
Integrating Searching and Authoring in Mizar

Paul Cairns and Jeremy Gow
UCL Interaction Centre, University College London, 31-32 Alfred Place, London
WC1E 7DP, UK

Abstract. The vision of a computerised assistant to mathematicians has existed
since the inception of theorem proving systems. The Alcor system has been designed
to investigate and explore how a mathematician might interact with such an assistant
by providing an interface to Mizar and the Mizar Mathematical Library. Our current
research focuses on the integration of searching and authoring while proving. In this
paper we use a scenario to elaborate the nature of the interaction. We abstract from
the scenario two distinct styles of searching and describe how the Alcor interface
implements these with keyword and LSI-based search. Though Alcor is still in its
early stages of development, there are clear implications for the general problem of
integrating searching and authoring, as well as technical issues with Mizar.

Keywords: LSI, Alcor, Mizar, information retrieval, mathematics

1. User interfaces for mathematicians

Since the very early days of theorem proving systems, it has been
envisioned that one day these systems would be able to support math-
ematicians at work (MacKenzie, 2001). Even now, however, very few
mathematicians are actively using theorem provers. In part, this may
be because of the difficulty of using theorem provers but also it is
increasingly recognised that mathematics is more than simply proving
statements (Kerber, Kohlhase and Sorge, 1998). Mathematicians also
need to do algebraic manipulations and to draw on extensive knowl-
edge of existing mathematics. Computer algebra systems have proven
to be extremely successful and their integration with theorem provers
is making significant advances (Farmer and Mohrenschildt, 2003). To
integrate mathematical knowledge into such systems has become the
focus of mathematical knowledge management (MKM)(Buchberger,
Gonnet and Hazewinkel, 2003). As this field has developed, it has be-
come clear that it is not just mathematicians that could use these tools
but anybody working with mathematics such as economists, physicists,
biologists and so on. MKM aims to develop software, protocols and
representations that support the storage and retrieval of substantial
bodies of mathematical knowledge (Adams, 2003).

There will not be a single user interface that will satisfy all prospec-
tive users of MKM technology. Instead, in this paper, we focus on the
original vision of the mathematical assistant. The question motivating

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.1

2 Cairns & Gow

our work is: how might a mathematician develop a proof with the aid of
MKM tools? In particular, we consider the situation of a mathematician
trying to write a proof with the support of a proof checker and a search-
able repository of mathematical knowledge. To address this question,
we have developed the Alcor user interface for the Mizar proof system
and Mizar Mathematical Library (MML)(Rudnicki, 1992). As will be
discussed in more detail, the MML provides an excellent resource for
experimenting with different MKM user interfaces. Specifically for this
paper, we consider how to integrate within Alcor tools for authoring a
proof and for searching the MML.

We motivate the design of Alcor using a scenario, a common ap-
proach in the user-centred design of interfaces (Rosson and Carroll,
2002; Cooper, 1999). This, in part, expands on the basic idea of a
mathematical assistant but more usefully specifies how we envision a
mathematical assistant could work. This scenario is not intended to
be definitive and, like all scenarios, is not a full specification of the
assistant’s functionality. Rather, the scenario allows us to motivate and
evaluate our design decisions explicitly.

Though an earlier version of Alcor has been described (Cairns, 2005),
the version here has been extended with search over the Mizar library
using latent semantic indexing (LSI) (Cairns, 2004) and thus has two
distinct search styles. We present an initial evaluation of the LSI-
based search, which has been significantly re-implemented to exploit
Urban’s XML-ization of Mizar (Urban, 2006). The addition of this
search method to the existing keyword search reveals some issues in
the different styles of search that mathematicians need and how they
might best be integrated into an authoring environment.

2. Scenario: working with a mathematical assistant

Carl is a mathematician in the second year of his PhD. He is working
in the area of topological groups and he has just completed his first big
theorem that he would like to write up for submission to the Journal of
Topological Groups. The journal, in accordance with many other maths
journals, now encourages submissions that have been written with the
support of a proof checking system. This ensures the accuracy of the
published paper whilst leaving the referees to comment on the value
and relevance of the contribution of the paper.

Carl begins writing up his paper using an integrated proving en-
vironment. He has used the system before to prepare his end of year
report last year and so is basically confident with using the system. As
he is entering his proof, the system occasionally asks for clarification

CairnsGow_revised.tex; 20/02/2007; 13:38; p.2

Integrating Searching and Authoring in Mizar 3

of the meaning of the symbols used, for example, whether they are
constants or functions. Also, it may ask Carl to disambiguate possible
different interpretations of statements particularly where functions are
being used with varying numbers of arguments.

As he is entering the proof, Carl realises that there is a technical
definition used in his proof and he is not sure that he has met all of
the criteria of the definition. He searches on the defined term which
gives him several hits from a selection of journals and textbooks. He
recognises one of the textbooks and knows that this hit will give him
the definition he is looking for. When the hit is retrieved, he is able to
check his proof with the definition itself. As he knows that the proof
checker would benefit from knowing the definition, he makes the link
between his proof and the definition.

Eventually, Carl feels he has entered the basic structure of the proof
and so runs the proof checker. The proof checker, as expected, highlights
some places where it cannot fully complete the proof to its satisfaction.
However, this does not stop the checker from moving on to later proof
steps. The final result is Carl’s proof with indications of where further
additions and refinements need to be made.

One step in the proof in particular surprises Carl as he thought that
it was relatively easy but the checker has indicated that it cannot prove
it. Carl knows he is implicitly using a lemma but he cannot remember
which lemma or where it might be found. He therefore searches the
electronic resources using the proof step itself. There are many returned
hits that are like his in using the lemma implicitly so he refines his
search just to look at the statements of propositions and theorems.
This is much better as fewer hits are found and, a short way down the
list, he spots a statement of the lemma. Unfortunately, the lemma is
not quite in the form that is needed in his proof. Carl therefore adapts
his proof to use the lemma that he found. He then re-runs the proof
checker on this new step. He is quite pleased when the proof checker
indicates that it has successfully proved the step.

2.1. Some issues raised by the scenario

Before addressing issues raised directly by the scenario, it is worth
noting that scenarios are usually developed through gathering require-
ments from users. This has not been done here partly because math-
ematical assistants do not yet exist and it is not easy to ask users
to talk meaningfully about something that does not exist (Cooper,
1999). Moreover, some mathematicians are quite resistant to the idea
of this sort of system — one has even told us that they find such
systems quite threatening. Thus, to develop appropriate functionality

CairnsGow_revised.tex; 20/02/2007; 13:38; p.3

4 Cairns & Gow

in a mathematical assistant, it is necessary to engage in this sort of fu-
turological daydreaming in order to compensate for the lack of explicit
requirements. This scenario reflects one view of how a mathematical
assistant should work. It is not, therefore, definitive but is nonetheless
useful in explicitly motivating our design decisions.

The key elements of the scenario are how the searching integrates
with the authoring. Two distinct styles of search are identified and we
consider each of these in more detail.

First, Carl wants to be able to look up the precise definitions of
terms that he already knows. This may also correspond to looking up
the statement of theorems or equations by their name, for example,
Brouwer’s Fixed Point Theorem or Bessel functions. This is the sort
of checking of details that are essential for theorem proving systems
but also for mathematicians to ensure that they have correctly applied
their knowledge.

The second style of search is more about helping the mathematician
to produce a correct proof. It is not the case that there is a specific
lemma or proposition that is needed but rather that something is
needed to allow the proof to advance. This is quite distinct from the first
sort of search because it is possible to re-write a proof in order to make
use of whatever propositions or theorems were found. In some cases, it
may even be that the theorem being proven can be restated in order
to accommodate a particular proposition used in the proof (Lakatos,
1976). This search is therefore asking for something “like this” or “to
help here”. The results returned do not need to be precisely what was
expected but similar enough in meaning to be useful.

Like any search of a significant body of work, it is expected that
many hits can be returned but that these can also be refined to include
particular sorts of documents. For instance, if Carl is looking for a
definition, then he can filter out things that are not definitions. Also,
some search results will be directly relevant to a proof, either allowing a
step to be proven or filling in a gap for the proof checker. Thus, having
found useful results, the system should make it easy to link the search
results into the authoring of the proof.

Another feature worth noting is that Carl’s searches are over many
sources of information. Some results may be from a formal library like
the MML, some may be from a more usual mathematical journal or
textbook and some may even be in languages other than Carl’s. These
differences in source could also belie differences in logic. Some of these
can be minor, but some can be mutually inconsistent and could cause
real problems. Translation between the sources both in terms of logic
and language would be useful but then this requires appropriate ser-
vices to do the translation. These present a further set of MKM tools

CairnsGow_revised.tex; 20/02/2007; 13:38; p.4

Integrating Searching and Authoring in Mizar 5

necessary for good mathematical assistance (Kohlhase & Anghelache,
2003).

Note that the scenario deliberately does not specify the method
of input that Carl uses nor how the various different outputs from
searches and the proof checker are fed back to Carl. This avoids biasing
our design whilst also suggesting new approaches. For instance, whilst
not the focus of this paper, Carl might be entering his proof using a
pen-based input (Thimbleby, 2004). Not only would this more closely
correspond to his pencil and paper working but it would also suggest
that the system is doing “on the fly” graph parsing (Rekers and Schürr,
1995) in order to clarify what Carl means.

Scenarios should also give some motivation for using the system that
is going to be developed. The current low uptake of theorem proving
systems amongst mathematicians suggests that they are, if not actively
resistant to, not interested in using such systems — certainly they are
currently perceived with some caution by mainstream mathematicians
(Bundy et al., 2005). The scenario therefore externalises Carl’s motiva-
tion to one of being able to publish if he uses the system. In addition,
there is the implicit benefit that proof checked journals would be better
able to integrate into MKM tools more generally. Of course, this does
not address why the community of mathematicians might choose to
run their journals in such a way, and indeed, this may be a chicken-
and-egg situation. Though this is the broader concern of MKM, it is
not addressed with the work described here.

3. Alcor

The purpose of the Alcor system is to explore what an integrated prov-
ing environment may be like. In particular, the current focus of Alcor’s
development is on integrating authoring and searching in Mizar, using
a single user interface with the two styles of searching described above.

MKM is still some way from providing the tools that would allow
search across a wide-range of heterogeneous sources. However, this full
functionality is not necessary to study the interaction of searching
and authoring. The Mizar system and the MML form a homogeneous,
semantically explicit, machine-checked and very substantial body of
mathematical knowledge (Rudnicki, 1992; MML, 2006). This removes
the need for advanced (currently non-existent) MKM tools whilst re-
taining the goals of a mathematician wanting to work with a proof
checker, Mizar, and to use the MML as an integrated resource in
authoring proofs.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.5

6 Cairns & Gow

As a result of using Mizar as an MKM repository, Alcor is effectively
a user interface for the Mizar system — but the goal of Alcor is not
primarily to serve as a front end for Mizar. Instead, Alcor is a system
that demonstrates what might be possible with a mathematical assis-
tant and how the functionality of an assistant may be made available to
a mathematician. As such, Alcor is intended to help elicit and specify
better what mathematicians might require from such a tool.

The name Alcor was chosen as the Mizar system is named after a
star in the constellation of Ursa Major. This star has a companion star
called Alcor and they are distinguishable by the naked eye to those with
good acuity. The two stars together are colloquially called the horse and
rider and it seemed an appropriate name to reflect that Alcor is a user
interface that sits on top of Mizar.

3.1. Searching in Alcor

The inspiration for the basic layout of Alcor is the Phrasier system
(Jones and Stavely, 1999) which has a split screen for word processing
and searching. In an analogous way, Alcor has one area for authoring
a Mizar article and another area for displaying found articles as shown
in Figure 1. This way authoring and searching are given equal status
in the system. There is also a section across the bottom of the interface
that displays a search bar and a list of search results, as found in many
applications and web-sites.

In order to conduct a search, the author enters a search term either
by typing it in the search bar or by selecting text from either of the
article windows. Results from the search are listed in the lower section
with the three columns being relevance to the search term, the MML
article and the line number where the result can be found, and a label
for the search result. Clicking on one of these items in the list causes
the search result to be displayed in the right hand window and the line
where the result can be found is highlighted in yellow. For example,
Figure 1 shows a theorem highlighted in blue in the left-hand, author-
ing window. The results from searching on this theorem are displayed.
Notice that the labels for the results for this particular search are the
theorem numbers as they appear in Mizar abstracts. The highlighted
item in the results list has been clicked to show the result, highlighted
in yellow, in the right-hand, searching window. The author need not use
the search bar for entering terms, simply typing and highlighting text
in the authoring window has the same outcome. The search bar also
has a drop-down menu to allow the author to select previous searches
and so acts as search history.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.6

Integrating Searching and Authoring in Mizar 7

Figure 1. The Alcor system

There are two distinct search algorithms implemented in Alcor, cor-
responding to the two styles of search. The first is a simple keyword
search that looks up the definition of terms, while the second is based
on latent semantic indexing (LSI). At the moment, a simple heuristic
is used to distinguish the two types of search: if the query consists of a
single term then it is a keyword search, otherwise it is an LSI search.
We briefly describe the keyword search here before moving on to give
more detailed description and evaluation of LSI-based search.

The keyword search allows a user to enter a single term from Mizar
and its definition is looked up. To aid the user when the exact term
required is not known or simply just for speed, the search uses the
entered term as a prefix and finds the definition of all terms that begin
with the entered term. So for instance, entering the term “even” returns
hits for the term itself as well as “Event”, “eventually-directed” and so
on.

In this way, the keyword search reflects the need for searches where
the terms are known and it is details of those particular terms that is
required. We have introduced a second search method to address the

CairnsGow_revised.tex; 20/02/2007; 13:38; p.7

8 Cairns & Gow

need to find results like the search term but that do not necessarily
precisely match it. LSI was chosen because it has proven to be very
successful in capturing the informal semantic sense of queries in natural
language information retrieval (Landauer, Foltz and Laham, 1998).

3.2. LSI in Alcor

In formal mathematics, the precise semantic sense of every term is
explicit. Thus it could be argued that some sort of automated rea-
soning system could just as well be used to find which statements
are semantically close to a given query. However, the sophisticated
reasoning across a large number of domains that this would require are
beyond the capabilities of current automated theorem proving systems.
Moreover, it is not only the logical relationships between concepts that
are required, but also some form of search that captures the informal
relationships between concepts. More concretely, mathematicians name
and thereby isolate concepts in order to communicate more effectively
amongst each other. Their choice of words, the definitions they make
and the theorems that they formulate function in as rich a manner as
any natural language. It is through such discourse that relationships
are defined between concepts in a way that is not necessarily explicit
in the logical formulation of the definitions (Zinn, 2004).

For example, compact and connected are terms commonly used in
topology and there are several theorems and definitions that link these
terms together. However, aside from being properties of topological
spaces, there is no logical link between them. It may be that, in proving
a theorem about connectedness, an author would be happy to restrict
attention to only compact spaces if that would allow the proof to pro-
ceed. However, if search results are only related to connectedness, this
possibility might not occur to the mathematician.

LSI is a well known technique that is able to provide the informal
relationships between concepts that are required in our second type of
search. LSI works by taking a corpus of documents and the terms from
those documents and processing them in such a way that it is possible
to retrieve documents from the corpus even if they do not contain any
of the query terms. It does this by using a matrix, ∆, representing
the occurrence of terms in documents. More specifically, the terms and
documents are listed in some fixed order and if the ith terms occurs in
the jth document then the matrix element ∆ij = 1 otherwise ∆ij = 0.

Singular value decomposition of ∆ produces a reduction of the ma-
trix to a diagonal matrix, ΣD where the diagonal entries effectively
represent the eigenvalues of the original matrix. Symbolically,

∆ = UΣDV

CairnsGow_revised.tex; 20/02/2007; 13:38; p.8

Integrating Searching and Authoring in Mizar 9

where U and V are orthogonal matrices. The non-zero eigenvalues of
ΣD correspond to a set of eigenvectors of ∆ that capture the underlying
term-document space of ∆. It is the structure of this space that is taken
to be the ‘latent meaning’ of the terms and the documents as defined by
the corpus. In other words, LSI provides a ‘surrogate semantics’ based
on term co-occurrence.

A query can be converted into a row vector, t, where ti = 1 if the
ith term is in the query and otherwise ti = 0. Ordinary keyword search
is then implemented by matrix multiplication where

d = t.∆ = t.UΣDV

so that d is a column vector and dj is equal to the number of terms in
the query that occur in the jth document.

However, terms and documents can be used to retrieve similar terms
and documents depending on how close they are in the underlying
term-document space and not through the occurrence of specific terms
in specific documents. By transforming any document vector d to be
d′ = d.V −1 it is possible to find the similarity between that document
and the transformed query vector t′ = t.UΣD. Thus, it is possible to
compare any document with the query and so produce a similarity
rating based on the underlying term-document space rather than on
the precise terms occurring in the document. The rating is actually the
cosine of the angle between the document vector and term vector in the
term-document spaces. A perfect match has rating 1 and an orthogonal
document has rating 0, which can be taken to mean that the document
has nothing in common semantically with the query vector.

Furthermore, the underlying space can be reduced in dimension by
neglecting dimensions corresponding to small eigenvalues in ΣD. This
has the effect of removing from the retrieval process areas of the space
that are not well represented in the original corpus and hence improving
the ability of the search to generalise “meaning” across the body of
documents as a whole. It is therefore recommended that LSI uses fewer
dimensions (known as factors). More details of the mathematics behind
LSI are given in (Cairns, 2004).

The MML represents a suitably large repository of documents and
mathematical terms for LSI to work with. The current implementation
uses version 4.35.912 of the MML. At the moment, Alcor is only using
theorems in the MML as documents for LSI. Terms are any of the Mizar
keywords. This results in ∆ being a 41,072 by 29823 matrix.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.9

10 Cairns & Gow

Figure 2. Generating the keyword index from MML

3.3. Implementation details

The implementations of both search methods currently used in Alcor
are significantly different from previous versions thanks to the XML-
ization of the MML introduced by Urban (Urban, 2006). Previous
versions of Alcor (Cairns, 2005) used either AntLR (Parr, 2006) or
JavaCC (JavaCC, 2006) and despite both being standard, fully func-
tional parsers, were not up to the job of parsing the Mizar language
(Cairns and Gow, 2004). Urban has adapted Mizar so that it is able
to produce an XML version of any articles that it is proof checking.
This means that if Mizar is run on an article from the MML, one of the
outputs is a semantically explicit XML version of the article. Currently,
due to the complexities of the Mizar language, this seems to be the only
practical way to produce a complete, parsable form of the MML outside
of Mizar itself.

Both keyword and LSI search are based on information extracted
from the MML. Most of this is done as pre-processing and the results
of which are used by Alcor.

For keyword search, once each article has been obtained in XML
form, it is simply a matter of applying a stylesheet to extract from
each article a list of the definitions occurring in the article. A small
Java application then merges the lists for each article into a single
large index of where each term is defined in the MML. This process is
summarised in Figure 2. Within Alcor, the keyword index is stored as
a trie which makes it easy to treat the query term as a prefix.

The pre-processing required for the LSI-based search is somewhat
more complicated. The basic process is illustrated in Figure 3 and con-
sists of turning the MML into a set of documents. Currently, these
documents are theorems (without their proofs), that is, each theo-
rem is used to make one document. The theorem itself is not used
though because, like any good mathematics, Mizar makes extensive

CairnsGow_revised.tex; 20/02/2007; 13:38; p.10

Integrating Searching and Authoring in Mizar 11

Figure 3. Applying LSI to the MML

use of variables to stand in for actual objects. It is pointless to use,
for example, “X” as a term in LSI because in most cases there is no
particular consistent meaning of this term across the corpus. Also, it is
possible that if LSI were to treat variable names as terms there could
be accidental association between concepts as a result of using the same
names for variables. This would reduce the quality of the LSI search
results. Instead, all such variables are in-lined with their type as defined
in Mizar, once again using XML stylesheets on the XML version of the
articles. For example, in:

theorem :: SIN_COS6:2
for f being Function, X, Y being set st f|X is one-to-one &
Y c= X holds f|Y is one-to-one;

the variable f,X and Y are replaced by their types to give, rather
verbosely:

For Relation-like Function-like set holds For set holds
For set holds not (| Relation-like Function-like set
set is one-to-one &
c= set set & not | Relation-like Function-like set
set is one-to-one)

Note also from this that the terms do not need to be in any specific
order as LSI does not use the order of terms in its calculations.

These in-lined theorems constitute the basic documents over which
LSI is applied. Mike Berry kindly provided us with the GTP package
which is a Java implementation of LSI and this is used for all the LSI
processing in Alcor.

Querying using LSI requires taking the search terms and converting
them into a query suitable for LSI to use. For the search to be effective,
the terms in the query should also be terms used in the original docu-
ments. This requires in-lining variables just as for the original theorems.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.11

12 Cairns & Gow

However, given the difficulties of parsing Mizar, Mizar itself has to be
used to parse search terms in Alcor. That is, to formulate a query for
LSI, the search terms are extracted into a small Mizar article and this
is sent to the proof checker (knowing that the proof checker is not
going to be able to check it properly) to be converted to XML. The
resulting XML is then converted into a query by applying the same
stylesheet used to convert theorems into documents. This somewhat
circuitous process does work but it is very unsatisfactory as Mizar
might fail to parse the search terms because of a problem in trying
to prove the search terms rather than because the search terms are
particularly difficult to parse.

To apply stylesheets, in all cases, the stand-alone application msxsl
is used. This is freely available from Microsoft. In the pre-processing
steps, it is applied to each XML-ized article using a Visual Basic script
(development was done in Windows XP). This is clearly not the cleanest
method for applying stylesheets to XML but it would be relatively
straightforward to adapt this process into a single Java application
by using a Java XML/XSL system such as Xalan (Kay, 2001). This
would also avoid using the platform specific VB script for the batch
process. However, at this early stage in development, we have simply
used whatever tools were to hand to prove that in principle it could be
done.

3.4. Evaluating LSI search

Even though only theorems are currently being used as documents
for LSI, there are good indications that LSI-based search is working
as intended, though is not without some unexpected outcomes. This
section describes some initial tests designed to assess the effectiveness
of the approach.

3.4.1. Retrieving existing theorems
Given that LSI loses information when using a smaller number of
factors than the dimension of the full term-document space, it is pos-
sible that finding a known theorem in the library may not always be
successful. This test therefore ran a set of queries which were based
on actual theorems in the MML, using 1422 theorems from the first
two editions of Formalized Mathematics (MML, 2006) in 2005 — that
is, volume 13, issues 1 and 2. LSI was asked to return only the first
20 best hits, as measured by the LSI similarity rating. Additionally,
because of compatability issues between the different packages used in
the implementation of the testing environment, not all theorems were
used but only those that had a label as given by the XMLiser such

CairnsGow_revised.tex; 20/02/2007; 13:38; p.12

Integrating Searching and Authoring in Mizar 13

Table I. Number of theorems of SIN COS6 retrieved in
top 50

Number of factors 15 30 50 100

Theorems retrieved (out of 68) 3 4 2 4

as SIN COS6:88. However, despite this restriction, it was felt that the
remaining 1422 theorems did give a good representative cross section
of the MML that would indicate the reliablity of LSI in retrieving
theorems that are known to exist in the MML.

To test the effect of a significant reduction in information, only 15
factors were used in the LSI retrieval. This is a rather small number
of factors to use but it does allow for reasonable search times whereas
with 100 factors, say, search times can be 10 to 20 seconds. Out of the
1422 labelled theorems used as queries, 284 theorems were not found
at the top of the retrieval list and 67 of those were not found in the top
20 at all.

Of the 217 theorems that were found but not at the top of the list,
198 were found in the next top three positions. Further examination of
the theorems that were not found at all showed that they all belonged
to the same article labelled in the MML SIN COS6 (Kornilowicz and
Shidama, 2005). Indeed, only one searched for theorem in that article
was found, namely SIN COS6:88.

A straightforward reason why a theorem was not found in the top
twenty could be that the strength of the match between a theorem
and itself was swamped by many similar strength matches. However,
this cannot be the case for all because in the top 20 retrievals for
SIN COS6:77, the least similar match had rating 0.891 and best match
of 1.000 with an average rating of 0.939. Thus, it must be the case that
the rating of the theorem for itself is significantly below the ideal rating
of 1. Of course, it could also be that the theorem is retrieved close to
the top twenty.

To test whether the number of factors used was truly too few to
do accurate retrieval, the theorems from SIN COS6 were run again with
different numbers of factors as summarised in Table 3.4.1 and with the
top 50 hits.

This suggests that there is something unusual to do with the use of
terms in this article. A closer look at the article shows that many of
the theorems are in fact very similar. It could be that this similarity
between them is forming a very dense area in the term-document space.
If this area is also relatively distinct from the space defined by other

CairnsGow_revised.tex; 20/02/2007; 13:38; p.13

14 Cairns & Gow

articles then it may be that the LSI is unable to distinguish between
these articles using the same factors as are effective with other articles.
This is necessarily pure speculation as the LSI semantics are not explicit
but this may be a plausible way to understand this unusual feature.

With the exception of this article though, it would seem that LSI
does in fact provide a robust way to retrieve known theorems from the
MML. 1354 (95%) of the theorems are retrieved in the top twenty of
1422 theorems searched for even when using only 15 factors. This gives
comfort that although LSI is inexplicit and information is lost when
doing retrieval, it can still find something that is known to exist in the
library.

3.4.2. Overlap between queries and results
It is expected that if LSI is returning semantically close results to a
query, there ought to be some overlap between the terms in the results
and the query. To assess this, a measure of commonality was taken to be
the number of terms common to both theorems taken as a percentage
of the smaller theorem. Thus a 100% match means either that all of
the terms of the query were also in the result or vice versa depending
on which was the smaller.

Of the 1422 labelled theorems that were tested above, this results
in 19129 retrieved labelled theorems. The average percentage overlap
between a query and a result is 71.3%. 17, 233 retrieved theorems had
more than 50% overlap with their queries. This hard figure should be
interpreted with a pinch of salt though because terms include the equals
signs and numerals which may occur in quite widely varying contexts.
Nevertheless, this gives a good indication that theorems retrieved by
LSI do generally have some appreciable overlap in terms and therefore
probably in meaning as well.

Curiously, 129 of the results had no common terms with the corre-
sponding query. Moreover, some of these had a similarity rating very
close to 1. The ten with the highest similarity ratings were examined
further and did indeed seem to have very little semantic relationship
between them. For instance, SIN COS6:98 and SIN COS6:2 (Kornilow-
icz and Shidama, 2005) had a perfect match of 1 but the two theorems
are:

theorem :: SIN_COS6:98
-1 <= r & r <= 1 & arccos r = 0 implies r = 1;

theorem :: SIN_COS6:2
for f being Function, X, Y being set st f|X is one-to-one &
Y c= X holds f|Y is one-to-one;

CairnsGow_revised.tex; 20/02/2007; 13:38; p.14

Integrating Searching and Authoring in Mizar 15

Table II. Number of mismatched results aris-
ing from the sample of 10 problem queries

Number of factors 15 30 50 100

Mismatched results 10 8 6 5

These really do have little in the way of semantic similarity though
the latter theorem could conceivably be useful in proving the former.
Again, this could be a feature of using so few factors for the purposes of
retrieval. The ten worst queries were then re-run with varying numbers
of factors and the results are summarised in Table 3.4.2. This suggests
that it is the number of factors that is responsible in part for these
peculiar matches.

In many ways though, this is actually a valuable feature of LSI
in that it can retrieve apparently unrelated theorems on the basis that
they occupy a similar part of the term-document space. Unlike keyword
based searches, LSI is not constrained to only find theorems containing
given keywords and thus could provide results that whilst unexpected
are not less useful. Too much diversity though would not be desirable
but on average, over the 19,129 results, 31% of terms in the result
theorems did not occur in the original query. This suggests that there
is in fact a good degree of diversity and overlap between the query
terms and the results terms.

Even if very low overlap does tend to indicate irrelevant results, it
could be that such matches could be tolerated by the user. In addition,
the common overlap indicator used here could also be given to the user
to allow them to assess the possible value of the retrieved result in a
different way.

3.4.3. Qualitative evaluation of LSI-based search
Though the figures obtained above give some sort of confidence in
the LSI approach to searching formal mathematics, it is really only
in the value of the retrieved results that LSI will prove its worth. Of
course, it is impossible to quantify this as it depends enormously on
the context in which the search is conducted. Thus, we attempt here to
give some flavour that suggests that LSI is also an effective tool from a
qualitative perspective. Because assessing the value of a result requires
knowledge of the domain, the examples given here are all taken from
general topology as this is the mathematical background of Cairns.

An exhaustive evaluation of a lot of theorems, whilst conclusive,
may not be particularly illuminating. Instead, the examples here are
chosen to illustrate particular sorts of search results that demonstrate

CairnsGow_revised.tex; 20/02/2007; 13:38; p.15

16 Cairns & Gow

the strengths and weaknesses of LSI. All queries were run using 100
factors and with 20 results returned.

The following theorem illustrates that LSI is actually associating
logically related results. The search query was from TOPS 3 (Karno,
1992):

theorem :: TOPS_3:10
A is boundary implies A <> the carrier of X;

As is usual, the first returned theorem was the very same theorem.
More interestingly, the second returned theorem was (Karno, 1992):

theorem :: TOPS_3:23
A is nowhere_dense implies A <> the carrier of X;

These are quite distinct theorems since the concepts of boundary and
nowhere dense are distinct. However, the concepts are also quite closely
related, every nowhere dense set is boundary (TOPS 1:92) (Wysocki
and Darmochwa l, 1990) and hence the first theorem implies the second.
LSI of course cannot have used this logical relationship but instead had
identified the relationship on the basis that these two concepts occur
frequently in related contexts.

Generally, such clear logical relations do not appear. This examples
is taken from TOPGEN 1 (Grabowski, 2005):

theorem :: TOPGEN_1:10
Fr A = Cl A \ Int A;

which is about the relationship between the frontier or boundary of a
set and its closure and interior. Most of the results for this query came
from TOPS 1 (Wysocki and Darmochwa l, 1990) and concerned other
relationships between the three concepts involved, for instance that the
closure of set is the union of the set and its frontier. Thus, LSI is indeed
returning theorems that are closely related to this one. More unusally,
three results were taken from TSEP 1 (Karno, 1991) and concerned the
notions of separated and weakly separated sets. For example:

theorem :: TSEP_1:43
for C being Subset of X holds
A1,A2 are_separated implies
A1 /\ C,A2 /\ C are_separated;

Whilst the attribute “are separated” is not directly related to frontiers
of sets, the notion is about the symmetrical overlap between one set and
the closure of another. Thus, despite superficial differences in terms,

CairnsGow_revised.tex; 20/02/2007; 13:38; p.16

Integrating Searching and Authoring in Mizar 17

these theorems from TSEP 1 are of possible relevance if the topic of
work is frontiers of sets.

Other queries from TOPGEN 1 produced similar outcomes where the
first few results were quite obviously relevant and later results in the
top 20 were not immediately obviously relevant but it was reasonable
to see why they could be considered so.

When it comes to more specialised topics though, LSI cannot nec-
essarily be expected to perform well as the space of documents in a
specialised area is likely to be under-represented in the overall cor-
pus. One such theorem that was felt to be reasonably specialised was
(Bancerek, 2005):

theorem :: TOPGEN_2:6
for T being non empty TopSpace holds
T is first-countable iff Chi(T) <=‘ alef 0;

This is making the relationship between a local property of the space,
namely being first countable, and what are called cardinal functions
on the space. Cardinal functions are an important tool for the study
of topological spaces though they are not extensively formalised in the
MML. Indeed, this is reflected in the search results from this query
where there are very few theorems returned that clearly relate to this
result. However, LSI does seem to be finding that the notion of a local
property as relevant to this because some of the returned theorems
refer to local connectedness, local compactness and convergence of a
sequence to a point.

A more specialised result still is one taken from TOPGEN 3, (Bancerek,
2006) about the Sorgenfrey line which is a variant topology on the real
line and is a useful example in topology:

theorem :: TOPGEN_3:33
weight Sorgenfrey-line = continuum;

Needless to say that with such a specialised query, LSI did not return
very much of relevance to this theorem. There were two results related
to cardinality which makes sense as this is a theorem about cardinality.
Other than that though, it was hard to see how most of the results had
any relevance to this theorem.

Overall then, it seems that when a concept is well used in the MML,
LSI is able to extract a wide range of relevant results, even ones where
it is not immediately obvious why they are relevant. In some cases, as
shown here, it can even find logically related theorems which could be
very useful when looking for a theorem with which to construct a proof
step.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.17

18 Cairns & Gow

Naturally, when a concept is less well represented in the corpus, LSI
still is able to find some relevant results but their relevance is much
less clear and therefore much less likely to be useful. In the extreme
case, LSI cannot provide any useful results when concepts are extremely
specialised and therefore poorly represented in the MML. This is not
to say that the approach is invalid but it may be useful if somehow the
user were able to get a sense of when a concept is poorly represented as
opposed to LSI performing poorly. This may require another approach
to mapping out the concepts formalised in the MML.

4. Implementation issues with XML-ization of Mizar

Urban’s addition of XML to Mizar has made an enormous difference
to the development of Alcor. Developing a suitable parser for Mizar
has been the biggest obstacle to producing effective search, even just
keyword search let alone more complex search such as LSI. There are
still many things that can be done to improve the indexing and hence
the effectiveness of both search methods, now that the XML-ization of
Mizar has made such improvements technically feasible. Nonetheless,
this implementation highlights some limitations of the current XML-
ization of Mizar and it is worth pointing out where it could be improved.

The simplest problem with the XML-ization is that the original text
is lost. Relating a definition, a theorem or just a line of proof back to
the original text is not easy as the XML is significantly transformed
from the original even when transformed back to a Mizar-like form by
Urban’s stylesheet miz.xsl. Whilst this is not a problem for machine
tools building on the XML, it is a significant drawback for LSI when
the idea is to capture the original language in order to exploit it as
discourse. There are two significant areas where this has been an issue
already.

Mizar clearly replaces some definitions with logically equivalent forms
based on previously defined terms. For example, the definition of “odd”
in (Rudnicki and Trybulec, 1992) is as an adjective which means “not
even”. However, in converting from Mizar to XML, no final XML article
has the term “odd” in it. It has been consistently and completely re-
moved in preference for “not even”. This is, of course, logically correct
but it loses the essential discourse element of defining the term odd,
which clearly has connotations with how we usually talk about num-
bers. This means that an author working on odd numbers would not
even be able to find the term using a keyword search! Furthermore, any
informal relationships the term odd may have to other mathematical
objects are inaccessible to LSI.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.18

Integrating Searching and Authoring in Mizar 19

The other issue is that the logical structure of all statements is
reduced using the logically complete subset of connectives “for all”,
“not” and “and”. Again, this is perfectly acceptable logically but still
the original discourse structure is lost. Consider, for instance, of the
simple statement:

If A holds then either B or C holds.

In the reduced logic, this would be equivalent to

It is not the case that A holds and not B holds and not C holds.

This has a very different air to it not to mention clumsiness. Ar-
guably, this formulation is more general and therefore more useful but
the principle of using LSI is that the details of the discourse structure
are important cues to help a mathematician. Whilst LSI cannot use the
discourse structure, it would possible to refine LSI search results along
these lines and so enhance the search results in terms of discourse not
just logic. This would not be currently possible with the XML output
of Mizar.

The simplest solution to this problem might be that the XML be
given an attribute containing the original text that gave rise to a par-
ticular section of XML. Thus, at least in principle, it is possible to
correctly reconstruct the original text. At the very least, it should be
possible to give attributes to the XML that indicate the original logical
structure and terms used in the Mizar statements.

Another problem of using the XML to parse Mizar articles is the
linking with queries as implemented in Alcor. The generation of queries
is always going to be inelegant whilst it is not possible to parse Mizar
expressions independently of Mizar itself. Ideally, it should be possible
to produce a correct parse of any Mizar statement without doing a
proof check. Moreover, if terms in the query are not known, these
should be easily replaced with the actual terms used by the user. We
understand that Mizar does not work this way for a number of technical
and historical reasons, but the ideal is still worth holding in mind for
future developments.

5. Implications for Integrated Proving Environments

The purpose of developing Alcor is to explore integrating search and
authoring when writing proofs. As such, even though Alcor is still in
the early stages of development, and certainly has not been used for
user testing, it is still possible to identify issues for the integration of
searching and authoring.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.19

20 Cairns & Gow

The two styles of search are clearly necessary, reflecting the need
for retrieval of specific objects versus the less constrained search for
“something like this” during proof development. Also, it may be possi-
ble to use more of the formal structure, such as the logical structure of
statements and logical relationships between concepts to improve and
refine search results found with a more informal method. The decision
of which search methods to use is currently on the basis of number of
search terms involved. This is clearly a very crude heuristic and it is
not clear how best to make different styles of search available to the
user.

Using LSI to reflect the more informal sorts of search that math-
ematicians might do is not without its problems. The most obvious
problem is defining what constitute appropriate documents and terms.
We anticipate that it will be relatively straightforward to convert more
of the XML-ized articles into documents, specifically the full proofs and
definitions. These are crucial elements in the discourse of mathematics
and as such reflect a lot of the informal relationships between terms
and concepts in mathematics. Even so, LSI is known not to work
well if documents are too short. It is possible that some definitions
would not make good documents on this basis. However, it is to formal
mathematics advantage that it is somewhat more verbose than ordinary
mathematics so that proofs in normal mathematical language end up
being four or even ten times longer in formal mathematics (Wiedijk,
2000). In this way, formal proofs may actually be an appropriate size
for effective documents in LSI.

Like many search methods, there are parameters to set. Possibly
the most crucial one in LSI is specifying the dimensionality of the
underlying singular value decomposition. Without some form of re-
duced dimensionality, LSI is not generalising the meaning of terms
to other terms yet with too much reduction, it may not sufficiently
distinguish concepts. The testing suggests that fewer than 100 factors
in the current implementation does increase the chances of retrieving
irrelevant theorems. However, this comes at a cost as the retrieval of
results using 100 factors is appreciably slower than with fewer factors.
Thus, the testing suggests a range of factors that could be tested with
users. 100 factors would produce more reliable results but at a time cost
and 15 factors produces worse results but more quickly. Depending on
what users want from the search it could be possible to settle on a
good compromise between these two values. In addition, the number of
overlapping terms could be used as a second indicator of the relevance
of a result and users could use this with the LSI similarity measure
together.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.20

Integrating Searching and Authoring in Mizar 21

There is also an interaction between LSI and the language of math-
ematics. For instance, the symbol ‘=’ is abundant in mathematics but
if considered fully logically has many different meanings. Equals there-
fore causes many incidental links between terms when LSI is applied
to mathematical documents. If you like, equals acts to bring lots of
concepts together that are not genuinely related. Leaving equals out of
LSI analysis is the natural decision but which other symbols or terms
ought to be omitted on the same grounds? Given this issue, the current
work has proceeded with including all but Mizar keywords as terms.
This should be re-examined though if it is felt that the quality of LSI
results needs to be improved.

In many ways, though, it is the implicit nature of LSI that is its
biggest drawback. It is effectively impossible to make analytical judg-
ments on what would improve the search results. Using trial and error
to set parameters and choose appropriate sets of documents and terms,
whilst acceptable for one system such as Alcor, becomes problematic
and essentially atheoretical across many systems.

In due course, it may become clear that LSI is not the most appro-
priate approach to addressing informal “things like this” queries. This
is not a problem for Alcor as it is intended to bring together different
tools to try them out. However, we do strongly believe that some sort
of informal analysis, orthogonal to the formal structure of the MML
is going to be essential to support mathematicians. Urban is currently
looking at alternative approaches to analysing the MML (Urban, 2004)
and this may provide an interesting alternative or complement to LSI
in Alcor.

In any case, the next stage in the development of Alcor is to make
both the searching and authoring aspects more robust and to at least
match what is currently available to users of Mizar. In this way, it will
be possible to make a fair comparison on the advantages or disadvan-
tages of this sort of environment. We believe this would be a valuable
contribution to the understanding of user interfaces that would support
mathematicians in their work.

6. Related Work

The Mizar community has developed a number search tools to sup-
port authoring of Mizar articles. All of this work is integrated into
MizarMode1 for the Emacs text editor, included of the Mizar distri-
bution. The mode provides standard Emacs functionality that allows
users to search for a theorem or definition given a unique identifier.

1 http://ktilinux.ms.mff.cuni.cz/∼urban/MizarModeDoc/

CairnsGow_revised.tex; 20/02/2007; 13:38; p.21

22 Cairns & Gow

MML Query is a database-like query system in MizarMode that
allows more advanced browsing and search of the MML (Bancerek &
Rudnicki, 2003; Bancerek & Urban, 2004). Users can use MML Query
to retrieve items based on Mizar syntax and the the structure of the
MML. For example, one can search for an ordering over functions by
querying for definitions (constructors) based on concept of functions
(FUNCT 1:attr 1) that use <= or >= in their notation. Although the
language allows precise and complex queries to be constructed, there
are potential disadvantages from a user perspective: they may lack
background knowledge about the MML or find it difficult to express
their needs in the query syntax. However, its widespread use suggests
that it provides an effective tool for expert users.

The MoMM system (Urban, 2006) performs fast, non-redundant
retrieval of theorems from the MML that match a given formulae. The
system is based on efficient term-indexing techniques from automated
theorem proving, and is designed to return the strongest available
version of a search result. Retrieval of multiple redundant results is
a potential problem in large libraries where several theories may have
independant;y developed slight variations on a single result. MoMM
has the advantage for users that unnecessary search results are filtered
out, making it more likely that relevant results will be identified.

A third search system that integrates into MizarMode is the Mizar
Proof Advisor (Urban, 2004), which uses machine learning over the
MML to retrieve results that may be useful in proving a given goal.
That is, it suggests results based on the results that have already been
used to prove similar goals. Evaluation using the MML showed that on
average about 50% of the items actually used appear in the first 20–30
search results, and 70% are in the first 100. From a user perspective
this is already a very large set of results, so in practical terms there will
be a significant minority of items that could be used in the proof but
that will not ranked highly by the Advisor. However, it is clear that
the system can relieve the user of some of the burden of search while
authoring articles.

The Whelp system provides search over the Coq library (Asperti et
al., 2006). Four kinds of search are currently supported: Locate finds
a library item given its identifier; Elim retrieves induction principles
for a given type; Match retrieves results that match a given goal or
goal pattern; Hint find results that may be applied to the given goal,
in that they have a matching antecedant. Whelp returns results which
are syntactically related based on an abstract model of terms. Previous
work on information retrieval in Coq had used type isomorphisms to
locate matching lemmas (Delahaye, 2000).

CairnsGow_revised.tex; 20/02/2007; 13:38; p.22

Integrating Searching and Authoring in Mizar 23

Comparing Alcor to the state-of-the-art search in formal mathemat-
ics, we see that all these systems can play the role of ‘advancing the
proof’, just as our LSI search has been designed to support. MoMM and
Whelp’s Match operation find equivalent results to a given goal. They
can tell the user if a similar result has already been established. The
Proof Advisor and Whelp’s Hint retrieve results that can be applied to
a given goal. They allow the proof to be advanced, but not immediately
completed. In contrast, both MML Query and Alcor’s LSI search do not
base relevance on known applicability — they don’t require a result to
match syntactically or have been used in a known proof. Nevertheless,
such a result may be still be useful in suggesting ways the proof can
progress. The motivating result for a proof idea need not be directly
applicable nor have been used in this context before.

Another important factor is that MML Query, MoMM and Whelp
are based on purely syntactial notions of relevance. This limits results
to items that are syntactically ’similar’ in some way. In contrast, the
Proof Advisor and Alcor’s LSI search both take account of the seman-
tics implicit in the MML when defining relevance. These methods can
return results that are not directly related by syntax, but nonetheless
useful in moving the proof forward (as discussed above). In summary,
Alcor has potential advantages over current state-of-the-art because
relevance is not defined in terms on applicability or pure syntax. How-
ever, relative performance and utility and the potential for integration
of these techniques are still open questions.

7. Conclusions

The goal of a full mathematician’s assistant is still some way off but
such systems seem to promise a great deal particularly when considered
as tools for mathematical knowledge management. The Alcor system,
therefore, is a test bed for exploring how the user interface and interac-
tion of such an assistant could work. In particular, we have developed
Alcor to investigate how to integrate the activities of authoring and
searching whilst proving. The Mizar system and MML provide an ex-
cellent resource and foundation for these activities. We have identified
at least two sorts of search that could be useful to mathematicians
and implemented them in Alcor, namely the search for specific, known
objects and the more informal search for “something like this”. Both
go some way to fulfilling a scenario of how a mathematician works but
also Alcor highlights the difficulties of making such search effective and
useful to the user. In particular, Alcor’s LSI search has a unique notion
of relevance compared to other search systems for formal mathematics,

CairnsGow_revised.tex; 20/02/2007; 13:38; p.23

24 Cairns & Gow

and we have argued that this has potential advantages for authors.
However, it is clear that more work needs to be done to compare and
perhaps integrate this approach with other approaches also currently
being developed.

Acknowledgements

Many thanks to Mike Berry for providing the GTP code. Also, thanks
to Eduardo Calvillo and the referees for their very useful comments on
this paper.

References

Adams, A.A. Digitisation, Representation and Formalisation: Digital Libraries of
Mathematics. In (Asperti et al., 2003), pp. 1–16.

Asperti, A., B. Buchberger & J.H. Davenport, editors. Mathematical Knowledge
Management, 2nd Int. Conf., MKM 2003, LNCS 2594, Springer, 2003.

Asperti, A., G. Bancerek and A. Trybulec, editors. Mathematical Knowledge
Management, 3rd Int. Conf., MKM 2003, LNCS 3119, Springer, 2004.

Asperti, A., F. Guidi, C. S. Coen, E. Tassi & S. Zacchiroli. A Content Based
Mathematical Search Engine: Whelp. In J. Filliâtre, C. Paulin-Mohring & B.
Werner (eds), Types for Proofs and Programs, International Workshop, TYPES
2004, pp. 17–32, LNCS 3839, Springer 2006.

Bancerek, G. and P. Rudnicki. Information Retrieval in MML. In (Asperti et al.,
2003), pp. 119–132, 2003.

Bancerek, G. and J. Urban. Integrated Semantic Browsing of the Mizar Mathemat-
ical Library for Authoring Mizar Articles. In (Asperti et al., 2004), pp. 44–57,
2004.

Bancerek, G. On the characteristic and weight of a topological space. Formalized
Mathematics, 13:163–169, 2005.

Bancerek, G. On constructing topological spaces and Sorgenfrey line. Formalized
Mathematics, 13:171–179, 2005.

Bothner, P. JEmacs — the Java/Scheme-based Emacs Text Editor. http://jemacs.
sourceforge.net/, 2006

Buchberger B., G. Gonnet and M. Hazewinkel. Preface. Annals of Mathematics and
Artificial Intelligence, 38:1–2, 2003.

Bundy, A., M. Atiyah, A. Macintyre and D. MacKenzie (eds). The nature of
mathematical proof. Phil. Trans. R. Soc. A, 363(1835): 2329–2461, 2005.

Cairns, P. Alcor: A user interface for Mizar. Mechanized Mathematics and its
Applications, 4(1):83–88, 2005.

Cairns, P. Informalising Formal Mathematics. In (Asperti et al., 2004), pp. 58–72,
2004.

Cairns, P. and J. Gow. Using and Parsing the Mizar Language. Electronic Notes in
Theoretical Computer Science, 93:60–69, 2004.

Cooper, A. The Inmates are Running the Asylum. SAMS, Macmillan Computer
Publishing, 1999.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.24

Integrating Searching and Authoring in Mizar 25

Delahaye, D. Information Retrieval in a Coq Proof Library Using Type Isomor-
phisms. In T. Coquand, P. Dybjer, B. Nordström & J. M. Smith (eds), Types for
Proofs and Programs, International Workshop, TYPES’99, pp. 131–147, LNCS
1956, Springer 2000.

Farmer, F. and M. Mohrenschildt. An Overview of a Formal Framework for Manag-
ing Mathematics. Annals of Mathematics and Artificial Intelligence, 38:165–191,
2003.

Grabowski, A. On the boundary and derivative of a set. Formalized Mathematics,
13(1):139–146, 2005.

Java Compiler Compiler. https://javacc.dev.java.net/, 2006.
Jones, S. and M.S. Stavely. Phrasier: a system for interactive document re-

trieval using keyphrases. In Proc. of 22nd ACM SIGIR Conf. on Research and
Development in Information Retrieval, 160–167, 1999.

John, B. and D. Kieras. The GOMS Family of User Interfaces Analysis Techniques:
Comparison and Contrast. Transactions on Computer-Human Interaction,
3(4):320–351, 1996.

Journal of Formalized Mathematics. http://mizar.org/JFM/, 2006
Karno, Z. Separated and Weakly Separated Subspaces of Topological Spaces.

Formalized Mathematics, 2:665–674, 1991.
Karno, Z. Remarks on special subsets of topological spaces. Formalized Mathematics,

3:297–303, 1992.
Kay, M. XSLT Programmer’s reference, 2nd edition. WROX Press, 2001.
Kerber, M., M. Kohlhase, V. Sorge. Integrating Computer Algebra into Proof

Planning. Journal of Automated Reasoning, 21(3):327–355, 1998.
Kohlhase, M. and R. Anghelache. Towards Collaborative Content Management and

Version Control for Structured Mathematical Knowledge. In (Asperti et al.,
2003), pp. 147–161, 2003.

Kornilowicz, A. and Y. Shidama. Inverse trigonometric functions arcsin and arccos.
Formailized Mathematics, 13(1):73–79, 2005.

Lakatos, I. Proofs and Refutations. Cambridge University Press, 1976
Landauer, T.K., P.W. Foltz and D. Laham. Introduction to Latent Semantic

Analysis. Discourse, 25:259–284, 1998.
MacKenzie, D. Mechanizing Proof: Computing, Risk and Trust. MIT Press, 2001.
Newman, W. and M. Lamming. Interactive System Design. Addison-Wesley, 1995.
Parr, T. AntLR. http://www.antlr.org/, 2006.
Rosson, M.B. and J.M. Carroll. Usability Engineering: Scenario-based development

of Human-Computer Interaction. Academic Press, 2002.
Rekers, J. and A. Schürr. A Parsing Algortithm for Context-Sensitive Graph

Grammars. Technical Report 95-05, Leiden University, 1995
Rudnicki, P. An overview of the Mizar project. In Proceedings of 1992 Workshop

on Types and Proofs for Programs, 1992.
Rudnicki, P. and A. Trybulec. Abian’s Fixed Point Theorem. Formalized

Mathematics, 6(3):335–338, 1992.
Thimbleby, W. A novel pen-based calculator and its evaluation. In Proc. of 3rd

Nordic Conf. on Human-Computer Interaction, ACM Press, 445–448, 2004.
Urban, J. MPTP - motivation, implementation, first experiments. Journal of

Automated Reasoning, 33(3-4):319–339, 2004.
Urban, J. XML-izing Mizar: Making Semantic Processing and Presentation of MML

Easy. In M. Kohlhase, editor, Mathematical Knowledge Management, 4th Int.
Conf., Springer Verlag LNCS 3863:346–360, 2006.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.25

26 Cairns & Gow

Urban, J. MoMM — Fast Interreduction and Retrieval in Large Libraries of
Formalized Mathematics. Int. J. on AI Tools, 15(1):109–130, 2006.

Wiedijk, F. The De Bruijn Factor. Poster at TPHOL 2000.
Wysocki, M. and A. Darmochwa l. Subsets of Topological Spaces. Formalized

Mathematics, 1:231–237, 1990.
Zinn, C. Understanding Informal Mathematical Discourse. PhD Thesis, Arbeits-

berichter des Instituts für Informatik, Friedrich-Alexander-Universität, 37(4),
2004.

CairnsGow_revised.tex; 20/02/2007; 13:38; p.26

