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Abstract. Literate proving is the analogue for literate programming in
the mathematical realm. That is, the goal of literate proving is for hu-
mans to produce clear expositions of formal mathematics that could even
be enjoyable for people to read whilst remaining faithful representations
of the actual proofs. This paper describes maze, a generic literate prov-
ing system. Authors markup formal proof files, such as Mizar files, with
arbitary XML and use maze to obtain the selected extracts and trans-
form them for presentation, e.g. as LATEX. To aid its use, maze has built
in transformations that include pretty printing and proof sketching for
inclusion in LATEX documents. These transformations challenge the con-
cept of faithfulness in literate proving but it is argued that this should be
a distinguishing feature of literate proving from literate programming.

1 Introduction

Whilst formal languages, such as those used in formalised mathematics and pro-
gramming, are ideal for communicating with a computer, they are far removed
from the natural discourses that take place between humans in natural languages.
Indeed, it can be argued that overcoming the distinction between human-human
discourse and human-computer discourse is the entire basis for the discipline of
human-computer interaction.

In formal mathematical proofs, humans may rapidly become lost in the detail
and fail to understand the proof [19] or even to recognise them as a proof [4]. The
corresponding difficulty of understanding programming languages has long been
recognised. Documentation is considered to be a valuable resource for communi-
cating the purpose and concepts embodied in the formal code [9]. However, it is
also recognised that coding and documenting code are quite different activities
and that the documentation of code is rarely of a high, readable standard.

To help overcome the division between program and documentation, Knuth
devised the notion of literate programming [8]. Here the code and its explanation
are combined together in a single document. Knuth’s hope was that in doing so,
programs would be faithfully described because when changes were made to the
code, corresponding changes could be made to the documentation located in the
same place. Of course, this is what people normally do with code comments.



However, a commented program does not make for easy reading for a human.
Knuth’s further step was to transform the single document in two different ways
— one way to produce the compilable version of the code, the other to produce
a human readable document. In this way, documentation would not only be
faithful to the code but might even become an enjoyable literary work in its own
right.

Formal mathematics shares many of the features of programming languages.
In recent years, large repositories of formal mathematics such as the Mizar [10]
and Coq libraries are being developed (and more are planned with on-going
MKM). Whilst these libraries are not expected to change in the same manner as
program code, there is nonetheless a need to document the formal language to
help guide a reader through ideas, notation and even the trickier parts of formal-
isation [7]. In fact, Cruz-Filipe et al. (ibid.) recognise that some form of literate

proving, that is, the weaving together of formal proofs and documentation, would
be valuable.

This paper describes maze, a working system that implements literate prov-
ing. It deviates from Knuth’s original implementation, instead following more
modern versions of literate programming [14], as will be discussed in the next
section. The way maze provides literate proving functionality is based on three
key principles:

1. No changes made to the proof tool being used.

2. Minimal interference with the proof source files.

3. Minimal restrictions on the form of the proof or its presentation.

This is achieved by allowing the author to use arbitary XML markup to structure
their proof source files and using comment syntax to ’hide’ the markup from the
proof tool. For instance, using maze an author of a Mizar article can extract
parts of the article for ready inclusion in a LATEX document, whilst still writing
a normal, checkable Mizar article. The principles embodied in maze are quite
general, making it widely applicable. We have so far used it to produce literate
versions of proofs from the Mizar, Isabelle and Phox systems. The key point is
that regardless of the underlying formal system, maze provides a good level of
presentation with very little effort on the part of the author.

In order to aid discussion, the maze system will be described before we expand
on the principles behind the system and literate proving in general. Most of the
examples provided are taken from Mizar, specifically [18], as Mizar represents
a substantial library of formal mathematics that could conceivably benefit from
being presented via maze. Examples are also given for other proving systems to
demonstrate the flexibility of this approach. Also, we have included as an ap-
pendix a short article presenting the proof of the irrationality of e as presented in
the Mizar library. The maths in the article was generated entirely automatically
from the original Mizar article [15]1 using maze.

1 http://www.mizar.org/JFM/



2 From programming to proving

In Knuth’s conception of literate programming, the source code for a program
and the documentation of a program would be written jointly in a single docu-
ment. This document could then be transformed one of two ways to give either
the executable version of the program code or the typeset version of the docu-
mentation, as depicted in Figure 1. In this way, the source code as described in
the documentation and the source code as compiled were one and the same —
there was no duplication through cut-and-paste and no slightly different versions
between that presented and that compiled. Morever, the original document did
not need to follow the logical structure of the code at all but instead the docu-
mentation and the code were interleaved and interlinked as best fitted a literary
exposition. For this reason, Knuth called his system web.

Fig. 1. The structure of Knuth’s web

The drawback with this was that the program was actually written through
a series of macros and that macro language needed to be learned. In addition,
web and subsequent literate programming systems, such as cweb [13], tend to
impose their own formatting. Though these native formats could no doubt be
changed, they would require some intimate knowledge of the workings of the
system.

Thus, the tightly coupled documentation and code of web imposes its own
limitations. With regard to say the Mizar library, a literate proving system of
this sort would also require refactoring significant parts of the Mizar library to
be able to generate the original articles and their corresponding documentation.

Also, it must be noted that though the motivations of literate proving are
similar to those of literate programming, the goals of literate proving are not.
For example, the same piece of mathematics may be used in different ways. For
instance, a description of the real line may strongly vary depending on whether
it is to be used in developing the theory of fields or as a prototypical metric
space. It is unlikely that similar concerns would arise in program description.



This suggests that a literate proving system would require rather looser cou-
pling between the proofs and their documentation. A more recent literate pro-
gramming system, Warp, shows a possible way forward [14]. With warp, the
literate programming system is essentially a way of extracting code from a pro-
gram and into manageable chunks. These chunks can be incorporated, in any
order, into a larger document that describes what they are and also typesets
them appropriately. This is precisely the model used in maze and is shown in
Figure 2.

Fig. 2. The structure of maze

With maze then, the principles of literate programming are maintained. That
is, there is only one version of the formal mathematics and there is a freely flexible
relationship between the description of the mathematics and its logical structure.
This clearly comes at the cost of a separation between the formal mathematics
and the documentation. The risk then is of course that the source mathematics
could change independently of its description. However, the author who cared
about the description would still be obliged to update the documentation if it
were to make sense.

The next section gives details of how maze extracts chunks of Mizar articles.
The interested reader is refered to Thimbleby’s paper on warp for a deeper
discussion of the various types of literate programming systems and their relative
merits and drawbacks [14].

3 maze

For maze to extract the required parts of a formal proof script, it is necessary
to insert markers in the proof. Of course, any markers will necessarily stand
out from the formal language. To prevent the markers from interfering in the
validation of the proof, the comment tags for the article are used to hide the
maze instructions from the formal system. The instruction to maze, within a



comment, is in the form of an XML tag. For example, in Mizar, the comment
tag is :: and so the tags marking the beginning and end of a portion to extract
would be:

::<maze id="extract">

...Mizar article...

::</maze>

As you might expect, when maze encounters this pair of tags, everything between
(and including) the tags is written to the file extract.xml.

Note that apart from the comment tags for the particular formal language,
maze requires no other knowledge of the underlying language. This makes adapt-
ing it to other formal languages relatively straightforward.

The XML style, following Warp [14], seems a natural choice. A model of maze

is that it extracts any portion of an article between such tags and in the process
drops the comment markers from any such tags. Any non-XML comments are
marked with <comment> tags. From this simple process, to use the extracts in
documents such as LATEX or HTML, further transformations of the extracted
parts are optionally performed using XSL. For example from the marked up
section of Mizar as follows:

::<maze id="demo">

::<theorem><statement>

theorem Th21:

-K = -Q implies K = Q

::</statement><proof>

proof

::Uses the natural property of inverses

--K = K & --Q = Q

::<ref>

by PRE_TOPC:20;

::</ref>

hence thesis;

end;

::</proof></theorem></maze>

maze produces the following:

<maze id="demo">

<theorem>

<statement>

theorem Th21:

-K = -Q implies K = Q

</statement>

<proof>

proof

<comment>

Uses the natural property of inverses

</comment>

--K = K & --Q = Q



<ref>

by PRE_TOPC:20;

</ref>

hence thesis;

end;

</proof>

</theorem>

</maze>

However, rather than require an author to also have knowledge of XSL or to
spend time on developing an appropriate stylesheet, maze has certain transfor-
mations built-in. These are described in the following subsections.

3.1 maze for LATEX

The simplest method for getting text into LATEX is to have maze produce plain
text extracts within the LATEX verbatim environment. If the target, though,
is truly readable LATEX then of course a verbatim version of text falls short
of nicely presented mathematics in several ways. Specifically concentrating on
Mizar, the Mizar language is entirely in standard ASCII text and so lacks the
finesse of the rich character sets and symbols that LATEX has. For this reason,
maze is also able to produce a pretty version of the output from Mizar articles
suitable for LATEX. For example, here is a theorem and its proof that has been
pretty printed from [18]:

Theorem Th20 :
Kc = Q iff K misses −Q
Proof

A1 : −Q = Q′ by STRUCT 0 :def 5;
hereby assume Kc = Q; then
K \ Q = by XBOOLE 1 : 37; then
K/ \ Q′ = by SUBSET 1 : 32;
hence K misses −Q by A1, XBOOLE 0 :def 7;
end;
assume K misses −Q; then
K/ \ −Q = by XBOOLE 0 :def 7; then
K \ Q = by A1, SUBSET 1 : 32;
hence thesis by XBOOLE 1 : 37;
end;

The pretty printing follows some simple heuristics to produce this output.
These are as follows. First, single characters have been interpreted as variables
and so are put into the math environment. Trailing numerals after a string
of letters are assumed to be subscripts. Thirdly, keywords such as “theorem”
have been put into the small caps font. Finally, characters that would normally



correspond to LATEX control codes have been appropriately converted to appear
correctly in the final document.

Though the output is obviously more “latex-y”, it could not really be called
pretty. Symbols that are a natural feature of Mizar such as c= for subset, appear
peculiar in LATEX as c =. Though heuristics could also be developed to handle
these, they would begin to require more detailed parsing of the Mizar source and
this is not without hazard or even always possible [5]. Instead, a lighter method
has been chosen that places the control in the hands of the author. When ex-
tracting text for pretty LATEX, maze is also able to consult what we have called
a match file. In this, strings from the Mizar article appearing in the match file
have replacement LATEX code that is used instead of the string. The match file
takes priority over any of the other heuristics. The result appears like this:

Theorem Th20 :
K ⊆ Q iff K misses −Q
Proof

A1 : −Q = Q′ by struct 0 :def 5;
hereby assume K ⊆ Q; then
K \ Q = ∅ by xboole 1 : 37; then
K ∩ Q′ = ∅ by subset 1 : 32;
hence K misses −Q by A1, xboole 0 :def 7;
end;
assume K misses −Q; then
K ∩ −Q = ∅ by xboole 0 :def 7; then
K \ Q = ∅ by A1, subset 1 : 32;
hence thesis by xboole 1 : 37;
end;

In this example, the ASCII representations of some symbols have been re-
placed with the corresponding LATEX symbols. Other symbols have been replaced
with a more usual one such as the replacement of {} with ∅. Also, the match
file need not be confined to mathematical symbols and here has been used to
make the references to other articles appear in a different font. The match file
that was used here consisted of only eight lines of text, one line per match and
its replacement, and so could easily be produced by an author.

The example in appendix A uses the match file extensively to help produce
a version of the Mizar proof that uses the standard summation notation for
series. The appendix also uses skip tags to help present the proof — these work
as described in the next section but for pretty printing insert ellipsis to show
omitted material.

3.2 Proof sketching with maze

Literate proving, like literate programming, should strive to be about producing
a document that not only elucidates the proofs presented but also makes that



experience enjoyable to the human reader. However, as is well known, formal
mathematics of the sort found in the Mizar library has a tendency to be verbose
and for key insights to be lost in the detail [16, 6]. To aid in exposition and
enjoyment, some form of simplification is often necessary.

For this reason, maze is able to automatically generate proof sketches. The
form chosen was that proposed by Wiedijk as a way to aid constructing formal
proofs in Mizar [17]. The two things that distinguish a formal proof sketch from
a completed Mizar proof are: references in support of proofs steps are always
omitted; some proof steps are also omitted. The sketch should therefore be a
summary of the most salient proof steps of the formal proof.

The omission of references is easily achieved automatically in maze since
all references are indicated by the keyword by. In contrast, the assessment of
which proof steps are most salient can only be made by the author. For this
reason, a second maze specific tag was introduced, namely skip. Where skip

tags are placed within maze tags, all of the text except the text marked up to be
skipped is placed in the file specified by the maze tag. The result is put in the
verbatim environment. Here is an example of a complete Mizar proof that has
been sketched to appear in this article:

theorem

P is dense & Q is dense & Q is open implies P /\ Q is dense

proof

assume that A1:P is dense and A2:Q is dense and A3:Q is open;

[#] TS c= Cl(P /\ Q)

proof

now let C be Subset of TS; assume A7: C is open;

assume x in C;

then Q meets C then

A8:Q /\ C <> {}

Q /\ C is open

then P meets (Q /\ C) then

hence (P /\ Q) meets C

end;

hence thesis

end;

then Cl(P /\ Q) = [#] TS

hence thesis

end;

Of course, this output could also be pretty printed if required. Any automa-
tion of the proof sketching necessarily needs to know something about the struc-
ture of the formal language. Currently, therefore, maze only does proof sketching
for Mizar.

3.3 Tactic-style proof assistants

Having illustrated maze’s functionality using Mizar, we now briefly show the
versatility of the system with example based on the Phox system [12]. Phox is a



proof assistant with a tactic-style form of interaction: the user specifies how the
system should transform the proof state, in a similar fashion to Isabelle, HOL
and many other proof tools. This is a very different form of interaction to the
declarative proof style of Mizar — nonetheless, maze can still be used for literate
proving.

As with Mizar, a section of Phox proof file can be marked up freely by the
author, as follows:

(* <maze id="square"><theorem> *)

(* Product of squares equal to square of the product. *)

(* <statement> *)

fact square.mult /\x,y (square x * square y = square (x * y)).

(* </statement><proof><skip> *)

intros.

(* </skip><rewrite> *)

unfold square.

(* </rewrite> *)

(* (x.x).(y.y) = (x.y).(x.y) *)

(* <calc> *)

rewrite -p 1 mult.assc.R.

rewrite -p 4 mult.comm.R.

(* </calc> *)

(* = (x.(x.y)).y *)

(* <final> *)

rewrite mult.assc.R.

(* <skip> *)

trivial.

(* </skip></final></proof></theorem></maze> *)

Here the author has chosen to mark up the short six-line proof as three steps:
two <rewrite> steps (one line each) and a <calc> step (two lines), with the
trivial first and last lines skipped over. They have also annotated the script with
comments that declarative describe some of the proof states. This is transformed
into the following XML:

<maze id="square">

<theorem>

<comment>

Product of squares equal to square of the product.

</comment>

<statement>

fact square.mult /\x,y (square x * square y = square (x * y)).

</statement>

<proof>

<rewrite>

unfold square.

</rewrite>

<comment>(x.x).(y.y) = (x.y).(x.y)</comment>

<calc>

rewrite -p 1 mult.assc.R.



rewrite -p 4 mult.comm.R.

</calc>

<comment>= (x.(x.y)).y</comment>

<final>

rewrite mult.assc.R.

</final>

</proof>

</theorem>

</maze>

This example illusrates how maze allows the author to freely annotate and
structure their proofs, and consequently to present them in any way they like.
This freedom requires the author to design their own presentations (or to use
others designs), but allows them to design and present literate formal proofs,
where the structure is tailored to suit their presentation needs.

3.4 Implementation details

maze is implemented in Java with the formal source being either passed as a
command line parameter or through the standard input. A single source file
may have multiple <maze> sections extracted, each going to an individual file as
specified in the id attribute. If id has value foo the output file is foo.xml, if it
is omitted the output is sent to the standard output.

The system can configured for a particular proof tool by providing it with
a simple description of the system’s comment syntax. The different transforms
described in the paper are produced by engaging various modes via command
line options. These modes are:

Raw : Extracts data without any changes.
Text : XML tags are not shown in output.
All : Data within of skip tags is extracted.
Verb : Places a LATEX verbatim environment around the output.
Suffix : changes the filename suffix of the output file.
Help : produces a summary of the flags and match file structure.

maze is freely available along with all the source code used in the production of
this article from the author or from the web-site: www.uclic.ucl.ac.uk/paul.

4 The principles of literate proving

First and foremost, it is worth noting that maze embodies a generic set of prin-
ciples, like the Warp literate programming system [14], that are not specific to
this particular implementation. These are:

1. The use of “commenting out” for maze instructions so that they are ignored
by a proof checker

2. Proof extracts being XML marked up for further transformations



3. The match file concept to aid pretty printing without deep semantic knowl-
edge of the formal language

4. The use of skip to aid proof sketching
5. A small and simple instruction set (currently two commands).

Of course, there are specific features such as the pretty printing of keywords
in small caps and how proof sketching is performed that are specific to Mizar.
Even then, it should be noted that Mizar, as a large body of formal mathematics,
is being used to demonstrate literate proving but maze is not deeply entangled in
that particularly library. maze can be trivially reconfigured to work with other
proof tools — we have so far also used it with Phox and Isabelle. Where lit-
erate proving differs across these systems is not in the nature of the tool but
actually what it means to make the different sorts of formal proofs literate: con-
trast the use of maze with Mizar’s declarative proofs against Phox’s procedural
proof scripts. Literate proving allows us to attach some structured declarative
information to selected procedural steps, greatly improving proof presentation
for these systems.

The general concept of literate proving though does seem to have separate
concerns from literate programming. Literate programming is concerned with
producing programmes that are enjoyable for human readers to read. Likewise,
literate proving is about producing formal proofs that are enjoyable for humans
to read. Literate programming has the goal also to be faithful to the actual
program, hence the close coupling of the code and the documentation. In maze, it
is possible to have entirely faithful presentations of proofs but in fact it produces
more readable documents if they are pretty printed and also sketched. Thus, the
presentation of the proof can differ significantly from the original. This could
have consequences where a person reading both literate proofs and the original
proofs is unable to easily make a connection between the two. The impact of the
superficial differences may be not be so superficial and only time will tell.

Tools such as maze provide a guarantee that faithfulness is preserved —
the presented proof is automatically generated from the original. Of course, the
author defines any match file used in pretty printing but it is to be hoped that
an author would make logical or at least acceptable choices for ensuring that
Mizar symbols are replaced with suitable LATEX symbols. Where unusual choices
of matching symbol have been used, the author should have some responsibility
to explain their choice.

Another difference between literate programmming and proving is that the
description of a program is deliberately quite specific to the tasks of that par-
ticular program. The documentation is therefore aimed at explaining how the
program meets the overall tasks or how subtasks lead to the completion of the
tasks. Standard algorithms such as quick sort would not be the most interesting
ones to explain in a program’s documentation. In contrast, literate proving could
have a number of goals.

A literate proof could be along the lines of a literate program to explain how
a particular formal proof represents a more traditional proof or how particular
features of the formal language were used. Unlike programs though, proofs are



objects of interest to mathematicians in and of themselves not just the tasks they
achieve [19]. They are communication acts that lead to other ideas and mathe-
maticians may wish to explain a proof in different ways depending on how that
proof is used in a particular domain. For example, a diagonalisation proof may
be explained very differently for a mathematician than for a computer scientist.
Moreover, there can be no sense in which a given explanation that is not merely
about language specifics could be sufficient for all time. Fortunately, maze’s im-
plementation is such that there is no constraint to have only one explanation but
it provokes interesting questions as to the role of literate proving in the wider
realm of mathematical knowledge management.

5 Related Work

Several proof tools already provide some form of document generation. With the
Coq system [3] comes the CoqDoc tool to transform Coq proof files into LATEX
and HTML. CoqDoc allows pretty printing of formal objects, explanatory text
in comments (including LATEX/HTML commands) and hiding of subparts of the
document. maze reproduces this functionality, and with an appropriate stylesheet
could produce identical presentations. However, although some presentation de-
tails may be specified, CoqDoc produces documents of a roughly fixed structure
and style. In contrast, with maze the author is free to choose both the structure
and style: any form of XML markup may be used and transformed to a range
of presentation formats and styles. While CoqDoc is well suited to producing
more readable versions of proof files in a standard LATEX or HTML format, maze

allows much more flexible document generation.
We believe literate proving to be better supported by systems that give the

author freedom to markup and present formal proofs as she sees fit, rather than
imposing a standard structure that is bound to the underlying proof files. Apart
from CoqDoc, all other systems we are aware of suffer from similar drawbacks.
For example, Isabelle/Isar allows generation of LATEX and HTML, but of a pre-
determined structure and style [11]. The HELM project [2] has developed an
XML generation tool for Coq, but the structure is that of the underlying proof
terms, and does not provide support of a more free-form development of literate
proofs.

6 Conclusion

Literate proving is the analogue of literate programming for formal proof lan-
guages and maze is a system that implements literate proving as demonstrated
on the Mizar library. It is clear from maze that some straightforward principles
can be used to do literate proving for any formal mathematical language but
that some form of pretty printing and sketching is likely to be desirable. It is
also worth noting that literate proving is not entirely a mathematical version of
literate programming but rather literate descriptions of proofs could be manifold



and need updating as more mathematics is learned. Quite how literate proofs
may fit into the wider body of mathematical knowledge remains to be seen.
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A Example: the irrationality of e

As an extended example we present a short article based on Freek Wiedijk’s
Mizar proof of the irrationality of e [15]. Here maze has been used to provide
pretty printed extracts from a marked-up copy of the original Mizar article. Some
of the extracts are sketches of the underlying formal proofs.

A.1 Overview

Theorem

e is irrational

In the Mizar library, e is defined as the usual infinite sum. More explicitly, e
is the sum of the sequence, eseq, where:

Definition

func eseq − > Real Sequence means
: Def5 : for k holds it.k = 1/(k!);

Briefly, the proof mainly considers the terms of eseq multiplied by n! for some
appropriately chosen n. In this case, if e were rational, the sum of the final
n terms of eseq×n! would have to be an integer. However, this expression can
be bounded by a geometric series and hence must be a positive integer strictly
between 0 and 1 — a contradiction.

A.2 Bounds on the terms of eseq ×n!

First we require two lemmas on the terms of eseq. The proof of the first lemma
is a straightforward induction on k and tells us that each term of the sequence
eseq ×n! is bounded by a corresponding term in the geometric series.

Theorem Th39

x = 1/(n + 1) implies (n!)/((n + k + 1)!) <= x ↑ (k + 1)

The second lemma gives us a bound for the tail of the series for e. Note that the
bound is in fact the sum of the geometric series from the previous lemma.

Theorem Th40 :
n > 0&x = 1/(n + 1) implies n! ×

∑
∞

n+1
(eseq) <= x/(1 − x)

Proof
...
A4 : 0 < x&x < 1 by A1, A2,Real 2 : 127,Square 1 : 2;
deffunc F (Nat) = x ↑ ($1 + 1);
consider seq being Real Sequence such that
A5 : for k holds seq.k = F (k) from Seq 1 :sch 1;
...



then A10 : seq is summable &
∑

(seq) =seq.0/(1− x) by A4, A7,Series 1 : 29;
A11 :

∑
(seq) = x/(1 − x) by A6, A8, A9,Series 1 : 29;

A12 : (eseq)∞
k=n+1 is summable by Th24,Series 1 : 15;

now let k;
A13 : (n!(#)((eseq)∞

k=n+1)).k = n! × (((eseq)∞
k=n+1).k) by Seq 1 : 13

. = n!×eseq.(n + 1 + k) by Seqm 3 :def 9

. = n! × (1/((n + k + 1)!)) by Def5

. = n!/((n + k + 1)!) by Xcmplx 1 : 100;
hence (n!(#)((eseq)∞

k=n+1)).k >= 0 by Th34;
seq.k = x ↑ (k + 1) by A5;
hence (n!(#)((eseq)∞

k=n+1)).k <=seq.k by A1, A13, Th39;
end;
then

∑
(n!(#)((eseq)∞

k=n+1)) <=
∑

(seq) by A10,Series 1 : 24;
hence n! ×

∑
∞

n+1
(eseq) <= x/(1 − x) by A11, A12,Series 1 : 13;

end;

A.3 The proof of the irrationality of e

Proof

assume e is rational;
then consider n such that A1 : n >= 2&n! × e is integer by Th32;
A2 : n! × e = n! × ((

∑n

1
(eseq) ) +

∑
∞

n+1
(eseq))

by Def6, Th24,Series 1 : 18
. = n! × (

∑n

1
(eseq) ) + n! ×

∑
∞

n+1
(eseq);

reconsider N = n! × e as Integer by A1;
reconsider N ′ = n! ×

∑
n

1
(eseq) as Integer by Th38;

A3 : n! ×
∑

∞

n+1
(eseq) = N − N ′ by A2;

set x = 1/(n + 1);
A4 : x/(1 − x) < 1 by A1, Th41;
n > 0 by A1;
then n! ×

∑
∞

n+1
(eseq) <= x/(1 − x) by Th40;

then n! ×
∑

∞

n+1
(eseq) < 0 + 1 by A4,Axioms : 22;

then n! ×
∑

∞

n+1
(eseq) <= 0 by A3, Int 1 : 20;

hence contradiction by Th36;


