
There’s always one! Modelling outlying 
user performance.

Abstract
Informal analysis of many usability tests suggests that 
there is regularly one participant that is substantially 
slower than all the others.  Moreover, such outliers are 
more extreme and more frequent than would be 
predicted by a normal distribution. We propose using a 
rational model to explain the outliers and the work 
described here begins to parameterise the model based 
on empirical data to provide accurate analyses of user 
performance. This prediction appears to be correct and 
the model begins to reflect the outlying performance. 
Moreover, by using an executable model, we believe 
that it could be used in future as an analytical tool to 
help designers improve usability for those users who 
are struggling the most.
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Outlying performances in usability tests
Many usability tests and studies tacitly assume that 
user performance, specifically, time to complete a task, 
is accurately represented by a normal distribution. This 
can be seen by the prevalence of t-tests and ANOVA to 
analyse the differences in task times between different 
interfaces or in different conditions [4]. However, 
informal analysis of usability tests suggests that there 
always seems to be one participant in a test that is 
substantially slower than all of the others.  Moreover, 
this person is not only performing a bit worse but is 
more than 2.5 standard deviations from the average 
performance. The probability of this happening under 
the assumption of normality is p<0.0025 or less than 
one such user in 400. Thus, in modest usability tests 
involving tens of users, it would be rare to see such 
outlying performances at all, let alone regularly in most 
tests.  This suggests that the distribution underlying 
user performance is not normal but has a strong 
positive skew resulting in a higher proportion of very 
slow times.

Many usability tests also focus on average performance 
where the mean task time across participants is 
compared for different designs. Obviously 
improvements in means should substantially affect any 
user but the total reduction in task times could be quite 
small and may not correlate to improvements in user 
experience, rather than user performance. Small 
changes in average task time may be irrelevant to 
users and so not worth the additional development 
effort. However, for the straggling, outlying users, 
improvements in design could result in a twofold 
improvement in performance. That is, there is room to 
substantially improve the happiness of a few individuals 
while having only a small impact on the performance of 

the masses. This surely must be something that 
human-computer interaction (HCI) should consider. 
Arguably, HCI is already considering such factors with 
the notions of accessibility and universal access but by 
considering them as special cases rather than features 
of a general population of users.

We therefore propose that the user performance is not 
fully modelled by the normal distribution but that 
finding a more appropriate distribution could lead to 
improvement in usability that, for some users, will be 
enormous. Undoubtedly, it is possible to find a 
distribution that fits the data that we observe. 
However, without an explanation of why this 
distribution is appropriate, such a distribution must 
always be considered as contingent. It will always be a 
possibility that some new or more accurate 
observations undermine the validity of the new 
distribution. A theoretical approach is necessary but in 
the face of such a complex phenomenon as users 
performing tasks, it would be hard to specify a theory 
in sufficient detail to infer an accurate statistical 
distribution. Therefore, in seeking a better statistical 
distribution, we have taken a modelling approach 
where a model is run many times to provide an 
approximation of a population distribution, akin to a 
Monte Carlo simulation. The theory behind the model 
provides a theoretical justification for the arising 
distributions. 

There are some key features in choosing the model as 
discussed in the next section.  Like many models there 
are parameters to the model that need to be chosen, in 
particular what constitutes a valid set of variations 
between individual runs of the model. We therefore 
undertook an empirical data gathering exercise, 
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primarily to determine suitable parameters, but also to 
provide data to confirm our informal observations and 
to help evaluate the model. This is described below 
followed by an analysis of the performance of the 
model which leads naturally to a discussion of future 
work and our hopes for this approach. 

The TreeWalker model
In devising a suitable model to simulate users 
performing a usability test, we required a model that 
could: work over a variety of systems; perform a 
variety of tasks; and faithfully replicate user behaviour. 
The cognitive model of Cox and Young [6] is a rational 
model of users selecting items from a menu of items 
depending on the task given to the user. It has been 
shown to replicate many of the actual behaviours 
exhibited by real people [3] such as choosing an item 
without fully scanning the list, back tracking and 
skipping over items. This cognitive model has a clean 
interface in that the only information used in making 
decisions on actions to perform is based on the notion 
of an information scent [7] of the relevance of a menu 
item to the task in hand. For example, a perfectly 
designed menu would lead the user to consider only the 
required item to be relevant, and so be scented with a 
value of 5, whereas all other items are irrelevant and 
so scented with a 1. The cognitive model would reject 
all the 1-scented items and choose the 5-scented item. 
This contrasts with other cognitive modelling 
approaches such as ACT-R [2] where in addition to a 
generic cognitive architecture, the model also requires 
representation of knowledge specific to the tasks and 
the interfaces being studied.

Young and Cox’s model was not intended for anything 
more than item selection but it is easily extended to 

make repeated choices over a network of nodes and 
hence to simulate a user navigating a more complex 
menu hierarchy. Moreover, this overall set up gives a 
clear separation of system and user: the menu 
hierarchy is represented by a graph of connected nodes 
[8], the task is represented by an information scent 
overlying the graph and the user model makes 
decisions based solely on the information scent. The 
overall executable model was therefore a combination 
of these three elements. We implemented it in Java 2.0 
as the TreeWalker system.

A large class of interactive applications can be modelled 
using TreeWalker, for example, finding items on a 
website or activating functions in a mobile phone menu. 
The model, however, is rational so when faced with the 
same scent structures on a given menu hierarchy it 
always behaves the same way. In order to simulate 
distributions of user performances, therefore, the scent 
structures are varied reflecting the variation that people 
perceive in the relevance of menu items to a particular 
task.  That is, while some people may consider an item 
highly relevant for a task, others may consider it to be 
less relevant. In terms of the model, the person rating 
the item relevance as highly relevant would associate a 
scent of 5 to the item where the other person would 
perhaps give it a scent of 4 or 3. These variations are 
sufficient to produce radically different selection 
behaviours while using the same underlying rational 
process.

Thus, through perturbing the scent structures when 
TreeWalker is navigating a menu hierarchy, it is 
possible to produce a wide range of behaviours and in 
particular ones that take circuitous routes to achieving 
the task, if they achieve it at all. The question now is, 
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what is an appropriate range of variations to the scent 
structure so that is reflects the variations seen between 
people? To this end, we conducted a study to gather 
data on how people perceive the scent of menu items. 

Gathering user data
The goal of the data gathering study was to get users 
to rate menu items for relevance to achieve a task and 
also as a comparison with the model performing the 
tasks. A secondary goal was to replicate the initial, 
informal observation that “there is always one!” To fill 
out the picture of a statistical distribution, a large 
number of participants was required. The empirical data 
gathering was therefore done using an online 
questionnaire (n=190) that took scent ratings and also 
performance measures of the subjects. 

Methodology
The questionnaire asked information seekers to assess 
common, public-access webpages to accomplish two 
randomly tasks chosen from a set of five different tasks 
on four different websites.  This number of tasks and 
websites were chosen to avoid issues specific to one 
task or tasks on a particular type of website. Tasks 
were intended to be realistic and appropriate to the 
website such as finding a present for a girl on a 
department store website.

After completing the demographic section, the 
participant used the page to view a set of 2 to 4 stored 
pictures, depending on the first task they were given. 
These pictures appeared automatically and represented 
menus that an information seeker would see following a 
direct route through the menu hierarchy to achieve the 
first task. Participants were asked to assess the 
relevance of each menu item in each picture for 

relevance to the task on a scale of 5 (very relevant) to 
1 (not at all relevant). For the second part of the 
questionnaire, the participants were directed to 
complete the second task on the actual, live website. 
They were given a free text entry field to respond with 
the desired information and timed. The timing began 
when the participant opened the live site via a 
hyperlink and ended when an answer was entered and 
the survey submitted.

All participants were regular Internet users and 
received the survey via the Internet. Information 
seekers were solicited anonymously via distribution on 
the web, news groups, and social networking sites.
There were 68 female respondents and all respondents 
were proficient with using the Internet.

Occurrence of outliers
First, it is useful to examine whether outlying 
performance was occurring more frequently than we 
would expect with a normal distribution. Outliers are 
usually identified in a known normal distribution in 
terms of being a certain proportion of standard 
deviations away from the mean. For our purposes we 
took an outlier to be a point more than 2.33 standard 
deviations from the mean as this corresponds to a 
probability of occurring in a normal distribution of 
p<0.01. In collected samples though, the means and 
standard deviations are estimated from the sample and 
any outliers contribute to these estimates. Thus they 
can distort the estimates leading to themselves looking 
less extreme. We therefore estimated the number of 
outliers for each task in two ways. The first way used a 
standard estimate of mean and standard deviation, and 
we name such outliers to be standard outliers, the 
second method used a robust method using medians 



5

and deviations from the median [AMC report] that is 
less influenced by outliers and these was have called 
robust outliers. Because the tasks were chosen at 
random, some did not have a large sample so those 
below a sample size of 5 or less were excluded. This 
left a total of 16 tasks across all four websites. Of the 
158 included participants, there were 8 standard 
outliers (5.1%) and 29 robust outliers (18.4%). Of the 
16 tasks, 6 tasks produced at least one standard outlier 
and 12 robust ones. Counting only tasks where sample 
sizes were at least 10, there were 7 such tasks done by 
90 participants resulting in 7 standard outliers (7.8%) 
and 19 robust outliers (21.1%). Thus, regardless of 
how measured, outliers are far more prevalent than the 
1% level that the normal distribution would suggest.

Variation in information scents
When assessing the relevance of a given item to a task, 
the mean assessment was used to indicate the average 
relevance to the task. The variation from this average 
relevance was then considered.  As you might expect, 
there were far more items rated as irrelevant to a given 
task than relevant. Moreover, where an item was on 
average very relevant or not at all relevant, there was 
very few disagreeing with this whereas where the 
average assessment was 3, the actual ratings given 
were in roughly similar proportions across the full 
range. The overall scent distributions are summarized 
in Table 1. 

Modelling results
For each task, the TreeWalker model of the menu 
hierarchy was scented with the average relevance 
rating. Note, only the path to the task was modelled as 
incorrect menu choices were not rated and therefore it 
was not possible to model them. The model was then 

run 1,000 times so that variations from the average 
relevance produced overall variations in the proportions 
presented in Table 1. 

Table 1: The numbers of each relevance rating given to all 
items broken down by the median rating for the items.

Over all of the sixteen tasks analysed for user 
performance, 2.7% of the runs were standard outliers 
and 4.4% of the runs were robust outliers. Over such a 
large sample of 16,000 runs in total, if the model were 
producing a normal distribution, the number of outliers 
ought to be very close to 1%. 

Further support for the model comes from comparing it 
to the overall performance distributions.  By comparing 
the TreeWalker performance to the data collected, the 
Kolmogorov-Smirnoff test indicates that the model 
using the empirically based scent variations provides a 
good fit (D=0.211, p=0.752).  Thus, TreeWalker is 
representing real users’ behaviour.

Conclusions and future work
In summary, studies have shown that there is always 
one, indeed, usually several individuals outlying the 
rest of the population.  Their existence is unlikely to be 
found as part of a normal distribution, reflecting a 
skewed performance distribution. Furthermore, the 
data gathered supports the conclusions of a model 

Median
rating 1s 2s 3s 4s 5s

1 1508 123 49 31 6

2 1082 260 230 153 113

3 235 145 256 259 168

4 41 42 105 202 295

5 2 1 10 51 210
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simulating rational human search behaviour in 
hierarchical menus.  The model behaves this way due 
to its foundations in bounded rationality supporting the 
work of Cox and Young [5].  It predicts the existence of 
outliers as an outcome of menu structure and relevancy 
scent maps. By reflecting individual differences in 
relevancy it becomes yet more likely to accurately 
reflect the overall population. Interestingly, while 
predicting more outliers than a normal distribution, 
TreeWalker’s proportion of outliers is still lower than 
found in our study. This requires further work to better 
relate the measure of “cognitive cost” used in the 
model to the actual time taken to evaluate menu items. 
Also fully modelling a menu hierarchy would allow for 
the model to pursue completely incorrect paths so 
increasing the possibility of outliers.

This work proposes a model for understanding and 
modelling patterns, not individual users.  Other 
research into the effects of expertise and movement 
[4] show that there may be more parameters that are 
not currently explicitly addressed in TreeWalker. 
However, by proposing scent variation as a unitary 
view of relevancy, many of these parameters may 
already encapsulated by the model. This needs to be 
studied in greater detail.

The implications of this work do not only affect 
websites (as tested) but all hierarchical menus such as 
information kiosks or software interfaces.  Also, the 
current wisdom in our field tries to guide users to a
correct “golden” path.  This model suggests that, as 
users may have different perceptions of relevancy, 
there ought to be several correct paths.  Efforts to 
improve total user experience should reflect these 
varying, but equally valid, perceptions.

The applications of a rational model are wide ranging.  
One could foresee automated testing of information 
architectures very early in the design process by 
allowing TreeWalker to crawl through different 
structures for the data.  Using this model would give a 
quantitative method for comparing menu structures 
before costly mistakes are made. Furthermore, the 
model could suggest improvements to menu 
architectures to include those with extremely poor 
performance.  By improving their experiences we may 
provide a more valid improvement in user experience 
than making small changes in the mean.
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