some nested
ternary expressions. These operators are particularly useful in #define
preprocessor macros, as they lend nicely to each other’s succinct nature.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022



Conditionals and Iteration (Part 1) 11

3 Next Week. . .
Next week, we will continue with the theme of “Conditionals and Iteration”,
shifting our focus to the various iterative structures of the C programming
language. Once iteration has been covered, there is little left to cover: most of
the basic concepts have been introduced, and only a few C-specific constructs
such as structs, unions, and enums remain pertinent. As with any concept,
practice is integral, and “good” programmers will have invested tens of thousands
of hours to reach their level. Please do not become discouraged if a certain
concept does not immediately seem familiar or within easy reach.

See you then, I hope you enjoyed the third PSS script.
PSS Author, Oliver Dixon

XKCD #1652: “Conditionals”.
https://xkcd.com/1652/

PSS script dedicated to M. Q.

ShockSoc C Programming Support Sessions O.W.D. 2021–2022

https://xkcd.com/1652/

	Conditionals and Iteration: A Synopsis
	Conditionals
	Forming Conditionals: The if Construct
	Extended Footnote: Omission of Braces

	Useful Operators
	The In-Line Ternary & Comma Operators
	The switch-case Construct
	A Practical Example: A Four-Operation Digit Calculator
	A Practical Example: Duff's Device (Fall-Through)

	Exercises: Forming Conditionals

	Next Week…

