
A Comparison of Categorisation Algorithms for Predicting the Cellular
Localization Sites of Proteins

Paul Cairns Christian Huyck Ian Mitchell
Wendy Xinyu Wu

AIR Group, School of Computing Science
Middlesex University

The Burroughs, Hendon, London NW4 4BT, UK
p.cairns@mdx.ac.uk

Abstract

A previous attempt to categorize yeast proteins based on
certain attributes yielded only a 55% success rate of cor-
rect categorisation using a new type of decision procedure
[5]. This paper considers using existing soft computing ap-
proaches to improve the categorisation. More specifically,
learning algorithms based on neural networks, growing cell
systems, a rule development algorithm and genetic algo-
rithms are applied to the yeast data. All of the results are at
least as good as the original data showing that new prob-
lems do not necessarily require new algorithms. More in-
terestingly, as a consequence of using different algorithms,
a consistent failure to achieve high success rates actually
indicates features of the data rather than the failings of one
or other of the algorithms.

1 Introduction

There is currently much interest in finding ways to anal-
yse databases of biological information [3]. Horton &
Nakai [5] propose a new method for classifying the local-
ization sites of yeast proteins based on results from various
biochemical tests. The claim is that the new method is good
because it incorporates existing human knowledge about the
classification task and probabilistic reasoning based on real
data. Indeed, the described final system gives a correct clas-
sification of

�����
of the proteins. However, there is no com-

parison of this approach with any other algorithms includ-
ing existing, well-understood ones.

This paper re-analyses the yeast protein data using four
different algorithms. The algorithms were chosen because
they represent a spread of the possible variety of soft com-
puting algorithms available for such tasks, for example,
both supervised and unsupervised learning, symbolic and

subsymbolic representations as well as clustering and evo-
lutionary algorithms. From the results obtained, it is clear
that a new approach was not really required — the exist-
ing approaches are at least as good. It is hard to see how
incorporating existing human expertise really paid off.

An additional reason for using several algorithms is that
where consistently there are many incorrect categorisations,
it is not likely to be the algorithm that is unsuitable but
rather that there is something inherently problematic in the
data. This is discussed further after a description of how
each algorithm was applied to the task. First, though, it is
necessary to give a brief overview of the actual yeast protein
data used.

2 The Yeast Data

The data used was the same as that used by Horton and
Nakai [5] and a full description of the data can be found
there. It is freely available from the UCI KDD on-line
archive [1].

The data represents information on each of 1484 pro-
teins. For each protein, there are eight features that corre-
spond to the results of various tests performed on the pro-
teins. The results of these tests are standardised to be two-
place decimals between 0 and 1. Each of the proteins is put
into one of 10 different categories depending on where the
protein is localized. The categories are denoted by a three
letter identifier, for example, CYT denotes cytoplasmic, in-
cluding cytoskeletal, proteins. As can be see from table 1,
the number of proteins in each category varies considerably
by up to two orders of magnitude. This was a matter for
concern in some of the algorithms.

To make a fair comparison with Horton & Nakai, the re-
sults of the categorisation algorithms were evaluated using a
10-fold cross-validation [3]. They obtained a

�����
success

rate for their final categorisation though it must be noted

Protein category Number of proteins
CYT 463
NUC 429
MIT 244
ME3 163
ME2 51
ME1 44
EXC 35
VAC 30
POX 20
ERL 5
Total 1484

Table 1. The number of proteins in each cate-
gory of the yeast data set

Algorithm % correct categorisations
Growing Cell Structures 55%

Feed Forward Neural Networks 57%
Genetic Algorithms 55%

ERR 56%

Table 2. The percentage of correct yeast cate-
gorisations by each approach using a 10-fold
test

that simply predicting CYT as the category for all proteins
gives a ��� � success rate!

3 The Algorithms

There were four approaches used to analyse the yeast
data and produce a categorisation for all of the proteins
based on the data. These are detailed below with their re-
spective overall results. The results of all four approaches
are summarised in table 2.

3.1 Growing Cell Structures

The growing cell structure (GCS) is inspired by Koho-
nen’s self-organising maps [6] by which a network of nodes
is structured to represent the training data through unsuper-
vised learning [10]. However, unlike self-organising maps,
as the network learns it is able to add new nodes to more ac-
curately represent dense clusters in the data. Post-learning
pruning removes redundant or superfluous nodes leaving a
two-dimensional network of nodes that reflects the cluster-
ing of the data [2].

The network’s self-generating process can be sum-
marised by three stages:

1. Cells are organised in the form of triangles (other
forms are also possible). The network starts with
only three connected cells each assigned with an n-
dimensional weight vector with small random values.
The first step of each learning cycle selects the cell, � ,
with the smallest distance between its weight vector,��� , and the actual input vector, � . This cell is known
as the winner (best-matching) cell for the current in-
put pattern. The selection process can be succinctly
defined by using the Euclidean distance measure.

2. The weight vector ��� , of the winning cell, and the
weight vectors, ��	 , of its directly connected neigh-
bouring cells,
 � are adapted to reshape the network
to best represent the similarity relationship among the
input data.

3. Apart from weight vector adaptation, cell insertion is
another important operation of the learning process for
GCS. Pragmatically speaking, new cells are inserted
into those regions of the output space that represent
large portions of the input data to reduce local errors.
Also, in some cases, a better modelling can be obtained
by removing cells that do not contribute to the input
data representation. Cell deletion may split the output
space into several disconnected areas, each of which
representing a set of highly similar input patterns. The
adaptation process is performed after a fixed number
of learning cycles (or epochs) of input presentations.
Therefore, the overall structure of a GCS network is
modified through the learning process by performing
cell insertion and/or deletion.

Figure 1 shows the clusters generated by GCS when it is
applied on the Yeast data.

The first version of GCS was designed to work on binary
attributes and so it was necessary to adapt it to use real-
valued inputs. Because of the way in which GCS adds new
nodes, it was not necessary to make any allowance for the
variation in category size.

The GCS algorithm has several parameters related to
those used in self-organising maps. However, results
seemed to be generally the same with a variety of settings.
In particular, training required only six complete presenta-
tions of the training data. The average size of the final net-
work was 86 nodes which naturally broke up into 12 clus-
ters. In this way, GCS can be used to give protein classifi-
cations with an accuracy of 55%.

The network as it stands only helps see clusters in the
data. However, it is a simple matter to examine what each
node represents and assign the node to a category. The net-
work can then be used as a classifier by feeding new data
into the GCS and finding out which node most strongly re-
sembles the input data [11]. In this way, GCS give a rela-
tively meaningful visualisation of the clustering process.

2

Figure 1. GCS clustering results on Yeast data

3.2 Feed Forward Neural Networks

Standard backpropagation neural networks (BPNN) have
an established history of being used to classify data [4]. In
this experiment, as it was not the backprop algorithm that
was under investigation, the neural networks were devel-
oped on a commercial package, BrainCel [9]. BrainCel
works as an add-on to MS Excel.

The inputs were simply the numerical features of each
protein. If the final category had been a single output, for
example, 1 = CYT, 2 = POX, . . . 10 = ERL, errors may creep
in owing to the numerical value of the output not having
any meaningful relation to the output category. Instead, the
network had an output for each category. An output of 1 at
a node meant that a given protein belonged to the category
corresponding to the node and 0 that it did not. Clearly, in
the training data, one and only one output node ever had a
value of 1. To classify a protein, the node with the largest
output is taken to be the classification of the input protein.
This has the added advantage that, if the network incorrectly
classifies a protein, it is possible to see which categories are
potential “runners-up” as other nodes also have a non-zero
output.

There are many parameters to a neural network and it
can be difficult to find a combination that performs well on
a given task. As is common in most applications, a single
layer of hidden nodes was used for all networks. To deter-
mine the number of hidden nodes, different configurations
were tried in steps of five from five to twenty five. Simi-

lar tests with learning rate (often denoted � for BPNN) in-
dicated that that lowest value possible in Braincel, namely��� ���

, was optimal. Interestingly, despite the size of the data
set, only 200 training epochs were necessary to get good re-
sults. More were tried but without further improvement, or
for that matter, deterioration.

Unbiased categories are a well-known problem when us-
ing backprop [7]. In the first attempt, this was alleviated
by simply repeating the data for the under-represented cat-
egories so that each category has the same size but there
is a great deal of repetition of the data within some cate-
gories. This inflated data set was used for ten-fold cross
validation but it was clear that the networks were memoris-
ing some of the smaller categories and so gained an overall
accuracy of � � � on the inflated data set. To compensate for
this, the accuracy was calculated in proportion to the size of
the category. For example, when a network produced 270
correct categorisations of the 480 yeast in POX (with rep-
etitions), this only counted as ��� � � � correct categorisations
(�	��

���� �

��� �������). This adjusted accuracy only peaked at
49% for networks with 15 hidden nodes.

For comparison, the data was re-categorised without any
compensatory strategies in either training or testing. This
time the results were better producing an accuracy of

�����
for networks with 20 hidden nodes. However, for this case,
the network rarely produced any correct answers on the
smaller categories.

3.3 Genetic Algorithms

Genetic algorithms are usually considered as a method
for producing near-optimal solutions to a problem situation
[8]. However, when categorising proteins, the solution is a
system that categorises all of the proteins well. This means
that the chromosomes in the population must encode a de-
cision procedure for deciding on which proteins belong to
which category. Here, a simple decision procedure is used.
Each chromosome has ten genes, one for each category. A
protein is compared to each gene in turn and whichever gene
is closest to the given protein is declared to be the category
of the protein. The fitness function promotes those chromo-
somes that most often give the correct category over all of
the training data. After many generations, the fittest chro-
mosome is used to predict the category of each yeast in the
testing data.

Quintessentially, the final chromosome can be consid-
ered to encode a stereotypical element of each category. The
genes were made up of the eight attributes of the yeast pro-
teins in a binary encoding. This genetic structure has the
added advantage that the stereotypes could easily be com-
pared to discover any similarities or differences between the
categories.

Because each category had its own stereotype, there was

3

no need to compensate the data for the mismatch in category
size. However, in order to breed good stereotypes quickly,
the crossover was not the simple one-point crossover usu-
ally used. Instead, a crossover point was chosen for each
gene, in effect, producing a 10-point crossover where each
crossover point was restricted to lie within a gene. With
this approach, training typically took 200 generations and
overall produced a 51% accuracy.

3.4 Expanding Range Rules

The above three methods are all subsymbolic. This
means that there is ultimately no justification for the final
form of the decision procedure. By using rules, for instance,
the decision procedure can be made explicit. However the
question then is how to produce the rules based on the data.
This is the principle behind the expanding range rules algo-
rithm (ERR).

The most comprehensive and precise decision procedure
would be to individually assign each protein to its correct
category. Whilst this would certainly produce good results
on the training data, it is unlikely to generalize to noisy or
previously unseen data. Instead, the rules have the follow-
ing form:

IF Feature1 � ��� AND Feature1 �����
AND Feature2 � � � AND Feature2 ��� �...
AND Feature8 � � � AND Feature8 ��� �
THEN Category = XYZ

Thus, in effect the value of each feature is bounded be-
low and above by an � and a � . Initially, there is a rule
per protein in the training set; for that rule the value of
Feature
 is used as the values of both ��� and �	� ; the cate-
gory given by the rule is that of the protein. This means that
initially each rule acts as the perfect decision procedure for
each individual protein in the set. Interestingly though, if
the data is noisy, it is possible to have two rules that directly
contradict each other. This, of course, does not mean that
the rule is wrong but rather that there can be no fool-proof
decision procedure based on the given data.

The rules are generalised by incrementally decreasing
(increasing) the � ’s (� ’s). The rules are then re-evaluated
on a portion of the training set. If they lead to a misclassifi-
cation on the training set then the change is reversed. In this
way, the rules grow to cover more proteins and this growth
allows the size of the rule set to be reduced. After the rules
have been expanded, duplicate rules are removed. Of the
initial 1335 rules, an average of 310 are removed this way.

Expanding rules are checked on a portion of the training
set while they are expanding. In this case, 148 yeasts were
used for checking. Once all the rules have been fully ex-
panded, and duplicates removed, they are tested on the full
training set.

The number of correct categorisations by each rule is cal-
culated. Rules that get more wrong than right are removed.
On average this leaves about 350 rules. The rules are then
sorted by number incorrect and applied to the test set. Each
yeast may be categorised by several rules but the rule that
produces fewest incorrect answers (on the training set) is
taken as the categorisation. This mechanism correctly cate-
gorizes 56% of the yeasts.

The division of the training set into growing part and en-
tire set was done for two reasons. First, it is computation-
ally more expensive to grow a rule on the entire set; this
is because all yeasts must be checked for each change in a
feature boundary. Secondly, growing on the entire set leads
to overfitting. The generated rules have very samll ranges
and they do not generalize well to the testing set.

In practice, there are many factors to be considered such
as choosing the percentage of training yeasts to use during
the expansion, choosing which rules to delete and the order
in which the data is presented to the rules during evaluation.

4 Discussion

All of the approaches produced results that are compa-
rable to those of Horton & Nakai. This calls into question
why a new approach was needed to categorise this particular
data set. Horton & Nakai’s defence is that their approach,
through using Bayesian probabilities, allows the incorpora-
tion of expert knowledge. Yet, without any expert knowl-
edge at all, we achieved results that were even slightly bet-
ter.

With GCS and BPNN, it is hard to give any definitive ex-
planation of why the success rate is not higher, as is typical
with many neural network systems. However, by looking
at the runners up in the BPNN approach and the overlap of
clusters in the GCS, it is clear that there are problems in-
herent in the data. Specifically the three largest protein cat-
egories, CYT, NUC and MIT, are commonly confused by
both approaches. It seems that the features chosen are in-
sufficient to discriminate between the three classes. This is
not so surprising when the three classes make up more than
76% of all the data and results are around 55% accuracy.
Nevertheless, it is worth making further analysis in order to
see the degree of similarity between the three classes.

Because the BPNN gave a real-value for each category,
it was possible to not only see what the runner-up category
was but also, these real-values could be considered as con-
fidence factors in the categorisation. The best BPNN did
generally correctly predict CYT, NUC and MIT more often
than not but when it was wrong, the protein was from one
of the other two categories in the majority of cases. More-
over, the average confidence in the wrong predictions was
close to the average confidence in the correct predictions
(around 55%), though generally slightly lower. Turning to

4

the runner up categories from the network, when the predic-
tion was wrong on CYT, NUC and MIT, the runner up was
predominantly correct however the confidence factors were
considerably lower, averaging around 33%. Thus, even us-
ing the full output of the BPNN, it would not be possible to
produce a better categorisation based on confidence factors
and the runners up without considerably more analysis.

BPNN is very much a blunt tool for analysing the data
in detail but it does indicate that the initial guess as to the
source of errors is correct, namely, there is considerable
similarity between the three most common categories.

5 Future Work

Both the genetic algorithms and the ERR approach are
worth taking further having been developed here as simple
ways of applying evolutionary and rule-based methods to
categorisation. With the genetic algorithms, it is worth con-
sidering ways in which the whole population rather than one
chromosome could contribute to the classification of a pro-
tein. To this end, work is under way to develop a genetic
algorithm where each population member “votes” for the
category of a particular protein and the result of the poll is
used to determine the final category. As is to be expected,
such an algorithm is considerably more complex especially
in defining the fitness function because the fitness of an indi-
vidual is determined by its rôle in the population as a whole.
Whether or not such complexity yields better results can
only remain to be seen.

There is considerable range for research on the ERR
method. It is not particularly well motivated theoretically
and this is obviously an area for exploration.

On this particular test there was a wide range of be-
haviour with one fold getting over 90% and one getting
36%. This is undoubtedly related to the initial training set
that is used for generating rules. What makes a good train-
ing set for this algorithm is open for consideration, but it
should have reasonable numbers of all categories. Addi-
tionally, the percentage of yeasts used for rule generation
vs. yeasts used for eliminating rules is an area of explo-
ration.

Finally, overgeneralisation is an open question. If no rule
applied to a given yeast, the first and largest category was
guessed. On most test runs there were few cases of no rules
applying. The runs where rules did apply were generally
much better than those where no rules applied. This implies
that the algorithm is currently overgeneralising. It would be
interesting to change the training, and modify the bad rule
elimination to reduce this overgeneralisation.

A second line of research would be to make a more di-
rect comparsion between the approaches. For example, are
there certain yeast proteins that all approaches are able to
correctly classify? Conversely are there ones that all ap-

proaches misclassify? This would give further insights into
the data perhaps identifying not only the similarity between
the three largest classes but also whether particular proteins
are generally problematical. It is also noteworthy that GCS
found 12 and not 10 clusters in the data. Analysis of this
decomposition may give a deeper understanding of the data
in light of analyses of the other approaches.

It would also be useful to consider alternative evalua-
tions of the algorithms. Currently, the results are purely
a measure of the number of successful categorisations but
is this sufficient? If an algorithm entirely fails to correctly
predict a particular category then in one sense it could be
considered to be very poor, especially if that category were
important in some way. Expert insight into the meaning
and relevance of each category could be used but this would
only apply to this task. We, therefore, propose to develop
evaluations of categorisation procedures that appropriately
consider the results on each category.

A longer term goal is to make it easier to implement each
of the several algorithms and integrate their results in a sin-
gle package. In this way, it may be possible to obviate the
need to invent new algorithms when there is a whole reper-
toire of perfectly adequate ones already available.

6 Acknowledgments

Many thanks to the UCI KDD database for the use of the
yeast data [1].

References

[1] Bay, S. D., The UCI KDD Archive,
http://kdd.ics.uci.edu, Irvine, CA:
University of California, Department of Information
and Computer Science, 1999

[2] B. Fritake: ”Growing Cell Structures - A Self-
Organising Network for Unsupervised and Super-
vised Learning”, Neural Networks, Vol.7, No.9, 1994,
pp1441-1460

[3] Han, J. and M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann, 2001

[4] Haykin, S., Neural Networks: A Comprehensive Foun-
dation, 2nd edn, Prentice Hall, Upper Saddle River
NJ, 1999

[5] Horton, P. and K. Nakai, “A Probabilistic Classifica-
tion System for Prediction the Cellular Localization
Sites of Proteins”, Intelligent Systems in Molecular Bi-
ology, 1996, pp. 109-115

[6] Kohonen, T., Self-organising maps, 2nd edn,
Springer-Verlag, Berlin, 1997

5

[7] Kubat, M. and S. Matwin, “Addressing the Curse
of Imbalanced Training Sets: One-Sided Selection”,
Proc. of the 14th Int. Conf. on Machine Learning,
1997, pp179-186

[8] Mitchell, M., An Introduction to Genetic Algorithms,
MIT Press, Cambridge MA, 1996

[9] Promised Land Technologies,
http://www.promland.com

[10] Wu, W. X. and W. Dubitzky, “Discovering Rele-
vant Knowledge for Clustering Through Incremental
Growing Cell Structures,” Proc. of 2nd Int. Conf. on
Data Fusion, 1999, pp120-126

[11] Wu, W. X., ”Discovering Documents Associations
Through Growing Cell Structures”, International
Conference on Artificial Intelligence (IC-AI’2000),
Las Vegas, USA, June 2000, pp1209-1215

6

