
 1

Enumerated Types in Java
Paul A. Cairns

School of Computing Science, Middlesex University, The Burroughs, Hendon,

London, NW4 4BT

e-mail: p.cairns@mdx.ac.uk

tel: +44 (0) 181 362 6852

fax: +44 (0) 181 362 6943

 2

SUMMARY

Java does not contain enumerated types. This paper demonstrates how

to produce classes that behave like enumerated types with secure,

strong typing. Additional Pascal-like operations are easily

incorporated into the enumerated types without repeating code. Full

listings of the classes are given.

Keywords: Java, enumerated type, enum

INTRODUCTION

Enumerated types (enums) are a useful tool when programming in high-level languages. They

improve the readability of code by associating mnemonic names with constants; they are

more efficient because the programmer need not be concerned with the assignment of values

and the compiler can optimise their implementation; and they are more secure as a compiler

can apply strong type-checking rules to them1,2,3.

This is not to say that enums are a universal requirement of programming languages. Enums

need special treatment by a compiler, which can make a compiler less conceptually simple

and as a consequence larger. For this reason they are explicitly omitted from Oberon4.

However, compiler elegance is an issue orthogonal to those listed above.

Java is intended by its creators to be both easy and safe to use5. Thus it is somewhat

surprising that Java has no facility for defining enums. Indeed, the absence of enums

provokes barely any comment5,6, which is all the more surprising when investigation of the

Java class libraries reveals many lists of public final static int’s that could have

been defined more efficiently and more securely with enums.

The main aim of this paper is to describe how to define classes that behave like enums and

have secure, strong typing. Kalev7 produced an enum type in a natural way but this does not

guarantee that the only constants of the enum type are the enum constants and so the typing in

this technique is not secure. A secondary goal is that any errors when using the new enum

classes should be made known directly and immediately rather than as side-effects.

A SINGLE ENUMERATED TYPE

The basic example of an enumerated type that we try to reproduce would be given in C as:

 3

 enum Colour {Red, Green, Blue};

This means the Red, Green and Blue are constants (in fact, integers) with distinct values and

of the type Colour.

The two classes Palette and Colour, defined in Figure 1 and Figure 2 respectively,

achieve the same result. Palette acts as a container class for the constants of type Colour.

The constructor of class Colour is private so new instances of Colour can only be created

through the public method newColour(). This method restricts the number of instances of

Colour that can be made to the maximum of ENUM_SIZE, in this case three. As long as

Palette instantiates three Colours, there can be no other objects of class Colour and the

strong-typing is secure.

There is much room for expanding on these basic classes. By requiring appropriate

parameters in newColour, it is possible to associate meaningful data with a constant such as

import java.util.*;

public final class Palette{
 public static final Colour Red = Colour.newColour();
 public static final Colour Green = Colour.newColour();
 public static final Colour Blue = Colour.newColour();
}

Figure 1 - The class Palette

import java.io.*;
import java.util.*;

public final class Colour{
 private final static int ENUM_SIZE = 3;
 private static int fNumMade = 0;

 private Colour(){}

 public static Colour newColour(){
 Colour lNextElement;

 if(fNumMade < ENUM_SIZE){
 lNextElement = new Colour();
 fNumMade++;
 }
 else{
 System.out.println("All Colours are instantiated");
 lNextElement = null;
 }

 return lNextElement;
 }
}

Figure 2 - The class Colour∗

 4

a string for toString() conversions and debugging and also an integer value, for example,

Red could hold the value 0xFF0000, its RGB value.

Of course, the proviso that Palette creates all possible instances of Colour is non-trivial to

enforce. The constants are created in a separate class from the ENUM_SIZE and could get out

of step. If too many are created by Palette then newColour()alerts the programmer via

the system console. If too few, then the program is open to corruption by an unexpected agent

creating an invalid Colour8. This problem is addressed in the next section.

The system console is used to report errors because of the strict way in which Java traps

exceptions. All calls to functions that may throw exceptions must be surrounded by exception

catching routines. Such routines cannot be part of a final static declaration. Thus, if

newColour() were to throw exceptions there would have to be some call to the Palette

class to create the constants before they could be used. This is not necessary with the current

classes and there is the added bonus that Palette has a particularly simple form.

A further drawback with these classes is that the constants cannot be used as case identifiers

in switch statements but, as Java does not allow anything other than constants of a

fundamental type as case identifiers, there is no way around this.

PROLIFERATING ENUMERATED TYPES

In any application of reasonable size, there are generally more than one enumerated types.

Using the above technique, each such type requires two public classes and so two

corresponding files in the project. Kalev believes that even one extra file per enum is worse

than having no enums at all, but experience3 and experiment9 indicate that the advantages of

strong-typing are not to be dismissed lightly. We contend therefore that the advantages of

having enums outweighs the disadvantages of having two files to define them.

However, it is good practice to reduce repeating code. The obvious solution would be to use

inheritance and make a general super-class for all enumerator constants that handles how

many of each constant type can be made. This does not work because the super-classes

constructor must be protected or public for the sub-class to be created. But as soon as

this is done, the sub-class’s constructor also becomes public to the project containing its

definition. Thus, even when the sub-class’s constructor is declared private, it is possible to

directly create instances of the sub-class and so have invalid instances.

 5

Instead, the new class Registrar, defined in Figure 3, controls the creation of instances.

import java.io.*;
import java.util.*;

public class Registrar{
 private int fNumMade = 0;
 private String fClassName;
 private Hashtable fConstTable = new Hashtable();

 public Registrar(String pName){
 fClassName = pName;
 }

 public void Register(Object pNewEl){
 fConstTable.put(new Integer(fNumMade++), pNewEl);
 }

 private class EnumerateEnumElement implements Enumeration{
 private int fCurrentItem = 0;

 public boolean hasMoreElements(){ return(fCurrentItem < fNumMade); }

 public Object nextElement(){
 Integer lIndex = new Integer(fCurrentItem++);

 return fConstTable.get(lIndex);
 }
 }

 public Enumeration elements(){
 return new EnumerateEnumElement();
 }

 //other enum features...
}

Figure 3 - The class Registrar

import java.util.*;

public class Palette{
 private static final Registrar fReg = new Registrar("Palette");
 public static final Colour Red = Colour.newColour(fReg);
 public static final Colour Green = Colour.newColour(fReg);
 public static final Colour Blue = Colour.newColour(fReg);

 public static Enumeration elements() { return fReg.elements(); }
}

Figure 4 - The new definition of Palette

 6

The Palette has a private Registrar that it uses to create all the Colours, see Figure 4.

The Colour class still has a private constructor but now newColour() simply tries to

Register() any new elements with the given Registrar. In order to be consistent, the first

Registrar that is used to create a Colour must be used in creating all subsequent

Colours. Failure to do so results in an error, see Figure 6. The collaboration required to set

up the Palette class is described using UML in .

Provided Palette gets in first at creating Colours no-one else can do so as its Registrar

is not available to anyone else. This registration is still not foolproof but if someone goes to

all the effort of creating a Registrar to pass to Colour before Palette does, then they

obviously do not want their program to work! Even in this case, when Palette comes to be

used, error messages are generated.

public final class Colour{
 private static Registrar fRegistrar = null;

 private Colour(){}

 public static Colour newColour(Registrar pReg) {
 Colour lNewElement = null;

 if(fRegistrar == null) fRegistrar = pReg;

 if(fRegistrar == pReg) {
 lNewElement = new Colour();
 pReg.Register(lNewElement);
 }
 else
 System.out.println("Invalid registrar for Colour");

 return lNewElement;
 }
}

Figure 6 - The new definition of Colour

Figure 5 - Collaboration diagram to define Palette

 7

Note, with this technique the number of constants in the enum does not need to be explicitly

stated thus avoiding the possibility of the number of constants created getting out of step with

the expected size of the enum.

The Registrar class comes into its own in providing more sophisticated enum operations

such as those supported by Pascal. Here Registrar can create an Enumeration object for

the enum so that the enum can be treated as an ordered list of constants. The Enumeration is

made public via the Palette class. In a similar way, it would be possible to have methods

corresponding to the Pred and Succ methods of Pascal.

To create more enumerated types is now a simple exercise. The modifications to Palette

should be obvious. As for Colour, it is simply a matter of replacing all references to Colour

with references to the new type. This is a self-contained task, which throws up compiler errors

if not done correctly.

Sub-ranges are another way of employing enums. With these, the original list of constants is

restricted to some special subset, for example, Colour might have the sub-range NotBlue

made up of only Red and Green. Cardelli proposes a method of defining sub-ranges using

inheritance10 however in this scheme the elements of the original enum are not constants but

types. In Java, this would translate to one file for every enum constant!

Building on the classes given here, sub-ranges could be crudely defined as shown in .

Supporting operations, such as checking for membership of the sub-range and an

Enumeration only over the sub-range, could also be provided by using a variation on

Registrar. These are issues away from the aims of this paper and are left as an exercise for

the interested reader.

import java.util.*;

public final class NotBlue{
 public static final Colour Red = Palette.Red;
 public static final Colour Green = Palette.Green;
}

Figure 7 - The sub-range NotBlue

 8

CONCLUSIONS

It is possible to create objects in Java that behave like enumerated types with secure strong-

typing. They can even be embellished to support more sophisticated features such as those

supported in Pascal and even toString() conversions. Moreover, it can be done so that

only a small amount of code must be repeated for each new type. Some code must always be

repeated as inheritance is not an available technique.

The main problem of course is with the Java language itself11. It seems that in eliminating the

variety of types available to C and Pascal, Java has thrown the baby out with the bath-water.

ACKNOWLEDGMENTS

Many thanks to Prof. Harold Thimbleby and Dr. Matt Jones for their helpful advice and

suggestions.

REFERENCES

1. S. McConnell, Code Complete, Microsoft Press, 1993

2. B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd edn., Prentice-

Hall, 1988

3. N. Wirth, ‘An Assessment of the Programming Language Pascal’ in A. Feuer and N.

Gehani (eds.), Comparing and Assessing Programming Languages, Prentice-Hall, 1984

4. N. Wirth, ‘From Modula to Oberon’, Software - Practice and Experience, 18(7), 661-670

(1988)

5. K. Arnold and J. Gosling, The Java Programming Language, 2nd edn., Addison-Wesley,

1998

6. J. Gosling, B. Joy and G. Steele, The Java Language Specification, Addison-Wesley,

1996

7. D. Kalev, ‘Porting C++ Applications to Java’ C/C++ Users Journal, 16(2), 73-82 (1998)

8. T. Pratchett, The Colour of Magic, Corgi (Paperback), 1983

9. J. D. Gannon, ‘An Experimental Evaluation of Data Type Conventions’ CACM, 20(8),

584-593 (1977)

10. L. Cardelli, ‘A Semantics of Multiple Inheritance’, Information and Computation 76,

138-164 (1988)

11. H. Thimbleby, ‘Java - a critique’, Software - Practice and Experience, to appear

∗In the code listings, all variables have prefix of either ‘f’, ‘l’ or ‘p’. ‘f’ denotes a field in an object, ‘l’ denotes a

variable local to a method and ‘p’ denotes a parameter passed to a method. Thus, rather than a more usual

 9

Hungarian notation denoting the type of the variable, the prefix denotes the scope of the variable. In object-

oriented languages where types abound, the author has found this to be more useful information.

