
Usability Analysis with Markov Models

HAROLD THIMBLEBY, PAUL CAIRNS, and MATT JONES
Middlesex University

How hard do users find interactive devices to use to achieve their goals, and how can we get this
information early enough to influence design? We show that Markov modeling can obtain suitable
measures, and we provide formulas that can be used for a large class of systems. We analyze and
consider alternative designs for various real examples. We introduce a “knowledge/usability graph,”
which shows the impact of even a small amount of knowledge for the user, and the extent to which
designers’ knowledge may bias their views of usability. Markov models can be built into design
tools, and can therefore be made very convenient for designers to utilize. One would hope that
in the future, design tools would include such mathematical analysis, and no new design skills
would be required to evaluate devices. A particular concern of this paper is to make the approach
accessible. Complete program code and all the underlying mathematics are provided in appendices
to enable others to replicate and test all results shown.
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1. INTRODUCTION

How can products be designed to be more usable? One answer to this question
is that usability depends on the match between the product and the users un-
der the particular constraints of the environment and tasks being performed
with the product. The problem is that usability, seen like this, depends on the
world when the product is used not when it is designed. So if we want to design
better products, foresight has to be used. Foresight can be based on case histo-
ries from previous product evaluations; sometimes foresight can be focused by
general psychological or socio-technical knowledge. In all approaches, design
for usability requires considerable expertise and commitment to usability, nei-
ther of which is conventionally nor realistically available in the crucial early
stages of technical design. Often one therefore seeks improvements in usabil-
ity after the initial stages of design—once a prototype exists—for example in
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improved manuals. Just as good manuals cannot be written for bad systems,
many usability-driven design insights come too late to address core issues. At
the time of evaluation, prototypes may be considerably advanced in develop-
ment, so changes suggested by the results of evaluation may be too expensive
to implement or strongly resisted because of the investment of time and effort
in the existing system.

In this paper, we are concerned with methods to improve usability that can
be employed as early as possible in the design process. We propose a tool based
on Markov models. The tool is best suited to devices with clear states and tran-
sitions: the best, and in fact ubiquitous, applications being push-button devices
such as video recorders, mobile phones, ticket machines, and so on [Thimbleby
1992]—and even mouse-driven interfaces, including Web sites. Indeed, for these
devices, the creation and analysis of a Markov model can be entirely automated.
Thus analysis can be performed as soon as a specification of a user interface
has been produced, indeed without the designer requiring any specialist mathe-
matical knowledge to understand Markov models as such. Thus many interface
designs can be analyzed quickly and easily to provide quantitative comparisons
between designs. Importantly, this analysis can be done before any device func-
tionality has been developed.

Extending the method beyond push-button devices requires care. A Markov
model would still produce results, but interpretation of the results may be more
difficult. In this paper, to avoid obscuring our technique with secondary issues,
we demonsrate it on push-button devices, which is still a worthwhile activity.
Push-button devices are widely used throughout the world (e.g., mobile phones),
and they are not without their faults.

Understanding the technical details is not required to follow the arguments
or examples used in this paper. An important question is whether a method can
handle real designs; therefore this paper illustrates the approach by analyzing
a variety of real products, such as mobile phones and microwave cookers. We
show how variations on the actual designs can be analyzed, and therefore how
some new styles of interaction can be explored.

Appendix A provides the code that was used to calculate all examples used
in this paper, and it can be used as it stands to replicate our work. A pub-
lished paper [Thimbleby 1999] explains and provides complete code that can
be used for all of : Markov model analysis, to run user interfaces, generate user
manuals, collect and analyze empirical data from use, and analyze alternate
designs. Some details (e.g., the specification of the mobile phone, discussed in
Section 3.4) are too lengthy to include here, but full details can be found on the
World Wide Web at http://www.cs.mdx.ac.uk/harold/markov.

In Section 2, we describe the underlying idea of our approach followed by
an informal demonstration of the mathematics involved for a simple device.
Section 3 gives further examples on real devices and demonstrates the breadth
and flexibility of the technique.

1.1 Contrasts with Other Approaches

Our approach contrasts with cognitive engineering and other approaches to
user interface modeling:
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—Cognitive models, such as GOMS [Card et al. 1983], can model human inter-
action with almost any device—since they are concerned with the cognitive
issues involved. In contrast, our approach starts with the specifications of
artefacts, and we are limited in the sorts of interaction that can be modeled.
We cannot handle continuous interaction, but we can handle all discrete sys-
tems, whether they are multimodal or involve parallel input and output. Such
devices are ubiquitous and pervasive in modern culture.

—Most other approaches only study individual traces of user behavior. Our
approach is statistical, and tells us about all possible behaviors of the user.
The results of our analyses are expressed in terms like “on average” or can be
plotted graphically. Whether the distributions describe individual users over
a period of time or a population of users is determined by how the probabilities
and models are set up.

—Most other approaches ignore user error or find it difficult to handle. Error is
central to a Markov approach. Users can make choices, slips, or errors, with
varying probabilities, which Markov models use directly.

—We are concerned with actions a user (or groups of users) takes. Our measures
are generally expressed in terms of steps taken to achieve goals (specifically
the expected number of steps taken), or of the probabilities of achieving goals.
Such measures can be related empirically to times or to aspects of usability.

—Although one can observe users and collect empirical data about their be-
havior, the complexity of devices usually means that thorough exploration of
the possible interactions is infeasible. Devices are complex, have very many
features, and users do not have enough time to explore everywhere. The prac-
tical consequence of this is that typical user interface design experiments test
on lots of users but very few device designs. In our approach, empirical data,
such as how likely users are to press buttons, can be used to analyze sta-
tistically how users might explore entire systems. As usual the better the
empirical data, the better the predictions will be—but once a user model has
been defined, it can be used using our techniques to explore a device, or a
range of devices, more thoroughly than a human user could do (in almost
no time at all). Thus it becomes feasible to evaluate a wider range of user
interface designs.

2. MARKOV MODELS

Markov models are a standard mathematical technique (see Appendix B for ref-
erences), and their value for modeling processes has been widely recognized—
from describing models for existing systems [Cook and Wolf 1998] to developing
test cases [Whittaker and Poore 1993]. Our approach adds a new view of user
interface modeling not only internal processes but also of external interaction,
which impacts user interface design issues.

In many ways, our approach reflects the arguments that occurred in speech
recognition research. For many years, automatic speech recognition systems
were “knowledge-based,” involving complicated pseudoformal production rules.
Not only did these systems have poor recognition performance, errors were
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difficult to analyze. In the early 1990’s, though, hidden Markov models [Young
1993] were built of a variety of speech phenomena, from individual sounds
through to intonation patterns [Jones and Woodland 1994]. These models were
analyzable (so that improvements could be made systematically), simple and
formal and had the great advantage of working very effectively (achieving
some 96% recognition on continuous-speech large-vocabulary tasks [Jones and
Woodland 1994]).

In addition to providing numerical results, Markov models have a use-
ful property: real systems (e.g., mobile phones) can be modeled effectively in
their entirety, with no need to take “abstract,” simplifying, or approximate ap-
proaches. A Markov model can also be used to build the hardware or to run
user interface simulations. They are both powerful enough to be complete, and
convenient enough to support detailed analysis. Because of these properties,
unlike many “formal methods” for user interface analysis, our approach can be
built into design tools. There is no need for the design tool to “understand” how
to abstract user interface properties, or to understand how to perform formal
specification; conversely, there is no need for the designer to be mathematically
sophisticated. Markov models are complete, and any design tool capable of an-
imating a user interface in principle has an exact model available, where our
approach can be used directly.

A common criticism of formal methods, and indeed of many other usabil-
ity engineering methods, is that they depend for their success to an excessive
degree on craft knowledge [Stanton and Young 1999]. That is, there are spe-
cialized skills tacit in many approaches, and other practitioners therefore find
them harder to deploy with good results than their proponents. In contrast,
Markov models can be exploited in user interface analysis with no or little craft
knowledge. Obviously, craft knowledge can be exploited if it is available, but, for
instance, all the results exhibited in this paper can be fully automated. A design
tool could, for example, be asked to produce the equivalent of, say, Figure 4 for
a working design, and it could do so with no further direction.

Any model is not worth its salt unless it provides useful measures at a
timely point in the design process. As with all formal representations, how-
ever simple, Markov models provide the facilities for measuring the model.
And like all models, translating the results back to the thing modeled re-
quires interpretation. The further the model is removed from the original, the
more care must be taken in the interpretation. To avoid becoming entangled
in difficult and ambiguous interpretations that are secondary to the methods
being demonstrated, the examples in this paper steer away from tasks and
goals and instead make direct mappings between system states and model
states.

2.1 Taming Finite-State Machines

Behind any usability analysis there must be some model both of the device being
modeled and of the user. Finite-state machines (FSMs) are particularly effective
at modeling certain devices as they are simple, quick to produce, and scalable
to any size. Also, as well-defined mathematical objects, it is possible to perform
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complex reasoning on the model to produce reproducible, quantitative results.
We add a Markov model to the FSM that assigns a probability to transitions
between states and analyze the Markov model to provide insights into the user
interface design.

Like any model, finite-state machines are necessarily incomplete. They pro-
vide only a simplified representation of user interaction; there is a body of opin-
ion that FSMs are inappropriate for realistic interactive systems [Kieras and
Polson 1985; Monk and Curry 1994; Newman and Lamming 1995; Palanque
and Paternò 1998; Wasserman 1985]. FSMs are described in elementary the-
ory of computation books (e.g., Lewis and Papadimitriou [1998]), and often cov-
ered briefly before moving on to the more powerful but still impractical Turing
Machine. Indeed it is a standard result that FSMs are not very powerful com-
putational devices. But to understand these sorts of results as implying that
FSMs are inadequate would be mistaken; Feynman [1996] is one of the few
authors to make this elementary point clear. Their very simplification makes
FSMs a flexible tool suitable for highlighting fundamental, structural errors in
a user interface.

Finite-state machines have the problem that the number of states for even
modest systems is enormous. We use transition diagrams to illustrate some of
our examples, but transition diagrams or indeed any representation (including
Statecharts [Harel 1988; Harel and Politi 1998]) rapidly become too big to be
useful. The Markov model however is fully scalable, and so functions just as
well on large FSMs as small ones; using it does not require drawing a diagram.
It tames FSMs of all sizes and produces meaningful statistics.

The Markov models themselves do not get out of hand, as their underlying
representation is a matrix representing the probability of transitions between
states. The number of nonzero entries in each row of the matrix is determined
by the number of possible transitions. With push-button devices, these tran-
sitions are initiated through button presses, so there are generally very few
possible transitions in comparison with the possible number of states. The re-
sulting matrix is sparse, and there are many well-known methods for storing,
representing, and manipulating sparse matrices, as well as techniques specifi-
cally for handling large Markov analyses—systems of billions of states can be
handled (see Section 2.3).

Halbwachs [1993] showed that FSMs are sensitive to small changes in the
high-level definition. However, as we automate the production of the FSM from
the high-level description, there is no extra burden on the designer, and the
Markov model can be automatically adapted accordingly.

It is beyond the scope and purpose of this paper to defend FSMs further,
except to mention that they are adequate to handle multiuser and concurrent
systems. For example, there are many high-level concurrent programming lan-
guages that compile into FSMs (such as Halbwachs [1993] and Magee and
Kramer [1999])—thus neither designers nor developers need be concerned with
the details. Although it can be done directly, the simplest way to adopt the
Markov approach to concurrent systems is to specify systems in appropriate
high-level languages that compile into representations (such as FSMs) that
can then be analyzed directly.
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Table I. Preliminary Definition of Torch

Press Press Remove Add
State ON OFF battery battery

1: Switched on, with battery 1 2 3 1
2: Switched off, with battery 1 2 3 2
3: No battery 3 3 3 ?

2.2 From Finite-State Machines to Markov Models

We now explain how Markov models work. We start with a discussion of simple
FSMs and generalize them to probabalistic models.

Though finite-state machines are a simplification of user interaction, their
simplicity makes them a flexible tool. Further examples of their use can be
found elsewhere [Thimbleby 1994; 1997].

A push-button device can be represented as a finite-state machine, where
each state is something distinctive the device is “doing” (possibly including be-
ing off). Pressing buttons (or perhaps doing other things) on the device changes
its state or possibly leaves it in the same state. For any particular state, each
button always does the same thing. If somehow a button does different things
in the same state, then we are mistaken in assuming it is the “same” state.
However, we can choose to label by a single state different things the device
does: for example, we might decide, that for some purposes, what time a clock
shows does not matter—all times could then be classed as one state. For many
tasks, whether a clock shows 17:28 or 17:29, say, is immaterial: for an analysis
we may only be interested in whether the clock is running or not, or perhaps
whether it is displaying a morning or afternoon time.

The states are numbered 1, 2, 3, . . .N . In principle we can do this for any sort
of device, and when suitable design tools are used no manual work is involved
in counting off the states.

As a concrete but simple example, consider a simple battery torch, with two
buttons ON and OFF. In principle there are numerous states: the torch may have
no batteries, or it may have dead batteries; it may have one missing; it may
have a dud light bulb; it may be on, and so on. Clearly, some of the states we
can imagine will not be sufficiently interesting to be considered distinct. Table I
shows a preliminary definition of a simple torch, where the number of states
has been tentatively fixed at 3.

There are some interesting problems visible already. For example, how can
you add a battery to a torch that already has a battery? Should we add more
states to cater for “squashed battery,” “broken torch,” or “frustrated user”? Once
the table starts to get realistic and represents more and more of the world,
it may be hard to know where to stop. For the time being, we will only be
interested in successful operations (i.e., only inserting a battery when that is
possible). There is another problem, indicated by the question mark in the
table. If a battery is inserted when in state 3, the bulb will either come on or
stay off. Which? This is the situation alluded to above: state 3 is in fact two
states: no battery and off; no battery and on. For many design purposes, having

ACM Transactions on Computer-Human Interaction, Vol. 8, No. 2, June 2001.



Usability Analysis with Markov Models • 105

Table II. Refined Definition of Torch

Press Press Remove Add
State ON OFF battery battery

1: On, with battery 1 2 3 1
2: Off, with battery 1 2 4 2
3: No battery (on) 3 4 3 1
4: No battery (off) 3 4 4 2

a consistent model is more important than having a complete one—not that
it is feasible to have a complete model of a human-machine system. Table II
shows a refined version.

Such tables describe a device in terms of states and actions, such as but-
ton presses, depending on the device details. (Another example is provided in
Figure 1.) If there are N states and B actions, the tables have N × B entries.
The adjacency matrix (also known as the state transition matrix) is an alterna-
tive representation that ignores the details of which actions are used. If there
are N states, an adjacency matrix A is an N × N matrix where

Aij =
{

1 if there is a user action that changes state i to state j
0 otherwise

Table II can be represented as a 4× 4 adjacency matrix:

A =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1


Coincidently this matrix is the same size as the table,1 but it is to be read

differently. Each row is a state-from, and each column is a state-to. Thus row
1 indicates there are possible transitions from state 1 to states 1, 2, and 3, but
not to state 4.

Notice the abstraction of the user interface as represented by the matrix:
the matrix certainly does not tell us everything about the design. Nevertheless,
the matrix has an interesting structure, even though one cannot tell from the
matrix what any of the operations are; in fact, the matrix does not show what
the names of the states are either.

2.3 Concrete Issues of Scalability

A simple digital alarm clock has states for 24 hours and 60 minutes for the
time of day and for the time of the alarm, and all times two for the possibil-
ity that the alarm is either enabled or disabled: that is 24× 60× 24× 60× 2=
4,147,200 states in all. If this FSM was represented as a simple adjacency ma-
trix (as we can do explicitly for the torch) it would have over four million rows
and columns, and without compression it would require about 2,000 gigabytes
of computer memory! Fortunately, the actual size of the FSM is irrelevant to the

1In this example, there happens to be the same number of actions as states, 4 each.
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mathematics. According to Shneiderman [1998], it would be “a major contribu-
tion” to have scalable formal methods and automatic checking of user interface
features: finite-state machines (and Markov models) have this advantage.

For a device with b buttons, no row in the matrix has more than b nonzero
entries. For example, if we replace the two torch buttons (ON and OFF) with a
single push-on/push-off button, its matrix would have one fewer nonzero entries
per row:

A′ =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


From this new matrix, incidentally, it is clear that any action the user does al-

ways changes the state: the leading diagonal of the matrix is all zeroes. Pressing
the push-on/push-off button always changes the state, and (as before) success-
fully removing or adding a battery also changes the state.

Indeed the number of buttons is usually kept relatively low. Even a general-
purpose computer only needs about 50 keys (a QWERTY keyboard) to operate.
Thus the matrix is sparse (mostly zero), and as the number of states increases
the matrix becomes exceedingly sparse. Furthermore, buttons usually do some-
thing reasonably consistent (e.g., the off button always makes the same state
transition). Typically, then, a large adjacency matrix can be easily treated as
a set of rules rather than as an explicit matrix with every element taking up
memory, so it can be quite compact—in fact, if there is no way to represent the
matrix compactly, there is probably no way to make the device easy to under-
stand for a user, and certainly no way to program it systematically. See Baldi
et al. [1999] and Deavours and Sanders [1998] for discussion of symbolic and
“matrix-free” methods, which provide the analytic power without the cost of
large, explicit matrices.

2.4 Introducing Empirical Data

We have seen how an adjacency matrix can represent (an abstraction of) a finite-
state machine, but it “knows” nothing about the user. But we might know, for
instance, that users are more likely to add batteries to a torch when there are
no batteries in it than when the bulb is on. The adjacency matrix tells us that a
user can remove batteries from a torch that is on—it does not say whether this
is likely to happen. As a next stage in realism, we introduce the probabilities
of the user making the device change state. We refine the adjacency matrix A
to the transition probability matrix, P .

Continuing with the torch example, below we give some example values for
P (which in this case, we have made up).

P =


0 0.9 0.1 0

0.8 0 0 0.2
1 0 0 0
0 0.1 0.9 0
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When Aij is zero, Pij is zero, because knowing something about the user’s
probable behavior cannot make the device do things it cannot do. But the prob-
abilities add more information.

The user may not do some things for very long times, if ever, but so far
as the outcomes represented in the matrix are concerned there are no other
possibilities than to enter one of the four states. Necessarily, each row in
the transition matrix sums to one: the user does something with probability
one.

The probabilities here show that a user is more likely to switch a torch
off than to remove its batteries. If the torch is on, with probability 0.9 the
next change of state will be the torch being off, and with probability 0.1 the
user might remove the battery. Or if the torch is off with no battery in it,
with probability 0.9 the user will try to switch it on (though, of course, the
torch will not light). We could make the probabilities more realistic, for in-
stance by collecting data on actual users’ behavior—however, we are using
the example to explain the method, not to analyze torches or their use in
depth.

At this stage it may appear that there is no obvious advantage in using a
matrix to represent the probabilities: it looks like maths for its own sake. This
is not the case; in fact matrix algebra is very useful.

Consider that a user may pick up a new torch in state 4 (no battery and off).
What will happen next? By inspection of the matrix, we can see the torch will go
to state 2 with probability 0.1 and state 3 with probability 0.9. In general, at any
time the torch has various probabilities for being in each possible state; we can
represent these probabilities in a state probability vector, v. When a new torch
is picked up, off with no batteries in it, the probabilities are v0= (0 0 0 1), and
after an operation they are v1= (0 0.1 0.9 0)—these figures are determined by
the probabilities in the matrix we have already established. In matrix algebra
we have simply v1= v0× P , i.e.,

(0 0.1 0.9 0) = (0 0 0 1)×


0 0.9 0.1 0

0.8 0 0 0.2
1 0 0 0
0 0.1 0.9 0

 .
In general, we can find the probabilities for any time in the future:

v2 = v1 × P = v0 × P × P
v3 = v2 × P = v0 × P × P × P

and so on. In general, since repeated multiplication is the same as raising to a
power we have

vn = v0 × Pn.

The value of this mathematical representation is easy to demonstrate. Con-
sider that the user has choices at each operation, and as time progresses there
will be more and more ways the user could have used to have reached any goal
state. Indeed after just 10 operations for this simple device, as specified above,
there will have been 1,024 different ways to return to state 1, or after 5,000

ACM Transactions on Computer-Human Interaction, Vol. 8, No. 2, June 2001.



108 • H. Thimbleby et al.

operations there will have been a staggering 101505 different ways. Working
through the probabilities of all these cases is impractical if done explicitly, but
if we want to know, say, what the probability of being in the first state is after
5,000 steps is, we just calculate P5000, and moreover this calculation may be
done efficiently: there are standard ways of raising to a power so that P5000 only
requires 16 matrix multiplications (much less than the 4,999 that might have
been expected [Knuth 1998]). Furthermore this simple calculation represents
all of the 101505 different ways the user may have got to this state! Thus we
see the advantage of the mathematical approach—a concise description and an
efficient means of working things out.

If we assume that P does not change, then this is a so-called homogeneous
Markov chain. Many mathematical results are known for Markov chains.

2.5 Usability

To assess the usability of a device, among other factors, we want to know how
hard (in some sense) the device is to use. The number of state transitions a
user takes to achieve some task is an obvious and simple measure of difficulty.
If the number is huge, possibly the user will not live long enough, and the
device will be impossible to use; or if the number is zero, the device is telepathic
and (unbelievably) easy to use! For intermediate numbers, the more transitions
required make the device harder to use. Transitions may take different amounts
of time; for a device like the torch, inserting a battery takes longer than pushing
a button.

There have been many studies of time to perform keystroke tasks (e.g.,
Silfverberg et al. [2000], which studies timings for mobile phones), usually un-
der the assumptions of error-free performance. However, because we are using
Markov models, we are not restricted to considering only “error-free” behavior
on the user’s part. In particular, the sentiment that a user taking a long time
has more time to make errors and so takes even longer is already built into the
approach; in fact, as our examples below show, the damaging effects of errors
on user performance are starkly revealed. Section 2.7 discusses one way of in-
troducing knowledge of correct operation, and we shall see that our approach
gives a very good way of visualizing the impact of knowledge on usability.

Given the transition probability matrix P of some device, we want to be able
to answer questions like “If a user starts in state i, how hard is it to get to
state j ?”

Because P is a transition probability matrix, the “how hard?” question trans-
lates more precisely to “what is the mean number of transitions to first reach
state j starting from i?” This is easily answered by a Markov chain model. Ap-
pendix B derives a formula for obtaining this number from any matrix P . The
next section discusses what we can do with the number. (Many other measures
can be obtained from a Markov model, but one example will do for the purposes
of this paper.)

In practice P can have probabilities chosen to suit the known characteristics
of the user interface, or of a user’s behavior (for certain tasks, or averaged over
a suite of tasks). We can most easily assume all button presses are equiprobable
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(as we do in all subsequent examples below)—this represents the “walk up and
use” case well for some devices. Our analysis is here restricted to homogeneous
Markov processes, meaning that the probabilities are not conditional (e.g., on
the user’s prior actions or what they learn); but the probabilities can be different
for different states or buttons—say, if some are physically larger, or lit up in
certain states. Setting the probabilities to reflect this is straightforward (e.g.,
see Section 3.4).

In real-user-based usability simulations, designers are able to trace button
press events—and hence calculate average goal completion efforts and times,
so that once a prototype device has been built and can be used, transition prob-
abilities can be acquired from actual user behavior. A Markov model provides
a good way of recording the behavior. Section 3.1 shows that simulation and
analysis are easily combined: the analytic approach can easily be simulated;
the simulation data can easily be combined with further analysis, and so on.
Moreover a random approach (e.g., simulating a random user) has been shown
to be very good at identifying programming problems [Miller et al. 1990], and
therefore would be of use when the user interface was not automatically derived
from the specification.

2.6 Knowledge as a Function of Cost

The so-called “cost-of-knowledge characteristic function” has been used to rep-
resent the cost of acquiring knowledge about a device [Card et al. 1994]. If we
represent cost by the number of buttons pressed (which is straightforwardly re-
lated to time), and knowledge by the number of states visited by the user, then
the cost-of-knowledge graph plots the maximum number of states that can be
visited by at most a given cost. The graph can be plotted from empirical data
(as is done by Card et al. [1994]), by assuming the user knows exactly how to
use the device, or—more realistically, allowing for errors—taking the cost from
a Markov model [Thimbleby 2000].

Although such graphs are useful in design (e.g., to guide reduction of average
costs of tasks) they might better be called cost-of-access graphs, since they
measure state accessibility. It is unlikely that a user’s knowledge about a device
increases linearly with merely accessing states. Moreover, knowledge of states
(what a device does) is not knowledge of use (how to get it to do those things).

2.7 Usability as a Function of Knowledge

To get usability metrics we need to consider the user’s knowledge of how to use
a device. Our approach is to take a mixture of a “perfect” error-free approach of
performing a task with the original “ignorant” P . We define the user’s “knowl-
edge factor” k as a number [0 . .1], essentially a probability they will behave like
a fully knowledgeable user (e.g., a designer!) rather than randomly. If k= 1, the
user’s knowledge is equal to a designer’s, and they operate the device optimally;
if k= 0 the user has no knowledge, and they act randomly with no preferences,
and are equally likely to press any button.

The perfect approach is what a designer knows is the best way of performing
a task. This is easy to determine from P , by taking the shortest allowable
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sequence of transitions, and setting those transitions with a probability of one.
(Shortest-path algorithms are well known; Mathematica provides one that can
be used directly on a transition matrix.)

The transition probability matrix for a user with knowledge k is then kD +
(1−k)P , where D is the “perfect knowledge” (designer’s) transition probability
matrix (with 1’s on the optimal transitions) and P the original “knowledge-free”
matrix. As we have defined it here, the knowledge k measures the knowledge to
achieve a certain task optimally; modeling general knowledge of a device would
require a set of matrices, Dg , one for each goal.

We can now easily work out the usability of a device in terms of the user’s pre-
sumed knowledge. We can plot graphs of expected task completion cost against
k. We can also view k as representing the user’s accuracy: if we assume the
user does know exactly what to do, then the lower k, the more errors they are
making—until at k= 0 they are making so many errors that they are behaving
randomly.

Although our approach in this paper uses Markov models, this is not essential
for viewing usability as a function of knowledge. We could use cognitive models,
or any other models that provide numbers. However, an advantage is that we
can easily take combinations of models (in this case, linear combinations of D
and P ) without any artificial manipulations.

3. WORKED EXAMPLES

If we reanalyzed a system that we knew had a usability problem, methodologi-
cally we could be criticized that we knew what sort of problems we were looking
for. That would leave open whether such an approach was useful in the design
process before problems are recognized. Instead, for our first example we take
a specification directly from Sharp [1998] in interaction design. Sharp’s thesis
was concerned with the reliability of on-screen simulations for usability studies
(he was more concerned with photo-realistic 3D models, rather than outline 2D
models such as our simulation), and was not concerned with the usability of
devices per se.

After analyzing variations on the Sharp design (Section 3.3), subsequent
examples are a mobile phone (Section 3.4), the Panasonic Genius digital clock
(Section 3.5), and a combination lock (a device intended to be hard to use)
(Section 3.6).

3.1 A Microwave Cooker and Its Implementation in Mathematica

Sharp’s rules for his microwave cooker are shown in Figure 1. From this,
some simple manipulation in Mathematica gives us a finite-state machine
representation sufficient to perform analysis (complete details are given in
Appendix A).

Mathematica (Version 3 and later) [Wolfram 1996] has a simple and con-
venient scheme whereby buttons can be bound to arbitrary actions. This is a
standard technique to implement “easy-to-use” Mathematica packages: we sim-
ply exploit it to provide the user interface for the required device (Appendix A.2
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States
Buttons Clock QD Timer1 Timer2 Power1 Power2

Clock Clock Clock Clock Clock Clock Clock
QD QD QD QD QD QD QD

Time Timer1 Timer1 Timer2 Timer1 Timer2 Timer1
Clear Clock Clock Clock Clock Clock Clock

Power Clear QD Power1 Power2 Power1 Power2
QD = Quick Defrost

Fig. 1. Specification of Jonathan Sharp’s microwave cooker. Columns are states the device is in;
rows are buttons. By knowing the current state and a button, the table gives the next state. Thus,
pressing the Quick Defrost button (i.e., row 2 of the matrix) when in state Clock causes the device
to enter state Quick Defrost. As in Sharp’s original specification, notice that Quick Defrost is
both a state name and a button name.

provides the complete code we used to create the user interface, and which will
work with any device). The Mathematica simulation of this microwave cooker
is shown in Figure 2. With the simulation, we can also perform conventional
usability studies and obtain empirical data that could refine the probabilities
used in the mathematical analysis.

The adjacency matrix for Sharp’s microwave cooker is

A =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 0 1 1 0
1 1 1 0 0 1
1 1 0 1 1 0
1 1 1 0 0 1


We can now obtain (one line later in Mathematica) the all-pairs shortest paths
(the quickest ways to get from any state to any other state):

0 1 1 2 2 3
1 0 1 2 2 3
1 1 0 1 1 2
1 1 1 0 2 1
1 1 2 1 0 2
1 1 1 2 2 0


For example, to get from either state 1 (Clock) or state 2 (Quick Defrost) to

state 6 (Power2) takes three button presses. The leading diagonal is all zeros
because it takes no steps to get from a state to itself.

The entries in this matrix are the button-pressing costs for an error-free user
who knows what they are doing. Such an error-free user must be able to identify
each state correctly (or at least be able to correctly identify the starting state
for any task, and then know what to do from memory).

Evidently, for this device a user can get from any state to any state in at
most three button presses: the device looks easy to use. The shortest paths are
routes that are obvious to designers, especially if they use tools to visualize
the state diagram (see Figure 3, which, though tidied up for typesetting this
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Fig. 2. Screen shot of a Mathematica user interface simulation, showing screen display and button
arrangement. The device is currently in the clock state. The buttons can be derived directly from
the button specification. Clicking on a button calls the Mathematica function press[name], which
changes the device state and causes the display to change appropriately. Code for this simulation
is provided in Appendix A.

paper, is in the form drawn by Mathematica). Note that it would be easy to
demonstrate such a device and give a persuasive impression that it was easy to
use [Thimbleby 1996]. However, the shortest-path numbers are much smaller
than a Markov model predicts—e.g., for this device getting from, say, Power1 to
Power2 takes 120 steps. This is so large it deserves explanation:

—A Markov model does not “realize” when it is going around in circles, so it gets
stuck in repetitive behavior easily. (In other words, a homogeneous Markov
model does not learn.)

—The button-pressing probabilities used in the example are all equal, regard-
less of state. A more accurate model would use more realistic probabilities
(e.g., as measured from real users’ behavior).

—Designers tend to seriously overrate the ease of use of their system, even for
something as clear-cut as Sharp’s microwave cooker.

Humans can also “loop” when they do not fully understand a device. An
all-too-familiar anecdote will suffice to illustrate the problem. Recently, one of
the authors and his 17-year-old son were trying to program their Goodmans
VN6000 video recorder following a power cut, which had reset the date and
time.

The task, therefore, was to reset the clock to the current time, then use
the VideoPlus+TM system for entering the code for the program they wanted
to record.2 Setting the clock was easy: the remote control has a menu button,
and all subsequent interaction was through a television on-screen dialogue.
Then the VideoPlus+ code had to be entered. However the on-screen menu

2VideoPlus+ uses a number (typically printed along with the television program listings) to specify
the channel, date, and start and end times of a broadcast program. Given how hard most video
recorders are to program, entering a single, humanly meaningless number of many digits is eas-
ier than working out how to enter the different parts of the timing information separately. The
VideoPlus+ code is a hash code of the information, and is designed so that more common tim-
ings have shorter codes. For example, 258 is the code for channel 1, 18:00–18:30 on 19 April, but
46140247 is the code for channel 5 at 00:45–03:45.
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Fig. 3. Sharp’s microwave cooker, drawn as a directed graph. This is a ranked embedding: states
drawn in the same column take the same number of button presses from (in this case) the Clock

state. (So Power1 takes 2 steps to reach from Clock, as does Timer2, and Power2 takes 3 steps.)

only had “VIDEOPlus+ PRESET” as a choice, which was explored. This seemed to
allocate VideoPlus+ codes to television channels, and was apparently correctly
set despite the power cut. There was a menu choice for “CHANNEL PRESET,” and
this set UHF channels to television channels, and this too was correctly set.
Perhaps the VideoPlus+ system only worked when it “knew” the clock was
running? Having successfully set the clock, the users therefore switched the
recorder on and off, and tried again.

Despite the “user team” including a teenager (teenagers are supposed to
understand these things), both users “looped” for about 40 minutes before de-
spairing and hunting down the video recorder manual.

The correct (that is, the manufacturer’s idea of “correct”) operation was to
press another button on the remote control labeled “VIDEO Plus+”! The users
had not spotted it because they had become drawn into the many on-screen
choices offered by the menu system.

A Markov model of this interaction would also have taken a long time to
solve the problem, because it would have spent a similarly proportionate time
in the menu system. A designer should therefore consider the large numbers
Markov models typically generate as significant clues to improving designs.

3.2 Knowledge/Usability Graph for the Microwave Cooker

We take the task to get from Clock to Power2 state in Sharp’s microwave cooker
and examine the knowledge/usability graph. Recall that the graph shows the
expected time given a transition probability matrix kD + (1− k)P , where D is
a “perfect knowledge” (designer’s) matrix (with 1’s on the optimal transitions)
and P the original “knowledge-free” matrix. The values of P (random use) and
D (perfect, or designer’s, use) used are shown below, and the resulting graph is
shown in Figure 4 (solid line).

The probabilities in P are calculated assuming button presses are equiprob-
able: for this device there are 5 buttons, each pressed with probability 1/5. Some
buttons will leave the state unchanged, so the leading diagonal of the matrix
has some elements greater than 1/5.
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Fig. 4. Plot of expected number of steps against knowledge of device. The task is to get from
Clock to Power2 state. The solid line is the original microwave cooker, and the dashed line is the
LED-enhanced device. The horizontal dotted reference line (expectation= 3) is the optimal task
completion cost, i.e., assuming the user knows exactly how to do it and makes no mistakes.

D =


0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 1

 P =



3/5
1/5

1/5 0 0 0
2/5

2/5
1/5 0 0 0

2/5
1/5 0 1/5

1/5 0
2/5

1/5
1/5 0 0 1/5

2/5
1/5 0 1/5

1/5 0
2/5

1/5
1/5 0 0 1/5


It is important to recall, that (by simple programming in Mathematica) these

matrices are generated automatically, and that changing the definition of the
device changes the matrices automatically. Again, the approach scales up to
more complex devices than we can conveniently show in this paper (later sec-
tions discuss a larger device).

The downward slope of the graph (Figure 4) is not surprising, but the shape
of the curve is interesting. It can be seen that Sharp’s microwave cooker is good
in the sense that a little gain in knowledge initially gives a rapid improve-
ment in task completion performance. Also, good but imperfect knowledge has
comparable performance to perfect knowledge. In other words, most users get
satisfactory performance with only a casual knowledge of perfect use.

3.3 Analyzing Variations of Sharp’s Microwave Cooker

The “random” user represented by P knows nothing about the device. How
much would it help if, say, there were LEDs on each button, at least telling a user
that these are the buttons that do something? So, whatever the user wants to
do, this device ensures they do not need to waste time pressing useless buttons.
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Some devices, such as video recorders, which are often used in the dark, would
certainly benefit in other ways as well—the user could easily locate functional
buttons. Alternatively some mechanical arrangement might actually hide the
nonfunctional buttons. A new matrix PLED can be defined to reflect random use
of this modified design:

PLED =



0 1/2
1/2 0 0 0

2/3 0 1/3 0 0 0
2/5

1/5 0 1/5
1/5 0

2/5
1/5

1/5 0 0 1/5
1/2

1/4 0 1/4 0 0
1/2

1/4
1/4 0 0 0


Although Sharp’s microwave cooker has some explicit self-transitions, the

diagonal of PLED is entirely zero: the LEDs only light when a button changes
the device’s state.

A plot of this shows that the modified device (Figure 4, dashed line) is an
improvement over the original. This is not bad for a device that does not know
what its user is trying to do! Interestingly, it does not give such a fast rate of
improvement as the user learns how the device works. For more complex devices
we would expect even better improvements if LEDs were used—and, we would
certainly expect the little LEDs to help sell the device in a shop! However, this
simple analysis demonstrates the ease with which we can analyze and compare
variations on a design.

Now consider modifying the device so that, rather than lighting LEDs on
buttons that work, buttons always work. We can arrange that buttons not de-
fined by Sharp return the device to clock. A designer might decide that this is
a good idea because any “incorrect” operation of the device would return it to a
safe, well-defined state.

PAlways =



3/5
1/5

1/5 0 0 0
4/5 0 1/5 0 0 0
2/5

1/5 0 1/5
1/5 0

2/5
1/5

1/5 0 0 1/5
3/5

1/5 0 1/5 0 0
3/5

1/5
1/5 0 0 0


Modified in this way, Sharp’s microwave cooker takes 129.167 steps to get

from Clock to Power2, when k= 0. This is only a bit worse (3%) than the original
version, but 67% worse than the LED version. (As before, since it is the same
underlying FSM, it must take 3 when k= 1.) This alternative design should
not be preferred over the LED idea, but whether it is an improvement over the
original probably should not be answered just by considering Markov models—
there may be psychological reasons to prefer or reject it.

Of course, with other devices, the comparisons would come out differently:
we are not concluding that LEDs always improve devices significantly, or that
the “no incorrect operation” style always makes a small improvement. What we
have shown, though, is that making such comparisons is very easy.
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The JVC UX-T20B stereo system is a simple commercial example of using
LEDs in this way. Its “Compu Play” feature means that when in standby only
one button press is needed to start the system playing either tuner, compact
disc, tape (or auxilliary input) depending on which button is pressed. (The power
switch, then, is only needed when the user is not going to play something im-
mediately but instead, for example, set the alarm.) Its “Illumi Magic” feature
is linked to an infrared sensor, so when an object approaches the sensor, the
buttons that activate the Compu Play feature are highlighted with an LED
strip near the appropriate buttons. Thus, by vaguely waving a hand at it, it is
enough to light the LEDs and, from that, very easy to start the machine playing
in whatever mode is required, even when the machine is close to the floor in a
dark corner of a room.

Markov models expose the problem of “looping”—of a user going around in
circles and not making progress toward their goal. The LED-based device was
easier to use because a large number of short loops were eliminated from the
user interface. At the other extreme, the entire device could be a single loop, of
maximal length. It would then be a ring. Rather than use push buttons, a ring
has better affordance implemented using a rotary knob.

Suppose a knob is used as the user interface to Sharp’s microwave, and
that (due to its design features) it is turned clockwise with probability p and
counterclockwise with probability 1− p. The transition matrix is

PRing =


0 p 0 0 0 1− p

1− p 0 p 0 0 0
0 1− p 0 p 0 0
0 0 1− p 0 p 0
0 0 0 1− p 0 p
p 0 0 0 1− p 0

 .

The rather attractive Figure 5 shows the expected least cost of reaching, from
any state, each of the device’s five others.3 Interestingly, the worst average cost
(over all six possible goals) arises when p= 0.5, which corresponds to an unbi-
ased knob. From a purely Markovian analysis, a one-way knob would be more
efficient to use (p= 0 or p= 1). Clearly, though, a user’s actual performance
would be more sophisticated, and a one-way knob would be suboptimal. Never-
theless, the costs are so much lower than for a push button user interface that
there could be merit in considering this style of interface further—particularly
for “walk up and use” interfaces.

A ring has only one loop, but some states are far away. Another radical al-
ternative is a star. A star has one state in the middle, and the others radiating
off it. Each of the 5 noncentral states has a single transition, back to the cen-
ter. Thus, this design requires six buttons: five to get from the center to each
of the other states, and one to return from them to the center state. Designed
like this, the average cost to reach any state from the center is 9, and from

3Figure 5 in fact shows all 6 × 6 graphs of getting from any knob position to any other. Six of the
graphs show the expected least cost of getting from a state to itself, which is zero. Of the other 30,
there are five groups of six, each the same (because of symmetry). Hence the figure shows five curves.
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Fig. 5. Expected cost of using a knob to achieve the five states of Sharp’s microwave cooker, starting
from any given state, plotted against probability of rotating the knob in a specific direction. The
cost (vertical axis) is measured in total revolutions assuming the six knob positions are equally
distributed around a circle—multiplying the scale by 6 makes it the number of “clicks.”

any noncentral state, 10. This is a bit worse than the ring, but better than the
original design—at least, so far as the numbers are concerned!

A star suffers from having labeled buttons that only work some of the time.
The “return to center” button only does anything if the device is not already
at the center state; and the other five buttons only work when the device is in
the center state. Worse, these five buttons do not always leave the device in the
appropriate state when they are pressed.

If six buttons are going to be used, as there are six states, then the complete
symmetric digraph (K ∗6) is a natural design choice: there is a transition from
every state to every other state. The transition probability matrix is trivial:
every element is equal to 1/6. The average cost to reach any state is now 6, or to
be precise—if a user walks up to the device, not knowing what state it is in, or if
they do not bother to check and always press at least one button—the average
cost is 5.2 presses—and that is if k= 0. When k= 1 (i.e., the user knows what
they are doing), the K ∗6 design takes 0.8 presses on average (1 press in the worst
case), which is much faster than Sharp’s original, which takes 1.2 presses on
average (3 presses in the worst case). That seems like a useful gain at the cost
of only one button; and it is not just a numerical gain, since the buttons always
leave the device in the appropriate state—this design is both faster, and it is
mode-free.

3.4 A Larger Device: The Nokia 2110 Mobile Phone

Sharp’s microwave cooker has only six states, and the analysis is not intrin-
sically difficult. We now examine the function menu of a Nokia 2110 mobile
phone. This part of the phone has 152 states.
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The function menu of the Nokia 2110 is controlled by four buttons, two “scroll”
buttons that move up and down in a menu, and two selection buttons that have
changeable (“soft”) meanings as shown in the phone’s display panel. Initially,
these two buttons show Menu and Memory. The user would press Menu (which
then disappears), and the other button becomes Quit. When the user scrolls up
or down the menu, the first button becomes Select, which either selects the
function shown in the menu, or selects a further submenu. The Quit button
quits each level of the submenus, taking the user back to the position where
that menu was selected. The scroll buttons can be pressed repeatedly and cycle
through any given level of the menu hierarchy. There are a few other features,
such as being able to press numeric keys to select functions faster than search-
ing for them step-by-step in the hierarchy.

For reasons of space we do not show the data here. Using a basic probabil-
ity matrix of equiprobable button presses, we find the cost to be 602,235 (for
a random user) for the task of setting selecting “incoming calls” (a selection
in the “call barring” menu, itself a selection in the “security options” menu),
starting from standby. This number is so large because of the effect of the Quit
button, which the knowledge-free model repeatedly uses, and therefore hinders
reaching any desired goal.

The knowledge/usability graph as used in the analysis of the Sharp mi-
crowave cooker showed how easy to use the device was against how much the
user knew how to use the device for the task in question. For the Nokia mobile
phone, what would happen if we modeled a user whose knowledge was to avoid
using the Quit button? In other words, the knowledge k is the “knowledge” to
use the Quit button. Figure 6 shows the resulting graph for the Nokia 2110.

At k= 0 (to the left of the graph), the user never uses Quit—and therefore
cannot correct any errors. With k> 0.2 the difficulty of using the phone in-
creases dramatically. Here we are seeing that if the user presses Quit too often
they cannot make effective progress.

There is an optimal use of the Quit button, around k= 0.037. As a hint to the
designer of the mobile phone, this could be taken to mean make the Quit button
much smaller, so the user tends to use it less than other buttons. To do this on a
device like the Nokia 2110, where the Quit key is a soft multipurpose key, could
cause problems in other parts of the user interface. However the Nokia 2110
has a much smaller button c, normally used for correction (and for returning to
standby when in the menu hierarchy). This button could have been used with
the same meaning as, but replacing, the current Quit key.

If the Quit key is so critical, which it certainly is compared to the other
menu-selection keys, then the user interface design that makes it so should
be examined closely. It may be that the method of quitting submenus (i.e., the
structure of the user interface) is the problem, not the frequency of use of the
Quit key itself.

In many ways the problem with this sort of analysis—and certainly for pick-
ing examples to illustrate its use in a paper such as this—is the whole range of
new questions that are immediately suggested!

Given that Mathematica had been set up for the analysis, the only hard work
in analyzing the Nokia phone was working out the transition matrix. This was
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Fig. 6. Expected cost of using the Nokia 2110, depending on the probability of use of the Quit

button (the other buttons being pressed equiprobably). This is a knowledge/usability graph, where
increasing knowledge (moving toward the right in the graph) is to prefer using the Quit button.
The graph shows clearly that there is an optimal use of the Quit button: if used too little (at the
left of the graph), the user gets slowed down, unable to correct mistakes; if used too much (beyond
the right of the graph), they get stuck, only able to correct mistakes. The graph climbs off to an
impossible device as k becomes closer to 0 or 1.

very tedious—of course, if a device manufacturer collaborated with us, or if the
analysis was performed by the manufacturer, the device specification should
be known explicitly. Finding the transition matrix would then be completely
trivial.

3.5 The Genius Microwave Cooker

The Genius is a Panasonic microwave cooker. The digital clock can display any
decimal number 00:00 to 99:99, though it can only run when it is showing a
12-hour time (between 01:00 and 12:59). There are six buttons that control the
clock. There are four buttons, one below each digit, which are used to increment
the corresponding digit. One button, Reset, resets the clock to its initial switch-
on state. One button, Clock, makes the clock run if it is showing a valid 12-hour
time. The clock can be in several modes (class of state): it can have its colon
flashing or stable, and the clock may or may not be running.

Although we have included the transition to switch the clock on (e.g., as
occurs when the microwave cooker is plugged in to an electricity supply), we
shall ignore transitions like switching it off (presumably, unless the user gets
cross with the clock, they will not switch it off)! The Mathematica specification
of this simplified Genius is shown in full in Figure 7.

The clock (as specified) has 30,000 states, but it is easier to visualize it as
a four-state device: (1) a start state, “switched-off”—from which the only tran-
sition is to press the clock button to switch the display on to show 00:00, an
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Fig. 7. The Genius clock in Mathematica. A state is represented as s[mode, tens-of-hours

digit, units-hours digit, tens-of-minutes digit, units-minutes digit ]. The clock starts
in startState. The rules specify the behavior of buttons, by defining their functions on the state.
Rules to stop the clock running are not shown.

invalid time; (2) a state where the clock shows a valid time but is not running;
(3) a state where the clock shows an invalid time; and (4) a state where the
clock shows a valid time and is running. A run through the 64,322 possible
state transitions provides the following transition probability matrix:

P =


0 0 1 0
0 17/36

13/36
1/6

0 7/464
457/464 0

0 0 0 1


We have thereby reduced a huge matrix to a 4× 4 matrix, and the sums will

be much more manageable. Appendix C proves the validity of this approach.
The expected number of state transitions to get from switch-on to the clock

running is 216.905.4 If we make the obvious modification and remove state 3,
so the clock can only show valid times (we also have to modify the initial state
so that at switch-on the clock shows a valid time, such as 12:00), then the figure
becomes 7—a big improvement.

Interestingly, our experiments with people showed that the Markov model
does better than humans [Thimbleby and Witten 1993]: some humans cannot
set the clock at all, because they think it is a 24-hour clock (if they are tested
in the afternoon, they can easily set the Genius to a time after 12:59, but the
clock will not run). This is an example of where knowledge makes using a
device harder; conversely, it is an example where the designers’ tacit knowledge
(“nobody uses 24-hour clocks”) was accidentally built into a device. If you think
you know how something works, but you are wrong, you may be permanently
stuck; the Markov analysis suggests, that under such circumstances (should
you notice them), you should press buttons at random. This would then give

4As indicated in Appendix C, the number of button presses expected of the user will be higher than
the number of state transitions.

ACM Transactions on Computer-Human Interaction, Vol. 8, No. 2, June 2001.



Usability Analysis with Markov Models • 121

an example of how to set some time, and having discovered that, it should be
easier to set the required time.5

We could argue that the reason why children can use devices more easily
than adults is because they do not have adult preconceptions about how
devices should work; they are more like ignorant Markov models! Or, to put it
another way, the reason why adults find gadgets awkward is that they are not
designed properly.

3.6 Combination Locks

Most devices are supposed to be easy to use, and therefore should have low
transition costs. In contrast, some devices are intended to be hard to use. We
now consider a simple security lock.

Consider a dial security lock, where the user can spin a dial, and they are
supposed to select the right number. If we simplify the device to a two-state
machine and a dial with a chance of p of being set correctly (e.g., with 1/p
choices, only one of which is correct), it has a probability matrix

P =
(

1− p p
0 1

)
.

If the user knows nothing, the mean time to “cracking” the lock (using the
formula from Appendix B) is 1/p. In general, if the user knows k (defined as
before), the mean time is 1/(k + p− kp). If p is large (i.e., the security lock is
easy), then it does not really matter how much the user knows: the lock is easy
to open even if the user does not know the right combination. If p is very small,
then the usability/knowledge curve is a hyperbola, 1/k , which means, roughly,
the less you know the more a little knowledge helps.

4. FURTHER WORK

Markov modeling provides a robust and general-purpose tool for user interface
design and analysis. There are therefore many opportunities for further work.
Here we list just a few research areas that are opened up:

—Although Mathematica provides both simulation and analysis, it is a general-
purpose mathematics package rather than a “designer-friendly” design tool!
With more work, conventional design tools could be extended to provide anal-
ysis of user interface designs. All technical details of the analysis could be
hidden, and designers could be presented with estimates or graphs of usabil-
ity or task times. Of course, such tools could also simulate the behavior of
systems with actual use (as we did in Figure 2), and could therefore calibrate
their analyses from empirical data. Developing such a tool (Thimbleby and
Addison [1996] is an example) that is both powerful enough to be worth using
in product design and that is nonetheless easy enough to use by practitioners
would be a significant project.

—Many definitions of usability are couched in terms such as “a percentage of
users can complete a percentage of tasks in a given time.” Such definitions,

5Not that microwave cookers need to know the correct time anyway!
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with the appropriate calibration, are answerable by using Markov models.
The development of a suite of mathematical techniques to work with this con-
ceptualization of usability should be straightforward. (Once done the details
of the mathematics could be hidden from designers, by being encapsulated
inside design tools.)

—In Appendix C we briefly discuss how to coalesce states in an FSM to pro-
vide alternative models of a system. Given that system designers and users
typically have different models of a system, further work here would be very
productive. For example, a system engineer never represents a large FSM
of millions of states, but instead uses a programming language with con-
ditionals, rules, and functions. Can suitable user interface languages guide
designers into creating structures that are more easily modeled by users?
For example Statecharts are one possibility: they are widely recognized as
powerful design notations, and coincidentally they share some of the criteria
discussed in Appendix C. Nevertheless we are unaware of any substantial
work on whether “neat” Statecharts (or other notations, such as CSP [Magee
and Kramer 1999]) would result in better user interfaces.

—Our knowledge/usability graph was based on a scalar parameter k that, rang-
ing over 0 to 1, covers random to perfect knowledge of a device. We did not
consider users who may have mistaken knowledge, and whose actions may
be counterproductive rather than just inefficient. Since there are many ways
to have incorrect knowledge, merely allowing k to be negative, say, is in-
adequate. A user may correctly know how to achieve the wrong goal, by
confusion of function names. Generalizing our approach to knowledge, to
include conceptual errors, but not losing sight of the focus on usability and
of obtaining design insights, will be a difficult, and perhaps fruitful, line of
research.

—Push-button devices are an easy target for FSM representation because they
can be understood as a set of states for which button presses are state tran-
sitions. However, by not constraining states of the model to internal states of
the device, it is possible to examine other systems. For example, if states were
equated with tasks and goals, different FSMs could represent the same sys-
tem as seen by a variety of users from novices through to experts. The avail-
able transitions would represent the knowledge and purposes of the user.
Thus more realistic models of users would permit analysis of termination
errors and other cognitively motivated effects. (One way to do this would be
to compose system and user models together.) Although more research is re-
quired to do this effectively, the benefits are clear: more accurate and reli-
able analyses, and the same or better visualization from knowledge/usability
graphs.

—Once an analytic tool has been constructed it could explore the design space
to search for better designs. (Genetic algorithms, or other heuristics, could be
used.) A designer could specify the basic requirements, and come back later to
select from a collection of selected designs found from the initial, automated
search. A design tool like this might be left running for long periods searching
for improvements.
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—We claim Markov models provide useful insights into important design issues,
but without further work, we do not know how professional designers might
be influenced by the approach. It may be that user interface development
teams would not be happy with mathematical approaches, and would prefer
(and be better skilled at) empirical methods.

5. CONCLUSIONS

This paper suggested a user interface design analysis method, based on Markov
models, with the advantages of mathematical clarity, ease of simulation, and
which provides numerical measures (and visualizations) that are ideal for com-
paring designs. The paper gave complete details of the approach, and gave
worked examples based on commercial products.

The approach is fully operational; the Appendices give both the mathemat-
ical foundations and the program code that can be run and used directly. The
approach can be applied to abstract designs, prototypes and animations, or to
fully working systems. It is scalable and can accommodate complex systems,
easily on the scale of typical interactive devices. It is applicable throughout the
design cycle, at early design stages or late; the approach can also be used for
conformance testing.

Results are conservative and do not rely on psychological assumptions,
though the approach can accommodate empirical data when this is available.
Certainly, the approach rather obviously lacks realism in the “look and feel” of
the user interface, but this is not a disadvantage because it means the approach
can be used well before designers have settled a design’s look-and-feel issues.

Finally, it will be preferable to embed approaches such as ours inside design
tools to provide designers with the power of the methods without the depen-
dency on craft knowledge. In principle this is easy to do, and would bring many
advantages. Design insights (of the sort described in this paper) would be ac-
cessible to professional designers at the earliest stages of design work, where
they would have a critical impact on the design process.

APPENDIX

A. COMPLETE Mathematica CODE

The Mathematica code shown in this appendix is complete working code to sim-
ulate a user interface and to draw the figures and calculate the numbers quoted
in the body of the paper. For concreteness, this appendix uses the definition of
the microwave cooker from Figure 1. By editing the definition other devices can
be simulated and analyzed directly.

The code starts by loading the standard Mathematica package for combina-
torics (to load a shortest-path function, which we will need for calculating the
designer’s optimal transition matrix), and defines a utility routine.

<<DiscreteMath‘Combinatorica‘;
IndexOf[vector , e ] := Position[vector, e][[1, 1]];

Here is Jonathan Sharp’s definition of the device, written in Mathematica
notation:
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device =
{ {"Clock", "Clock", "Clock", "Clock", "Clock", "Clock"},
{"Quick Defrost", "Quick Defrost", "Quick Defrost",
"Quick Defrost", "Quick Defrost", "Quick Defrost"},
{"Timer1", "Timer1", "Timer2", "Timer1", "Timer2", "Timer1"},
{"Clock", "Clock", "Clock", "Clock", "Clock", "Clock"},
{"Clock", "Quick Defrost", "Power1",
"Power2", "Power1", "Power2"}

};
This defines the device table, with rows corresponding to buttons and columns
corresponding to states. We need to define the button names (which coinci-
dentally have almost the same names as states) and define the order of the
columns:

buttonNames = {"Clock", "Quick Defrost", "Time", "Clear", "Power"};
stateNames = {"Clock", "Quick Defrost", "Timer1",

"Timer2", "Power1", "Power2"};

numberOfStates = Length@stateNames;
numberOfButtons = Length@buttonNames;

Mathematica itself has powerful typographical features that could be used to
define and present the definition of device exactly as in Figure 1.

A.1 Example Analysis and Graph Drawing

The first analysis discussed in the paper was for tasks getting from state Power1
to Power2.

start = IndexOf[stateNames, "Power1"];
goal = IndexOf[stateNames, "Power2"];

The random user matrix (called P in the paper) is directly calculated
from device; button presses are treated as equiprobable, contributing
1/numberOfButtons:

randomUser = Table[0, {numberOfStates}, {numberOfStates}];
Do[randomUser[[i, IndexOf[stateNames, device[[b, i]]]]]

+= 1/numberOfButtons,
{b, numberOfButtons}, {i, numberOfStates}];

The designer’s matrix designer (called D in the paper)6 is based on the optimal
route from the start to the goal states. Notice how the random user matrix
(which has nonzero elements precisely where there are transitions) is converted
to a Graph type to find shortest paths. The definition of designer depends on
the choice of start and goal states.

designer = Table[0, {numberOfStates}, {numberOfStates}];
Do[Module[{p = ShortestPath[Graph[randomUser, {}], i, goal]},

designer[[i, If[ Length[p] > 1, p[[2]], i]]] = 1
],

{i, numberOfStates}];

6In Mathematica D is normally a derivative operator.
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After defining the identity matrix of suitable dimensions and some utilities,
we can give the definition of the mean first passage time in direct form (the
formula used is derived in Appendix B):

ZeroRowCol[matrix , rc ] :=
Table[If[ i == rc || j == rc, 0, matrix[[i, j]]],

{i, Length@matrix}, {j, Length@matrix}];
meanFirstPassage[matrix , start , start ] := 0;

meanFirstPassage[matrix , start , goal ] :=
Module[{One = Table[1, {Length@matrix}],

Id = IdentityMatrix[Length@matrix]
},

(Inverse[Id-ZeroRowCol[matrix, goal]] . One)[[start]]
];

The expected time to get from the start state (Power1) to the goal state (Power2) is
meanFirstPassage[randomUser, start, goal], which equals 120. The knowl-
edge/usability graph can be plotted by Plot[meanFirstPassage[k designer +
(1-k)randomUser, start, goal], {k, 0, 1}] (see Figure 4).

A.2 Simulating the User Interface

To simulate the device a global variable keeps track of the state of the device as
buttons are pressed. We start the device in the initial state Clock, by writing
state = "Clock".

The following code constructs a row of buttons to control the device directly
from the device specification, thus ensuring mathematical and empirical anal-
ysis are consistent.

CellPrint[Cell[BoxData[RowBox[
Map[ButtonBox[#,

ButtonFunction:>press[#],
ButtonEvaluator->Automatic
ButtonFrame->"DialogBox"]&,

buttonNames]]], Active->True,
TextAlignment->Center, FontFamily->"Helvetica", FontSize->24]];

The result is a row of working buttons (the final line of code provides the fonts
and sizes as used in Figure 2). When a button is pressed, the function press is
called as the action. A basic definition of press is given below, simply showing
the name of the current state in the display, though it is possible to display any
image if required.

press[theButton ] :=
Module[{nb = ButtonNotebook[]},
state = device[[IndexOf[buttonNames,theButton],

IndexOf[stateNames,state]]];
NotebookFind[nb, "display", All, CellTags];
SelectionMove[nb, All, CellContents];
NotebookWrite[nb, Cell[state]]

];

The device’s simulated display is a cell with name "display" so the func-
tion press can locate it: Cell["", CellTags -> "display"], which would be
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displayed as in Figure 2. The final result can be framed, colored, formatted,
and positioned to suit aesthetic requirements.

B. MARKOV MODELS AND EXPECTED FIRST ENTRY TIME

This appendix provides details of how a Markov chain can be used to model
a user interface. Using this model, we extract the average times (numbers of
steps, button presses, or state transitions) required to get from one state of the
user interface to another.

Although many user-relevant measures can be obtained from Markov mod-
els, in the body of the paper we only used the mean first passage time Mij, the
expected number of state transitions to first reach a state j starting from state
i. Specifically, for a transition probability matrix P , M is the corresponding
matrix of mean first passage times:

M = {Mij
∣∣ i = j : 0; i 6= j : Mij = ((I− [ j↓P ])−1 · 1)i

}
where [ j↓P ] is the submatrix of P with row j and column j set to zero,7 1 is a
vector of ones, and I the identity matrix. Writing the formula out in words:

—for i = j , the mean first passage time Mij is zero;
—for i 6= j , given the matrix P , set row j , and column j to zero, subtract from

the identity matrix and find the inverse. The sum of row i of this inverse
defines the value Mij.

The mathematics may look complicated, but it provides a solid formal basis
for the metrics used in this paper. Moreover the mathematics need only be
done once to cover a very wide range of different systems: simply define the
matrix P and initial and final states as appropriate. In practice, the analysis
would be “inside” a user interface development tool, and a designer need not be
concerned with the formulae themselves. Mathematica can solve such equations
either numerically (e.g., to plot graphs) or symbolically, for example using the
code given in full in Appendix A. As an example, the matrix PRing, discussed
in the body of the paper, gives an expected first entry time for one state of
5− 16p+21p2 − 12p3 + 3p4

6(1− 4p+ 7p2 − 6p3 + 3p4) . The discussion of the combination lock (Section 3.6) made
simple use of such symbolic solutions.

The rest of this appendix attends to the formal derivation of the formula.
The elements of probability theory required to describe this model may be

found in Grimmett and Stirzaker [1992]. For events A and B we use Pr(A) to
denote the probability of A occurring, and Pr(A | B) to be the probability of A
occurring given that B has occurred. For a random variable X , E(X ) denotes
the expectation or the mean value of X .

Assume the set of all possible states of a user interface is S, and for simplicity
assume that S={1, 2, . . . , |S|}. The Markov chain for the user interface is the
sequence { X n | n= 0, 1, . . . } where each X n is a random variable that takes
values in S. Define, for all i, j ∈ S, the one-step transition probability to be

7[ j↓P ] is a transition matrix where state j is neither reachable nor has any action.
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Pij= Pr(X 1= j | X 0= i). Indeed, as the user interface does not change with
time, we have that

Pij = Pr(X n+1 = j | X n = i) for all i, j ∈ S, n = 0, 1, . . .

As it is certain X n+1 has some value regardless of the value of X n, we have∑
j∈S

Pij = 1. (1)

As in the paper, take P ={Pij | i, j ∈ S} to be the matrix of all the one-step
transition probabilities. In other words, Eq. (1) is the already familiar result
that the rows of the probability transition matrix P sum to 1.

For each j ∈ S, define N ( j ) | X i = k to be the random variable being the
number of steps to reach state j starting from X i = k. Then take Mij to be the
mean number of steps to reach j given that the system started in state i. That is,

Mij = E(N ( j ) | X 0 = i).

Trivially Mij= 0 for i= j ; so from now on take i 6= j . Now, by standard results
on conditional expectations,

Mij =
∑
k∈S

Pr(X 1 = k | X 0 = i)× E(N ( j ) | X 1 = k),

i.e., we have the equation

Mij =
∑
k∈S

Pik × E(N ( j ) | X 1 = k). (2)

Now if X 1= j then the process stops as the system has reached j . Thus,
N ( j )= 1 and E(N ( j ) | X 1= j )= 1. However, if X 1 is anything other than j ,
which we may write X 1= k for k ∈ S\{ j }, then the process continues as if it had
started from k. Hence E(N ( j ) | X 1= k)=E(N ( j )+ 1 | X 0= k). That is, for k 6= j

E(N ( j ) | X 1 = k) = E(N ( j ) | X 0 = k)+ 1
= Mkj + 1.

Thus Eq. (2) becomes

Mij = Pij +
∑

k∈S\{ j }
Pik × (Mkj + 1)

=
∑

k∈S\{ j }
Pik × Mkj +

∑
k∈S

Pik

which from Eq. (1) gives us, that for all i, j ∈ S such that i 6= j ,

Mij = 1+
∑
k∈S

Pik × Mkj.

This system of equations can be simplified. Let M j be the column vector of
the Mij for which i 6= j . The equations are now given by

THEOREM B.1. M j = 1+ [ j↓P ] · M j .
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where 1 is the column vector of the appropriate size made up entirely of ones.
To use Theorem B.1 to find the average time to get from one state to another,

we need to be sure that by solving the equation we actually have found the Mij.
Fortunately, we have

THEOREM B.2. For each j ∈ S, (I− [ j↓P ])−1 exists.

It therefore follows that

COROLLARY B.3. The system of equations given in Theorem B.1 has a unique
solution given by

M j = (I− [ j↓P ])−1 · 1.
Hence, as required

Mij = ((I− [ j↓P ])−1 · 1)i.

The proof of Theorem B.2 is a consequence of the following two lemmas.

LEMMA B.4. For each k ∈ S, [k↓P ]n → 0 as n→∞. That is, [k↓P ]n
ij → 0 as

n→∞.

LEMMA B.5. If for some square matrix of real or complex numbers, A, An→ 0
as n→∞ then (I− A)−1 exists and

(I− A)−1 =
∞∑

n=0

An.

This last lemma is well known (see Seneta [1981]), so we omit the proof.
However, an informal check will easily show that the definition given of (I− A)−1

satisfies, as it should,

(I− A) · (I− A)−1 = I = (I− A)−1 · (I− A).

The proof of Lemma B.4 is provided for completeness as it is often given in
much greater generality, and hence with complexity superfluous to our purposes
(see Seneta [1981]).

PROOF OF LEMMA B.4. Fix some k ∈ S, and let Q = [k↓P ]. Because Q deals
only with transitions omitting k, it represents the probability of getting from
state i to state j in exactly one step without passing through state k. Also, Qn

is the probability of getting from state i to state j in exactly n steps without
ever having passed through state k.

For a sensible user interface, it must be possible to get from any state i 6= k
to k after say some N steps (otherwise, the user interface has states which are
not accessible!). But as Q N represents the probability of not visiting k after N
steps, it must be that ∑

j∈S\{k}
Q N

ij < 1.

As in this sum, but for clarity, we will implicitly take all further sums over
S\{k}. Now, by definition, for any n,∑

j

Q (n+1)
ij =

∑
j

∑
r

Qn
ir × Prj
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which by Eq. (1) gives ∑
j

Q (n+1)
ij ≤

∑
r

Qn
ir.

Hence, for all n ≥ N , if θ =∑ j Q N
ij , then∑

j

Qn
ij ≤ θ < 1.

Moreover for each m ≥ 1,∑
j

Q N (m+1)
ij =

∑
j

Q N
ij

∑
r

QmN
ir

≤ θ
∑

r

QmN
ir .

Therefore, proceeding by induction, we have∑
j

QmN
ij ≤ θm. (3)

But as m→∞, θm→ 0. Thus the sums on the left-hand side of Eq. (3) tend to
zero and form a convergent subsequence of the monotone decreasing sequence
of the sums ∑

j

Qn
ij.

Thus these sums tend to 0 as n → ∞. From this it follows that Qn
ij→ 0 as

n→∞, as each of these is nonnegative. This proves the elementwise conver-
gence stated in the lemma.

C. COALESCING STATES

We may wish to reduce a large set of states to a smaller number, for instance
to define an alternative model. This appendix discusses the conditions un-
der which this simplification may be performed: states can be grouped to-
gether (while preserving certain properties) provided they share next-state
transition probabilities. This requirement is similar to the grouping property
of Statecharts [Harel 1988] that states nontrivially grouped together share
next-state transitions.

Given a probability transition matrix P , we wish to find a smaller matrix
with equivalent properties, so we can use smaller Markov models and obtain
the same results. We shall do this by merging two sets of states together into a
single state, and call the new probability transition matrix P∗.

What are the conditions these merged states must satisfy, and what is the
appropriate way of calculating P∗ from P?

Since the allocation of the N state numbers is arbitrary, we can exchange
rows and columns in P so that the states to be considered for merging are
adjacent. If the respective state occupancy probabilities of the two states are a
and b, then the complete state probability vector can be written (a b C), where
C is a vector.
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Now let (a b C) · P = (a′ b′ C′). Since the probabilities are independent, we
require

(a + b C) · P∗ = (a′ + b′ C′).

Write out P and P∗ as conformant block matrices (so p31, p32, p∗21 are column
vectors; p13, p23, p∗12 are row vectors; p33, p∗22 are square matrices; and the
rest are 1× 1 matrices):

P =
p11 p12 p13

p21 p22 p23
p31 p32 p33

, P∗ =
(

p∗11 p∗12
p∗21 p∗22

)
Multiplying out we obtain constraints:

p∗22 = p33

p∗21 = p31 + p32

p∗12 = p13 = p23

(a + b)p∗11 = ap11 + bp21 + ap12 + bp22

The last constraint must hold for all a and b, so p∗11 = p11 + p12 = p21 + p22.
This appears to be a tiresome constraint: but since P is a probability matrix (all
rows add to one), the condition is equivalent to the existing constraint p13 = p23.
Collecting the equations we have

P∗ =
(

p11 + p12 p13
p31 + p32 p33

)
, provided p13 = p23.

If either a or b is always 0, then the constraints are trivial. In other words if
there are states that are not initially occupied and are never reachable (which
p31 = 0 or p32 = 0 would imply), then they can be deleted.

The process of pairwise grouping can be repeated, reducing any set of suitable
states into a single superstate (and there is no need to first permute the states
to start at 1 or be adjacent). In words, we can group any states into a single state
provided only that all states in the group share identical transition probabilities
out of the group—this is the p13 = p23 constraint.

It may be more convenient to deal with frequencies rather than probabilities.
For example, a system specification will typically give explicit state-to-state
transitions, and “summing over states” will then directly give counts of all out-
transitions for all states under consideration. Since probabilities are relative
counts, a reduced matrix can be obtained by adding the appropriate counts
together and dividing through each row by its total.

The transformation of P to P∗ preserves the probabilities and the results
obtained from a Markov model, but with one proviso: since states have been
merged, the Markov model no longer “counts” transitions between those origi-
nal states.
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