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Abstract. Finding required information in a library of mathematics can
be problematic, just as in any other library. However, so far, there are no
strong search methods based on the semantics of formal mathematics.
This paper describes a new approach based on latent semantic indexing
(LSI). Using this, the semantics of terms need not be explicitly defined
but is indirectly inferred from a body of documents in which the terms
occur. The Mizar library is used as it is a substantial resource of formal
mathematics. The system described in the paper adapts Mizar articles
to produce an appropriate body of documents that can be used by LSI.
Preliminary tests suggest that this approach is able to provide a useful
mechanism for the search and retrieval of formal mathematics.

1 Searching for Mathematics

Mathematical knowledge management, since its inception, has had two key
themes: the organisation of mathematical knowledge; and the successful retrieval
of mathematical knowledge. In this paper, we consider the retrieval task when the
mathematical knowledge has already been organised and standardised, namely
retrieving knowledge from the Mizar Mathematical Library (MML) [20].

Bancerek and Rudnicki [2] have already considered information retrieval in
the MML. Their approach rightly criticised the poor quality of keyword and
grep-based approaches. However, they do have a hypertext method of presenta-
tion that allows a person to browse the library and easily find definitions of terms
by clicking on the appropriate terms in the presentation. Additionally, they de-
veloped a query language that allowed more sophisticated querying based on the
structural and semantic properties of Mizar articles. This was recognised as only
a first step towards full semantic search and as such may only be useful in this
form to expert Mizar authors.

Other search techniques have used type isomorphisms [9], metadata [17] or
a combination of metadata and reasoning [5]. With type isomorphisms or rea-
soning, the search engine is effectively doing some proving, albeit tailored to the
particular task. As fully automated proving is still a significant research topic,
this suggests that there is a limit to how far these approaches could extend. With
metadata, there is of course the possibility to make a search engine very effective



but then there is the overhead of who must prepare the metadata. Authors of
webpages are already very poor at adding metadata and there is no suggestion
that authors of mathematics are likely to be any better.

Latent semantic indexing avoids these issues entirely as the semantics of the
documents to which it is applied are never explictly represented. Instead, the
semantics of terms are implicitly inferred from contexts in which they occur
even if, as in the case of mathematics, the contexts are sometimes the definitions
of the terms.

Related to this is the notion that mathematics itself is not a formal language.
Mathematics is in principle formalisable but, in practice, formalisation is hardly
ever done (which is why the MML represents a valuable contribution to math-
ematics). I would argue that mathematics, like all human languages, functions
at a level of discourse [21] rather than at a level of logic. Search that works at
the level of mathematical discourse is more likely to fit better with the needs of
working mathemticians.

This paper therefore treats formal mathematics as a representation of math-
ematical language in general. Mizar is particularly strong in providing a wide
range of constructs for mathematical concepts [24] that allow its formal proofs to
be more like the less formal proofs found in common mathematical texts. In this
sense, the MML is actually a reliable representation of the more usual, informal
mathematical language. A well-known, and indeed successful, technique in in-
formation retrieval is Latent Semantic Indexing (LSI) [6]. Rather than defining
semantics through some explicit ontology, the semantics of terms are defined
through their co-occurence in a large document set. This is discussed in detail
in the next section but the main point is that the semantics of terms are latent
in the substantial body of documents to which LSI is applied. The MML is able
to provide exactly such a large set of documents from which semantics can be
extracted.

After describing the details of applying LSI to the MML, I give some early
results. Despite the counter-intuitive idea of ignoring the formal semantics in-
herent in formal mathematics, these results actually show some promising in-
dications. The current implementation does not make full use of the MML for
reasons discussed elsewhere [8] and so there are natural areas for further work
and refinement of these results.

2 Latent Semantic Indexing

Latent semantic indexing is a method developed for doing information retrieval
from natural language documents based on the general theory of latent semantic
analysis (LSA)[15]. LSA has been used in a variety of text retrieval and analysis
tasks including the various Text Retrieval Conferences (TREC) [23] competi-
tions, selecting educational text and the automated assessment of essays [16].

The major task of any information retrieval system of this sort is to define the
semantics of the documents and the terms in those documents. The semantics can
then be used to reliably answer queries based on the documents. For example,



a person seeking information using a query “wars in the Middle East” would
probably be satisfied with a document about “conflicts in Iraq.” This is because
we recognise that “conflict” is a synonym for “war” and “Iraq” is in the “Middle
East”. Many text retrieval systems rely on some externally defined ontology that
would make the semantic relationships between terms explicit. Thus, when given
the example query the meaning of the query would be looked up and documents
with a similar meaning would be returned.

With LSI, there is no such external ontology. Instead, the meaning of terms
is held to be latent in the documents in which those terms appear. That is, a
word gains its meaning from the many contexts in which it appears. Conversely,
a document gains its meaning from the many words that occur within it. Clearly
then for LSI to produce good semantics, it needs a substantial body of docu-
ments in which all the relevant terms occur in many and varied contexts. The
advantage is that no work needs to be done to define an ontology for querying
the documents.

For this reason, LSI seemed an appropriate tool to use and the MML the
appropriate context in which to use it. Formal mathematics, in one sense, is
an entire ontology of mathematical terms. However, as yet, it has not been ex-
tensively used to provide effective information retrieval. Through LSI though,
the MML also represents an extensive set of documents that latently define the
meanings of a huge number of mathematical terms. In addition, the rich lan-
guage of Mizar reflects some of the richness of more traditional, human-oriented
mathematics. LSI could tap into this to provide an alternative ontology without
any extra work.

The other advantage of LSI is that its mechanism relies on some elegant
mathematics that has been implemented in the GTP package [10]. GTP is writ-
ten in Java. The mathematics is briefly described here to give a flavour of how
it works. Followed by some details of the implementation specific to GTP.

2.1 The Mathematics of LSI

The occurrence of terms in documents can be simply captured in a rectangular
matrix ∆ where :

∆ij =

{

1 if the ith term appears in the jthdocument
0 otherwise

Keyword search can then be implemented by converting a query into row vector
t where ti is 1 if the ith term is in the query and 0 otherwise. Taking d = t.∆,
d is row vector where dj is the number of query terms occurring in the jth

document. In particular, if n is the number of non-zero entries in t (that is, the

number of distinct terms in the query) then dj = n means that the jth document
contains all of the query terms.

Using singular value decomposition (SVD), it is possible to find two orthog-
onal matrices U and V and a diagonal matrix ΣD such that:

∆ = UΣDV



From this equation, for a term vector t, keyword search would give:

d = t.UΣDV

d.V −1 = t.UΣD

However, we require more than keyword search. Instead, for a given query t,
and any set of documents represented by d we consider the similarity between
the two vectors t

′ = t.UΣD and d
′ = d.V −1. The similarity, s, between vectors

t
′ and d

′ is taken to be the cosine of the angle between them, that is:

s =
t
′.d′

||t′||.||d′||

One way to view this is that, under the transformations given, terms and
documents occupy a common space based on the semantics of the terms. Now
to perform a query, the term vector t is generated as before. Each document is
represented by the vector di where dij = 1 if i = j and 0 otherwise. The query is
then compared to all the documents in the term/document space by finding the
similarity between t

′ and each of the vectors d
′

i
. The most similar documents

are returned as the results of the query.

2.2 The GTP Package

Given a set of documents as either separate files or documents delimited within a
single file, GTP automatically extracts terms from the documents and constructs
∆. By default, a term in GTP is any alphanumeric string of characters. Also,
because GTP was constructed with natural language in mind, it consults a file
of common words, such as “the” and “of”, and does not include a common word
as a term. Mizar (like mathematics), however, has a radically different linguistic
structure and punctuation from natural language. Instead, this section of GTP
was replaced. Common words were simply Mizar keywords, though arguably
they could be included as terms, together with ‘;’ and ‘,’ when used purely as
separators. This means that terms could be any string of characters excluding
whitespace and thus encompasses all of the constructs defined in Mizar articles.

Having defined the terms, the GTP package automatically constructs the
appropriate ∆ and performs the singular value decompostion. This is the main
output of the first stage of GTP.

The querying process is run as a separate stage of GTP using the matrices
generated from the first stage. As might be expected, the comparison process
can be rather lengthy so there are some approximations that can be made to
speed up matters. To facilitate discussion, in the sequel, the diagonal values of
ΣD are referred to as the eigenvalues of ∆.

The first approximation is to omit the scaling by the eigenvalues by taking
t
′ = t.U . However, it produced uniformly poor results so this approximation

was not used. Secondly, each eigenvalue corresponds to a factor that can be used
to compare queries and documents. When the eigenvalues are very small, they



can effectively be omitted from the calculation and hence speed it up. In GTP,
setting the number of factors to 15 corresponds to calculating similarity based
on the fifteen largest eigenvalues. The number of factors used in the test was
varied as will be discussed in the results section.

In summary, to a large extent, LSI is treated here as a black box method for
querying documents. The GTP implementation is untouched except to replace
the code that identifies terms in the MML.

3 Applying LSI to Mizar

As most of the computational effort is done by GTP, the two main issues for
applying LSI to Mizar are:

1. What constitutes a document?
2. How should queries be performed?

All coding was done in Java 1.4 and the Java version of the GTP package
was used. Version 3.33.722 of the MML was used to generate the documents.
More specifically, rather than use the full Mizar articles with proofs, only the
abstracts were used in this implementation.

3.1 Making the MML into documents

The decision as to what constitutes a document is crucial because this is how LSI
will capture the semantics of Mizar terms. At one level, each Mizar article could
be considered to be a document. However, these are substantial pieces of work
with many references to a large number of terms. It was felt that with many
terms in each article and a reasonable overlap between articles, using articles
as documents would not distinguish sufficiently between the meanings of terms.
Also, when retrieving a document, a user would probably like something more
focused than a whole Mizar article. The natural choice seemed to be to divide
each article into smaller parts. These parts should be both meaningful as a stand-
alone entity (so not single lines of proofs) and the kind of thing that users would
like to retrieve. Accordingly, a document was decided to be one of the following:

1. Theorem
2. Definition
3. Proof

As parsing Mizar articles can be problematic [8], the first stage seemed to be
a proof of principle on using only theorems as documents and then only those
that were in abstracts.

Simply using a theorem statement directly from a Mizar abstract was also
not likely to provide an appropriate document. For example, in the following
theorem [3]:

theorem :: ORDINAL2:1

A c= B iff succ A c= succ B;



A and B would be identified as terms but without a doubt they are also used as
terms in a huge number of other theorems with considerably different meanings.
This would greatly confuse the semantics of the library. Also, users are not likely
to find theorems about A and B interesting, but rather theorems, like this one,
about successors of Ordinals.

In this case, A and B have already been defined as Ordinals in a reserve
statement. A more meaningful document would be:

theorem :: ORDINAL2:1

for A, B being Ordinals holds A c= B iff succ A c= succ B;

However, A and B still occur as terms in this document and could add noise to
the LSI calculations. Instead, the document is made by replacing each occurrence
of a variable by its type:

theorem :: ORDINAL2:1

Ordinal c= Ordinal iff succ Ordinal c= succ Ordinal;

Thus Ordinals, successors and subsets all occur in the same context which LSI
would use to say that the meaning of Ordinals is somehow defined by that of
succ and c=. In addition, this document contains only terms and keywords and
these latter are currently ignored.

Thus, each document is a theorem where all of the known variables have been
replaced by their types. There is no further reduction of types to simpler types,
for example, to say that Ordinal is an epsilon-transitive epsilon-connected

set. This is because the aim is to look at the linguistic structure of the mathe-
matics not the logical.

The process for producing the documents is given in Figure 1 and works
as follows. The header of each Mizar abstract is used to generate the vocabu-
lary used in each abstract. This means that the abstract can be reliably parsed
into chunks that are either theorems, reserve statements or definitions. The re-
serve statements are parsed to produce of a list of variables that have a known
type. The definitions are also parsed to check exactly which definition of vari-
ous terms are actually in use at a given point in an article. As a by-product of
parsing definitions, a catalogue is produced that states exactly where each item
of vocabulary is defined together with any other useful information such as the
number of pre- and post-arguments, where applicable.

The catalogue and known variables provide a context for a particular the-
orem. The theorem can be parsed using the context and transformed into the
corresponding document as required.

The process progresses through the chunks, successively updating the context
as it goes. So for instance, if a reserve statement redefines a variable as having
a new type, this is carried through to the subsequent theorems and hence doc-
uments.

On the whole, the process works well. There are still some abstracts that
cannot be parsed into chunks because of the use of ‘;’ in the terms. However,
this is largely due to the limitation of the current parsing technology being used,



Fig. 1. Generating documents from theorems in an abstract

namely JavaCC [12]. It is hoped to replace this with a more versatile parser in
the near future. The final document set is made up of 31251 documents that
contain 3181 terms. GTP transforms this data and captures it in 106 factors,
that is, 106 eigenvectors with non-zero eigenvalues, though it is not documented
to what degree of accuracy GTP distinguishes a nearly zero eigenvalue from
actually zero.

3.2 Performing Queries

If queries are to be useful to a user of the MML, the query engine most likely
needs to be integrated into some larger system, such as the emacs mode for
Mizar. However, at this stage, it is not clear what would constitute a useful
query. This can be seen by considering the process that is done to convert a
theorem in Mizar into a document for LSI. To what extent should the user
do that conversion process to formulate a query? Or conversely, how much of
formulating a query can be generated from a user’s context of querying?

These are difficult questions in any system where complex work such as
writing Mizar articles is being performed [18]. This is compounded by the fact
that the full capabilities of LSI-based search are unknown.

Rather than commit at this early stage to a visual interface that may be both
inappropriate and lengthy to develop, the system implemented uses a command-
line approach to querying and all of the preparation of queries is done by hand.



Thus, a query is hand-written or adapted from a document based on a the-
orem. For example, a typical query might look like:

theorem set c= set implies Cl ( set /\ set ) c= Cl ( set /\ set )

The results from the basic GTP are the indexes of documents in the whole
collection together with the strength of similarity between the document and
the query. For example, GTP might produce results like:

4134 0.99987674

8609 0.99812323

8610 0.99809912

25838 0.99731101

The first number of each line corresponds to the index of a document. The second
number is the strength of match with the query. The resulting documents are
looked up in an index prepared at the same time as the documents were produced
from the theorems. Thus, the basic results can be expanded to:

::theorem set c= set implies Cl ( set /\ set ) c= Cl ( set /\ set )

4134 :: CLASSES1:68 classes1 322 0.99

8609 :: FUNCT_4:6 funct_4 40 0.99

8610 :: FUNCT_4:7 funct_4 43 0.99

25838 :: TOLER_1:57 toler_1 261 0.99

The first line is the original query expression. Each subsequent line is a matched
document in order of best match. For example, the second line tells us that
document 4134 matched best and it corresponds to the theorem with the Mizar
label CLASSES1:6 and it appears in the file classes1.abs [4] at line 322. The
remaining three lines correspond to theorems in the articles funct_4.abs [7]
and toler_1.abs [11].

These results are then turned into fragments of the corresponding abstracts to
save time and effort of looking up each query result individually. So for instance,
the result just described would also return the fragment:

4134 :: CLASSES1:68 classes1 322 0.99

theorem :: CLASSES1:68

the_transitive-closure_of (X /\ Y) c=

the_transitive-closure_of X /\ the_transitive-closure_of Y;

The results after being looked up in the index and their corresponding fragments
are written to separate files.

4 Some Early Results

At the time of writing, a fully working system has only just been completed.
This means that extensive testing has not been done. Also, as only theorems have
been used, the full power of the MML has not been exploited so extensive testing



would be premature. Instead, these results can be regarded as a demonstration
of potential rather than a realisation of it.

The tests so far fall into three categories:

1. Can we retrieve the original theorems?
2. Can we retrieve theorems based on part of the original theorem?
3. Can we retrieve required theorems given a part of proof that needs a theo-

rem?

The first category is there as a sanity check that when throwing documents
into the the soup of LSI, they are not lost forever. The second two are moving
towards more realistic queries that a user might perform. First, if you are trying
to remember a theorem in full but can only remember part, can you retrieve the
whole theorem? Secondly, whilst working on a proof, a user might like to find
a theorem that would prove the proof step that they are currently working on.
Each of these categories of tests is discussed in turn.

4.1 The Identity Query

It is to be hoped that any query with an actual document used in the LSI would
return that document as the best matching document. However, as mentioned
earlier, queries can be performed with approximations based on the number of
factors used in the similarity calculation. The unapproximated SVD of the MML
has 106 factors.

All of the theorems in several abstracts were used in these tests. The docu-
ments that correspond to the theorems in these abstracts were used as queries
but the query was only performed using 15 factors. Nevertheless, in almost ev-
ery case, the first result returned was always the original theorem. The only
exceptions to this were in the situation where two theorems were virtually in-
distinguishable from each other.

For example, the theorems TOP_GRP1:5 and TOP_GRP1:6, from [14], when
used as queries both returned the same two theorems in that order. These the-
orems are in fact:

theorem :: TOPGRP_1:5

P c= Q implies P * h c= Q * h;

theorem :: TOPGRP_1:6

P c= Q implies h * P c= h * Q;

As can be seen, they distinguish only in the order of the symbols that occur
in them and as LSI does not take account of the order of terms in queries or
documents, it is not surprising that these produced the same results. Also, from
a user’s perspective, it would not be surprising or even undesirable to have these
two documents returned together.

A more surprising result from these tests came from the query based on the
following theorem from [13]:



theorem :: TOPS_3:10

A is boundary implies A <> the carrier of X;

As expected, the query returned precisely this theorem as the best match. In-
terestingly though the second best match was the following:

theorem :: TOPS_3:23

A is nowhere_dense implies A <> the carrier of X;

These are clearly quite distinct theorems from general topology but the con-
cepts of boundary and nowhere dense are very closely related. Specifically, by
TOPS_1:92 [19], every nowhere dense set is boundary and hence TOPS_3:10 im-
plies TOPS_3:23. LSI has no explicit knowledge of these theorems. The concepts
of boundary and nowhere dense are simply related through frequent occurrence
in related contexts. However, this vindicates the approach taken in this use of
LSI in that it is the linguistic use of the concept and not the logical that in some
ways defines the semantics of the concept.

4.2 Retrieving Full Theorems from Partial Theorems

A single theorem can often have multiple quantifiers and, usually, it is crucial
to know whether a theorem is an implication, equivalence or contains negations.
However, these details may not always be remembered by a human, indeed, they
may be the precise reason why a person would look up a theorem.

These few tests were set up to see if, by constructing a query with a target
theorem in mind, it is possible to retrieve the target. The queries were con-
structed using the document version of the theorem.

These preliminary results were somewhat mixed. Leaving out initial quanti-
fiers does manage to retrieve the whole theorem. This works because in removing
the variable names to convert a speculated theorem into a query, the types of the
variables are replaced into the theorem. Where these types are known correctly,
LSI would not distinguish between them being placed in a quantifier clause at
the start of the theorem or in place of the variables as in these queries. Thus,
these queries should and do work as expected.

Also, the system is reasonably successful at retrieving theorems where the
logical direction of the theorem is unknown. This makes sense because in Mizar,
this is usually signified with a keyword and keywords like iff and so on play no
role in the search and retrieval methods as implemented here.

However, the main problem with these tests does seem to be getting the types
of variables right. If the type of a variable is only partially entered, say entering
only TopStruct instead of carrier of TopStruct, then the target theorem is
not retrieved, at least not in the top 30 results.

Two further tests looked to retrieve a theorem when the relationship between
variables in the theorem were unknown. In the first case what should have been
an inequality relationship in TOPS_3:10 was guessed at by entering some likely
candidates such as equality and subset as well as inequality. Everything else
was as in the document version of the target theorem. In the second case, the



inequality was omitted entirely. In both cases, the target theorem was retrieved
as the best match.

4.3 Retrieving Theorems to Complete Proof Steps

In writing a Mizar article, proofs need to give full references to theorems that are
required to prove proof steps. In practice, this requires an extensive knowledge
of what is (and is not) in the MML and more importantly where it is. A natural
task for an author would be to find a theorem that applies to their current proof
goals.

The following tests looked at proof steps that required a single theorem to
complete the proof. The first few were all taken from the proof of TOPS_3:3 in
tops_3.miz. Topology was particularly chosen as I have some expertise in this
area and hence the domaing knowledge needed to formulate queries.

The first test was trying to retrieve TOPS_1:44, [19], for the following proof
step:

Int A c= A by TOPS_1:44

Accordingly, the following query was generated:

theorem Int Subset of carrier of TopStruct

c= Subset of carrier of TopStruct

The target theorem was indeed retrieved first by this query.
The second test was based on:

(Int A) /\ B c= A /\ B by XBOOLE_1:26

with the corresponding query:

theorem set c= set implies set /\ set c= set /\ set

This retrieved XBOOLE_1:26 as the second result.
Subsequent queries all based on steps in the same proof, however, did not

show such promise. In each case, the query formulated did retrieve theorems that
were certainly in the right topic but none directly pertinent to the target proof
step. These steps all involved the notions of interior and closure of subspaces
in topology and its was notable that a lot of the retrieved theorems tended to
include one but not both of these concepts. Perhaps these notions were poorly
captured by LSI.

Two further queries (avoiding interiors and closures) were attempted, based
on line 210 of tops_3.miz:

G c= A by TOPS_1:20

In this context, it was possible to formulate two queries that might have served
well:



theorem for Subset of TopSpace holds

( - Subset of TopSpace ) misses Subset of TopSpace

implies Subset of TopSapce c= Subset of TopSpace

theorem for Subste of carrier of TopStruct holds

( - Subset of carrier of TopStruct ) misses Subset of carrier of TopStruct

implies Subset of carrier of TopStruct c= Subset of carrier of TopStruct

The target theorem was:

theorem :: TOPS_1:20

K c= Q iff K misses -Q;

Whilst neither query retrieved this theorem, the second query did actually find
the following in the top ten results:

theorem :: PRE_TOPC:21

for T being 1-sorted

for P,Q being Subset of the carrier of T holds P c= -Q iff P misses Q;

Though obviously distinct from the expected theorem, in fact, with a little work
the original proof could easily be re-written to use this theorem rather than
expected one. This then represents a significant success from a task-oriented
perspective.

4.4 Summary of Results

The few tests reported here do indeed show promise though obviously the relia-
bility of these queries is currently limited. The results are summarised in Table
1. All of the tests however did return results that could definitely be described
as in the right topic for the queries. Also, as hoped for, LSI through working
via the language of mathematics is also highlighting logical and conceptual links
between the documents. Improving the reliability of these queries, though, is
a clear priority and the current lines of development are discussed in the next
section.

5 Conclusion and Future Work

The work done here in applying LSI to a formal mathematics library has shown
the following:

– LSI can perform useful retrieval without explicit semantics
– LSI can find conceptual associations between mathematical notions
– Users can formulate query expressions for which LSI returns useful results

However, there is clearly an issue with the reliability of the queries and future
work will address this.



Task Target type Query Outcome

Identity Any theorem The target itself Retrieves target or
theorem with identical terms

TOPS_3:10 TOPS_3:10 TOPS_3:23 retrieved second
because of close conceptual relationship

Partial Any theorem Target Successful retrieval
without quantifiers

Any theorem Target without Target not in top 30
correct variable types

Theorem with Target with multiple terms Successful retrieval
binary relation to cover target relation
Theorem with Target with target Successful retrieval
binary relation relation omitted

Proof goals Theorem to Guess at target theorem Limited success
prove step
TOPS_1:20 Guess at target theorem Retrieved PRE_TOPC:21

which could be applied
Table 1. Summary of Test Results

Definitions and proofs were not included as documents in the LSI calcula-
tions. Incorporating them would increase the number of documents and could
therefore better elucidate the terms in the MML. Actually, I strongly believe
that proofs are the discourses of mathematics – theorems merely represent the
headlines. Thus, including proofs as documents would provide a strong language-
oriented foundation for the MML that I would expect LSI to exploit well.

Making proofs into documents poses two substantial obstacles. The first and
easiest is that so far the Mizar language has been difficult to parse with JavaCC.
Theorems and definitions use a relatively constrained subset of the full Mizar
grammar and so in this implementation have been parsed using a combination
of JavaCC and bespoke finite state machines. A further implementation should
really use a more generic and hence robust approach to parsing though it is not
clear that this would actually overcome some of the difficulties encountered so
far.

The more substantial problem of including proofs as documents is the issue
of how to represent a proof as a document. With theorems, this is relatively
straightforward as a theorem could be viewed as a stand-alone logical statement.
Proofs however represent a transformation between logical statements. Already,
in trying to complete proof steps in the tests described above, I encountered
issues of what exactly would constitute a sensible query in the context. Simple
subsitution of variable names by the variable types, as used to turn theorems into
documents, was not enough. Some patterns of how to formulate effective queries
emerged and it may be possible to automate some of the query formulation
task. In many ways, though, the formulation of queries can only be tackled on
an empirical basis of what works well.



A wider issue that addresses the broader aim of this work is to make gener-
ating queries and understanding results easier to work with for a Mizar author.
Some form of visual interface would seem appropriate but deciding what to
represent and how to represent it probably represents a significant design and
evaluation effort. Related to this is whether users would want to see all the doc-
uments that were retrieved or whether in different contexts they could rely on,
say, just retrieving proofs or just theorems.

In addition could further search methods or heuristics improve the reliability
and therefore value of the LSI-based results? For instance, would these results be
enhanced by using the filtering operations of Bancerek and Rudnicki [2]? Could
the logical keywords like iff be used to filter suitable theorems?

In conclusion, this work shows that using search based on the implicit seman-
tics of a formal mathematical library does in fact yield some meaningful results.
With further work and empirical evaluation, it is hoped that this is a step to-
wards a full semantic search of mathematical libraries that real mathematicians
would find useful in their work.
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