
Corpus Christi CollegeOxford, OX1 4JF

Boundary Propertiesand Constrution Tehniquesin General TopologybyPaul A. Cairns

Submitted on 22nd September, 1995 to the Department of Mathematial Sienes as thethesis for the degree of Dotor of Philosophy



AbstratBoundary Properties and Constrution Tehniquesin General TopologyPaul A. Cairns D.Phil. ThesisCorpus Christi College Submitted 22nd September, 1995Oxford OX1 4JFThe aim of this thesis is twofold. First, we investigate spaes de�ned by asserting that their nowhere densesubsets have ertain properties. Seondly, we develop some tehniques for the onstrution of topologialspaes.We onsider spaes where the nowhere dense sets are asserted to have some property P , alling suhspaes boundary-P . We show that if there are no Lusin spaes then every ompat boundary-metrizablespae is metrizable. Boundary-separability is also studied and we show that if there are no L-spaes thenevery boundary-separable spae is separable.By adapting the absolute dimension funtion of Arhangel'ski��, we de�ne the new onept of ohesion. Weshow that every ompat ohesive and every Hausdor�, sequential ohesive spae is sattered. However,we onstrut regular, rowded spaes of all �nite ohesions though there are no regular spaes of trans�niteohesion. We onsider too the preservation of ohesion under various mappings and under the formationof produts.Turning to onstrution, we onsider the lass of ompat monotonially normal spaes. It is well-knownthat it ontains the lass of spaes whih are the ontinuous images of ompat ordered spaes but it isstill open as to whether they are atually distint lasses. Using Watson's resolutions, we give a methodfor onstruting monotonially normal spaes. Though this also preserves ontinuous images of ars, weshow that it is beause of a powerful result of Cornette rather than any trivial observation.We also examine more losely monotone normality in images of ompat ordered spaes using the Collins-Rosoe struturing mehanism. From this, we extrat a strong instane of the mehanism, linear hain(F), whih is held by all images of ordered ompata and all proto-metrizable spaes and implies Junnila'sonept of utter normality.Elementary submodels are an important tool in the onstrution of topologial spaes. We developa general method for applying them in varying irumstanes and illustrate it by onstruting threeexamples: Balogh's Q-set spae, Rudin's normal but not olletionwise Hausdor� spae and Balogh'ssmall Dowker spae.
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Chapter 1Introdution
1.1 An outline of the thesisThis thesis divides into three main setions: the �rst onsisting of Chapters 2 and 3 deals with spaeswhere the nowhere dense subsets are asserted to have ertain properties; the seond (Chapter 4 and 5)addresses some topis onerning ompat monotonially normal spaes; the third (Chapter 6) developsthe use of elementary submodels in topology.Nowhere dense subsets are fundamental objets in topologial spaes and their importane is evidentin suh powerful results as the Baire Category Theorem and the topologial reformulation of Martin'sAxiom, see [K1℄ p.62. Despite this, there are few instanes where lasses of spaes have been de�ned byasserting that the nowhere dense subsets have ertain properties.The most prominent example of a theory whih is founded on the properties of nowhere dense sets isdimension theory. Here, the small indutive dimension ind and the large indutive dimension Ind arede�ned as follows:De�nition 1.1.1 For a spae X , indX = �1 = IndX if and only if X = ;. Then indutively, for n 2 !,indX 6 n if and only if X has a basis of open sets whose boundaries have small indutive dimensionstritly less than n. Similarly, IndX 6 n if and only if, for every losed subset C of X and open setU ontaining C, there is an open set V in X for whih C � V � U and the boundary of V has largeindutive dimension stritly less then n.Thus, these dimension funtions an be regarded as asserting that ertain losed nowhere dense subsets(the boundaries referred to in the de�nitions) �t into the given indutive hierarhy. However, even inspaes with well-de�ned dimension in both senses, there are still many nowhere dense subsets whih areentirely unrestrited by this de�nition. Beause of this, the indutive dimensions are rarely onsideredin terms of nowhere dense sets.As a strengthening of these de�nitions, Arhangel'ski�� [A2℄ de�ned the notion of absolute dimension. Thisgives the same meaning to zero-dimensional as the small indutive dimension but the higher dimensionsare modi�ed so that, for n 2 !, a spae has absolute dimension at most n if every nowhere dense subsethas absolute dimension stritly less than n. Absolute dimension was de�ned as a tool by whih to studyleavability over the reals but only a few fats about it were used.Possibly the most well-known example of a spae all of whose nowhere dense sets have a given propertyis a Lusin set. This is an unountable subset of the real line for whih every nowhere dense subset isountable (see [M℄). Lusin sets are easily onstruted under the Continuum Hypothesis but it is alsoonsistent, for instane under Martin's Axiom and the negation of the Continuum Hypothesis, that thereare none. However, they are very useful, ourring in a number of di�erent plaes in topology. Kunen4



[K2℄ has also extended the de�nition to give the more general onept of a Lusin spae.There is a muh less well-known body of work whih onsiders spaes all of whose nowhere dense subsetshave a given overing property. This work was initiated by Kat�etov [Ka℄ who proved that T1 spaeswithout isolated points in whih every losed nowhere dense subset is ompat are themselves ompat.Mills and Wattel [MW℄ and Blair [Bl℄ have generalised this result to enompass a wide range of di�erentovering properties inluding ountable ompatness, the Lindel�of property and pseudo-ompatness.Our aim in Chapter 2 is to study spaes whose losed nowhere dense subsets all have P for varioustopologial properties P . Suh spaes are said to have the new property boundary-P . We onsider threemain ases of P being metrizability, separability and sattered-ness, in eah ase giving onditions whihdetermine when boundary-P spaes have P . We obtain the rather surprising results that if there are noLusin spaes then every ompat boundary-metrizable spae is metrizable and if there are no L-spaesthen every boundary-separable spae is separable.In Chapter 3, we de�ne a dimension-like funtion whih we all ohesion. This is based on absolutedimension but, in order to avoid imposing atypial, good behaviour in the lower \dimensions", the basease of the de�nition is altered: a spae has ohesion zero if and only if it is disrete. We examine manyproperties of ohesion, its e�et on sattered, rowded and ompat spaes applying some results from theprevious hapter. The preservation of ohesion under various topologial onstrutions is also onsidered.Monotonially normal spaes have proven themselves to be an important lass of spaes ever sine theirde�nition in 1973 [HLZ℄. They inlude many of the major types of spaes suh as metrizable spaes andordered spaes. Yet, even with suh diversity, they have a great deal of struture. For some of the moreelegant results on monotone normality, see [HLZ℄, [G℄, [Mi℄ inter alia.One of the most exiting problems onerning monotonially normal spaes omes from a quite unexpeteddiretion, namely, from attempting to generalise the Hahn-Mazurkiewiz Theorem. The lassial Hahn-Mazurkiewiz Theorem states that a Hausdor� spae is the ontinuous image of the unit interval in thereal line if and only if it is a non-empty, metrizable, loally onneted ontinuum. As the unit intervalis the unique metrizable ar, the natural generalisation would be to say that a spae is the ontinuousimage of an ar if and only if it is a loally onneted ontinuum. However, this is not the ase as isdemonstrated by an example of Marde�si� [Ma℄. Atually, ounter-examples are easily found on notingthat ontinuous images of ars must be monotonially normal. Thus, any loally onneted ontinuumwhih is not monotonially normal, for example the produt of the losed unit interval with the one pointompati�ation of the long line, is a ounter-example. This does not render Marde�si�'s example obsoletebeause it still has many other nie properties, suh as ar-wise onnetivity, whih might oneivablyhave provided alternative haraterisations of the ontinuous images of ars. But this does provokethe question: is every loally onneted, monotonially normal ontinuum the ontinuous image of anar (arti)? Or more generally, there is the famous question of Nikiel, is every monotonially normalompatum the ontinuous image of a ompat LOTS (CICLOTS)?Various lasses of spaes have been shown to be arti, see [Wa1, N2℄. Nikiel, following on from thework of Treybig [Tr℄ and Ward [Wa2℄, has provided a number of haraterisations of arti spaes [N1℄.These have been extremely useful in determining many of the properties of arti spaes and also thoseof CICLOTS. For a good, brief summary of the main results in this area, see Setion 6 of [MO℄. However,the question of whether there is a ompat monotonially normal spae whih is not a CICLOTS is stillopen.There are two main diÆulties in answering this problem. The �rst is that it is very diÆult to onstrutmonotonially normal ompata from whih to obtain possible ounter-examples to the problem. Theseond is that the haraterisations of CICLOTS whih have been obtained seem to bear little relationto the monotone normality struture of these spaes.In Chapter 4, we will turn our attention to onstruting monotonially normal spaes by applying Wat-son's reently developed theory of resolutions [W℄. We give a new type of resolution whih does preservemonotone normality when resolving over a loally onneted, monotonially normal ontinuum.



In Chapter 5, we analyse CICLOTS in a new way using the Collins-Rosoe struturing mehanism. Thestruturing mehanism has muh in ommon with monotone normality and properties derived from it,suh as ayli monotone normality [MRRC℄ and Borges normality [St2℄. Also, it plays a key rôle inmany aspets of the study of generalised metri spaes. We will give a full disussion of the struturingmehanism and de�ne a new and rather strong instane of it. This is possessed not only by CICLOTS,as required, but also by all proto-metrizable spaes. As well as this, it implies Junnila's newly formulatednotion of utter normality.Another reent development in the onstrution of topologial spaes is the use of elementary submodels.There have been a number of results whih have used them in an essential way for simplifying and elui-dating otherwise onvoluted proofs. However, as yet there is no standard tehnique for using elementarysubmodels, indeed it seems as if there are as many tehniques as topologists who use them!In Chapter 6, we have developed a method for utilising elementary submodels in a number of di�erentirumstanes. We illustrate the method by applying it in the onstrution of three important, yet varied,examples. The three examples are a Q-set spae [B1℄, a \small" normal but not olletionwise Hausdor�spae [R3℄ and a small Dowker spae [B2℄. By way of an introdution to reetion tehniques, we alsogive elementary submodel proofs of some of the basi tools whih will be needed in the exposition of theexamples. The work of this hapter has been done jointly with Chris Good and Will Pak and I am verygrateful to them for allowing me to inorporate this work into my thesis.1.2 De�nitions, notation and elementary resultsAny terms and notation not explained in this setion may be found in [E℄ or [KV℄.Throughout the thesis, all topologial spaes are assumed to be T1.Some elementary topologyFor a topologial spae X , �X will denote the topology on X . To avoid onfusion, when two distintspaes have the same underlying set the spaes will be denoted by di�erent symbols. For the remainderof this hapter, X and Y are topologial spaes.For A � X , intXA denotes the interior of A in X , AX denotes the losure of A in X and the boundary ofA in X , bdXA, is de�ned by bdXA = AX n intXA. Where no ambiguity an arise, the X will be omittedfrom this notation. A is said to be nowhere dense in X if intA = ;.If a non-empty spae X has a basis of lopen sets then X is zero-dimensional. More generally, for atopologial property P , X has rim-P if it has a basis of sets whose boundaries have property P .For x 2 X , x is an isolated point of X if fxg 2 �X otherwise it is an aumulation point. X is disrete ifevery point of X is isolated and X is rowded if it has no isolated points. This latter term was introduedby van Douwen [vD3℄ and is preferred by the author over the more usual terms \dense-in-itself", whihis quite lumsy to use, and \perfet", whih has other topologial meanings. In fat, we use perfet tomean that every losed set is a GÆ-set, that is, a ountable intersetion of open sets.We make expliit a well-known property of isolated points:Proposition 1.2.1 If A is a subset of X and a 2 A is an isolated point of A then a is an isolated pointof A.Corollary 1.2.2 If A � X is rowded then A is also rowded.A sattered spae is one in whih every subspae has an isolated point of itself. Taking Xd to denote the



set of aumulation points of X , de�ne for eah ordinal �:X(0) = XX(�+1) = (X(�))dX(�) = \�2�X(�) for � a limit ordinalIt is lear that X is sattered if and only if X(�) = ; for some ordinal �. In this ase, the sattered lengthof X , denoted sl(X), is the least � for whih this holds.Although nowhere dense sets are natural and familiar topologial objets, there are few plaes in theliterature whih expliitly state their basi properties. We therefore set out some of the more elementaryresults whih will be useful later on. The easier proofs are left to the reader.Proposition 1.2.3 If A � Y � X and Y is nowhere dense in X then A and AX are nowhere dense inX.Proposition 1.2.4 If D is a disrete olletion of points in a rowded spae X then D is nowhere dense.Proof If, for some U 2 �X , U � D and U is non-empty then there exists d 2 D \ U . D is disrete sofdg 2 �D and, by Proposition 1.2.1, fdg 2 �D. Thus, there exists V 2 �X suh that fdg = V \D. AsU � D, fdg = V \ U whih is an open set in X . This ontradits the fat that X is rowded. 2Proposition 1.2.5 If U is a disjoint olletion of open subsets of a rowded spae X and, for all U 2 U ,xU is some point in U then fxU : U 2 Ug is nowhere dense.Proof U is a olletion of open sets witnessing that fxU : U 2 Ug is disrete. The result now followsfrom Propositions 1.2.4 and 1.2.3. 2Proposition 1.2.6 If U is a maximal disjoint olletion of non-empty open sets X then X nSU is losedand nowhere dense.Proposition 1.2.7 For a sattered spae X with sl(X) = � for some ordinal �, if � < � then X(�+1)is nowhere dense in X(�).Proof It suÆes to show that Xd is nowhere dense in X . Xd is losed in X as it is the omplementof all the isolated points in X . If U 2 �X is non-empty, by the de�nition of sattered, there is a pointx 2 U whih is isolated in U . As an open subset of an open subset of X , fxg 2 �X and U ontains anisolated point of X . Thus, no non-empty open set in X is a subset of Xd. That is, Xd is nowhere densein X . 2Proposition 1.2.8 If X is sattered and Y � X is nowhere dense then Y � Xd.Proof No nowhere dense subset of X an ontain any isolated points of X beause isolated points areopen in X . 2



MappingsA ontinuous mapping f : X ! Y is said to be irreduible if f is surjetive and for no losed subset A ofX , f jA is surjetive; open if for all U 2 �X , f(U) 2 �Y ; losed if for all C losed in X , f(C) is losed inY ; perfet if f is losed and f�1(y) is ompat for all y 2 Y .For A � X , de�ne the small image of A under f , denoted f�(A), to be fy 2 Y : f�1(y) � Ag.Closed and irreduible maps are not ommonly used in topology but they have some useful properties.We reprodue here two results whih will be important later. Both results are taken from [P℄.Proposition 1.2.9 For a surjetion f : X ! Y1. f is irreduible if and only if, for every non-empty open subset of X, f�(U) is non-empty2. f is losed if and only if, for every open subsets of X, f�(U) is openProof Note �rst that, for U � X , f�(U) = Y n f(X n U). Using this, both statements follow naturally.f is irreduible if and only if, for every proper losed subset A of X , f(A) 6= Y if and only if, for everynon-empty open subset U of X , f(X n U) 6= Y if and only if, for every non-empty open subset U of X ,f�(U) is non-empty.f is losed if and only if, for every losed subset A of X , f(A) is losed in Y if and only if, for every opensubset U of X , f(X nU) is losed in Y if and only if, for every open subset U of X , f�(U) is open in Y .2Proposition 1.2.10 If f : X ! Y is perfet then there exists A � X whih is losed in X suh thatf jA: X ! Y is irreduible and perfet.Proof Take U = fU � X : U is open in X and f�(U) = ;g and order it by inlusion. If C is a hain inU , take V = S C. V is neessarily open. We wish to show that V 2 U .If y 2 f�(V ) then f�1(y) � V and C is an open over of f�1(y) in X . As f is perfet, f�1(y) is ompat.Find a �nite subover for f�1(y) from C, say fUi : i = 1; : : : ; kg for some k 2 !. The Ui are linearlyordered by inlusion as C is a hain and so there is a largest one, say Uj for some j 2 f1; : : : ; kg. Butthen f�1(y) � Uj , that is y 2 f�(Uj) whih ontradits the fat that Uj 2 U .Hene V 2 U whih means that every hain in U has an upper bound in U and by Zorn's Lemma, U hasa maximal element, W say.Take A = X nW . A is losed from whih it easily follows that g = f jA is perfet. If y 62 g(A) thenf�1(y) \ A = ; and f�1(y) �W whih ontradits W being in U . Thus g is surjetive.Suppose C is a proper losed subset of A. Sine X nA � X nC, X nC is an open set stritly ontainingW so X nC 62 U . Hene f�(X nC) 6= ; and there exists y 2 Y suh that f�1(y) � X nC. Hene y 62 g(C)and gjC is not surjetive. Therefore g is irreduible. 2Set-theoreti notationWe shall always work in ZFC, that is, the Zermelo-Fraenkel axioms with the Axiom of Choie, unlessexpliitly stated otherwise. The standard, that is ZFC, set-theoreti universe is denoted by V . CH is theContinuum Hypothesis, MA is Martin's Axiom.As usual, R denotes the real line, Q the rationals and I the losed unit interval in R.



Cardinals are identi�ed with initial ordinals, ! denoting the �rst in�nite ardinal and the set of naturalnumbers, !1 is the �rst unountable ordinal,  the ardinality of the ontinuum.For f , g 2 !!, f < g means that f(m) < g(m) for all m 2 !, f <n g means that f(m) < g(m) for allm 2 ! n n and f <� g means f <n g for some n 2 !. b denotes the least ardinality of a subset of !!whih is unbounded in (!!; <�). b is an unountable regular ardinal between !1 and  and, regardlessof the value of , these are the only restritions on the value of b. For more details on b see [vD2℄.To avoid onfusion with intervals in lines, ordered pairs and n-tuples will be denoted by angle braes, forexample, hx; yi.For a set A, jAj denotes the ardinality of A, P(A) the power set of A. For a ardinal �, [A℄� is the setof subsets of A of size � and [A℄<� is the set of subsets of A of size stritly less than �.Cardinal funtionsThe weight of X , denoted w(X), is the least ardinality of a basis for �X . If w(X) = ! then X is seondountable. The (pseudo-)harater of a point x of X , denoted �(x;X) ( (x;X)), is the least ardinality ofa loal (pseudo-)basis for x in X . The (pseudo-)harater of X , denoted �(X) ( (X)), is the supremumof the (pseudo-)haraters of all points in X . If �(X) = ! then X is �rst ountable. The density of X ,denoted d(X), is the least ardinality of a dense subset of X . If d(X) = ! then X is separable. TheLindel�of degree of X , denoted L(X), is the least upper bound on the minimum size of a subover of anyopen over of X . If L(X) = ! then X is simply Lindel�of. The ellularity of X , denoted (X), is thesupremum of the ardinalities of families of disjoint open sets in X . If (X) = ! then X satis�es theountable hain ondition or, more simply, is . The spread of X , denoted s(X), is the supremum ofthe ardinalities of the disrete subsets of X .If � is a ardinal funtion on X then h�(X) = supf�(Y ) : Y � Xg and hl�(X) = supf�(Y ) : Y is alosed subset of Xg. For a topologial property P , X is hereditarily P if every subset of X is P .Compata and ontinuaWe shall assume that all ompat spaes are Hausdor� and we shall use the term ompatum interhange-ably with ompat spae. �X denotes the Stone-�Ceh ompati�ation of X . X is loally ompat if ithas a basis of open sets whose losures are ompat.A ontinuum is a onneted ompatum. A loally onneted spae is one with a basis of onneted opensets. A point x of a onneted spae X is a ut-point if X n fxg is not onneted. Given two points a,b 2 X , a ut-point x separates a and b if X n fxg deomposes into two disjoint open sets, one of whihontains a and the other b. A yli element of a onneted spae is a subset whih is maximal withrespet to the property of having no ut-point of itself. A yli element is trivial if it onsists of onlyone point.A dendron is a loally onneted ontinuum all of whose yli elements are trivial. Equivalently, anytwo points of a dendron are separated by a third.Cyli elements are a powerful tool in the study of loally onneted ontinua. They were originallyde�ned by Whyburn [Wh℄ for metrizable ontinua but the theory has been more reently developed foruse in all ontinua, see [C℄, [N1℄. They are a ruial onept in Nikiel's haraterisation of ontinuousimages of ars [N1℄.



Ordered spaesSuppose (X;<) is a linearly ordered set. For a 2 X , (a;!)X = fx 2 X : a < xg and ( ; a)X = fx 2X : x < ag. Other intervals in X are denoted using the usual onventions of round and square brakets.If there is a possibility of onfusion as to whih ordered set is meant, a subsript will be added as in theabove notation.X is a linearly ordered topologial spae, or LOTS, if f( ; a) : a 2 Xg [ f(a;!) : a 2 Xg is a sub-basisfor �X . X is a generalised ordered spae, or GO-spae, if it has a basis of sets whih are onvex withrespet to <. Alternatively, a GO-spae is a subspae of a LOTS. An ar is a onneted, ompat LOTS.A jump in X is a pair hx; yi 2 X2 suh that x < y and (x; y) = ;. A jump-point is one half of a jump.For two LOTS, (X;6X) and (Y;6Y ), the lexiographi order 4 on X � Y is de�ned by: for ha; bi,hx; yi 2 X � Y , ha; bi 4 hx; yi if a <X x or a = x and b 6Y y.We ollet here a ouple of elementary properties of ordered spaes whih may be found in [E℄.Proposition 1.2.11 A separable LOTS is metrizable if and only if it has ountably many jumps.Proposition 1.2.12 A ompat GO-spae is a LOTS.Proposition 1.2.13 Every subset of a ompat LOTS has an in�mum and supremum.A CICLOTS is the ontinuous image of a ompat LOTS and an arti spae is the ontinuous image ofan ar.Monotone normality and generalised metri spaesX is monotonially normal [HLZ℄ if there exists an operator G : X � �X ! �X , suh that:1. If, for x 2 U 2 �X and y 2 V 2 �X , G(x; U) \G(y; V ) 6= ; then x 2 V or y 2 USuh an operator is alled a monotone normality operator. Note that it suÆes to de�ne G only on abasis of X .X is ayli monotonially normal [MRRC℄ if there exists an operator H : X � �X ! �X , suh that:2. If x 2 U 2 �X and U � V 2 �X then H(x; U) � H(x; V )3. For all x,y 2 X , H(x;X n fyg) \H(y;X n fxg) = ;4. For all n 2 !, and all distint x0; x1; : : : ; xn�1 2 X with xn = x0, Tn�1i=0 H(xi; X n fxi+1g) = ;Suh an H is alled an ayli monotone normality operator. It is easy to see that, given an operator Hon X satisfying (2) and (3), there is an operator G on X satisfying (1) and vie versa. Thus, all aylimonotonially normal spaes are also monotonially normal. GO-spaes are ayli monotonially normal[MR℄ and, as ayli monotone normality is preserved by losed maps, so too are CICLOTS.In the ourse of our study of monotonially normal ompata, two well-known lasses of spaes emergeas natural to onsider.The �rst lass is the non-Arhimedean spaes. A spae X is non-Arhimedean if it has a rank-1 base.That is, there is a base, B, for the topology on X suh that if B, B0 2 B and B \ B0 6= ; then eitherB � B0 or B0 � B. Nyikos proved the following:



Theorem 1.2.14 [Ny℄ Every non-Arhimedean spae is a GO-spae.In the same artile, Nyikos de�ned the seond lass of spaes whih we onsider - the proto-metrizablespaes. The most well-known formulation of proto-metrizability is in terms of the sattering proess: fora lass C of spaes, trans�nitely onstrut spaes, at suessor stages, by isolating a subset of points andreplaing these points with members of C and, at limit stages, by taking a subspae of the inverse limit ofthe onstrution so far. The lass of spaes so de�ned is denoted S(C). A spae is proto-metrizable if andonly if it is in S(Metrizable). Despite this peuliar de�nition, proto-metrizability has ourished notonly beause it is a good generalisation of metrizability sharing many of the key properties of metrizablespaes but also beause of the wealth of di�erent haraterisations of proto-metrizable spaes. We givenow a sample of these.Reall that a pair-base B = fB = (B1; B2) : B 2 Bg for X is a subset of (�X)2 suh that for all B 2 B,B1 � B2 and for all x 2 U 2 �X , there exists B 2 B for whih x 2 B1 � B2 � U .Theorem 1.2.15 The following are equivalent:1. X is proto-metrizable2. [GZ℄ X has a rank-one pair-base, that is, a pair-base B suh that if B, B0 2 B and B1 \ B01 6= ;then either B1 � B02 or B01 � B23. [F℄ X is the perfet image of a non-Arhimedean spae4. [GM℄ X has a ontinuous monotone normality operator, that is, a monotone normality operator Hsuh that if x 2 U 2 �X then there exists V 2 �X whih ontains x and, for all y 2 V , V � H(y; U)5. [GM℄ X is monotonially paraompat, that is, if � is the set of open overs of X, then there existsan m : �! � suh that, for all U , V 2 �:(a) m(U) star-re�nes U(b) m(U) re�nes m(V) whenever U re�nes VSome exotiaWe now give some details of some of the more arane topologial objets whih we will enounter in theourse of this work.A Souslin line is a non-separable,  LOTS. Souslin's Hypothesis (SH) is the assertion that there are noSouslin lines. It is well-known that SH is both independent and onsistent with ZFC. More spei�ally,under 3, there is a Souslin line whilst under MA + :CH, SH holds.If there is a Souslin line, there is one whih is also ompat and onneted - simply take the Dedekindompletion of the given Souslin line.A pair hT ;6i is a tree if T is a set partially ordered by 6 in suh a way that, for all t 2 T , fs 2 T : s 6 tgis well-ordered by 6. A hain in T is a linearly ordered subset of T , a branh is a maximal hain and ananti-hain is a subset S suh that, for all s, t 2 S, it is the ase that neither t 6 s nor s 6 t. The heightof a tree, denoted ht(T ), is the supremum of the order-types of the sets fs 2 T : s 6 tg.A Souslin tree is a tree of height !1 with no unountable hains or anti-hains. There is a Souslin line ifand only if there is a Souslin tree.A Lusin set is an unountable subset of R whih meets every nowhere dense subset of R in at mostountably many points. It is easily shown that Lusin sets an be onstruted under CH. Kunen [K2℄generalised this notion to Lusin spaes whih are unountable regular spaes, having at most ountablymany isolated points and in whih every nowhere dense subset is ountable. He showed that under MA +



:CH, there are no Lusin spaes. Also, every Souslin line ontains a subset whih is a Lusin spae thoughit is onsistent with ZFC that there is a Lusin spae but no Souslin line.In his thesis [vD1℄, van Douwen de�ned a node spae to be a rowded spae whose nowhere densesubsets are all losed. A maximal topology on a set X is a rowded topology any re�nement of whih isnot rowded. These are easy to �nd as given any rowded spae X , take all rowded topologies re�ning�X , partially order it by inlusion and apply Zorn's Lemma to give a maximal topology. If X is Hausdor�then the maximal topology is also Hausdor�. Van Douwen has shown [vD3℄ that all maximal topologiesare node. Thus, given any rowded Hausdor� topology on a set there is a �ner rowded Hausdor�topology whih is node.Finding a regular node spae is not so straightforward. One again, van Douwen provided a methodfor onstruting these but, rather than using maximal topologies, he used maximal regular topologies.These are topologies whih are maximal with respet to being rowded and regular. They were originallyde�ned by Bourbaki as ultraspaes [Bo℄ and, just like maximal topologies, they an be found by applyingZorn's Lemma but this time to the lattie of regular rowded topologies re�ning the topology on anygiven regular rowded spae.Having obtained a ountable maximal regular topology, say one re�ning �Q, van Douwen gave a methodfor �nding a dense subspae whih is node. By Proposition 1.2.1, this is neessarily rowded and islearly regular. In the ase that the maximal regular spae did re�ne Q, take � to be the dense nodesubspae and X the subset of Q whih underlies �. If x 2 X were isolated in X then fxg 2 �X � �.Hene X has no isolated points. As a rowded subspae of Q, X is homoeomorphi to Q. Thus, wheneverwe refer to van Douwen's node spae, we mean a regular node spae whih re�nes Q.Apart from this, the salient properties of van Douwen's node spae are that every nowhere dense subsetof it is disrete and that it is not monotonially normal. I am very grateful to Ian Stares for his extremelyuseful exposition of van Douwen's onstrution [St1℄.



Chapter 2Boundary properties
The boundaries of open sets are fundamental objets in a topologial spae. However, very few lasses ofspaes have been studied solely for the properties of their boundaries - the most notable exeptions beingdimension theory, Lusin sets and node spaes. In this hapter, we onsider several topologial propertiesP and onsider those spaes in whih the boundary of every non-empty open set is P . We refer to thisproperty as boundary-P . We pay partiular attention to the relationship between a spae being P andit being boundary-P .The �rst setion introdues the notion of boundary-P and summarises the work whih has already beendone where P is a overing property. In the seond setion, boundary-metrizable spaes are analysedand their metrizability is given in terms of the existene of Lusin spaes. In the third setion, boundary-metrizability is onsidered in LOTS, not only for its intrinsi interest, but also as it provides a soure ofimportant examples. The exat relationship between boundary-separability and separability is examinedin the fourth setion. The next disusses boundary-sattered spaes where we obtain a result whih willbe useful later. Finally, we summarise the main results of the hapter and raise some relevant questions.2.1 Boundary-P spaesIn order to be as exible as possible, we make the following very general de�nition:De�nition 2.1.1 For a topologial property P , a spae X is said to have the property boundary-P ifthe boundary of every non-empty open set has property P .There are some immediate onsequenes of this de�nition whih are worth noting.Proposition 2.1.2 For a spae X:1. X is boundary-P if and only if every losed nowhere dense subset of X is P2. If X is boundary-P then so too is every losed subspae of X3. For a property P whih is hereditary with respet to losed sets, if X is P it is also boundary-P4. If X is boundary-(hereditarily P) then it is hereditarily boundary-P5. If X is boundary-P then it is rim-P 13



Proof (1) holds beause a subset of X is nowhere dense and losed if and only if it is the boundary ofsome non-empty open set. (2) now follows sine a losed nowhere dense subset of a losed subset of X isalso a losed nowhere dense subset of X . If P is hereditary with respet to losed sets then every losednowhere dense set is P hene (3).To see (4), suppose that X is boundary-(hereditarily P). If Y � X and C is losed and nowhere densein Y then D = CX is losed and nowhere dense in X . Thus, D is hereditarily P whih means that C, asa subset of D, is P . That is, Y is boundary-P .(5) follows trivially from the de�nition of rim-P . 2Remark In the ensuing work, (1) is partiularly useful as it provides a way of disussing boundarieswithout referring to spei� open sets. Heneforth, it will normally be used without expliit referene.Proposition 2.1.3 For a spae X and Y � X, if1. P is a property whih is hereditary with respet to losed sets2. Y is P3. X n Y is a olletion of isolated points of Xthen X is boundary-P.Proof Suppose C is a losed and nowhere dense subset of X . As C is nowhere dense, it ontains noisolated points of X and must therefore be a subset of Y . Thus C is a losed subset of Y and C is P .Hene X is boundary-P by Proposition 2.1.2 (1). 2This gives an easy method for onstruting a number of examples of spaes with ertain boundaryproperties. Simply start with a spae with the required property and throw in as many isolated pointsas required.Examples 2.1.4 The Alexandro� dupliate is a ompat boundary-metrizable spae whih is not metriz-able.Any spae with all but one point isolated has every boundary property that the one point spae has! 2Thus, the real substane of boundary properties only emerges when the spaes onsidered have no (orfew) isolated points. For this reason, in the remainder of the hapter, all spaes onsidered are rowded.We are, in fat, already familiar with ertain boundary properties though they may not have been viewedthis way before. For instane, boundary-(non-empty) simply means onneted and boundary-disrete isequivalent to node. Lusin spaes are those boundary-ountable spaes whih are regular, unountableand have at most ountably many isolated points.Boundary-P for a overing property P was onsidered as early as 1947 by Kat�etov [Ka℄ who stud-ied boundary-ompatness albeit not by that name. He showed that (in rowded spaes) boundary-ompatness was the same as ompatness. This result was then generalised to [�; �℄-ompatness byMills and Wattel [MW℄. (A spae X is said to be [�; �℄-ompat if every open over of X with ardinalityat most � has a sub-over of ardinality stritly less than �. This is a natural generalisation of ompat-ness whih inorporates both ountable ompatness and the Lindel�of property as [!; !℄-ompatness and[!1;1℄-ompatness respetively.) Blair [Bl℄ gave a muh simpler proof of the Mills and Wattel resultand also onsidered realompatness and pseudoompatness. To summarise:



Theorem 2.1.5 For a spae X:1. [Ka℄ If X is boundary-ompat then X is ompat2. [MW℄ If X is boundary-([�; �℄-ompat) then X is [�; �℄-ompat3. [Bl℄ If X is boundary-pseudoompat then X is pseudoompat4. [Bl℄ If X is boundary-realompat and every losed sreenable subset has Ulam-non-measurable ardinality then X is realompatWe will use these results only in the following orollary:Corollary 2.1.6 If X is boundary-Lindel�of then it is Lindel�of.2.2 Boundary-metrizable spaesMetrizable spaes have the most friendly properties of all topologial spaes but boundary-metrizablespaes an exhibit some quite unruly behaviour even in the absene of isolated points!Examples 2.2.1 The node spae of van Douwen is a regular, ountable spae with no isolated pointssuh that every nowhere dense set is disrete. However, it is far from being metrizable.Take p 2 �R whih is a remote point, that is, for all C � R whih are nowhere dense, p 62 C�R. Thespae R [ fpg is onneted, boundary-metrizable and not metrizable. 2Remark The seond example was given by van Douwen in his review of [MW℄ in Mathematial Reviews,82a:54045. However, �nding remote points in R is a non-trivial task but fortunately (for our purposes)they do exist in ZFC. The details an be found in [Ha℄ on p.338.The boundaries in both these examples are partiularly well-behaved - they are ountable and disretein the former ase and subsets of R in the latter. To ahieve better behaviour, the boundaries mustbe further restrited to be ompat as well. From Kat�etov's result, this simply means that we need toonsider the lass of ompat boundary-metrizable spaes.Proposition 2.2.2 If X is a ompat boundary-metrizable spae then it is boundary-(hereditarily Lin-del�of) and boundary-(hereditarily separable).Proof This follows immediately from the fat that ompat metrizable spaes are hereditarily Lindel�ofand hereditarily separable. 2From Proposition 2.1.2 (4), X being boundary-(hereditarily Lindel�of) is atually telling us that X ishereditarily boundary-Lindel�of from whih Corollary 2.1.6 gives:Corollary 2.2.3 If X is ompat and boundary-metrizable then X is hereditarily Lindel�of.Therefore:Corollary 2.2.4 If X is ompat and boundary-metrizable then X is perfet and �rst ountable.



Proof It is well-known (see [E℄, p.194) that hereditarily Lindel�of spaes are perfet. Sine points arelosed in X , eah point has ountable pseudo-harater in X whih together with ompatness meansthat X is �rst ountable. 2However, there is a muh more diret proof of this whih greatly illuminates the relationship between theboundary properties and the global properties of a spae. First, we need a lemma.Lemma 2.2.5 If X is a boundary- spae then s(X) = !. In partiular, if X is ompat and boundary-metrizable then it satis�es the ountable hain ondition.Proof Suppose D is a disrete subset of X so that D is nowhere dense in X and hene . ByProposition 1.2.1, ffdg : d 2 Dg is a olletion of isolated points in D, in partiular, a disjoint olletionof non-empty open subsets of D. Thus there are at most ountably many sets in the olletion. That is,D is ountable.The seond part is a diret onsequene of the fat that ompat boundary-metrizable spaes are boundary- and that (X) 6 s(X). 2Proof of Corollary 2.2.4 In order to show that X is perfet, onsider �rst C � X whih is losed andnowhere dense. We now onstrut a maximal disjoint family of open sets whose losures do not intersetC.Suppose that � is an ordinal and that for all � < �, U� 2 �X has been de�ned suh that U� \C = ; andfor �0 < � < �, U�0 \ U� = ;. If X nS�<� U� is empty then stop and take � to be �. S�<� U� is thusdense in X and fU� : � < �g is the required maximal family.If X n S�<�U� is non-empty, as it is also open and C is nowhere dense, there exists a point x 2X n (S�<� U� [ C). By regularity of X , take U� suh that x 2 U� � U� � X n (S�<� U� [ C). Thismeans that fU� : � < �+ 1g is a olletion of opens sets whose losures are disjoint and U� \ C = ; forall � < �+ 1. This ompletes the indutive onstrution.De�ne F = X nS�<� U� and G = X nS�<� U� = T�<�(X nU�). By Lemma 1.2.6, F is nowhere denseand hene metrizable. G is a GÆ-set in X sine Lemma 2.2.5 implies that � is ountable. It is lear thatC � G � F , so C is a losed subset of the metrizable GÆ-set G. Hene C is a GÆ-set in G and as a GÆ-setof a GÆ-set, C is GÆ-set in X .Now suppose A is any losed subset of X . A = intA [ bdA. bdA is losed and nowhere dense so is aGÆ-set in X . Take bdA = Tn2! Un for some Un 2 �X . Thus A = Tn2!(Un [ intA) and A is a GÆ-set inX . That is, X is perfet. 2We are now in a position to onsider when ompat boundary-metrizable spaes are metrizable. Theoutome is somewhat surprising.Theorem 2.2.6 If there are no Lusin spaes then every ompat boundary-metrizable spae is metrizable.This is proven by onstruting in any ompat boundary-metrizable spae whih is not metrizable asubspae whih is a Lusin spae. The exposition of the proof is simpli�ed by:De�nition 2.2.7 For Y � X , B � �X is a base for Y in X if, whenever y 2 Y and y 2 U 2 �X , thereexists B 2 B suh that y 2 B � U . Y is seond ountable in X, if there is a ountable base for Y in X .



Lemma 2.2.8 If C � D � X and D is seond ountable in X then C is seond ountable in X.Proof For all  2 C and U 2 �X for whih  2 U , sine  2 D, there exists B 2 B suh that  2 B � U .Therefore B is a ountable base for C in X . 2Lemma 2.2.9 If B is a base for Y in X and C � Y is seond ountable in X then there exists B0 2 [B℄!suh that B0 is a base for C in X.Proof Suppose A is a ountable base for C in X . For a pair A1 and A2 2 A, de�ne B(A1; A2) to besome element of B suh that A1 � B(A1; A2) � A2whenever suh an element exists, and to be X otherwise. Take B0 = fB(A1; A2) : A1, A2 2 Ag.Consider  2 C, where  2 U for some U 2 �X . A is a base for C in X so there exists A2 2 A suh that 2 A2 � U . But A2 is open in X so there is a B 2 B suh that  2 B � A2. And B is also open in Xso there is an A1 2 A for whih  2 A1 � B. Thus, there is an element of B sitting between A1 and A2and hene, B(A1; A2) is well-de�ned for A1 and A2 giving 2 A1 � B(A1; A2) � A2 � UMore onisely, there exists B 2 B0 suh that  2 B � U . Not only that, B0 is ountable as it is indexedby pairs from the ountable set A. Therefore B0 is our required base. 2Lemma 2.2.10 If X is a ompat and perfet spae and D is a losed metrizable subspae of X then Dis seond ountable in X.Proof Take B to be a ountable base for D, that is, B � �D. D is losed so, for all B 2 B, BD = BX(whih means all losures may be taken in X) and, by perfetness of X , B is a GÆ-set in X . Therefore,there exists a sequene of sets open in X , fUn(B)gn2!, for whihUn+1(B) � Un(B) and B = \n2!Un(B)De�ne C = fUn(B) : B 2 B, n 2 !g. Clearly, C 2 [�X ℄!. If d 2 D and d 2 U 2 �X then there existV 2 �X suh that d 2 V � V � U and B 2 B suh that d 2 B � V \D. As B � V , B � V � U . Hene,\n2!Un(B) � UBy ompatness, for some n 2 !, Un+1(B) � U and then d 2 B � Un+1(B) � Un(B) � U . This impliesthat C is a ountable base for D in X . 2We now have all the mahinery neessary to prove the theorem.Proof of Theorem 2.2.6 Suppose X is a ompat boundary-metrizable spae whih is not metrizable.A subset of X whih is a Lusin spae is onstruted by an indution of length !1.Assume that for a given � < !1 and for all � < �, Y� 2 [X ℄! and B� 2 [�X ℄! have been de�ned suhthat:1. B� is a ountable base for Y� in X



2. for all  < �, Y � Y� , B � B�3. if x 2 Y� n Y then B does not ontain a loal base for x in XTake Z = S�<� Y� , C = S�<� B�. Z is ountable and it is not hard to see that C is a ountable base forZ in X . But X is not seond ountable, so there exists x� 2 X suh that C does not ontain a loal basefor x� in X . It must be that x� 62 Z. Moreover, X is �rst ountable by Corollary 2.2.4, so there is aountable loal base, B(x�), for x� in X . De�ne Y� = Z [ fx�g and B� = C [ B(x�). By this de�nition,Y� and B� must satisfy the indutive hypotheses.Take Y!1 = S�<!1 Y� and B!1 = S�<!1 B�. From the onstrution, Y!1 is unountable and B!1 is abase for Y!1 in X . Y!1 will be the promised Lusin set and so it is neessary to show that every nowheredense subset of Y!1 is ountable and that Y!1 has at most ountably many isolated points. The latterfollows easily, though, from the fat that X has ountable spread (Lemma 2.2.5) and the set of isolatedpoints of a subset of X is a disrete set.Consider C � Y!1 whih is nowhere dense in Y!1 . D = C is nowhere dense in X hene metrizable andompat. By Lemma 2.2.10, sine X is perfet, D is seond ountable in X . By Lemma 2.2.8, C is seondountable in X . And by Lemma 2.2.9, there exists B0 2 [B!1 ℄! suh that B0 is a ountable base for C inX . As B0 is ountable, there is some � < !1 suh that B0 � B�. But then, if C is unountable, thereexists � > � suh that x� 2 C. However, B� does not ontain a loal base for x� in X and thus neitherdoes B0. This is a ontradition and so C must be ountable. That is, Y!1 is a Lusin spae. 2In order to provide an example of a boundary-metrizable ompatum whih is not metrizable, it istempting simply to take a ompat non-metrizable Lusin spae. However, Corollary 2.5.5 rules out thisoption. Somewhat surprisingly though, boundary-metrizability in LOTS is muh more tratable thanin general and we an �nd some haraterisations (and hene some examples) of boundary-metrizable,non-metrizable LOTS.2.3 Boundary-metrizability in LOTSProposition 2.2.5 of the last setion tells us that every boundary-separable spae is  . It seems quitereasonable therefore that in LOTS the onverse is true.Proposition 2.3.1 Every  LOTS is boundary-separable.Proof First, take X to be a ompat LOTS whih satis�es the ountable hain ondition. (At this point,it is worth noting that we ould drop the assumption that there are no isolated points as the ountablehain ondition ensures that there are at most ountably many and so they an easily be taken are ofin the proof). Suppose C is a losed and nowhere dense subset of X .X n C is open and an be divided into disjoint, maximally onvex sets alled the omponents of X n C.If U denotes the family of omponents of X n C then, as X is , U is ountable and U = fUn : n 2 !gsay. Moreover, sine X is ompat, eah omponent has a supremum and an in�mum. This allows usto assert that eah Un an be written in the form (an; bn) where an, bn 2 C for all n 2 !. De�neD = fan : n 2 !g [ fbn : n 2 !g. D is a ountable subset of C and will be shown to be dense in C aswell.Sine X is ompat so too is C and, as a ompat subspae of a LOTS, C is also a LOTS. Thus its basiopen neighbourhoods are (s; t) \ C where s, t 2 C and s < t. Consider suh a non-empty basi openneighbourhood in C and take x 2 (s; t) \ C. As x is not an isolated point of X , either (s; x) or (x; t) isnot empty. Without loss of generality, we may assume the former.



C is nowhere dense so (s; x) 6� C and some omponent ofXnC, Un say, must meet (s; x). Moreover, as it isonvex, Un must sit entirely inside (s; x). That is, there exists n 2 ! suh that Un = (an; bn) � (s; x). Soertainly bn 6 x and hene (s; t)\D is non-empty. Therefore C is separable and X is boundary-separable.For the more general ase where X is not ompat, take Y to be the Dedekind ompletion of X . Y is aompat LOTS whih has a dense subspae satisfying the ountable hain ondition. It is easy to see thatY must also satisfy the ountable hain ondition and hene, by the previous ase, be boundary-separable.Suppose B is a losed nowhere dense subset of X . De�ne C = BY . C is also nowhere dense in Y and so isseparable. Moreover, C is a GO-spae whih means that, sine C is separable, it must also be hereditarilyseparable. That is, B is separable and X is boundary-separable. 2This gives an indiation of where we an �nd our �rst example of a boundary-metrizable, non-metrizableompatum.Example 2.3.2 A ompat, onneted Souslin line is a boundary-metrizable, non-metrizable ontinuum.Proof Take X to be a ompat, onneted Souslin line. Thus X has the ountable hain ondition andis not metrizable. By the previous proposition, X is boundary-separable.Consider C a losed, nowhere dense subset of X . C is therefore a separable, ompat GO-spae, hene aseparable LOTS. Moreover, if (a; b)C is a jump in C, either (a; b)X is a jump or a omponent of X n C.X is onneted so has no jumps and has the ountable hain ondition so there are at most ountablymany omponents of X n C. Thus, C has at most ountably many jumps. By Proposition 1.2.11, C ismetrizable and X is boundary-metrizable. 2Of ourse, Souslin lines need not exist. In whih ase, sine ompat boundary-metrizable LOTS are thenseparable, we need only onsider separable LOTS. These have a great deal of struture whih signi�antlysimpli�es their study. To demonstrate this, �rst we need a de�nition:De�nition 2.3.3 For a LOTS X and Y � X, the double arrow of X over Y , denoted DA(X ;Y ), isthe LOTS formed by Z = (X � f0g) [ (Y � f1g) with the lexiographi order. Take � : DA(X ;Y )! Xto be the natural projetion map. � is learly ontinuous.Proposition 2.3.4 If L is a separable LOTS then there exists M � R, a LOTS without jumps, andA �M suh that L = DA(M ;A).Proof The proof of this is well-known and is an essentially straightforward tehnial exerise. 2Having obtained suh a nie haraterisation, we an now express features of a separable LOTS in termsof its double arrow struture. For the rest of this setion, the notation is as de�ned in Proposition 2.3.4.Lemma 2.3.5 B � L is nowhere dense in L if and only if �(B) is nowhere dense in M .Proof If B � L is not nowhere dense then B ontains some non-empty basi open interval of L inits losure. That is, there are m1 and m2 2 M and i, j 2 f0; 1g suh that hm1; ii <L hm2; ji and; 6= (hm1; ii; hm2; ji)L � B. Take I to be the interval (hm1; ii; hm2; ji)L. If m1 = m2 then it must bethat i = 0 and j = 1 and then I is empty - a ontradition. Thus, m1 <M m2 and it easily follows thatJ = (hm1; 1i; hm2; 0i)L � B. Now, if J were empty, sine I is non-empty, it must be the ase that either



i 6= 1 or j 6= 0 and either ase would imply that L has an isolated point. However, we have the runningassumption that this is false. Hene, J is non-empty and there exist m3 2 M and k 2 f0; 1g suh thathm3; ki 2 J .Therefore, we have: �(J) � �(B) whih is a subset of �(B) by ontinuity of �. But �(J) = (m1;m2)Mand m3 2 �(J) so �(J) is a non-empty open subset of �(B) and �(B) is somewhere dense.Suppose now that �(B) is somewhere dense for some B � L. Thus, �(B) is dense in some interval(m1;m2)M where m1 <M m2. We will show that B is dense in the interval (hm1; 1i; hm2; 0i)L fromwhih it immediately follows that B is not nowhere dense.Beause L has no isolated points, any non-empty basi open interval in L ontains a non-empty intervalof the form (ha; 1i; hb; 0i)L where a, b 2 M and a <M b. Consider suh an interval ontained inside(hm1; 1i; hm2; 0i)L so that m1 6M a <M b 6M m2. Sine �(B) is dense in (m1;m2)M , there exists a 2 �(B) suh that a <M  <M b. Thus, h; ii 2 B for some i 2 f0; 1g and, by simply applying thede�nition of the lexiographi order, it is lear that h; ii 2 (ha; 1i; hb; 0i)L. This means that every basiopen interval in (hm1; 1i; hm2; 0i)L piks up some h; ii 2 B. That is, B is dense in (hm1; 1i; hm2; 0i)L.2Lemma 2.3.6 A LOTS subspae C of L is metrizable if and only if �(C) \ A is ountable.Proof From Proposition 1.2.11, C � L is metrizable if and only if it has ountably many jumps. Thus,C is metrizable if and only if f 2 C :  is an element of a jump g is ountable. Sine M has no jumps, 2 C is an element of a jump in C if and only if �() 2 A. This gives: C � L is metrizable if and only iff 2 C : �() 2 Ag is ountable if and only if C \��1(A) is ountable if and only if �(C)\A is ountable(sine � has �nite �bres). 2Given the previous lemmas, to onstrut a boundary-metrizable separable LOTS whih is not metrizablerequires that, �rst, in the double arrow onstrution, A must be unountable to kill o� metrizability ofL. Seondly, all nowhere dense subsets of L must meet ��1(A) in only ountably many points. Thissuggests that taking A to be a Lusin set would be the right plae to look for suh an example.Theorem 2.3.7 Every boundary-metrizable separable LOTS is metrizable if and only if there are noLusin sets.Remark This theorem, in one diretion at least, seems to be a onsequene of Theorem 2.2.6. However,the hypothesis that there are no Lusin sets is not as sweeping as the hypothesis that there are no Lusinspaes.Proof Suppose there is a Lusin set A in the losed unit interval. De�ne X = DA(A;A). X is learlya ompat LOTS. If D is a ountable, dense subset of A then it is easily shown that D � f0; 1g is aountable dense subset of X . X is not metrizable as A is unountable.Take C to be a losed, nowhere dense subset of X . By Lemma 2.3.5, �(C) is nowhere dense in A andlosed as C is ompat. Suppose for some U 2 �A, U � �(C) \ A. There exists V 2 �A suh thatU = V \ A and sine A is dense in A, U is dense in V . Thus, U = V . As �(C) is losed, U � �(C)whih implies that V � �(C). However, �(C) is nowhere dense so V , and hene U , must be empty and�(C) \A is nowhere dense in A. Beause A is a Lusin set, �(C) \A is ountable and then Lemma 2.3.6tells us that C is metrizable.In summary, X is a ompat, separable, boundary-metrizable LOTS whih is not metrizable.For the onverse, assume that X is a boundary-metrizable, separable LOTS whih is not metrizable.Then X = DA(M ;A) for someM � R and A �M . By Proposition 1.2.11, A must be unountable as Xis not metrizable and M is free from jumps. Consider C � A whih is nowhere dense in A. By Lemma



2.3.5, ��1(C) is nowhere dense in X beause �(��1(C)) = C. Thus, �(��1(C)) \ A is ountable sine��1(C) is metrizable and Lemma 2.3.6 holds. This implies that C is ountable and A is a Lusin set. 2Thus, the examples we required of boundary-metrizable non-metrizable ompata an all be found to beLOTS as well. Of ourse, our examples require set-theoreti hypotheses but we know from Theorem 2.2.6that we an not eliminate this.Remark Boundary-metrizability in LOTS has already been briey onsidered before by M. E. Rudinin [R2℄. She asserted that:(�) For LOTS, X and Y where every nowhere dense subset is seondountable, X � Y is  if and only if X � Y is hereditarily Lindel�of.Phrased in another way, (�) simply says that if the produt of two boundary-(seond ountable) LOTSis  then it is hereditarily Lindel�of. This however is not true in general as Pursih pointed out in [Pur℄.He proved that statement (�) was equivalent to the non-existene of Lusin sets. In fat, his exampleshowing that (�) is false is the same one given in Theorem 2.3.7.Now, sine the Dedekind ompletion of a boundary-(seond ountable) LOTS is a boundary-metrizableompatum (as in the proofs of Theorem 2.3.1 and Example 2.3.2), if there are no Lusin sets, Theorem2.2.6 tells us that every boundary-(seond ountable) LOTS is metrizable and (�) holds. However, (�)holding does not imply that every boundary-metrizable ompat LOTS is metrizable hene it annotimply the non-existene of all Lusin spaes.2.4 Comparing separability and boundary-separabilityBoundary-separability appeared in the last setion as a useful notion for analysing Example 2.3.2 and so wenow turn our attention to that. The two key questions in relating boundary-separable spaes to separablespaes are: \When are separable spaes boundary-separable?" and \When are boundary-separable spaesseparable?" The answer to the �rst question is straightforward and was given by Malykhin [Ml℄.Proposition 2.4.1 If X is boundary-separable then d(X) = hld(X).Proof Take D to be a subset of X whih is dense in X and jDj = d(X). For a losed subset Y of X ,de�ne D1 = D\ intY . Sine Y is losed, Y n intY is nowhere dense and losed in X hene separable. TakeD2 to be a ountable dense subset of Y n intY . It is lear that D1 [D2 is dense in Y and has ardinalityno greater than d(X). Hene, d(Y ) 6 d(X) and d(X) = hld(X). 2Corollary 2.4.2 Any separable spae is boundary-separable if and only if every losed subspae is sepa-rable.It is not possible to improve on this result as was also shown in [Ml℄ where, under CH, Malykhin pro-dued a separable Lusin spae whih is not hereditarily separable. Another suh example was given byTodor�evi� [T2℄ under the weaker set-theoreti assumption that b = !1 (reall the de�nition of b fromthe introdution). We provide this example not only for the sake of ompleteness but also to providesome of the details whih Todor�evi� omitted from his proof. As far as possible, the notation is the sameas that used in Setion 0 of [T1℄ and Setion 3 of [T2℄ bar a few minor modi�ations in order to improvelarity. The proof makes use of an elementary submodel and so it may be useful to read Chapter 6 beforegoing through the onstrution.



Theorem 2.4.3 There is a ompletely regular spae X suh that hd(X) = b but d(F ) < b for everylosed subset F of X.Proof The proof will fall into three parts: the �rst is a de�nition of the spae X and the proof that itis ompletely regular; the seond shows that hd(X) = b; the last proves that for all losed subsets F ofX , d(F ) < b.1. Take A to be an unbounded subset of monotone inreasing funtions in !! whih is well-ordered by<� in order type b. Suh a set is shown to exist in [vD2℄ Theorem 3.3. De�ne D to be the set of all thosed 2 (! + 1)! whih are monotone inreasing and suh that, for some n 2 !, djn 2 !n and for all i > n,d(i) = !. Z is taken to be A [D with the topology inherited from (! + 1)!.Now re�ne �Z by delaring fg 2 Z : g > fg to be open for all f 2 A. Take X to be the same underlyingset as Z with this new topology (in Todor�evi�'s notation, X = Z[A;>℄). Sine �X is a re�nement ofthe Hausdor� topology �Z, X is Hausdor�.We will now show that X is zero-dimensional (has a basis of lopen sets) from whih it follows that X isompletely regular ([E℄ p.360).Consider X [>f ℄ = fg 2 X : g > fg. If g 62 X then there exists n 2 ! for whih g(n) < f(n). TakeUg = fh 2 Z : h(n) = g(n)g. Ug is a basi open set in Z whih learly ontains g yet misses X [>f ℄. ThusX [>f ℄ is losed in Z. As �X re�nes �Z, X [>f ℄ must also be losed in X . Moreover, as it is delaredopen in X , X [>f ℄ is a lopen subset of X for all f 2 A.Z is zero-dimensional beause it is a subset of the zero-dimensional spae (! + 1)!. Hene we an �nd abasis, B say, onsisting of lopen sets in Z. Moreover, we may assume that B is ountable and onsistsof anonial basi open sets indued by the Tyhono� topology. If B 2 B, B must also be lopen in X .But note, fB \X [>f ℄ : B 2 B, f 2 Ag forms a basis for X every element of whih is lopen in X . ThusX is zero-dimensional and ompletely regular.2. Consider A as a subset of X . Beause A is well-ordered by <�, every B � A has a <�-minimumelement and it is not hard to see that this element must also be 6-minimal as well. Hene (A;6) iswell-founded and there is some well-ordering 4 on A whih extends 6 on A. This well-ordering need notoinide with <�. If f , g 2 A and f � g then it annot be the ase that f 2 X [>g℄ sine 4 extends 6.This means fX [>f ℄ \ A : f 2 Ag is a olletion in �A witnessing that A is left-separated in type b (see[Ro℄ p.301). Hene d(A) > b and, as the ardinality of X is b, this implies that hd(X) = b.3. Before proeeeding with the last setion of this proof, it is worth remarking that, sine b is regularand A is well-ordered by <� in order type b, any family in A of size b is o�nal in A and hene is alsoan unbounded olletion in !!. In addition, any family in A of ardinality less than b has a <�-upperbound.Suppose now that F is a losed subset of X [A;>℄. De�ne Y0 = F nF \D. As D is ountable, in order toshow that d(F ) < b, it would suÆe to show that jY0j < b. Thus, assume for ontradition that jY0j = b.By shrinking, we an �nd Y1 � Y0 also of size b and for whih there exists m 2 ! suh that:(a) f jm = gjm for all f , g 2 Y1(b) f jm 6= gjm for all f 2 Y1 and g 2 F \DChoose a suitable ountable elementary submodelM whih ontains A, X , b, F , Y0, Y1, D, B and 6.ff 2 M : f 2 Ag is neessarily ountable so by the earlier remark there exists h 2 A suh that f <� hfor all f 2 A \M. And, sine Y1 is well-ordered by <�, jfg 2 Y1 : h <� ggj = b. By the pigeon-holepriniple and the de�nition of <�, there exists p 2 ! for whih Y2 = fg 2 Y1 : h 6p gg is also of size band hene unbounded in !!.If, for eah n 2 !, Rn = fg(n) : n 2 !, g 2 Y2g is bounded in !, de�ne f 2 !! by f(n) = maxRnfor all n 2 !. But then, for all g 2 Y2, g 6 f whih ontradits the unboundedness of Y2. Thus there



exists n 2 ! for whih Rn is unbounded in !. Choose n to be minimal (though it is neessarily greaterthan m) whene Rk is bounded for eah k < n. This implies that fgjn : g 2 Y2g is �nite and, again bythe pigeonhole priniple, we may hoose t 2 !n suh that fg(n) : g 2 Y2 and t � gg is unbounded in !.Given this, it is easy to �nd a sequene in Y2, fgigi2! say, suh that for all i 2 !:() t � gi(d) gi(n) < gi+1(n)De�ne d 2 D by djn = t and, for all i > n, d(i) = !. D is a ountable element ofM hene is a subset ofM (see Proposition 6.2.4) and d 2M. By (b), d 62 F so in partiular d 62 F \ A. Thus there exist f 2 Aand B 2 B suh that d 2 B \X [>f ℄ and(B \X [>f ℄) \ (F \ A) = ;As B is a basi open set indued by �Z, we may suppose that B has the form:B = fg 2 X : gjn = tg \ fg 2 X : g(j) > r for j = n; n+ 1; : : : ; n+ sgwhere r, s 2 !.Take �(f) to be the statement �(B \X [>f ℄) \ (F \ A) = ;� ^ �d 2 (B \X [>f ℄)� and so we have thatV j= 9f 2 A(�(f)). Sine B 2 M and B is ountable, by Proposition 6.2.4, B 2M and we have alreadyassumed that all the other objets mentioned in � are inM hene by elementarityM j= 9f 2 A(�(f)).Take ft 2 A\M whih witnesses the truth of this statement so thatM j= �(ft). Again by elementarity,V j= �(ft). Or more plainly,(e) ft 66 f for every f 2 F \ A whih extends t and for whih f(j) > r for j = n; n+ 1; : : : ; n+ sNow ft 2 M so ft <� h. Fix k > p suh that ft 6k h. By (d), fgi(n)gi2! is unbounded in ! and thereexists i 2 ! suh that(f) ft(k) 6 h(k) 6 gi(n) and gi(n) > rd 2 B \ X [>ft℄ thus djn = t > ftjn. But gijn = t, hene gijn > ftjn. As ft 6k h 6k gi, if j > k thenft(j) 6 gi(j). For n 6 j < k, ft and gi are monotone so ft(j) 6 ft(k) 6 gi(n) 6 gi(j). So overall, wehave that ft 6 gi.However, gi 2 Y2 � F \A, gi extends t by its de�nition and, sine gi(n) > r and gi is monotone inreasing,gi(j) > r for j = n; n+ 1; : : : ; n+ s. This ontradits (e). Hene jY0j < b and d(F ) < b as required. 2Example 2.4.4 [Todor�evi�℄ If b = !1 then there exists a separable boundary-separable spae whihis not hereditarily separable.Proof Take the spae X of Theorem 2.4.3. If b = !1 then hd(X) = !1 but d(F ) = ! for every losedsubspae F of X . Therefore, hld(X) = !. Thus X is a separable, boundary-separable (by Proposition2.4.1) and not hereditarily separable. 2Ideally, it would be better if the set-theoreti hypothesis ould be removed from the example. However,Todor�evi� remarked that all examples, X , where hld(X) < hd(X) must ontain a subspae, Y , forwhih hl(Y ) < hd(Y ). In our situation, this would be an L-spae - one whih is hereditarily Lindel�ofbut not hereditarily separable. It may yet be the ase that there are L-spaes in ZFC. However, it ispossible that all L-spaes with the extra properties whih we require in this ontext dualise to S-spaes.This would mean that there are no suh examples in ZFC as it is onsistent with ZFC that there are noS-spaes. Either way, Todor�evi�'s remark implies:



Proposition 2.4.5 If there are no L-spaes then every separable boundary-separable spae is hereditarilyseparable.We now move on to the seond question of when boundary-separable spaes are separable. This isatually quite omplex and it is easier to onsider �rst when boundary-(hereditarily separable) spaes areseparable. Even in this ase, though, the answer is somewhat remarkable.Theorem 2.4.6 Every boundary-(hereditarily separable) spae is separable if and only if there are nonon-separable Lusin spaes.Proof First, suppose there is a non-separable Lusin spae. It is boundary-ountable hene is a boundary-(hereditarily separable) non-separable spae, as required.Now suppose X is a non-separable boundary-separable spae. The proof works by showing that inside Xthere is a subset whih is a non-separable Lusin spae. The onstrution of the Lusin subspae proeedsby an indution of length !1.For � < !1, assume fx� : � < �g has been de�ned suh that for all � < �, x� 62 fx :  < �g. Nowfx� : � < �g is not dense in X as X is not separable. Thus there exists x� 2 X n fx� : � < �g. De�neY = fx� : � < !1g.If I is the set of isolated points of Y , I is disrete. X is boundary-separable hene boundary- and so,by Lemma 2.2.5, I is ountable. Y is learly unountable as the x� are all distint by their de�nition.Also, Y is non-separable sine if D were a ountable subset of Y then for some � 2 !1, D � fx� : � 6 �gfrom whih it follows that x�+1 62 D.It remains to show that every nowhere dense subset of Y is ountable. Thus take C to be a nowhere densesubset of Y . C is nowhere dense in X hene separable and there exists D 2 [C℄! suh that C = DC .Now D � Y and D is ountable so there exists � < !1 suh that D � fx� : � < �g. If C is unountable,there is a  < !1 suh that  > � and x 2 C. But x 62 fx� : � < gX � fx� : � < �gX � DC . This isa ontradition.Hene C must be ountable and Y is a non-separable Lusin subspae of X . 2Remark Example 2.3.2 together with Theorem 2.4.6 provide an alternative to Kunen's method in [K2℄for onstruting a Lusin subspae of a Souslin line.Whilst the above theorem may seem to avoid dealing with boundary-separability, it is atually ruial indetermining when boundary-separable spaes are separable as an be seen in the next proof.Theorem 2.4.7 If there are no L-spaes then every boundary-separable spae is separable.Proof Suppose X is boundary-separable. Consider C � X whih is losed and nowhere dense in X .Thus C is separable and boundary-separable by Proposition 2.1.2 (2). Now, by Proposition 2.4.5, C ishereditarily separable and hene X is boundary-(hereditarily separable). But note that any non-separableLusin spae is an L-spae as it is obviously not hereditarily separable and it is hereditarily Lindel�of bythe fat that it is boundary-ountable and Corollary 2.1.6. So the assumption that there are no L-spaesalso kills o� non-separable Lusin spaes and then Theorem 2.4.6 tells us that X is separable. 2In ertain lasses of spaes, the situation is muh less ompliated. In partiular, in ompat spaes wehave the following result whih was proven independently by both �Sapirovski�� and Arhangel'ski��.



Theorem 2.4.8 [�S℄ [A1℄ If X is ompat then hld(X) = hd(X).This does for us what the assumption of no L-spaes did for us in the �rst part of the proof of Theorem2.4.7. Hene, in the same way, we have:Proposition 2.4.9 If X is a boundary-separable ompatum then X is boundary-(hereditarily separable).Taking this together with Theorem 2.4.6 gives:Corollary 2.4.10 If there are no non-separable Lusin spaes then every boundary-separable ompatumis separable.However, we annot greatly improve upon this sine ompatness does not kill o� potential Lusin sub-spaes as an be seen in Example 2.3.2.The assumption that there are no Lusin spaes is stronger than the assumption that there are no Souslinlines but we know that, in general, Lusin spaes are neessary for the existene of boundary-(hereditarilyseparable) spaes whih are not separable. However, this an be weakened to Souslin's Hypothesis inertain lasses of spaes.Theorem 2.4.11 Souslin's Hypothesis holds if and only if every boundary-separable loally onnetedspae is separable.Proof By Example 2.3.2, it is enough to show that if X is boundary-separable and loally onnetedbut non-separable then there is a Souslin line. In fat, it will be shown that there is a Souslin tree madeup of open sets in X and ordered by reverse inlusion.Take T0 to be an in�nite, maximal family of disjoint open sets. Suppose that for a given ordinal �, forall � < �, T� has been de�ned. If � = �+1 then take T� to be a maximal disjoint family of open subsetsof S T� suh that, for every U 2 T�, there exists V (U) 2 T� suh thatU � V (U) and V (U) n U 6= ;If � is a limit ordinal then takeT� = fint\ C : C is a branh in [�<� T�gThe proess stops when T� = f;g. De�ne T = S�<� T� so that T is a tree of subsets of X ordered byreverse inlusion and take � to be the height of T . That � is a limit ordinal an easily be seen from theonstrution of T .If � < !1 de�ne �T� = S T� nS T�. �T� is a boundary hene there exists D� 2 [�T�℄! whih is densein �T�. De�ne D = S�<�D�. As � < !1, D is ountable and D will be shown to be dense in X whihgives a ontradition.Suppose that V is a non-empty open subset of X for whih V \D = ;. X is loally onneted so there issome non-empty, open, onneted subset, U say, of V whih also misses D. Now S T0 is dense in X byits de�nition hene U meets some T0 2 T0. However, U \D = ; implies that U \D0 = ; whih impliesthat U \ �T0 = ;. Clearly T0 n T0 � �T0 whene U \ bdT0 = ;. This means that T0 \ U = T0 \ U andT0 \ U is a non-empty lopen subset of U . U is onneted so it must be the ase that T0 \ U = U andU � T0.Suppose for � < � and every � < � that there exists a T� 2 T� for whih U � T�. If � = � + 1 then,similarly to when � = 0, there exists T� 2 T� for whih U � T�. If � is a limit ordinal then it is easily



shown that, for all  < � < �, U � T� � T . Therefore, C = fT� : � < �g is a hain in S�<� T� , indeed,a branh as C \T� 6= ; for all � < �, and U � T C. More spei�ally, U � intT C 2 T�. So in both ases,there is a T� 2 T� suh that U � T�.Thus for all � < �, there exists T� 2 T� for whih U � T�. But then C = fT� : � < �g is a branh in Tsuh that U � intT C. This ontradits T� = f;g.Hene it must be that U meets D whih implies that D is a ountable dense subset of X . This ontraditsthe hypothesis on X .Thus � > !1. However, sine X is boundary-separable, it is boundary- and, by Lemma 2.2.5, X itselfsatis�es the ountable hain ondition. It is well known that this implies that all hains and anti-hainsof open sets (when ordered by inlusion) are ountable. In partiular, there an be no hains of sets aslong as !1 and T!1 is empty. It follows that T is an !1-tree without ountable hains or anti-hains.That is, T is a Souslin tree. 22.5 Boundary-sattered spaesSattered spaes have a great deal of struture due to the possibility of layering the spae via its satteredlength. But like boundary-metrizable spaes, boundary-sattered spaes need not have espeially niestrutures. One again the node spae witnesses this - it is a regular, ountable rowded spae whih isnot only boundary-sattered but boundary-disrete. Moreover, the node spae an be used as a buildingblok to show that speifying the sattered length of the boundaries does not prevent satteredness. Tolarify what is meant by \speifying", we make a de�nition.De�nition 2.5.1 For a boundary-sattered spae X , de�ne the boundary-(sattered length) of X, de-noted bdy-sl(X), to be the supremum of the sattered lengths of the boundaries of X .Examples 2.5.2 For every ordinal �, there is a boundary-sattered, rowded, ompletely regular spaeX� suh that bdy-sl(X�) = �.Remark The onstrution of these examples uses resolutions as desribed in [W℄ and Chapter 5.Proof Fix an ordinal � and hoose some sattered spae, Y� say, for whih sl(Y�) = �. Taking � to bea regular node spae, �x some point y0 2 �. Now resolve �Y� over the set of isolated points into �� byonstant mappings to y0. Take the subspae of the resolved spae X� = Y d� [Sffxg�� : x 2 Y� n Y d� g.X� is ompletely regular as it is a subspae of a ompat spae. Note that Y� is homeomorphi toY d� [fhx; y0i : x 2 Y� nY d� g so Y� is identi�ed with this set in X�. Also, for eah x 2 Y� nY d� and V 2 ��,fxg � V is open in X�.Suppose C is a losed and nowhere dense subset of X�. C \ (fxg � �) is nowhere dense in fxg � �otherwise fxg � V is a subset of C for some V 2 �� n f;g whih ontradits C being nowhere dense.Thus, C \ (fxg��) is disrete and it is not too hard to see that C \Sffxg�� : x 2 Y� n Y d� g must bea olletion of isolated points of C. Therefore, Cd � Y d� � X� and Cd is sattered with sl(Cd) 6 sl(Y d).Hene, C is sattered, sl(C) 6 sl(Y�) and X is sattered with bdy-sl(X) 6 �.Consider U 2 �X� whih meets Y�. From the de�nition of resolutions, U = (V \ Y d� ) [Sffxg�� : x 2V n Y d� g for some V 2 �Y�, and U \ Sffxg � � : x 2 Y� n Y d� g 6= ; sine Y d� is nowhere dense in Y�hene in X�. But then for some x 2 Y� n Y d� , fxg �� is a subset of U and U annot be a subset of Y�.Moreover, Y� is losed as it is the omplement of the open set Sffxg� (� n fy0g) : x 2 Y� n Y d� g. HeneY� is a losed nowhere dense subset of X� and sl(Y�) = �. Therefore, bdy-sl(X�) = �. 2



Like the metrizable situation, ompatness omes to the resue. I am indebted to Robin Knight forproviding me with the proof of this next result.Theorem 2.5.3 Every rowded ompat spae has a nowhere dense subset whih is also rowded.Proof Suppose X is a rowded ompat spae. We will essentially mimi the onstrution of a Cantorset in R in order to produe a nowhere dense rowded subspae of X . However, as X need not have allthe struture of R, we must onsiderably strengthen the analysis of the onstrution.For eah f 2 3<!, indutively de�ne Uf 2 �X as follows:U; = X . Suppose that n 2 ! and that for all f 2 36n, Uf 2 �X n f;g has been de�ned in suh a waythat if g 2 36n properly extends f then Ug � Uf .Consider f 2 3n. Uf is non-empty and X is rowded so Uf is in�nite. Choose three points x0, x1, x2 2 Ufand �nd Vi 2 �X for whih xi 2 Vi � Vi � Uf and Vi \ Vj = ; when i 6= j for i, j 2 f1; 2; 3g. For eahg 2 3n+1 whih extends f , de�ne Ug = Vi where g(n) = i. Then the Ug satsify the indutive hypothesis.We now throw away the \middle thirds": for all f 2 2! de�ne Cf = Tn2! Uf jn (whih means thatCf = Tn2! Uf jn as well) and also de�ne C = Sf22! Cf . Note thatC = [f22! \n2!Uf jn = \n2! [f22nUfHene C is the intersetion of losed sets and so is itself losed and ompat.C has many of the features of a Cantor set but it may not be nowhere dense. Therefore we de�neY = bdC so that Y is learly nowhere dense. Y however ould still have some isolated points but wewill show that it is at least not sattered by proving that Y (�) 6= ; for every ordinal �. The proof of thisproeeds by indution but to make it work we atually need the stronger indutive hypothesis that forall ordinals � and for all f 2 2!, C�f = Cf \ Y (�) 6= ;.For the base step in the indution, we must show that, for all f 2 2!, C0f = Cf \ Y 6= ;. Fix f 2 2!,pik xn 2 Uf jn_fhn;2ig and, by ompatness, �nd x 2 fxn : n 2 !g. By their de�nition, xn 62 Cg for allg 2 2! hene xn 2 X n C for all n 2 ! and x 2 X n C. However, x 2 Cf sine x 2 fxn : n > kg for allk 2 !. But fxn : n > kg � Uf jk for all k 2 !. Therefore, x 2 Tk2! Uf jk = Cf . This means thatx 2 Cf \ C \X n C = C0fwhih ompletes the base step.Consider a limit ordinal � suh that for all � < �, C�f 6= ;. C�f = Cf \ Y (�) = Cf \ T�<� Y (�) =T�<�(Cf \Y (�)) = T�<� C�� . Thus C�f is the intersetion of a stritly dereasing sequene of non-emptylosed sets. Beause X is ompat, this means that C�f is non-empty for all f 2 2!.This leaves the suessor step. Suppose that, for an ordinal � and for all f 2 2!, C�f is non-empty.Fix f 2 2! and a non-trivial sequene, ffngn2! whih onverges to f in 2!. Choose xn 2 C�fn and,again by ompatness, �nd x 2 fxn : n 2 !g. Y (�) is losed in X and x is an aumulation point of asequene in Y (�) so x 2 Y (�+1). Moreover, sine ffng onveregs to f in 2!, given any k 2 !, there existsN 2 ! suh that for all n > N , fnjk = f jk. But then C�fn � Uf jk for all n > N whih implies thatfxn : n > Ng � Uf jk and x 2 Uf jk for all k 2 !. Hene x 2 Cf from whih it follows that x 2 C(�+1)fand C(�+1)f 6= ; for all f 2 2!.This ompletes the trans�nite indution. Hene Y is non-sattered and nowhere dense in X . TakeZ = Y (�) where � is suh that Y (�) = Y (�+1). Then Z is a nowhere dense, rowded subspae of X . 2



Corollary 2.5.4 Every ompat boundary-sattered spae is sattered.Proof Suppose X were a ompat boundary-sattered spae. If X is not sattered then there is a subsetY of X whih is rowded. By taking the losure of Y if neessary, Y an be assumed to be losed and,therefore, ompat. By the previous result, Y would have a nowhere dense subset whih was rowded.But Proposition 2.1.2 (2) implies that Y is also boundary-sattered. This is learly a ontradition. 2Corollary 2.5.5 There are no ompat Lusin spaes.Proof Suppose X were a ompat Lusin spae. X is boundary-ountable and, sine ountable ompatspaes are sattered, X is also boundary-sattered. By Corollary 2.5.4, X is sattered so Xd is nowheredense in X hene ountable. By the de�nition of a Lusin spae, X has only ountably many isolatedpoints. This means that X in total an only be ountable whih is a ontradition as Lusin spaes areassumed to be unountable. 22.6 Summary and questionsThe seond and third setions of this hapter are onerned with haraterising boundary-metrizableompata. The seond setion deals with general spaes and we obtain the surprising result that if thereare no Lusin spaes then every boundary-metrizable ompatum is metrizable. By studying boundary-metrizability in LOTS, we obtain two important examples of boundary-metrizable non-metrizable om-pata. These results are summarised here:Theorem 2.6.1 1. If there are no Lusin spaes then every boundary-metrizable ompatum is metriz-able2. If there is a Souslin line then there is a boundary-metrizable, non-metrizable ar3. If there is a Lusin set then there is a separable boundary-metrizable, non-metrizable ompat LOTSFrom this, it is lear that there is a disrepany between the hypotheses for an example and for a theorem.This gap ould be �lled by a positive answer to:Question 2.1 If there exists a Lusin spae, is there a boundary-metrizable non-metrizable ompatum?One way of solving this may arise by using (3) and answering:Question 2.2 If there is a Lusin spae, is there also a Lusin subspae of R?(2) also suggests a possible onverse:Question 2.3 If there is a boundary-metrizable non-metrizable ontinuum, is there a Souslin line?The fourth setion dealt with boundary-separability and gave two key results: �rst, if there are no L-spaesthen every boundary-separable spae is separable and, seondly, every boundary-(hereditarily separable)spae is separable if and only if there are no non-separable Lusin spaes. However the hypothesis thatthere are no L-spaes may be inonsistent with ZFC so this would be improved if we ould answer eitherof the following aÆrmatively:



Question 2.4 If is there an L-spae, is there a boundary-separable, non-separable spae?Question 2.5 If there are no S-spaes, is every boundary-separable spae separable?We also saw that if there are no Lusin spaes then every boundary-separable ompatum is separable.Does the onverse hold?Question 2.6 If there is a Lusin spae, is there are boundary-separable, non-separable ompatum?The �fth setion gives some ZFC results and we have that every boundary-sattered ompatum issattered. This also rules out the trivial answer of a ompat Lusin set to Questions 2.1 and 2.6.



Chapter 3Cohesion
The most well-known theory whih is based on spaes de�ned by the properties of their boundaries isthe theory of indutive dimension. The indutive dimension funtions assert that ertain open sets haveboundaries of a lower dimension.Following the avour of this idea, in [A2℄, Arhangel'ski�� de�ned indutively a \funtion of the dimensionaltype" whih he alled absolute dimension: a spae has absolute dimension n if every boundary has absolutedimension stritly less than n starting from the base ase that a spae has absolute dimension 0 if andonly if it has small indutive dimension zero. This notion does not atually produe a dimension funtionin the usual sense - it is shown in the last setion of this hapter that the absolute dimension of the unitsquare annot be de�ned. However, absolute dimension is well-behaved on the real line - every subset ofR has absolute dimension of at most 1.In order to understand more losely what an indutive funtion of this nature says about a spae, wemodify the base ase de�nition of absolute dimension to give the new notion of ohesion. In the �rstsetion of this hapter, ohesion and related terms are de�ned and we establish some basi properties.The relationship between ohesion and sattered length is fully investigated in the next setion. Crowdedohesive spaes are onsidered in the third setion and examples of �nitely ohesive, regular, rowdedspaes are onstruted. It is also shown that there annot be trans�nitely ohesive, regular spaes. Usingthe results on boundary{sattered spaes, ompat ohesive spaes are examined in the fourth setion.The �fth gives some theorems on when ohesion is preserved under ontinuous maps and taking produts.Finally, we show that absolute dimension is not de�ned on the unit square.3.1 De�nition and basi propertiesWithout further ado, we de�ne ohesion.De�nition 3.1.1 For a topologial spae X , the ohesion of X, abbreviated to ohX , is de�ned bytrans�nite reursion as follows: ohX = �1 if and only if X = ;for an ordinal �, ohX 6 � if for every nowhere dense subset C � X , ohC < �For a spae X and an ordinal �, ohX = � if ohX 6 � and for every � < � it is not the ase thatohX 6 �. Finally, X is said to be ohesive if for some ordinal �, ohX = �, �nitely ohesive if � is�nite and trans�nitely ohesive if � is in�nite.Remark Despite the fat that we will prove that there is no regular spae of trans�nite ohesion, wehave given the de�nition in its full generality. This is for two reasons. First, in proving this fat, we wish30



to use ertain lemmas whih tell us about the struture of spaes with trans�nite ohesion. Seondly,there may yet be some interesting Hausdor� spaes of trans�nite ohesion.Clearly, ohesion will have a similar feel to the boundary properties of the previous hapter. However,it is the indutive element of the de�nition whih makes it very di�erent in harater as it fores thenowhere dense subsets into a rigid hierarhy. Beause of the lose relation between the nowhere densesubsets and the topology of a spae, we are able to examine this hierarhy quite losely.We now prove some basi properties of ohesion.Proposition 3.1.2 If X is a spae suh that, for some ordinal �, ohX 6 � and Y � X then ohY 6 �.Proof This follows immediately on noting that a nowhere dense subset of Y is a nowhere dense subsetof X . 2Proposition 3.1.3 A non-empty spae X is disrete if and only if ohX = 0.Proof If X is disrete then every subset of X is open. This means that the only nowhere dense subsetof X is the empty set so from the de�nition it follows that ohX = 0.If ohX = 0 then every nowhere dense subset has a ohesion of �1. Thus, no non-empty subset is nowheredense. Consider fxg. This is losed as X is T1 but is not nowhere dense so ontains a non-empty subsetopen in X . This must be fxg. Hene every point of X is open and X is disrete. 2Remark By induting up a step, Proposition 3.1.3 implies that a spae has ohesion 1 if and only if itis boundary-disrete.Proposition 3.1.4 If X is a spae suh that, for some ordinal �, ohX = � then, for all � < �, thereexists a losed nowhere dense subset C� � X suh that ohC� = �.Proof If � = �1 then there is literally nothing to prove! Assume the proposition has been proven forall spaes X suh that ohX = � where � < �.Consider the ase where � = +1. If every nowhere dense subset of X has ohesion less than  then, byde�nition, ohX 6 . Sine this is not the ase it must be that there is a nowhere dense subset A of Xfor whih ohA = . De�ne C = A so C is nowhere dense in X . Hene ohC 6  and, sine A � C ,Proposition 3.1.2 implies that ohC > ohA = . Therefore ohC = .Suppose � < �. If � =  then C� is already de�ned. If � <  then by the indutive hypothesis thereexists a C� � C losed and nowhere dense in C suh that ohC� = �. But then C� is also losed andnowhere dense in X and the hypothesis holds for �.Consider now the ase where � is a limit ordinal. For every � < �, there exist  < � and a nowheredense subset A of X suh that � <  and ohA =  (otherwise ohX 6 � + 1). As before, takingC = A , C is losed and nowhere dense in X with  6 ohC < �. Then ohC > � and, by the indutivehypothesis, there exists a C� losed and nowhere dense in C, and hene in X , suh that ohC� = �. 2One other useful property is:Proposition 3.1.5 If fU� : � 2 �g is an open over of X suh that, for some n 2 ! and for all � 2 �,ohU� 6 n then X is ohesive and ohX 6 n:



Proof Suppose ohU� 6 �1 for all � 2 �, then eah U� is empty but still form a over of X so X mustbe empty and ohX 6 �1.Assume now that for any spae X and some n 2 ! the proposition holds and onsider the ase whereohU� 6 n+ 1 for all � 2 �.Suppose A is nowhere dense in X . Take C = A whene C is nowhere dense and losed in X . ConsiderC \ U� for some � 2 �. If C \ U� is not nowhere dense in U�, sine C \ U� is losed in U�, there existsV 2 �U� suh that V � C \ U�. But V 2 �X as U� 2 �X and V � C whih means that C is notnowhere dense in X - a ontradition. Therefore C \ U� is nowhere dense in U� and then, by de�nitionof ohesion, oh(C \ U�) 6 n:Taking V� = C \ U�, fV� : � 2 �g is an open over for C suh that ohV� 6 n for all � 2 �. So by theindutive hypothesis, ohC 6 n giving ohA 6 n and hene ohX 6 n+ 1: 2From the remark after Proposition 3.1.3, we know that any boundary-disrete spae has ohesion de�nedon it. This gives us a soure of spaes with ohesion 1 but it is informative to have some elementaryexamples of spaes whih have higher ohesion.Examples 3.1.6 For eah n 2 !, there exists Cn � R suh that ohCn = n.Proof Take C1 � R to be C1 = f0g [ f 1n : n 2 ! n f0gg. This is learly non-empty and not disrete.By Propositions 1.2.7 and 1.2.8, the only possible non-empty, nowhere dense subset of C1 is f0g whihlearly has ohesion 0, therefore ohC1 = 1.Taking C1 to be the base ase, for eah n 2 ! indutively de�ne sattered, losed subsets of Q, all themCn, suh that ohCn = n as follows:Cn+1 = Cn [ f 1k1 + : : :+ 1kn+1 : ki, kn+1 2 ! n f0g, ki+1 > 2ki(ki � 1) for i = 1; : : : ; ngThis gives sequenes of points whih onverge down to every point of Cn. Hene Cdn+1 = Cn and sineCn is sattered so too is Cn+1. If A is nowhere dense in Cn+1 then, by Proposition 1.2.8, A � Cn andohA 6 n. However, Cn is nowhere dense in Cn+1, by Proposition 1.2.7, and ohCn = n so by de�nitionof ohesion ohCn+1 = n+ 1. 2Sine eah of these spaes is a subset of Q this shows that if ohQ exists then it is trans�nite. However,we in fat have:Theorem 3.1.7 ohQ is not de�ned.Proof Suppose for ontradition that ohQ is de�ned. Q is homeomorphi to Q � Q whih ontainsf0g� Q as a nowhere dense subset. Thus, by de�nition of ohesion, oh(f0g�Q) < oh(Q �Q). But asf0g � Q is also homeomorphi to Q this gives us our required ontradition. 2Remark This is atually a onsequene of Theorem 3.2.1 but this proof is onsiderably shorter andmore elegant and I am grateful to the referee of an earlier form of this work for suggesting it.3.2 Cohesion and sattered spaesThe last theorem of the previous setion was basially shown by �nding a nowhere dense subspae of Qwhih was homeomorphi to Q. The result then followed diretly from the de�nition of ohesion. This



is not in general possible but it is possible to �nd in ertain spaes a subspae whih ontains a nowheredense homeomorph of itself. It then follows, as for Q, that suh spaes annot have ohesion de�ned onthem.The following theorem gives the details of how suh subspaes an be onstruted in a more generalontext.Theorem 3.2.1 If X is a Hausdor�, sequential, ohesive spae then X is sattered.Proof Suppose X is not sattered. This means that there exists an A � X whih has no isolated points.De�ne Y = AX . Y is a losed subset of X so is also Hausdor� and sequential. Moreover, by Corollary1.2.2, Y is rowded. Thus, for eah y 2 Y , y 2 Y n fygY and hene Y n fyg 6= Y n fygY or more simplyY nfyg is not losed in Y . Sine Y is sequential, this implies that there exists a sequene in Y nfyg whihonverges to a point outside of Y n fyg. There is only one possible point left in Y whih this sequeneould onverge to and this is y. Denote suh a sequene by fyng1n=0 and sine Y is Hausdor� we anassume all elements of the sequene are distint.We need to separate the points of suh sequenes quite some way so we require the following:Fat For all n 2 !, there exists Un(y) � Y open in Y suh that yn 2 Un(y), y 62 Un(y) and Un(y) \Um(y) = ; whenever n, m 2 ! and n 6= m.This an be proved using only that Y is Hausdor�.We now show how, for a given x 2 Y ontained in some open set U , there exist sets In(x; U) � U foreah n 2 ! suh that (In+1(x; U))d = In(x; U) , I(n)n (x; U) = fxg and for every z 2 In+1(x; U) n In(x; U),there is a Uz � X whih is open in X with Uz \ In+1(x; U) = fzg and whenever z 6= z0; Uz \ Uz0 = ;.These sets are equivalent to the Cn in Examples 3.1.6.Take I0(x; U) = fxg and de�ne Ux = U . This trivially satis�es the onditions.Suppose then that for some n 2 !, if i 6 n the set Ii(x; U) and the orresponding Uz's are de�ned.Consider a z 2 In(x; U) n In�1(x; U) (taking I�1(x; U) = ;). Take fzkg to be the sequene ontained inUz onverging to z whose existene is demonstrated at the beginning of this proof. De�neIn+1(x; U) = In(x; U) [ fzk : z 2 In(x; U) n In�1(x; U) and k 2 !gUzk = Uz \ Uk(z)where Uk(z) is de�ned by the Fat.Suppose z; z0 2 In(x; U) n In�1(x; U). If z 6= z0 then for all j; k 2 !, Uzj \ Uz0k � Uz \ Uz0 = ;. Andif z = z0 then, for j; k 2 ! with j 6= k, Uzj \ Uz0k � Uj(z) \ Uk(z) = ; by their de�nition. From this,Uzk does not ontain any z0j whenever either (j 6= k) or (z 6= z0). Moreover, from the Fat, z 62 Uzk andUzk \ In+1 = fzkg. Thus the Uzk are the open sets required in the de�nition of In+1(x; U).The Uzk also show that if z 2 In+1(x; U) n In(x; U) then z is an isolated point of In+1(x; U). And ifz 2 In then by its de�nition there is a sequene in In+1 onverging to z. These two statements togethergive (In+1(x; U))d = In(x; U)from whih it follows by part of the indution hypothesis that(In+1(x; U))(n+1) = fxgHene In+1 is sattered.We now take Z = [n2! In(yn; Un(y))If z 2 Z is isolated then, by the de�nition of the In, it annot be the ase that z 2 In�1(yn; Un(y)) forany n 2 ! and so it must be that z is isolated in some In(yn; Un(y)). In the opposite diretion, if z is



isolated in In(yn; Un(y)) for some n 2 ! then fzg = V \ In(yn; Un(y)) for some V open in Y . But thenfzg = Z \ (V \ Un(y)) as In(yn; Un(y)) � Un(y) and the Un(y) are pairwise disjoint. This means z isisolated in Z. Hene we have Zd = [n2!(In(yn; Un(y)))dZd = [n2! In(yn+1; Un+1(y))whih is learly homeomorphi to Z. It is not hard to see that Z is sattered (with sl(x) = !+1) givingthat Zd is nowhere dense in Z.But if X is ohesive then so too are Zd and Z. By the de�nition of ohesion, ohZd < ohZ whih isimpossible sine Zd is homeomorphi to Z. Thus we have a ontradition.Hene it must be the ase that X is sattered. 2In ohesive spaes whih are sattered, we have two numbers attahed to the spae, the ohesion and thesattered length. The next two theorems give the relation between them in sattered spaes.Theorem 3.2.2 For X a sattered spae and n 2 !, sl(X) = n if and only if ohX = n� 1.Proof Firstly suppose X is sattered with sl(X) = 0. Then X = X(0) = ; and hene ohX = �1.Assume for the purposes of indution that if sl(X) = n then ohX = n � 1 and onsider a spae X ofsattered length n+1. Xd is nowhere dense in X and learly has sattered length n. Thus ohXd = n�1.If C is a nowhere dense subset of X then, by Proposition 1.2.8, C � Xd. By Proposition 3.1.2, this impliesthat for every nowhere dense subset C of X , ohC 6 n� 1: From the de�nition of ohesion, ohX 6 n.However Xd is a nowhere dense subset of X of ohesion n� 1. Hene ohX = n and indution gives theimpliation in one diretion.To do the reverse impliation, if ohX = �1 then X = ; and hene sl(X) = 0. Assume now that ifohX = n� 1 then sl(X) = n. If X is a sattered spae suh that ohX = n, then Xd is nowhere densein X and, sine any nowhere dense subset of X is ontained in Xd, this gives ohXd = n� 1. But thenby the indutive hypothesis, sl(Xd) = n whih learly implies that sl(X) = n + 1. This ompletes theindution and the proof. 2Theorem 3.2.3 If X is sattered and ohesive then sl(X) is �nite.Proof Suppose sl(X) = � and ohX = � for some ordinals � , � where � is in�nite. De�ne a funtionf : ! ! � by f(n) = oh(X(n)) for n 2 !Sine X(n+1) = (X(n))d, X(n+1) is nowhere dense in X(n). Thus ohX(n+1) < ohX(n): But thenff(n) : n 2 !g forms a stritly dereasing sequene in the ordinal � whih ontradits the well-orderingof �. Hene � annot be in�nite and we have sl(X) is �nite. 2Putting these last three results together we have the following:Corollary 3.2.4 If X is a ohesive, sequential Hausdor� spae then X is sattered and sl(X) = n forsome n 2 !. Moreover, ohX = n� 1:



3.3 Cohesion in non-sattered spaesThe results of the previous setion fully haraterise ohesion in sattered spaes. This, of ourse, leads usto inquire into the behaviour of more general ohesive spaes. In order to get ohesion in non-satteredspaes, we need look no further than the remark after Proposition 3.1.3 and onsider our favouriteboundary-disrete rowded spae - the node spae of van Douwen. This is a rowded spae of ohesion1. We now produe examples with higher ohesion using the node spae as a building blok.The examples are based on produts. However, the nowhere dense subsets of produts an be veryompliated and so we devise a di�erent topology on a produt whih essentially adds only one newnowhere dense set.Theorem 3.3.1 If X and Y are topologial spaes suh that ohX = n, for some n 2 !, and Y is arowded boundary{disrete spae then (X � Y; T ) is a topologial spae suh thatoh(X � Y ) = n+ 1where T is the topology determined by the following basis:�x some y0 2 Y and for hx; yi 2 X � Y , a basi open neighbourhood of hx; yi is of the form:1. fxg � U when y 6= y0 and where U 2 �Y with y0 62 U2. Sffag � Ua : a 2 V g when y = y0 and where x 2 V 2 �X and, for all a 2 V , y0 2 Ua 2 �YProof It is not too hard to hek that the de�nition given does indeed de�ne a topology on X � Y .First of all, we shall show that oh(X � Y ) > n+ 1.The set X�fy0g is a subset of X�Y . It is losed sine if hx; yi 62 X�Y then y 6= y0 and fxg�(Y nfy0g)is an open neighbourhood of hx; yi whih misses X � fy0g. Moreover, it is nowhere dense beause anyopen set, say V , about hx; y0i 2 X � Y ontains fxg � U for some open neighbourhood U of y0. But y0is not isolated so for some y 2 Y n fy0g, hx; yi 2 fxg �U � V . Thus, V annot be a subset of X � fy0g.Clearly, X � fy0g is homeomorphi to X so that oh(X � fy0g) = n and, by de�nition of ohesion,oh(X � Y ) > n+ 1.Seondly, we show that oh(X � Y ) 6 n+ 1 and then the proof is omplete.Suppose C is nowhere dense in X � Y . Sine, for all x 2 X , fxg � (Y n fy0g) is open in X � Y thenCx = C \ (fxg � (Y n fy0g)) is nowhere dense in fxg � (Y n fy0g) and hene in fxg � Y . Clearlyoh(fxg�Y ) = 1 giving us that ohCx 6 0, that is, Cx is either empty or losed and disrete in fxg�Y .(Note also that Cx is open in C.) But then there exists an open neighbourhood Ux of y0 suh that(fxg � Ux) \ Cx = ;.Take V = Sx2X(fxg � Ux). By de�nition of T , V is open in X � Y and by de�nition of the Ux's,C \ V � X � fy0g so that oh(C \ V ) 6 n. But we now have that fC \ V g [ fCx : x 2 Xg is anopen over of C suh that eah element of the over has ohesion at most n. So by Proposition 3.1.5,ohC 6 n: Hene, by de�nition of ohesion, oh(X � Y ) 6 n+ 1. 2We an now indutively onstrut our examples whih, as they are all regular and ountable have manynie properties suh as hereditary Lindel�ofness and hereditary separability.Examples 3.3.2 For all n 2 ! n f0g, there exists a spae Xn whih is ountable, rowded, regular andohXn = n.



Proof For n = 1, take X1 to be van Douwen's node spae. Assume that for some n 2 !, Xn has beenshown to exist. Now apply the previous theorem with X = Xn, Y also van Douwen's node spae andy0 some point of Y . De�ne Xn+1 to be this new spae.It is lear to see that Xn+1 is ountable and that ohXn+1 = n + 1 by the previous result. That Xn+1is rowded follows sine every open neighbourhood of a point hx; yi 2 Xn � Y ontains a set of the formfxg�U where U is an open neighbourhood of y in Y . But no y 2 Y is isolated so U ontains some pointother than y and hene every neighbourhood of hx; yi ontains some point other than hx; yi.We must show that Xn+1 is also a T1-spae. Consider hx; yi 2 Xn+1. The set U = (Xn n fxg)� Y is abasi open set as Xn is T1. Also V = Y n fyg is open in Y as Y is T1.Case (1): If y 6= y0 of the last theorem then Xn+1 n fhx; yig = Sffag � Ua : a 2 Xg where Ua = Y fora 6= x and Ux = V . Hene the point hx; yi is losed.Case (2): If y = y0 then fxg � V is open in Xn+1 and then omplement of hx; yi is U [ V whih is openand hene hx; yi is losed.It remains to show that Xn+1 is regular. Suppose U is an open neighbourhood of hx; yi in Xn+1. Weneed to �nd an open set W � Xn+1 suh that hx; yi 2W �WXn+1 � U .Case (1): If y 6= y0 then U ontains an open set of the form fxg � U 0 for some U 0 open in Y . Inthis ase there exists a V � Y open suh that y 2 V � V Y � U 0. It is not too hard to see thatfxg � V Xn�Y = fxg � V Y and so W = fxg � V is our required open set.Case (2): If y = y0, then U ontains an open set of the form Sffag � Ua : a 2 V g where V is anopen neighbourhood of x in Xn and eah Ua is an open neighbourhood of y0 in Y . Take G to be anopen set in Xn suh that x 2 G � GXn � V and, for all a 2 GXn , take an Ha open in Y suh thaty0 2 Ha � HaY � Ua. Setting W = Sffag � Ha : a 2 Gg, it is lear to see that W is an openneighbourhood of hx; yi whih is ontained in the losed set Sffag �HaY : a 2 GXng whih is in turnontained in U .Hene Xn+1 is regular and so by indution on the natural numbers the theorem is proven. 2It would be ideal if this onstrution ould be improved upon thereby allowing us to produe examplesof rowded spaes with all possible ohesions. However, the next theorem shows that we annot do thisand keep regularity.Theorem 3.3.3 There is no regular, trans�nitely ohesive spae.We atually demonstrate that there is no regular spae of ohesion !. This suÆes sine Proposition 3.1.4says that any regular spae of trans�nite ohesion ontains a subset of ohesion ! whih is neessarilyregular.The proof proeeds by demonstrating that if a spae of ohesion ! exists then it ontains a nowhere densesubset also of ohesion !. This ontradits the de�nition of ohesion. To onstrut this nowhere densesubset, we need a ouple of tehnial lemmas.Lemma 3.3.4 For n, m 2 !, if A, U � X and U is open with oh(A n U) 6 n and ohU 6 m thenoh(A [ U) 6 n+m+ 1.Proof Indut on m for a given n. Assume m = �1 so U = ; and ohA 6 n. Hene oh(A [ U) 6n+�1 + 1 = n as required.



Thus suppose it has been proven for m = k and assume m = k +1. If C is nowhere dense in A [U thenC \ U is nowhere dense in U as U is open in A [ U . Thus, oh(C \ U) 6 k. But also C n U � A n U sothat oh(C n U) 6 n by Proposition 3.1.2.Thus, taking C = X in the indutive hypothesis and noting that C \ U is open in C, ohC = oh((C nU) [ (C \ U)) 6 n+ k + 1: But this was for an arbitrary nowhere dense subset of A [ U heneoh(A [ U) 6 n+ k + 2 = n+ (k + 1) + 1By indution the lemma holds for all m. 2Lemma 3.3.5 If X is regular and ohX = ! then for all n 2 !, there exist C � U 2 �X suh that C isnowhere dense in X, ohC = n and oh(X n U) = !.Proof By Proposition 3.1.4, for X as in the statement of the lemma and some n 2 !, there exists A � Xwhih is losed and nowhere dense in X suh that ohA = n. If there exists a U 2 �X suh that A � Uand oh(X n U) = ! then simply take C = A. Otherwise, assume that for all open sets U in X whihontain A, oh(X n U) < !. Taking X n U to be A in Lemma 3.3.4, if ohU < ! then ohX < !. HeneohU = ! for all suh U . De�ne U to be the olletion of all open sets ontaining A and index this setby �.Claim: A = \�2�U�Certainly A � T�2� U� so onsider x 62 A. By regularity, there exists a � 2 � suh that A � U� � U� �X n fxg: But then x 62 U� and moreover x 62 T�2� U�. Hene T�2� U� � A and we have our laim.Suppose now that, for all � 2 � and some M 2 !; oh(X n U�) 6M .The set fX n U� : � 2 �g is an open over for X n A by the Claim. Thus, by Proposition 3.1.5,oh(X nA) 6M . But we now have that ohA = n, oh(X nA) 6M and X nA is open in X . Hene, byLemma 3.3.4, oh((X nA) [A) 6M + n+ 1 or in other words, ohX < ! whih is a ontradition.Therefore, for the given n, there exists � 2 � suh that oh(X nU�) > n+ 1. By Proposition 3.1.4, takeC to be a subset of X nU� whih is nowhere dense in X n U� and for whih ohC = n. This gives thatA � U� � U� � X n CDe�ne U = X n U� so that C � U , ohC = n and ! > oh(X n U) = ohU� > ohU� = !. C is alsonowhere dense in X and hene C and U are the sets whih satisfy the lemma. 2This last lemma allows us to �nd nowhere dense subsets of a spae of ohesion ! of eah �nite ohesion,whih are suÆiently well separated so that their union is still nowhere dense. But then, this nowheredense subset has ohesion ! and this is the set we require for the ontradition. The details are as follows:Proof of Theorem 3.3.3 Suppose X is a regular spae of ohesion !. First of all we onstrut nowheredense subsets of X of eah �nite ohesion in a partiularly nie way. By Lemma 3.3.5, we an �ndC0; U0 � X where C0 is nowhere dense in X , ohC0 = 0, U0 is open in X , C0 � U0 and oh(X nU0) = !.We now de�ne indutively Ck ; Uk � X suh that:1. Ck is nowhere dense in X2. ohCk = k3. Uk is open with Ck � Uk



4. oh(X n Uk) = !5. Ui � Ui+1 for i = 0; 1; 2; : : : ; k � 16. Ci+1 � X n Ui for i = 0; 1; 2; : : : ; k � 1Assume that, for i 6 n, Ci and Ui have been de�ned satisfying the indutive assumptions. De�neCn+1; V � X nUn by applying Lemma 3.3.5, so that Cn+1 is nowhere dense subset of X nUn, and heneof X , ontained in the set V open in X n Un suh that ohCn+1 = n+ 1 and oh((X n Un) n V ) = !.Take V 0 to be a set open in X suh that V = V 0 \ (X nUn). Take Un+1 = V 0 [Un. It is easy to see fromtheir de�nitions that Cn+1 and Un+1 satisfy all the indutive onditions for k = n + 1 exept possibly(4). But note X nUn+1 = X n (V 0 [ Un) = (X n Un) n V 0 = (X n Un) n VTherefore, oh(X n Un+1) = oh((X n Un) n V ) = !Thus Cn+1 and Un+1 are sets satisfying all of the indutive onditions for k = n+ 1 and this ompletesthe indution.De�ne C = S1n=0 Cn. Clearly ohC > ohCn for all n 2 ! and C � X so ohC = !.It remains to show that C is nowhere dense in X and we have our ontradition. Suppose not then thereis an open set U of X suh that U � C . Thus U \C 6= ; and therefore, for some n 2 !, U \Cn 6= ;. SineCn � Un, V = U \Un is a non-empty open set in X . Moreover, for all i > n+1, Ci+1 � X nUi � X nUnby (5) and (6) of the indutive assumptions. Thus Un\Ci+1 = ; for all i > n. That is, Un\S1i=n+1 Ci = ;and therefore, we have (}) Un \ 1[i=n+1Ci = ;Now U � C hene V � C or, in other words,V � C0 [ C1 [ : : : [ Cn [ 1[i=n+1CiBut then (}) implies V � C0 [ C1 [ : : : [ CnThis means that the losure of the union of the �rst n of the Ck ontains a non-empty open set and henethe union of the �rst n of the Ck is not nowhere dense. This ontradits the fat that a �nite union ofnowhere dense sets is nowhere dense.Thus C must be nowhere dense in X and we an onlude that there is no regular spae of trans�niteohesion. 2Given this result, we may now feel justi�ed in upgrading Lemma 3.3.4 to give a theorem very muh likea sum theorem in dimension theory.Theorem 3.3.6 If A and B are subsets of some spae X, at least one of whih is losed, suh thatohA 6 n, ohB 6 m and A [ B = X then ohX 6 n+m+ 1.3.4 The ohesion of ompataIn the previous hapter, it was shown that in the presene of ompatness boundary properties are well-behaved and manageable. The same is true of ohesion. Arhangel'ski�� asked whether every ompat



ohesive spae is sattered and we provide here a positive answer. As the �rst stage in proving this, wehave:Lemma 3.4.1 There is no ompat rowded spae of ohesion 1.Proof Suppose X is ompat, rowded and ohX = 1. If C � X is losed and nowhere dense thenC is ompat and disrete therefore �nite. However, X is rowded and Hausdor� so it is easy to �nd aountably in�nite ellular family U . Choose for eah U 2 U , a point xU of U . fxU : U 2 Ug is in�niteand nowhere dense, by Proposition 1.2.5. Thus fxU : U 2 Ug is �nite whih is ontraditory. Thus thereis no suh X . 2Applying Theorem 2.5.4 and using the previous Lemma as a base step, we indutively show:Proposition 3.4.2 Every ohesive ompatum is sattered.Proof By Theorem 3.3.3, we need only prove that every �nitely ohesive ompatum is sattered. ByLemma 3.4.1, when ohX = 1, X is sattered.Assume that, for k 2 !, if X is a ompat spae suh that ohX 6 k then X is sattered. Consider aompatum X for whih ohX = k + 1. If C � X is losed and nowhere dense then C is ompat andohC 6 k. By the indutive hypothesis, C is sattered. Therefore, X is a ompat boundary-satteredspae and, by Corollary 2.5.4, X is itself sattered. This ompletes the indution and the proof. 2Given this result, it is natural to ask how ohesion behaves in the presene of other overing properties.Examples 3.3.2 demonstrate that the Lindel�of property does not indue satteredness. Generalising in adi�erent diretion, it is natural to onsider loal ompatness. Using the Alexandro� ompati�ation,this an be promoted to ompatness and ohesion still behaves well as the following proposition shows.Beause loally ompat Hausdor� spaes are regular, we still only onsider �nitely ohesive spaes.Proposition 3.4.3 If X is a loally ompat Hausdor� spae with ohX 6 n, for some n 2 !, and X�denotes the one-point ompati�ation of X then ohX� 6 n+ 1.Proof For a spae X de�ne X� = X [ f
g for some 
 62 X and a topology on X� by�X� = �X [ f(X n F ) [ f
g : F � X and F is ompatgIt is well-known that if X is T2 and is loally ompat then X� is ompat with the given topology.Moreover, if X is not ompat then X is embedded as a dense subset in X�.Assume that it has been shown for all loally ompat Hausdor� spaes X with ohX 6 m where m < nthat ohX� 6 m+ 1. Consider a loally ompat Hausdor� spae X suh that ohX = n. (In the aseswhere ohX < n the theorem follows by the indution hypothesis.)Suppose C � X� is nowhere dense in X�. Then D = CX� is also nowhere dense in X�. De�ne B = D\X .As D is losed in X� so B is losed in X . If there is a non-empty set U 2 �X suh that U � B thenU 2 �X� and U � D whih ontradits the fat that D is nowhere dense. Hene B is nowhere dense inX and ohB = m for some m < n.If 
 62 D then C � D = B � X and, by Theorem 3.1.2, ohC 6 m < n.Thus suppose 
 2 C. As B is losed in X , it is T2 and loally ompat. It is not too diÆult to see that�B�, the topology on B�(= D) oinides with the topology indued on D by �X�.



If B is not ompat then D is the one-point ompati�ation of B and hene by the indutive hypothesis,as ohB 6 m < n then ohD 6 m + 1 6 n. If B is ompat then from the de�nition of �B� it is learthat 
 is an isolated point of D. But then any nowhere dense subset of D must not ontain 
 and heneis a nowhere dense subset of B. Sine ohB = m, the ohesion of any suh subset is stritly less than m.This means that ohD 6 m < n.Hene overall ohD 6 n and C � D so ohC 6 n. But then from the de�nition of ohesion it followsthat ohX� 6 n+ 1. 2This immediately gives:Corollary 3.4.4 Every loally ompat ohesive spae is sattered.Proof Suppose X is a loally ompat ohesive spae. By the previous result, the one-point ompati-�ation of X , X�, is also ohesive. Proposition 3.4.2 implies that X� is sattered and, as the subset of asattered spae, X is sattered. 23.5 Preserving ohesionWe have already seen a few methods for onstruting ohesive spaes. These however are not amongst themore ommonly used tehniques for building topologial spaes. We therefore examine in this setion thebehaviour of ohesion under the more familiar onstrutions of taking ontinuous images and produts.It is immediately lear that ohesion is not preserved under arbitrary ontinuous mappings.Examples 3.5.1 Let f : ! ! � be a denumeration of van Douwen's node spae, then f is a ontinuousbijetion. However, oh! = 0 and oh� = 1; so, ontinuous maps in general do not lower ohesion.Moreover, if g : ! ! Q is a denumeration of the rationals, then it is a ontinuous bijetion with domainhaving ohesion 0 but for whih the image is not even ohesive! 2In order to maintain ohesion under ontinuous maps, it is neessary to ensure that the nowhere densesubsets of the image are related to the nowhere dense subsets of the domain. This an be done byonstraining in some way the behaviour of the images of the open sets under the mapping. Both openmaps and perfet maps will do this and it transpires that they also onstrain the behaviour of ohesionin the proess.Theorem 3.5.2 If f : X ! Y is an open, ontinuous surjetion and ohX 6 �, for some ordinal �,then ohY 6 �.Proof The proof is by trans�nite indution.If ohX = �1 then X is empty and f is surjetive so it must be that Y is empty and hene ohY = �1.Thus assume that the theorem holds for all ordinals � < � and that ohX = �. Consider C � Ywhih is nowhere dense in Y . If f�1(C) is not nowhere dense in X then there exists U 2 �X suh thatU � f�1(C). But f is ontinuous so f�1(C) � f�1(C). Hene U � f�1(C) and f(U) � C. But f isopen so f(U) is open and non-empty in Y giving intY CY 6= ;, ontraditing the fat that C is nowheredense.



Therefore f�1(C) is nowhere dense in X and ohf�1(C) < �. De�ne g = f jf�1(C) so that g : f�1(C)!C is a ontinuous surjetion. If V � f�1(C) is open in f�1(C) then V = U \ f�1(C) for some U openin X . However, g(V ) = f(U \ f�1(C)) = f(U) \ f(f�1(C)) = f(U) \ Cand f(U) is open in Y so g(V ) is open in C.Now, from the indutive hypothesis, ohC < �. But this is for an arbitrary nowhere dense subset of Yhene ohY 6 �. 2Theorem 3.5.3 If f : X ! Y is perfet and ohX 6 �, for some ordinal �, then ohY 6 �.Proof Assume for the purposes of indution that, for all ordinals � < �, the theorem is true and onsiderX suh that ohX = �.Take A � X and g = f jA: A! Y as given in Proposition 1.2.10. If C is a nowhere dense subset of Y sotoo is D = CY . If g�1(D) is not nowhere dense in A then there exists a non-empty open set U � A suhthat U � g�1(D)(= g�1(D)X as D is losed and g is ontinuous). However, by Proposition 1.2.9, g�(U)is non-empty and open in Y sine g is losed and irreduible. Also g�(U) � g(U) � D whih ontraditsthe fat that D is nowhere dense in Y . Therefore g�1(D) is nowhere dense in X and hene, for some� < �, oh(g�1(D)) 6 � < �.De�ne h = g jg�1(D): g�1(D) ! D. h is learly a ontinuous surjetion. As g�1(D) is losed it followsthat h is perfet. Hene by the indution hypothesis ohD 6 � < �. Sine C � D, by Theorem 3.1.2,ohC < �. C was an arbitrary nowhere dense subset of Y so this implies ohY 6 �. 2Preserving ohesion in produts of ohesive spaes is quite omplex as the nowhere dense subsets of aprodut need have almost no relationship with the nowhere dense subsets of the fator spaes. This islearly demonstrated in the next result.Theorem 3.5.4 If � is a rowded, boundary-disrete spae re�ning the rationals then �2 is not ohesive.Proof Assume for ontradition that �2 is ohesive and hene we are able to disuss the ohesion of itssubsets. If � is regular, it suÆes to show that oh�2 > ! in order to obtain a ontradition. However,we will atually obtain a ontradition in the more general ase but we must work a little harder to dothis.Throughout the proof, Q is the rationals with the usual topology. d is the usual metri on Q. � isthe same underlying set but with the �ner node topology. Thus, all subsets of �2 have the subspaetopology indued by the node topology of � and the usual Tyhono� topology of produts.The �rst step is to onstrut inside �2 subsets Ck for eah k 2 ! where ohCk > k. These subsets arebuilt up indutively from eah other, however it is useful to be able to plae them preisely where theyare needed. This is gives rise to the following indutive hypotheses:Fix k 2 !, for every pair of open intervals U and V in Q and y 2 V , there exist Ci(U; V; y) � U � V , fori = 1; 2; : : : ; k, suh that1. C1(U; V; y) = U � fyg2. Ci(U; V; y) is losed in U � V for i = 1; 2; : : : ; k3. Ci(U; V; y) is a nowhere dense subset of Ci+1(U; V; y) for i = 1; 2; : : : ; k � 14. Ck(U; V; y) is nowhere dense in U � V



5. k 6 ohCk(U; V; y) 6 2k � 1For all open intervals U and V in Q and any point y 2 V , when k = 1 simply take (1) as the de�nitionof C1(U; V; y).Assuming we have found suh Ci's for i = 1; 2; : : : ; k, we shall now onstrut the Ck+1's. In order tosimplify the onstrution, we shall only onstrut Ck+1(U; V; y) in the ase U = V = � and, moreover,we shall take C1 = f0g��. It is easy to see how to re-phrase this in order to produe Ck+1's satisfyingthe indutive hypotheses.De�ne Un = ( �1np2 ; 1np2 ), a lopen interval in Q, for eah n 2 ! n f0g and U0 = Q. As � re�nes Q, Un islopen in � for all n 2 !. Now denumerate � = fyn : n 2 !g and for eah n 2 !, separate the �rst npoints of � by Vnj , lopen intervals in Q, suh that yj 2 Vnj and Vnj \ Vni = ; for i, j = 1; 2; : : : ; n andi 6= j. Finally, de�ne C1 = f0g �� and, for j = 2; : : : ; k + 1,Cj = C1 [ [n2! n[i=1Cj�1(Un n Un+1; Vni; yi)For j = 1; 2; : : : ; k, Cj � Cj+1 by (3) of the indutive hypothesis.C1 is de�ned to have the form of (1) in the indutive hypothesis and is learly losed in �2.For j 2 f2; : : : ; k + 1g and hx; yi 62 Cj , as x 6= 0, there exists n 2 ! suh that x 2 Un n Un+1. Considerthe two ases: when for some i 6 n, hx; yi 2 (Un n Un+1)� Vni and when there are no suh n and i. Inthe �rst ase, hx; yi 62 Cj�1(Un n Un+1; Vni; yi) but this is losed in (Un n Un+1) � Vni so there exists Wopen in (Un n Un+1) � Vni ontaining hx; yi for whih W \ Cj�1(Un n Un+1; Vni; yi) = ;. But then W isopen in �2 and, sine ((Un n Un+1) � Vni) \ ((Um n Um+1) � Vmj) = ; whenever either m 6= n or i 6= j,we have that W \Cj = ;. In the seond ase, Sni=1 Vni is losed as the �nite union of losed sets so thereexists W 2 �� for whih y 2 W and W \Sni=1 Vni = ;. This means that hx; yi 2 (Un n Un+1)�W and((Un n Un+1)�W ) \ Cj = ;. Hene, Cj must be losed.In order to show that Cj is nowhere dense in Cj+1 for j = 1; 2; : : : ; k, sine the Cj are losed, it is enoughto show that if U , V 2 �� and (U � V ) \ Cj 6= ; then (U � V ) \ (Cj+1 n Cj) 6= ;. Consider �rst U andV 2 �� for whih (U � V ) \ C1 6= ;. Choose an n 2 ! suh that h0; yni 2 U � V . U is a neighbourhoodof 0 as is Un and 0 is not an isolated point of � hene there exists x 2 (U \Un) n f0g. This implies thathx; yni 2 (U � V ) \ (C2 nC1) and C1 is nowhere dense in C2.For some j 2 f2; : : : ; kg, assume that U , V 2 �� are suh that U � V meets Cj . It has alreadybeen shown that (U � V ) \ (C2 n C1) 6= ; whih means that there are suitable i and n 2 ! for whih(U � V ) \ C1(Un n Un�1; Vni; yi) 6= ;. C1(Un n Un�1; Vni; yi) � Cj�1(Un n Un�1; Vni; yi) so U � V mustmeet Cj�1(Un nUn�1; Vni; yi). By the indutive hypothesis, Cj�1(Un nUn�1; Vni; yi) is nowhere dense inCj(Un n Un�1; Vni; yi). Thus,(U � V ) \ (Cj(Un n Un�1; Vni; yi) n Cj�1(Un n Un�1; Vni; yi)) 6= ;From the de�nition of Cj it follows that (U � V ) \ (Cj+1 n Cj) 6= ; and Cj is nowhere dense in Cj+1.Showing that Ck+1 is nowhere dense in �2 an be done in a way similar to that used to show Cj isnowhere dense in Cj+1 but the following is a little more slik. Suppose U , V 2 �� are suh that(U � V ) \ C1 6= ;. De�ne d(U) = supfd(x; x0) : x, x0 2 Ug if the supremum exists and d(U) = 1otherwise. V is in�nite so there exists n 2 ! for whih yn 2 V and 1n < d(U). Thus there existsx 2 U n Un and hx; yni 2 (U � V ) n Ck+1. If (U � V ) \ Ck+1 6= ; but does not meet C1 then for some nand i 2 !, (U � V ) \ Ck(Un n Un+1; Vni; yi) 6= ;. That U � V does not lie in Ck+1 now follows from theindutive hypothesis that Ck(Un n Un+1; Vni; yi) is nowhere dense in Un � Vni.It remains to hek the ohesion of Ck+1. Sine the Cj 's form a hain of sets nowhere dense in theirsuessors and ohC1 = 1, a simple indution shows that ohCk > k. Moreover, Ck+1 \ ((Un n Un+1)�Vni) = Ck(Un n Un+1; Vni; yi) for n, i 2 !, henefCk(Un n Un+1; Vni; yi) : n 2 !, i = 1; 2; : : : ; ng



is a over of Ck+1nC1 by sets open in Ck+1. Proposition 3.1.5 and (5) of the indutive hypothesis togetherimply that oh(Ck+1 nC1) 6 2k � 1. By Theorem 3.3.6, ohCk+1 6 ohC1 + oh(Ck+1 n C1) + 1, that isohCk+1 6 1 + (2k � 1) + 1 = 2(k + 1)� 1. This ompletes the indutive onstrution.Remark Thus far, we have found in �2 subsets whose ohesions are �nite but unbounded in ! sooh�2 > !. If � were regular we ould stop here. However, by arefully plaing the Ck we an ahievethe required ontradition without assuming regularity.For eah n 2 !, de�ne Wn = ( 1p2 ; 1p2 + 1n ) a lopen interval in Q and hene lopen in �. Choose yn tobe some �xed point in Wn. Now de�ne C = [n2!Cn(�;Wn; yn)As the Wn are a losed disrete family in Q, they are a losed disrete family in � and hene f��Wn :n 2 !g is a losed disrete family in �2. This implies that Cn(�;Wn; yn) are a losed disrete family in�2 and C is losed in �. Moreover, the Cn(�;Wn; yn) are subsets of C whose ohesions are unboundedin ! hene ohC > !. By Proposition 3.1.4, �nd D � C whih is losed and has ohesion preisely !.fD \ Cn(�;Wn; yn) : n 2 !g form an open over of D beause D \ (��Wn) = D \ Cn(�;Wn; yn) and� �Wn 2 ��2 for all n 2 !. Also, the elements of the over are �nitely ohesive. This means thatfoh(D \ Cn(�;Wn; yn)) : n 2 !g is unbounded in ! otherwise Proposition 3.1.5 gives that ohD < !.Thus, for all k 2 !, there exists nk > k for whih D \ Cnk (�;Wnk ; ynk) > k and, again applyingProposition 3.1.4, �nd Ek whih is losed and nowhere dense in D \ Cnk (�;Wnk ; ynk) and for whihohEk > k.De�ne E = Sk2! Ek. As a disrete union of losed sets (in the same way that D is), E is losed. SupposeE were not nowhere dense then for some U , V 2 ��, (U �V )\D � E where (U � V )\E is non-empty.But this implies that for some k 2 !, (U � V ) \ Cnk (�;Wnk ; ynk) 6= ; and(U � V ) \ Cnk (�;Wnk ; ynk) � E \ Cnk(�;Wnk ; ynk) = EkIn other words, Ek is not nowhere dense in Cnk (�;Wnk ; ynk). This is a ontradition on the de�nitionof Ek. Hene E is nowhere dense in D whih implies that ohE < !.From the de�nition of the Ek's, fohEk : k 2 !g is an unbounded set in ! and, therefore, ohE > !.Thus, we have our ontradition and �2 is not ohesive. 2Remark The Ck generated in the above proof are �nitely ohesive by the indutive assumption andthey are learly rowded. They do not, however, superede Examples 3.3.2 as we annot guarantee that,for all n 2 !, there exists a k 2 ! for whih ohCk = n as we an for the previous examples.However, when one of the fators is sattered, the nowhere dense subsets an be spei�ed more preiselythan in general. Thus, we have:Proposition 3.5.5 If X and Y are �nitely ohesive spaes for whih Y is sattered then X�Y is ohesiveand oh(X � Y ) 6 (ohX + 1)(ohY ) + ohX.Proof We indut on the ohesion of Y and, we assume that Y is �nitely ohesive so the indution isonly of length !.First, onsider the ase when ohY = 0 so that Y is disrete. Clearly, fX�fyg : y 2 Y g is an open overof X � Y every member of whih has the same ohesion as X . Thus, by Proposition 3.1.5,oh(X � Y ) 6 ohX = (ohX + 1)(ohY ) + ohXSuppose now that, for n 2 !, if ohY 6 n then X�Y is ohesive and oh(X�Y ) = (ohX+1)(ohY )+ohX and assume that ohY = n+1. Divide X�Y into A = X� (Y nY d) and B = X�Y d. B is learly



a losed subset of X�Y . Sine sl(Y d) = sl(Y )� 1, Theorem 3.2.2 implies that ohY d = n. Applying theindutive hypothesis, ohB 6 (ohX +1)n+ohX and by the base step ase ohA = ohX . Proposition3.3.6 then gives oh(X � Y ) 6 ohX + ((ohX + 1)n+ ohX) + 1from whih it follows that oh(X�Y ) 6 (ohX+1)(n+1)+ohX . This proves the ase when ohY = n+1and ompletes the indution. 2By onsidering the ase when X and Y are both sattered ohesive spaes, it an be seen that the boundgiven in Proposition 3.5.5 is optimal. This follows by noting that sl(X � Y ) = sl(X) � sl(Y ) and then, byTheorem 3.2.2, this means that oh(X � Y ) + 1 = (ohX + 1)(ohY + 1). Simplifying this expression,we �nd that X � Y attains the bound on its ohesion.3.6 Absolute dimensionArhangel'ski�� de�ned absolute dimension as a tool by whih to examine spaes whih are leavable overthe reals.De�nition 3.6.1 [A2℄ The absolute dimension of a spae X , denoted adimX is de�ned indutively tobe: adimX = �1 if and only if X = ;adimX = 0 if and only if indX = 0for n 2 ! n f0g, adimX6n if for every nowhere dense subset C of X , adimC < nFor a spae X , adimX = n means that adimX 6 n but for any k 2 ! suh that k < n it is not true thatadimX 6 k.Arhangel'ski�� went on from this de�nition to show that a spae whih is leavable over the reals has anabsolute dimension of at most one. For our purposes it is suÆient to know that every subset of R isleavable over the reals. It is straightforward to see that for a spae X , if adimX = n for some n2!,then, for every A � X , adimA 6 n holds.The de�nition of ohesion is based on that of absolute dimension. So, it will ome as no surprisethat absolute dimension has rather di�erent properties from the usual indutive dimension funtions. Inpartiular, absolute dimension does not agree with these funtions on ompat metri spaes. If I denotesthe losed unit interval of R, then we have:Theorem 3.6.2 adimI2 is not de�ned.Proof Suppose adimI2 is de�ned. We shall onstrut nowhere dense subsets Cn of I2 for eah n2! suhthat adimCn > n. The de�nition of adim then gives that adimI2 > n+1, for all n 2 !, whih obviouslyontradits the fat that adimI2 is de�ned.Trivially C0 = fh0; 0ig satis�es the ase when n = 0. Take C1 = I � f0g. C1 is leavable over the realsas it is embeddable in the real line and it is not empty or zero-dimensional so adimC1 = 1. Clearly C1is losed and ontains no open set in I2 hene C1 is nowhere dense in I2.De�ne C2 = I � (f0g [ f 1n : n 2 ! and n > 2g). This gives a sequene of lines onverging down to C1.As a produt of two losed subsets of I , C2 is losed in I2 and learly it annot ontain any open subsetof I2 so C2 is nowhere dense in I2. Any open set, U , in C2 about a point hx; 0i 2 I � f0g ontains anopen ball of radius ", for some " > 0, so for all n 2 ! suh that 1n 6 ", hx; 1n i 2 U . Thus C1 ontains no



non-empty open subset of C2 and is losed in C2 so C1 is nowhere dense in C2. But adimC1 = 1 heneadimC2 > 2. (adimC2 exists beause of the assumption that adimI2 exists.)In general given Ck and noting that 1n�1� 1n = 1n(n�1) , de�ne Ck+1 = Ck[f 1n1 + : : :+ 1nk : n1 > 2; ni+1 >2ni(ni � 1) for i = 1; : : : ; k � 1g. As before this gives a sequene of lines onverging down to eah line inCk. It an be seen that Ck+1 is losed and nowhere dense in I2 (as a ountable olletion of horizontallines, Ck+1 annot ontain a non-empty open subset of I2). As for C1 in C2, Ck is nowhere dense in Ck+1and hene adimCk+1 > k + 1.Therefore, for all n 2 !, there is a Cn � I2 suh that adimCn > n whih are the sets prophesied at thebeginning of the proof and we are done. 23.7 Summary and questionsOne of the important features of ohesion is its relationship to sattered spaes. The seond setion ofthe hapter shows that ohesive sequential spaes are sattered and the fourth that ompat or evenloally ompat ohesive spaes are also sattered. Moreover, ohesive spaes whih are sattered areonly �nitely ohesive as was seen in the seond setion. Whilst there are examples of rowded, �nitelyohesive spaes whih are regular and ountable (and hene very well-behaved), it is also remarkable thatthere are no regular, trans�nitely ohesive spaes. This raises the natural question:Question 3.1 Is there a trans�nitely ohesive (Hausdor�) spae?Suh an example must not be regular, sattered or sequential and so may be quite a uriosity.In the �fth setion, it was seen that, provided one of the fators in a produt is sattered a produt oftwo ohesive spaes is ohesive and a bound for the ohesion of the produt an be found. However,when both fators are rowded, the situation hanges drastially and the square of a node spae re�ningthe rationals is not ohesive at all. Also, though not in general preserved by ontinuous maps, ohesionis preserved by open and perfet maps as they strongly ontrol the behaviour of open sets under themapping. It would therefore be interesting to �nd if other maps also preserve ohesion. For instane:Question 3.2 Is ohesion preserved under losed maps? quotient maps?The last theorem of the hapter proves that absolute dimension is not de�ned on the unit square. Oneof the important aspets of this result is that it uses tehniques whih were applied to ohesion. Thisdemonstrates that varying the base ase of ohesion might give useful notions (suh as absolute dimension)but beyond the base ase, the struture is very similar to that of ohesive spaes. Thus, minor alterationsto the proofs and examples of the hapter would give orresponding results on any suh variant.



Chapter 4On ompat monotonially normalspaes
Nikiel [N1℄ has obtained a number of haraterisations of arti spaes and CICLOTS. However, theseseem to bear little relation to the monotone normality struture of CICLOTS. Indeed, all that is knownis that CICLOTS must be ayli monotonially normal as LOTS are ayli monotonially normal andthis is preserved under losed maps. The Collins-Rosoe struturing mehanism, sine its ineption [CR℄,has been a powerful tool in the �eld of generalised metri spaes; in partiular, in spaes related tomonotonially normal spaes. The aim of this hapter is to analyse ordered spaes with respet to thestruturing mehanism in order to �nd a struturing mehanism on CICLOTS whih is as strong aspossible. We hope that this will provide new insight into Nikiel's question.The �rst setion of this hapter de�nes the Collins-Rosoe struturing mehanism and gives a avourof its strength and diversity by reviewing some key theorems. In the seond setion, we introdue thenew property, linear hain (F), and show that it is held by all CICLOTS and all proto-metrizable spaes.We also observe that utter normality, whih has reently been de�ned by Junnila, is implied by linearhain (F) and we extend Junnila's results. Finally, we summarise the hapter and raise some relevantquestions.4.1 The struturing mehanism and generalised metri spaesCollins de�ned the struturing mehanism in order to abstrat preisely the onditions used to show thatseparable metri spaes are seond ountable. He alled his original ondition (A) and, in [CR℄, (A) isshown to be equivalent to metrizability. There are many generalisations of (A) and the most general,in keeping with the notation of [CR℄, is alled (F). A spae X is said to satisfy ondition (F) (or, moresimply, is (F)) whenever there are an operator V : X � �X ! �X and, for every x 2 X , families W(x)of subsets of X eah ontaining x suh that:(F) for all x 2 X and U 2 �X suh that x 2 U , if y 2 V (x; U) then there existsW 2 W(y) suh that x 2 W � U(F) is so general that any spae satis�es it! To see this, simply take W(y) = ffx; yg : x 2 Xg andV (x; U) = U . The strength of (F) omes only when further onstraints are imposed on the W(x)'s.There are three sorts of onstraints: W(x) has a spei�ed ardinality; (W(x);�) has a spei�ed orderstruture, for example, being well-ordered; every W 2 W(x) is of a ertain type, for example, open.When the W(x) are taken to be ountable, this is a speial ase of the struturing mehanism alled(G) [CR℄. If also eah W(x) = fWn : n 2 !g and, for all n 2 !, Wn+1 � Wn then the W(x) are said46



to be dereasing. The syntax of these onditions is: (ordering property of (W(x);�)) (property of eahW 2 W(x)) (F) or (G).The struturing mehanism has been extensively studied, see for instane [CR℄, [CRRR℄, [MRRC℄ and[St2℄ for some of the many important results in this area. We give here a sample of these results.In the same spirit whih gave rise to (A), we have:Theorem 4.1.1 [CRRR℄ If X is separable and open (G) then X is seond ountable.It is well known that X being open (G) is implied by X having a point ountable base and that in manyirumstanes the onverse holds, see [MRRC℄. However, the following question remains open:Question 4.1 If X is open (G), does it have a point ountable base?If open (G) is strengthened to be dereasing as well, we obtain an unusual metrization theorem:Theorem 4.1.2 [CRRR℄ A spae is dereasing open (G) if and only if it is metrizable.Even without open-ness, dereasing (G) is an important ondition:Theorem 4.1.3 [St2℄ If a spae is dereasing (G) then it has the Dugundji extension property.Despite the triviality of unrestrited (F), the addition of any onstraints immediately gives useful notions.Theorem 4.1.4 [CRRR℄ If X is hain neighbourhood (F) or well-ordered (F) then X is hereditarilyparaompat.In fat, hain (F) on its own implies ayli monotone normality as the V operator in hain (F) is alsoan ayli monotone normality operator. More surprisingly, the onverse holds:Theorem 4.1.5 [MRRC℄ A spae is hain (F) if and only if it is ayli monotonially normal.A full disussion of the properties of hain (F) spaes is given in [MR℄. It was also remarked there that themonotone normality operator de�ned in [HLZ℄ for GO-spaes is atually an ayli monotone normalityoperator. Hene GO-spaes are hain (F). It is preisely this statement whih provoked the next setion.4.2 The linear hain (F) onditionIn the proof that a LOTS is (ayli) monotonially normal, the Axiom of Choie is used to well-orderthe LOTS in question. In showing that ayli monotone normality implies hain (F), Choie is againinvoked, this time to extend a partial order indued by an ayli monotone normality operator up to atotal order. It is by ombining these two instanes of hoie in showing that a LOTS is hain (F) that amuh stronger version of hain (F) is de�ned. We all the new property linear hain (F) as it is derivedfrom onsidering lines.De�nition 4.2.1 For a spae X with an operator V : X � �X ! �X and, for eah x 2 X , a familyW(x), X is linear hain (F) if the V and W 's satisfy hain (F) in suh a way that, for some x 2 U 2 �X ,y 2 V (x; U), the W 2 W(y) given by (F) also satis�es:



1. x 2W � V (x; U)2. x 2 intW for x 6= yRemarks In regular spaes, a simple argument shows that, for given x 2 U 2 �X , V (x; U) an beassumed to be ontained in U . Thus, when heking that linear hain (F) holds in a regular spae, it issuÆient to hek ondition (1) only as it then implies ondition (F). For the remainder of this setion,the notation of De�nition 4.2.1 will be standard and, in any linear hain (F) spae, V will be assumed tosatisfy this regularity ondition.We now show that every ordered spae is indeed linear hain (F). Beause of the similarities with theproof that an ayli monotonially normal spae is hain (F), we try to follow as losely as possible thenotation of [MRRC℄.Theorem 4.2.2 Every GO-spae is linear hain (F).Proof Take (X;<) to be a GO-spae. Applying the Axiom of Choie, well-order X and denote thewell-ordering by �. Any intervals are assumed to be the usual intervals in the natural GO-spae ordering<. However, for Y � X , minY denotes the least element of Y with respet to the well-ordering �.For eah a 2 X , a further order is de�ned on X . This is used to onstrut the W(a) and hene guaranteethat it is a hain. The order is given by:x�a y if and only if x 6= y and � a 6 min[x; y℄ for x < ya > min[y; x℄ for x > yWe need to hek that this is indeed a total order on X , that is, an irreexive, transitive relation withrespet to whih any pair of elements from X are omparable.The irreexivity of �a follows immediately from its de�nition.For transitivity, suppose x, y, z 2 X and that (?)x�a y and y �a zWe must show that x�a z. There are six ases to onsider:1. x < y < z. Then (?) means that a 6 min[x; y℄ and that a 6 min[y; z℄. Clearly, min[x; z℄ =minfmin[x; y℄;min[y; z℄g whih implies that a 6 min[x; z℄. That is, x�a z.2. x < z < y. In this ase, (?) means that a 6 min[x; y℄ and a > min[z; y℄. But a > min[z; y℄ >min[x; y℄ > a whih is impossible. So this ase does not our.3. y < x < z. Then (?) means that a 6 min[y; z℄. Either min[y; z℄ = min[y; x℄ or min[x; z℄ and henea 6 min[x; z℄. That is, x�a z.4. y < z < x. This annot happen for the same reasons as the seond ase.5. z < x < y. Then (?) means that a > min[z; y℄ but min[z; x℄ 6 min[z; y℄. Hene, a > min[z; x℄, thatis, x�a z.6. z < y < x. x�a z follows similarly to the �rst ase.For totality, onsider x, y 2 X . If x < y and x 6 �ay then a 66 min[x; y℄ so sine < is a total order, itmust be that a > min[x; y℄ and thus y �a x. Similarly, if x > y and x 6 �ay then y �a x. Hene, any twodistint elements of X are always omparable and �a is a total order.



Now de�ne Sa(x) = fy 2 X : y �a xg [ fxg. Expliitly,Sa(x) = fy < x : a 6 min[y; x℄g [ fxg [ fy > x : a > min[x; y℄gSo if a < x, Sa(x) = fy < x : a 6 min[y; x℄g [ fxg and [a; x℄ � Sa(x) � ( ; x℄. And if a > x,Sa(x) = fxg [ fy > x : a > min[x; y℄g giving that [x; a℄ � Sa(x) � [x;!). In both ases, Sa(x) is aonvex set.Let W(a) = fSa(x) : x 2 Xg. Given any x, y 2 X , either x �a y or y �a x and so either Sa(x) � Sa(y)or Sa(y) � Sa(x) orrespondingly. Sine ontainment is preserved when taking losures, W(a) is a hainof losed sets. Also, obviously a�a x for all x 2 X n fag therefore a 2 W for all W 2 W(a). This givesthe families of W(x)'s. We must now de�ne the orresponding V operator.For x 2 U 2 �X , let Ux denote the onvex omponent of U whih ontains x and U�x = fy 2 Ux : y < xgand U+x = fy 2 Ux : y > xg. Now de�ne V (x; U) 2 �X by:V (x; U) =8>>><>>>: fxg if x is isolated[x;minU+x ) if x 2 U+x n U�x(minU�x ; x℄ if x 2 U�x n U+x(minU�x ;minU+x ) if x 2 U�x \ U+xIt is straightforward to hek that V (x; U) is indeed open in the GO-spae topology.Sine minU�x and minU+x 2 Ux and V (x; U) � [minU�x ;minU+x ℄, it is lear thatx 2 V (x; U) � V (x; U) � UConsider a 2 V (x; U). Take W = Sa(x) 2 W(a) and suppose �rst that a < x so that Sa(x) = fy < x :a 6 min[x; y℄g[fxg. If y < x but y 62 V (x; U) then, from the de�nition of V (x; U), y < minU�x . But thisimplies that min[y; x℄ 6 minUx < a sine a 2 V (x; U). Therefore, y 62 Sa(x). Hene, Sa(x) � V (x; U)and x 2 Sa(x) �W � V (x; U) � UThus, onditions (F) and (1) hold for a < x.Also, sine a < x and a 2 V (x; U), it must be the ase that x 2 U�x . Thus, if x 2 T 2 �X , it followsthat T \ U�x 6= ; so T \ (a; x) 6= ;. But we know that [a; x℄ � Sa(x), therefore T \ intW 6= ;. That is,x 2 intW .If x > a then the proof that W has the required properties follows in a similar fashion.Finally, if a = x then W = Sx(x) = fxg satis�es the required properties. Thus, in all ases, onditions(1) and (2) hold and X is a linear hain (F) spae. 2Beause of the strong interation between the W 's and the operator V , it is diÆult for us to asertainwhether linear hain (F) is preserved under the usual topologial onstrutions. First, with regards tohereditary properties, we do not know if a losed subspae of a linear hain (F) spae is also linear hain(F). However we do have:Proposition 4.2.3 If X is linear hain (F) and U is a non-empty open subset of X then U is linearhain (F).Proof De�ne VU : U � �U ! �U by VU (x; T ) = V (x; T ) whenever x 2 T 2 �U . This is valid as T 2 �Uimplies that T 2 �X . For all x 2 U , de�ne WU (x) = fW 2 W(x) : W � Ug. These will witness that Uis linear hain (F).Clearly, for all x 2 U ,WU (x) � W(x) hene is a hain of sets ontaining x. Suppose now that x 2 T 2 �Uand that y 2 VU (x; T ). As y 2 V (x; T ), there exists W 2 W(y) suh that x 2 W � V (x; T )X and, for



x 6= y, x 2 intXWX . But V (x; T )X � T � U , by regularity, therefore W � U . Thus, W 2 WU (x) and itis easy to see that x 2 W � V (x; T )X = VU (x; T )U � Tthat is, onditions (1) and (F) are satis�ed.Moreover, sine U 2 �X and WX � U , intXWX = intUWU . Thus, ondition (2) is also satis�ed and Uis linear hain (F). 2Proposition 4.2.4 If X is linear hain (F) and Y is a dense subspae of X then Y is linear hain (F).Proof If X is a linear hain (F) spae, de�ne the operator VY : Y � �Y ! �Y by: for all y 2 U 2 �Y ,VY (y; U) = V (y; U 0) \ Y where U 0 is some open set in X suh that U = U 0 \ Y . De�ne also for eahy 2 Y , WY (y) = fW \ Y : W 2 W(y)g.From this, it is lear that WY (y) is a hain of losed subsets of Y whih ontain y, that VY (y; U) 2 �Yand, by regularity, that y 2 VY (y; U) � VY (y; U)Y � U . Now onsider z 2 VY (y; U) where y 2 U 2 �Y .From the de�nition, z 2 V (y; U 0) so there exists a W 0 2 W(z) suh that y 2 W 0 � V (y; U 0)X and, fory 6= z, y 2 intXW 0X .TakeW =W 0\Y so thatW 2 WY (z). Sine Y is dense inX , Y \V (y; U 0)X = Y \ V (y; U 0)Y = V (y; U)Y .Thus, W =W 0 \ Y � V (y; U 0)X \ Y = V (y; U)Y .Moreover, if T 2 �Y suh that y 2 T , there exists T 0 2 �X for whih T = T 0 \ Y and T 0 \ intXW 0 6= ;.Sine Y is dense in X , this means that T 0 \ intXW 0 \ Y 6= ;. That is, T \ intYW 6= ; and y 2 intYWY .Hene, Y is linear hain (F). 2With regard to taking ontinuous images, the struturing mehanism is not generally preserved by ar-bitrary maps. For an example of this, onsider Theorem 4.1.2 and the fat that the ontinuous imageof a metri spae need not be metri. Certain mehanisms, though, are preserved under taking losedimages and these are listed in [St2℄. Unfortunately, the method of proof given there does not obviouslyarry over to linear hain (F). However, we an preserve linear hain (F) under losed mappings if themappings are also irreduible. The key to this is the next lemma.Lemma 4.2.5 If f : X ! Y is an irreduible map, V 2 �X and x 2 V X then f(x) 2 f�(V )Y and,hene, f�(V X) � f�(V )Y .Proof Suppose x 2 V X and that f(x) 2 U 2 �Y . Then x 2 f�1(U) so that f�1(U) \ V 6= ;. LetT = f�1(U)\V . Sine f is irreduible and T is non-empty and open in X , f�(T ) is non-empty. Clearly,f�(T ) � f�(V ) \ f(f�1(U)) = f�(V ) \ U . Hene, U \ f�(V ) is non-empty andf(x) 2 f�(V )YNow if y 2 f�(V X) then there exists x 2 f�1(y) \ V X . The above gives that y = f(x) 2 f�(V )Y . Thus,f�(V X) � f�(V )Y . 2Using Lemma 4.2.5, the proof of the next theorem follows the general form of proofs that ertain stru-turing mehanisms are preserved under losed maps [St2℄.



Theorem 4.2.6 If X is linear hain (F) and f : X ! Y is a losed and irreduible map then Y is linearhain (F).Proof The notation of De�nition 4.2.1 will also be used for Y but no onfusion should arise. For eahy 2 Y , hoose some point xy 2 f�1(y). De�neW(y) = ff�(W )Y [ fyg :W 2 W(xy)gSine W(xy) is a hain of sets, W(y) is also a hain of sets whih trivially ontain y.Consider some y 2 Y for whih y 2 U 2 �Y . De�ne V 0 = Sx2f�1(y) V (x; f�1(U)) so that, by regularity,V 0X � f�1(U). Now de�ne V (y; U) = f�(V 0). Sine f is losed, V (y; U) is open in Y . Moreover, from thede�nition of V 0, it is lear that f�1(y) � V 0 � V 0X � f�1(U) and, therefore, y 2 f�(V 0) � f(V 0X) � U .But f being losed also implies f�(V 0)Y � f(V 0X). Hene, overall, we havey 2 V (y; U) � V (y; U)Y � f(V 0X) � UConsider z 2 V (y; U) n fyg. The de�nition of V means that f�1(z) � V 0 = Sx2f�1(y) V (y; f�1(U))and so, for some x 2 f�1(y), xz 2 V (x; f�1(U)). As X is linear hain (F) and xz 6= x, there existsW 0 2 W(xz) suh that1. x 2W 0 � V (x; T )X2. x 2 intW 0XTake W = f�(W 0)Y [ fzg whih is an element of W(z). Now, W 0 � V (x; T )X � V 0X , whih, by Lemma4.2.5, implies f�(W 0) � f�(V 0X) � f�(V 0)Y . That is, f�(W 0) � V (y; U)Y . By taking losures andadding z this gives W � V (y; U)Y .Sine x 2 intW 0X , again by Lemma 4.2.5, f(x) 2 f�(intW 0)Y � f�(W 0)Y . Thus y 2 f�(intW 0)Y � Wand f being losed implies that f�(intW 0) 2 �Y . Hene y 2 intW Y .Finally, suppose that z = y then y 2 W for all W 2 W(y) from the de�nition. Find W 0 2 W(xy) by thelinear hain (F) property on X and let W = f�(W 0)Y [ fyg. Just as the previous ase, this W satis�esondition (1). Hene Y is linear hain (F). 2Theorem 4.2.6 now allows us to �nd some important lasses of spaes whih are linear hain (F). However,the result is applied indiretly through the following:Corollary 4.2.7 The perfet image of a GO-spae is hereditarily linear hain (F).Proof Suppose X is a GO-spae and that f : X ! Y is a perfet map onto Y . Then there exists A � Xwhih is losed suh that f jA : A! Y is perfet and irreduible. As a subspae of a GO-spae, A is alsoa GO-spae and so is linear hain (F). Therefore, by the previous result, Y is linear hain (F).Moreover, if B � Y , then f jB : f�1(B)! B is a perfet map from the GO-spae f�1(B) to B. So B islinear hain (F). Hene, Y is hereditarily linear hain (F). 2This gives us our �rst important lass of spaes whih are linear hain (F).



Proposition 4.2.8 All CICLOTS are hereditarily linear hain (F).By Theorems 1.2.14 and 1.2.15 (3), every proto-metrizable spaes is the perfet image of a GO-spae.Hene, we obtain a seond large lass of spaes whih are linear hain (F).Proposition 4.2.9 Every proto-metrizable spae is hereditarily linear hain (F).4.3 Utter normalityLinear hain (F) learly implies hain (F) and hene linear hain (F) spaes are ayli monotoniallynormal. However, linear hain (F) also implies another strengthening of monotone normality whih hasreently been de�ned by Junnila:De�nition 4.3.1 A regular spae X is utterly normal if, for all x 2 X , there is a neighbourhood baseBx of x suh thatfor all Bx 2 Bx and By 2 By, Bx \ By 6= ; implies either x 2 By or y 2 BxSuh a olletion of Bx's is alled an utterly normal neighbourhood base assignment.Remark Junnnila identi�es di�erent types of utter normality aording as to whether the utterly normalneighbourhood bases onsist of open, losed or simply any neighbourhoods. We onsider only the asewhere the neighbourhood bases onsist entirely of open sets.To see that this does indeed imply monotone normality, for x 2 U 2 �X , �nd V 2 �X suh thatx 2 V � V � U . As Bx is a neighbourhood base, there exists a B 2 Bx suh that x 2 B � V . De�neH(x; U) = B so that x 2 H(x; U) � H(x; U) � U . If, for some y 2 W 2 �X , H(x; U) \ H(y;W ) 6= ;then, as H(x; U) 2 Bx and H(y;W ) 2 By, either x 2 H(y;W ) � W or y 2 H(x; U) � U . Hene, H is amonotone normality operator.As yet, no details of utter normality have been published though some may be found in [Co℄. However,we have that:Theorem 4.3.2 If X is linear hain (F) then X is utterly normal.Proof If V is a linear hain (F) operator on X , take Bx = fV (x; U) : x 2 U 2 �Xg. If Bx 2 Bx andBx0 2 Bx0 then there exist U , U 0 2 �X suh that Bx = V (x; U) and Bx0 = V (x0; U 0). If z 2 Bx\Bx0 thenthere exist W and W 0 2 W(z) suh that x 2 W , z 2 W � V (x; U) and x0 2 W 0, z 2 W 0 � V (x0; U 0).By the de�nition of linear hain (F), W(z) is a hain hene either W �W 0 or W 0 �W . Without loss ofgenerality, assume the former. This means that x 2 W �W 0 � V (x0; U 0). That is, x 2 Bx0 . Hene X isutterly normal. 2Using the results already obtained on linear hain (F), we an enompass many of the lasses whihJunnila has so far identi�ed as utterly normal.Corollary 4.3.3 The following lasses of spaes are (hereditarily) utterly normal:1. GO-spaes



2. [Junnila℄ proto-metrizable spaes3. CICLOTSThe preservation of utter normality has the same ompliations as that of linear hain (F). Open subsetsof an utterly normal spae are utterly normal whih is easily seen by onsidering the obvious restritionof the utterly normal neighbourhood base assignments. Also, in a similar fashion to Proposition 4.2.4,dense subspaes of an utterly normal spae are utterly normal. With regards to mappings, we are unableto determine if utter normality is preserved under losed mappings but, just like linear hain (F), we dohave:Proposition 4.3.4 If f : X ! Y is losed and irreduible and X is utterly normal then Y is utterlynormal.Proof Given x 2 U 2 �X , hoose B(x; U) 2 Bx suh that B(x; U) � U . For y 2 Y , de�neBy = ff�� [x2f�1(y)B(x; f�1(V ))� : y 2 V 2 �XgSine f is losed and, for any y 2 V 2 �X , C = Sx2f�1(V )B(x; f�1(V )) is open in X , f�(C) is open inY . Moreover, it is lear from the de�nition of B(; ) that:f�1(y) � [x2f�1(y)B(x; f�1(V )) � VTherefore, y 2 f�(C) � V . Thus, By is indeed a neighbourhood base for y in Y .Suppose, for eah i 2 f1; 2g, Bi 2 Byi where Bi = f��Sx2f�1(yi)B(x; f�1(Vi))� for some Vi 2�Y . If z 2 B1 \ B2, from the de�nition of small image, f�1(z) � Sx2f�1(y1)B(x; f�1(V1)) \Sx2f�1(y2)B(x; f�1(V2)). Hene, for i 2 f1; 2g, there exist xi 2 f�1(yi) suh that B(x1; f�1(V1)) \B(x2; f�1(V2)) 6= ;. Without loss of generality, the utter normality of X implies thatx1 2 B(x2; f�1(V2))XBy Lemma 4.2.5, f(x1) 2 f�(B(x2; f�1(V2)))Y . From this it follows that y1 2 By2Y .That is, the By form an utterly normal neighbourhood base assignment and Y is utterly normal. 2Junnila asked if strati�able spaes are utterly normal. A speial sublass of the strati�able spaes arethe lass of Lasnev spaes - those spaes whih are losed images of metri spaes. Towards answeringJunnila's question:Proposition 4.3.5 Every Lasnev spae is utterly normal.Proof By Lemma 5.4 of [Gr℄, every Lasnev spae is the losed irreduible image of a metri spae. Asmetri spaes are utterly normal, Proposition 4.3.4 implies that every Lasnev spae is utterly normal. 24.4 Summary and questionsAs hoped, by onsidering the struturing mehanism in GO-spaes, a new and strong version of ondition(F), linear hain (F), was de�ned and shown to be held by all CICLOTS. This an be used to show thatCICLOTS are ayli monotonially normal, whih was already known, and, moreover, that they areutterly normal. However, beause of the diÆulties in preserving linear hain (F), it is hard to see morepreisely how it relates to monotone normality and CICLOTS. For example:



Question 4.2 Is every ompat monotonially normal spae linear hain (F)?Question 4.3 If X is ompat and linear hain (F), is X a CICLOTS?Strengthening the results on the preservation of linear hain (F) ould possibly help answer these ques-tions.Question 4.4 Is linear hain (F) preserved under taking losed images? losed subspaes?The new notion of utter normality has a lot of potential uses. However, preservation is also a majordiÆulty here as well.Question 4.5 Is utter normality preserved under taking losed images? losed subspaes?The similarities between linear hain (F) and utter normality suggest a possible positive answer to thenext question.Question 4.6 Is every utterly normal and ayli monotonially normal spae also linear hain (F)?Or even:Question 4.7 Is every ompat utterly normal spae linear hain (F)?Of ourse, as yet it is unlear that not all monotonially normal spaes are also utterly normal. Wetherefore re-iterate Junnila's questions in [Co℄.Question 4.8 Is every (ompat) monotonially normal spae utterly normal?Question 4.9 Is every strati�able spae utterly normal?Remark It is easily seen that the loal bases given by an utterly normal neighbourhood assignment arelosure-preserving. Ito [I℄ proved that, for a strati�able spae X , if every point has a losure-preservingloal base then X is M1. Thus, a positive answer to this last question would provide a solution to thefamous M1-M3 problem.



Chapter 5A new resolution
One of the entral problems in the study of monotonially normal spaes is Nikiel's famous question: isevery ompat monotonially normal spae a CICLOTS? A major diÆulty in answering this questionis that there are almost no onstrutions whih preserve monotonially normal spaes but whih do nottrivially preserve CICLOTS. In this hapter, we onsider the preservation of monotone normality bytaking resolutions.The �rst example of a resolution was desribed by Fedor�uk [Fe℄ in order to onstrut a ompat spae withdi�ering indutive and overing dimensions. Watson extrated from this example the general prinipleof resolutions. He has presented many important examples whih have already been desribed but whihare more easily and elegantly re-desribed using resolutions [W℄.The �rst setion is a desription of resolutions and some of the key results of the general theory. Wehave hanged the notation for the basi open sets of a resolution from that used in [W℄ so as to avoidertain ambiguities whih the old notation engenders. We then de�ne a new type of resolution whihpreserves monotone normality provided that the spae whih is being resolved over is a loally onnetedontinuum. It is also shown that arti spaes are preserved by this resolution but the proof of this relieson a deep result of Cornette [C℄ rather than any trivial observation.Remark The resolution of monotonially normal spaes has already been onsidered by Nikiel andTreybig [NT℄ via the more general onept of fully losed maps. The outome of their result is that ifa resolved spae is separable and monotonially normal then the resolution into spaes with ardinalitygreater than three was only made over ountably many points of the original spae. This however doesnot greatly e�et our work as the resolved spaes we onsider are generally non-separable.5.1 De�ning resolutionsFor a spae X , �x a family of spaes fYx : x 2 Xg. For eah x 2 X , take fx : X n fxg ! Yx to be aontinuous funtion.De�nition 5.1.1 The resolution of X at eah x into Yx by fx has the underlying set Z = Sx2X(fxg �Yx). For x 2 U 2 �X and V 2 �Yx, de�nehx; U; V i = (fxg � V ) [[ffx0g � Yx0 : x0 2 U \ f�1x (V )gand then B = fhx; U; V i : x 2 X , x 2 U 2 �X , V 2 �Yxg is a basis for the topology on Z.Remark If a spae Yx is not spei�ed at every point of X then it is assumed that Yx is the one-pointspae and fx is just the onstant map. If C � X is the set of x 2 X for whih Yx and fx are given then55



it is easy to see that X n C is embedded in Z as Z nSx2C(fxg � Yx). In the sequel, we simply identifythese sets and say that X n C � Z.Theorem 5.1.2 (The fundamental theorem of resolutions [Fe℄, [W℄) If X is a ompat Haus-dor� spae and, for all x 2 X, Yx is a ompat Hausdor� spae then Z is a ompat Hausdor� spae.This theorem is partiularly useful sine it means that when working with ompat spaes we an guar-antee that the resolution is normal. In general, this is not always possible. However, if the spaesinvolved are Tyhono� and the fx are in some sense well-behaved, then by embedding the spaes insuitable ompati�ations and onsidering the required resolution as a subspae of the resolution of theompati�ations, we an still assert that the spae is Tyhono�.In order to use resolutions, the following map is very onvenient.De�nition 5.1.3 � : Z ! X is the projetion from Z on to X de�ned by �(hx; yi) = x for all x 2 Xand y 2 Yx.This allows us to abbreviate the desription of the basi open sets. For suitable x, U and V we have thathx; U; V i = (fxg � V ) [ ��1(U \ f�1x (V ))We now give a few basi properties of resolutions some of whih are straightforward. Their proofs anbe found in Watson's artile [W℄.Proposition 5.1.4 � is a ontinuous surjetion.Proposition 5.1.5 For all x 2 X, fxg � Yx, as a subset of Z, is homeomorphi to Yx.The next result is a onsequene of a theorem in [W℄. However, the theorem there is muh more generaland so we give a simpli�ed version for the speial ase.Proposition 5.1.6 If X is a ontinuum and for all x 2 X, Yx is also a ontinuum then Z is a ontinuum.Proof By the fundamental theorem of resolutions, it remains to show that Z is onneted.Suppose that A is a lopen subset of Z. If hx; yi 2 A then sine eah Yx is onneted, fxg�Yx is a subsetof A. Thus, A = ��1(�(A)). Sine Z is ompat and X is Hausdor�, � is losed whih means that �(A)is losed in X . Moreover, Z n A is also lopen so, just as for A, Z nA = ��1(�(Z n A)). But then �(A)and �(Z nA) form a losed partition of X . By the onnetedness of X , one of them must be empty and,hene, either A = Z or A is empty. That is, Z is onneted. 25.2 Construting monotonially normal spaesAs a partiular type of resolution, Watson de�ned resolutions by order mappings of a LOTS into otherLOTS:De�nition 5.2.1 [W℄ If (X;6) is a ompat LOTS, x 2 X and Yx is also a ompat LOTS withax = min Yx and bx = maxYx then an order mapping fx : X n fxg ! Y is de�ned by:fx(x0) = � ax for all x0 < xbx for all x0 > x



Resolving by order mappings is equivalent to taking the LOTS topology indued on the resolved spaeby the lexiographi order. As the resolved spae is still a LOTS, it is also monotonially normal. It isby adapting this onstrution that we are able to produe a resolution preserving monotone normality inmore general spaes. For this reason, the resolution is said to be by order-like mappings.Throughout this setion, X is a ontinuum with the set of ut-points E and fYx : x 2 Eg is a familyof ompat spaes with two distinguished points ax and bx. Other properties of X and the Yx's will bespei�ed as they are required.De�nition 5.2.2 For eah x 2 E, X n fxg is not onneted so speify two open sets in X whih witnessthis. These are denoted by X+x and X�x so that X n fxg = X�x [ X+x and X�x \ X+x = ;. De�nefx : X n fxg ! Yx by: fx(p) = � ax if p 2 X�xbx if p 2 X+xThese are alled order-like mappings and are learly ontinuous. The spae Z formed by resolving X ateah x into Yx by these fx is said to be the resolution of X into the Yx by order-like mappings.Remark The resolution of LOTS into other LOTS by order mappings an be obtained from order-likemappings by de�ning ax = min Yx, bx = maxYx, X�x = ( ; x) and X+x = (x;!).The key property of order like mappings is given in this next theorem.Theorem 5.2.3 If X is loally onneted and monotonially normal and, for all x 2 E, Yx is monoton-ially normal then Z is monotonially normal.Proof From the fundamental theorem of resolutions, we know that Z is T1. We need to onstrut amonotone normality operator.Suppose that G : X � �X ! �X is a monotone normality operator on X and, given that X is loallyonneted, we may assume that G(x; U) is onneted for all x 2 U 2 �X . For all x 2 X , take Gx :Yx� �Yx ! Yx to be monotone normality operator on Yx. Now monotone normality operators need onlybe de�ned on a basis of a spae so we de�ne the operator H : Z �B ! �Z by:H(hx; yi; hx; U; V i) = hx;G(x; U); Gx(y; V )iwhere x 2 U 2 �X and y 2 V 2 �Yx.To show that H is a monotone normality operator, we must show that for hx; yi 2 hx; U; V i 2 B andhs; ti 2 hs; P;Qi 2 B, if (�): H(hx; yi; hx; U; V i) \H(hs; ti; hs; P;Qi) 6= ;then either hx; yi 2 hs; P;Qi or hs; ti 2 hx; U; V i. By onsidering the de�nition of the basi open sets ofZ, it beomes lear that if (�) holds then there are four ways in whih it may do so.1. (fxg � Gx(y; V )) \ (fsg �Gs(t; Q)) 6= ;. In this ase, x = s and Gx(y; V ) \ Gs(t; Q) 6= ; so thateither y 2 Q or t 2 V . This gives the respetive onlusions that either hx; yi 2 hs; P;Qi or thaths; ti 2 hx; U; V i.2. (fxg�Gx(y; V ))\��1�G(s; P )\ f�1s (Gs(t; Q))� 6= ;: It must be that x 2 G(s; P )\ f�1s (Gs(t; Q)).Hene fxg � Yx � ��1�G(s; P ) \ f�1s (Gs(t; Q))� � H(hs; ti; hs; P;Qi)� hs; P;Qi. This implies that hx; yi 2 hs; P;Qi.3. (fsg � Gs(t; Q)) \ ��1�G(x; U) \ f�1x (Gx(y; V ))� 6= ;. That hs; ti 2 hx; U; V i follows similarly tothe previous ase.



4. ��1�G(x; U) \ f�1x (Gx(y; V ))� \ ��1�G(s; P ) \ f�1s (Gs(t; Q))� 6= ;. (We may assume that x 62G(s; P ) otherwise one of the above ases ours.) Sine this implies that G(x; U) \ G(s; P ) 6= ;then either x 2 P or s 2 U . Without loss of generality, we may assume that s 2 U . If ax = bxthen hx; U; V i = ��1(U) and hs; ti 2 hx; U; V i. Thus, also assume that x 2 E and ax 6= bx. Sinex 62 G(s; P ), G(s; P ) � X�x [ X+x but G(s; P ) is onneted hene G(s; P ) is ontained entirely ineither X�x or X+x . Again without loss of generality, we may assume the latter. This means thats 2 G(s; P ) � X+x . For ��1�G(x; U) \ f�1x (Gx(y; V ))� \ ��1�G(s; P ) \ f�1s (Gs(t; Q))� 6= ; to haveoured, it must be that bx 2 Gx(y; V ) so that bx 2 V and X+x � f�1x (V ). Hene, s 2 f�1x (V ) \ Uwhih implies that hs; ti 2 ��1(U \ f�1x (V )) and hs; ti 2 hx; U; V i.This shows that H is indeed a monotone normality operator. 2In order to use this onstrution to build \interesting" monotonially normal spaes, it is best to startwith a base spae X with lots of ut-points. A partiularly good example of this is a dendron sine,for any two points in a dendron, there is a ut-point whih separates them. Of ourse, we will need thedendron to be monotonially normal. This is implied by a theorem of Cornette:Theorem 5.2.4 [C℄ A Hausdor� loally onneted ontinuum X is arti if and only if every ylielement of X is arti.Corollary 5.2.5 Every dendron is arti.Proof Every yli element of a dendron is a singleton hene trivially the ontinuous image of an ar.Dendra are assumed to be Hausdor� and loally onneted so Cornette's result applies. 2Corollary 5.2.6 If X is a dendron and, for all x 2 E, Yx is monotonially normal , then Z is mono-tonially normal .Proof Dendra are arti hene monotonially normal and they are also loally onneted. The resultimmediately follows from Theorem 5.2.3. 2Resolving by order-like mappings also preserves other struture.Proposition 5.2.7 If X is loally onneted and, for all x 2 E, Yx is both loally onneted and onnetedthen Z is loally onneted.Proof Consider hx; yi 2 Z. If Bx is a neighbourhood base for x in X and By is a neighbourhood basisfor y in Yx, then it is easily seen thatBhx;yi = fhx; U; V i : U 2 Bx and V 2 Bygis a neighbourhood basis for hx; yi in Z. Thus, to show that Z is loally onneted, it is suÆient to showthat if U is a onneted neighbourhood of x and V is a onneted neighbourhood of y then hx; U; V i isonneted.Assume that U and V are suh neighbourhoods.First, suppose that ax, bx 62 V . Then hx; U; V i = fxg � V . As this is homeomorphi to V , hx; U; V i islearly onneted.



Suppose now that ax 2 V but bx 62 V . (The ase when bx 2 V but ax 62 V is similar.) Consider a set Cwhih is lopen in hx; U; V i but whih does not ontain hx; axi. Sine C is losed in hx; U; V i, there existS 2 �X and T 2 �Yx suh that x 2 S � U , ax 2 T � V and hx; S; T i \ C = ;.If C \ (fxg � V ) 6= ; then this set would witness the fat that fxg � V is not onneted. Thus,C � ��1(U \X�x ). If for some p 2 X , there is a q 2 Yp for whih hp; qi 2 C then it must be that Yp � Cotherwise C \ Yp witnesses the fat that Yp is not onneted. Hene, C = ��1(�(C)). Sine �j��1(U\X�x )is a losed map, it is also a quotient map. Thus �(C) is lopen in U \X�x . This means that �(C) is infat open in X and hene open in U .If �(C) were not losed in U then there would exist p 2 X for whih p 2 �(C)U n �(C). If p 2X�x \ U then p 2 �(C) sine �(C) is losed in the open set X�x \ U . If p 2 X+x then p 62 �(C)U sine�(C) \X+x = ;. The only remaining possibility is that p = x. But x 2 S and hx; S; T i \ C = ;. That is,[fxg � T [ ��1(S \X�x )℄ \ ��1(�(C)) = ;. From this, it is straightforward to hek that S \ �(C) = ;.As S is an open neighbourhood of x, x 62 �(C)U . Therefore, there an be no suh p and �(C) is alsolosed in U .However, U is onneted and the omplement of �(C) in U ontains x so �(C) and hene C must beempty. This means that hx; U; V i is onneted.Finally if both ax and bx are both in hx; U; V i and C is some lopen set whih ontains ax then it mustalso ontain bx sine V is onneted. But then hx; U; V i n (C \ ��1(X�x )) are both lopen subsets ofhx; U; V i and, by the above reasoning, they must both be empty.Thus, every point of Z has a basis of onneted sets and Z is loally onneted. 2The other properties whih we onsider deal only with ontinua. Thus for the remainder of this setionassume that X and, for all x 2 E, Yx are onneted. Thus, by Proposition 5.1.6, Z is also onneted.We study the properties of dendra and ontinuous images of ars via their yli elements. But �rst, weneed to �nd the ut-points of Z.Lemma 5.2.8 For z = hx; yi 2 Z, z is a ut-point of Z if and only if x 2 E and either1. y is a ut-point of Yx or2. y = ax or bxProof First, suppose x 2 E. We onsider the two ases for y individually.1. We may assume that y 62 fax; bxg as this is overed in the seond ase. Suppose Yx n fyg = G [Hwhere G, H 2 �Yx are disjoint and non-empty. If hp; qi 2 Z nfzg and p = x then q 2 G or q 2 H sothat hp; qi 2 hx;X;Gi[hx;X;Hi. If p 6= x then p 2 f�1x (G[H) hene hp; qi 2 hx;X;Gi[hx;X;Hiand Z n fzg = hx;X;Gi [ hx;X;Hi. Sine G and H are open, disjoint and non-empty so too arehx;X;Gi and hx;X;Hi and z is a ut-point of Z.2. If y = ax (the ase y = bx is similar), it is easy to see that Z n fzg = ��1(X�x )[ [hx;X; Yx n faxgi [��1(X+x )℄ and that these two sets are disjoint, open and non-empty. Thus z is a ut-point of Z.Now suppose that z = hx; yi is a ut-point of Z. Thus Z n fzg = A [ B where A, B 2 �Z are disjointand non-empty. Sine for all x 2 X , Yx is onneted (for x 62 E, see the remark after De�nition 5.1.1), ifha; bi 2 A where a 6= x, b 2 Ya, then it must be that fag � Ya � A otherwise A \ (fag � Ya) is a lopensubset of fag � Ya. Hene, we have thatA = (A \ (fxg � Yx)) [ ��1(�(A) n fxg)



and similarly B = (B \ (fxg � Yx)) [ ��1(�(B) n fxg)If x 62 E then fxg � Yx = fhx; yig whih, together with the above implies that A = ��1(�(A)), B =��1(�(B)) and X n fxg = �(A)[�(B). It then follows that �(A) and �(B) are disjoint. Moreover, sinethey are both losed in Z n fzg = ��1(X n fxg) and �j��1(Xnfxg) is a losed map, then �(A) and �(B)are losed in X n fxg. Thus X n fxg is not onneted whih ontradits x 62 E. Hene x 2 E.Suppose now that y 62 fax; bxg. Sine z is a ut-point of Z, z 2 AZ\BZ . However, z has a neighbourhoodbase all of whose elements are ontained in fxg� Yx. Thus, A \ (fxg� Yx) and B \ (fxg� Yx) are bothnon-empty. They are both open in fxg�Yx as A, B 2 �Z. But (fxg�Yx)nfhx; yig = (A\ (fxg�Yx))[(B \ (fxg � Yx)), so z is a ut-point of fxg � Yx. Sine fxg � Yx is anonially homeomorphi to Yx, itfollows that y is a ut-point of Yx. 2Having found the ut-points of Z, it is now easy to �nd the yli elements of Z.Lemma 5.2.9 If X is a ontinuum and, for all x 2 E, Yx is a ontinuum then a yli element Q of Zhas one of the following two forms:1. for some x 2 X and yli element Q0 of Yx, Q = fxg �Q02. for some yli element, Q0 of X, Q = (Q0 nE)[fhx; yxi : x 2 Q0\Eg where Q0 is a yli elementof X and yx = ax if Q0 meets X�x and yx = bx otherwiseProof It is lear that all the Q's of the above two forms are a losed over of Z. If it is shown that theseare indeed yli elements of Z then they must be all of them. Thus, it is enough to show that if Q hasone of the above forms then it is yli and is maximal with respet to this property.First, suppose Q = fxg �Q0 where x 2 E and Q0 is a yli element of Yx. Also, assume that Q0 is notequal to either faxg or fbxg. This ase will be dealt with at the end. Sine Q is homeomorphi to Q0then it is yli.Suppose then that R � Z is yli, onneted and ontains Q. If there exists p 2 Z suh that for someq 2 Yp, hp; qi 2 R and p 6= x then, for the sake of argument, assume that p 2 X+x . hx; bxi is a ut-point ofZ whih separates any point in ��1(X+x ) from any point in fxg � (Yx n fbxg). Hene, it separates hp; qifrom any point in Q n fbxg (note that this is a non-empty set). If hx; bxi 62 R then, sine Q � R, R is notonneted. But if hx; bxi 2 R then R ontains a ut-point of itself.Thus, R � fxg � Yx and R being homeomorphi to a subset R0 of Yx whih is yli, onneted andontains Q0 implies R0 = Q0 from whih it follows that R = Q. Therefore, Q is maximal and any suh Qis a yli element of Z.Now suppose that Q = Q0 n E [ fhx; yxi : x 2 Q0 \ Eg where Q0 and yx are as in the statement of thelemma. �jQ : Q ! Q0 is ontinuous and injetive. Moreover, fxg � (Yx n fyxg) is open in ��1(Q0) foreah x 2 Q0 \ E and ��1(Q0) n Q = Sx2Q0\Efxg � (Yx n fyxg). Thus, Q is losed in ��1(Q0) whih islosed in Z and, therefore, Q is losed in Z. As the restrition of a losed map to a losed set, �jQ islosed and so is a homeomorphism. Beause Q0 is yli, so is Q.Again, assume that Q0 is not equal to a singleton ontaining a ut-point as this ase will be dealt withat the end. Suppose R � Z is yli, onneted and ontains Q. If there exists r 2 X and some s 2 Yrfor whih hr; si 2 R n Q and r 62 �(Q) then there exists p 2 E whih separates r from any point inQ0 n fpg. Assume, for the sake of argument, that r 2 X�p . Then, from the proof of Lemma 5.2.8, hp; apiseparates hr; si from any point in ��1(Q0) � Q. Thus, as for the previous ase, for R to be both yliand onneted hp; api an not be in R or its omplement, respetively. Hene, there is no suh point hr; siand R � ��1(Q0).



Now onsider x 2 Q0 \ E and some point y 2 Yx for whih y 6= yx and hx; yi 2 R. By Lemma 5.2.8,hx; yxi is a ut-point separating hx; yi from Q n fhx; yxig. Again, this annot be the ase if R is bothyli and onneted. Therefore R = Q and Q is a yli element of Z.The ase whih is not overed by the above arguments is when x 2 E is a yli element of X and ax orbx is a yli element of Yx. For the sake of argument, suppose ax is a yli element of Yx. But in thisase it is straightforward to see that hx; axi an be separated from any other point of Z by a third point.This means that fhx; axig is a yli element of Z and as suh satis�es both types of yli element givenin the statement of the Lemma. 2The Lemma immediately gives the following orollary.Corollary 5.2.10 For Z as in the statement of the previous lemma, any yli element of Z is homeo-morphi to either a yli element of X or a yli element of Yx for some x 2 E.Given this, the next two results are straightforward.Proposition 5.2.11 If X is a dendron and, for all x 2 E, Yx is a dendron then Z is a dendron.Proof By Propositions 5.1.6 and 5.2.7, Z is a loally onneted ontinuum. By Corollary 5.2.10, everyyli element of Z is homeomorphi to a yli element of a dendron. Hene, every yli element of Zis trivial and Z is also a dendron. 2Proposition 5.2.12 If X is arti as too are Yx, for all x 2 E, then Z is arti.Proof By Cornette's result, sine X and Yx, for all x 2 E, are arti, so too are all their yli elements.Corollary 5.2.10 implies that every yli element of Z is arti. Again, by Cornette's result, this impliesthat Z is also arti. 25.3 Summary and further workThe main result of this hapter is that the resolution of monotonially normal, loally onneted onnetedspaes into monotonially normal spaes by order-like mappings is monotonially normal. However, thelast proposition tells us that this tehnique annot be used on its own to onstrut a monotoniallynormal, loally onneted ontinuum whih is not arti. The following, though, remains open:Question 5.1 Can resolving by order-like mappings produe a monotonially normal ompatum whihis not a CICLOTS?To help answer this question, the notion of order-like mappings an be expanded to allowmore ompliatedonstrutions in two ways.First, for x 2 E, the number of distinguished points an be made equal to the number of omponents ofX n fxg. The map fx then simply takes eah omponent to a orresponding distinguished point. Loalonnetedness is needed here to ensure that eah omponent is open and, hene, that the map fx isontinuous. By adapting the proofs given here, it is straightforward to show that suh a onstrutionpreserves monotone normality, dendra and ontinuous images of ars.



Seondly, in order to de�ne a topology on the spae Z, it is only neessary that, for eah x 2 E, fx mapsfrom some neighbourhood of x into Yx. This would allow the resolution to our at points whih only utone of their neighbourhoods and hene expand the lass of spaes whih an be used in the onstrution.For example, every point in the irle S1 has this property but it has no ut-points.We have not given the details of these generalisations as they are largely the same as the basi tehniquegiven but the desription of the more general ases would have obsured the entral idea. However, usingthese generalisations, it may yet be possible to give a positive answer to the question.



Chapter 6On reetion
Elementary submodels have reently emerged as a powerful tehnique in general topology. They havebeen used to simplify onsiderably both proofs of theorems and the onstrution of ounter-examples, see[Do℄, [W℄. However, there is, as yet, no standard approah to applying them to problems.The aim of this hapter is to give a new, general tehnique for using elementary submodels in theonstrution of topologial spaes. The tehnique is illustrated by three quite diverse examples: Balogh'sQ-set spae [B1℄, [W℄, a \small" normal but not olletionwise Hausdor� spae [R3℄, [Do℄, and Balogh'ssmall Dowker spae [B2℄.The �rst setion of this hapter de�nes elementary submodels and raises some points on the pratialitiesof using them. The seond setion gives some straightforward results whih are useful tools later on.Also, the proofs of the results serve to introdue reetion tehniques. In the third setion, the newmethod of onstrution is outlined and the three examples are desribed.The work of this hapter was done jointly with my olleagues Chris Good and Will Pak.6.1 Elementary submodelsA set N , with some other struture, models a well-formed formula � if, when the formula is interpretedin terms of the struture on N , � is true. This is denoted by N j= � and, informally, it is ommon to saythat N thinks �. M� N is an elementary submodel of a model N if every formula � is absolute forMand N , that is, for any x1; : : : ; xn 2M whih are the only objets mentioned in some logi formula �,M j= � if and only if N j= �Again informally,M thinks the same about its elements as N does, hene this property is alled elemen-tarity.The existene of elementary submodels is given by:Theorem 6.1.1 (L�owenheim-Skolem-Tarski Theorem) For any model N whih is a set and anysubset X of N , there is an elementary submodel M of N suh that X �M and jMj 6 maxf!; jX jg.See [K1℄ p.156 for details of this Theorem.In most appliations, we want N to model ZF or ZFC. However, suh a model annot be a set so theL�owenheim-Skolem-Tarski Theorem is not appliable. Fortunately, any proof is �nite so neessarily anuse only �nitely many instanes of axioms and refer to only �nitely many sets. By taking a model of63



those axioms used, whih is a set ontaining those objets referred to, the proof is still valid in thatmodel. Elementary submodels of that model are then known to exist. In pratie, the exat set-model isunimportant and all elementary submodels are treated as submodels of V .The real power of an elementary submodel omes from the ability to inlude in it any olletion of objetswhih are being studied. What V thinks of suh objets is also thought by the submodel but, beause itis small, the objets are easier to manipulate there. For instane, if !1 is in some ountable elementarysubmodelM thenM thinks that !1 is unountable. However, V knows that !1 \M is ountable. Thisallows us to do many things suh as to �nd � 2 !1 whih is not inM. It is beause of this ability to �ndsmall objets whih reet the properties of large objets that suh tehniques are said to be reetive.Before proeeding to some results, it is worth ommenting on a few basi properties of elementarysubmodels. First, elements of an elementary submodel are not neessarily subsets as is demonstrated byonsidering, as above, !1 in a ountable model. Seondly, subsets of a model are not neessarily elementsof the model. To see this, take a ountable elementary submodel of whih ! is a subset. If all subsets of! were in the model then P(!) is a subset of the ountable model - obviously impossible. Finally, it isworth noting that elementarity refers only to logi formulae. This auses many diÆulties as the languageof mathematis is at a muh higher level than the language of logi. Apparently simple statements maydisguise referenes to objets whih are not in an elementary submodel. Thus, these statements annot bereeted down into the submodel. To avoid the onfusion this may ause, all of our reeted statementsare redued to a form where it is lear that they are absolute.6.2 Some introdutory proofsFirst, we onsider when elements of an elementary submodel are subsets and vie-versa. Throughout thissetion,M denotes an elementary submodel of V , the standard model of ZFC.Proposition 6.2.1 If A �M and A is �nite then A 2M.Proof Suppose A = fa1; : : : ; ang for some n 2 !. ThenV j= 9x8y(y 2 x$ (y = a1 _ y = a2 _ : : : _ y = an))Namely, A is the x whih V thinks satis�es this statement.As the only objets whih our in the formula are the ai and these are elements of M, elementaritygives us M j= 9x8y(y 2 x$ (y = a1 _ : : : _ y = an))Call the set whih is asserted to exist inM by this sentene, B. Thus B 2M and the above tells us thatM j= 8y(y 2 B $ (y = a1 _ : : : _ y = an))But now elementarity gives V j= 8y(y 2 B $ (y = a1 _ : : : _ y = an))But this sentene de�nes A as well. Therefore, B = A and sine B 2 M it must be that A 2 M. 2Proposition 6.2.2 If X 2 M and jX j 6 � where �+ 1 �M then X �M.Proof V j= 9f : � ! X ^ f is surjetive. In order to use elementarity, we need to put this into thelanguage of logi. A more fundamental way of expressing this statement is, V j= 9f�(f) where �(f) isthe statement(f � ��X) ^ 8� 2 �9x 2 X(h�; xi 2 f ^ 8y(h�; yi 2 f ! x = y)) ^ 8x 2 X9� 2 �(h�; xi 2 f)



From this, it is lear to see that the only part whih does not easily translate into a logi formula isf � ��X . This an be expressed as 8a(a 2 f $ a 2 ��X). In this form 9f�(f) has only two objetsin it, namely �, and X , and these are elements ofM. So by elementarityM j= 9f�(f).Let f 2 M be suh that �(f) holds. SoM j= �(f) and elementarity now gives us that V j= �(f). Whatwe have ahieved so far is that, given that V knows the ardinality of X , we have found a funtion inMwhih witnesses what the ardinality is.Now suppose x 2 X . Then there exists � 2 � suh that h�; xi 2 f sine f is surjetive. Thus we haveV j= 9y 2 X(h�; yi 2 f)As � �M and �; f 2M, elementarity tells us thatM j= 9y 2 X(h�; yi 2 f)Hene for some y 2 X \M,M j= h�; yi 2 f . Again by elementarity, we now have that V j= h�; yi 2 f .But given that V thinks that f is a funtion and h�; xi 2 f , it must be that x = y and so x 2 M. Thatis, X �M. 2The next proposition tells us that we have some familiar, useful objets in any elementary submodel.Proposition 6.2.3 ! + 1 �MProof First we show by indution that ! �M.V j= 9x8y(y 62 x). The empty set is the set whih is asserted to exist in this sentene. Elementarity nowgives us thatM j= 9x8y(y 62 x). Let E be an element ofM suh thatM j= 8y(y 62 E). Elementarity inthe other diretion gives that V j= 8y(y 62 E). That is, E = ;. Hene ; 2 M.Now onsider any x 2 M. De�ne x+ = x [ fxg. Thus, V j= 9y8a(a 2 y $ (a 2 x _ a = x)) (namely,y = x+) and soM j= 9y8a(a 2 y $ (a 2 x _ a = x)). Let y 2 M be a set whih is asserted to exist bythis sentene. Then, elementarity tells us that V j= 8a(a 2 y $ (a 2 x _ a = x)), whih is a de�nition ofx+. So y = x+ whih means that x+ 2M.Thus if for some n 2 !, n 2 M then we have that n+ 2M and by indution, ! �M.Now let 	(x) be the formula (; 2 x) ^ (8y 2 x(y+ 2 x)). It is lear from the above that 	 is absoluteforM and V . The axiom of in�nity holds in V , so V j= 9x	(x). HeneM j= 9x	(x). Let N 2M suhthatM j= 	(N) ^ (8x(	(x) ! N � x)). (N is onstruted in the same way that ! is onstruted in Vfrom the axiom of in�nity.) So N is the objet thatM thinks of as the natural numbers.By elementarity, V j= 	(N) so ! � N sine ! is the smallest indutive set in V . Also by elementarityV j= 8x(	(x)! N � x). 	(!) holds so N � !. Hene N = ! and ! 2M. 2These last two results in ombination give:Proposition 6.2.4 If X 2 M and X is ountable then X �M.We now present two results whih do not tell us about elementary submodels diretly but whih do typifyelementary submodel proofs. The �rst is a spei� ase of the Pressing Down Lemma, the seond is the�-system lemma. Both have well-known ombinatorial proofs (see [K1℄ p.80 and p.49 respetively) butmuh of the ombinatoris an be e�ortlessly subsumed into an elementary submodel.Theorem 6.2.5 (Pressing Down Lemma) If f : !1 n f0g ! !1 is suh that f(�) < � for all � 2 !1,then for some  2 !1, f�1() is stationary.



Proof TakeM to be a ountable elementary submodel whih ontains !1 and f . De�ne � 2 !1 to bethe least ordinal suh that � 62 M. If  = f(�) then  2M sine f(�) < �. Moreover, no ordinal greaterthan � is inM otherwise, as it is ountable, it is a subset ofM and this would imply that � 2 M.Now de�ne �(C) to be(8� 2 !19� 2 C(� > �)) ^ (8� 2 !1 n C9� < �8 2 !1(� <  6 �!  62 C))That is, �(C) means that C is a lub set in !1 and � is learly absolute betweenM and V .For a given � < �, � 2 M. Moreover, for eah lub set C in M, V j= 9Æ 2 C(� < Æ). Hene,M j= 9Æ 2 C(� < Æ). The Æ asserted to exist by this statement, tells us that C \ (�; �℄ 6= ;. As thisholds for any � < � and C is a lub, � 2 C.Thus, for eah C 2 M, V j= �(C) ! 9� 2 C(f(�) = ), namely �. Elementarity implies that, for allC 2 M, M j= �(C) ! 9� 2 C(f(�) = ). We therefore have that M j= 8C(�(C) ! 9� 2 C(f(�) =)). Applying elementarity one more gives that V j= 8C(�(C) ! 9� 2 C(f(�) = )). In other words,f�1() is stationary. 2Theorem 6.2.6 (�-system Lemma) Any family A = fA� : � 2 !1g of �nite sets ontains an un-ountable �-system. That is, there exist an unountable subset B of !1, an n 2 ! and a �nite set r suhthat, for all �, � 2 B, jA�j = n and A� \A� = r.Proof Take a ountable elementary submodelM ontaining A, ! and !1. AsM is ountable, hoose 2 !1 nM and let r = A \M. As a �nite subset ofM, r is an element ofM as is the natural numbern = jA j. Let �(�;B) be the statement:(jA�j = n) ^ 8� 2 B((� 6= �)! (A� \A� = r))The only objets in �(�;B) are elements ofM. This means that �(�;B) is absolute betweenM and V .Now, V j= 9� 2 !1((jA�j = n) ^ (A� � r)). In partiular,  witnesses the truth of this in V . Therefore,elementarity tells us that M� j= 9� 2 !1(jA�j = n ^ A� � r). Take � 2 M whih is delared to existby this expression. If B0 = f�g thenM j= 8� 2 B0(�(�;B0)). Using Zorn's Lemma, whih holds insideM, �nd a maximal suh B, that is, a B 2M for whih:M j= 8� 2 B(�(�;B)) ^ 8� 2 !1(�(�;B) ! � 2 B)Interpreting this sentene, this means that fA� : � 2 Bg is thought to be a maximal �-system byM.Applying elementarity givesV j= 8� 2 B(�(�;B)) ^ 8� 2 !1(�(�;B)! � 2 B)Suppose B were ountable. As a ountable element ofM, B �M and so � 2M for all � 2 B. Hene, forall � 2 B, A� 2 M and as they are �nite sets, A� �M. Thus, for any � 2 B, A \A� = A \M\A� =r \ A� = r. Note also jA j = n whene V j= �(;B). Together with V j= 8� 2 !1(�(�;B) ! � 2 B),this gives  2 B. But B �M so  2 M - a ontradition.Hene B is unountable and fA� : � 2 Bg is a �-system. 26.3 Three examplesThe results of the last setion are fundamental to pratial appliations of elementary submodels. Theyare not, therefore, expliitly referred to in what follows.We give a rough outline of our approah to using elementary submodels in onstruting examples. It isbased on Watson's onstrution of a Q-spae in [W℄. However, he omits many of the details from his



proof. We have �lled in many of these gaps and from it abstrated the general tehnique used in theother two examples. This approah is founded on the fat that there are only  many essentially di�erentountable elementary submodels. This is beause any model is fully determined by its interpretation of2 on the underlying set. Hene, up to isomorphism, there are as many ountable elementary submodelsas there are binary relations 2 on a ountable set, that is,  many.The underlying set in eah example is of size  and all ountable elementary submodels are listed asfM� : � 2 g. However, we often require that � � M� \ . This is not always possible, for instane,if � < !. Indeed, beause ! 2 M� for all � 2 , many small ordinals, suh as !!, are ontained inevery ountable elementary submodel. Thus, the listing is started from some �xed ordinal � so that, forall � > �, � � M� \ . The neighbourhoods of points in  are de�ned almost entirely by �nitely manysubsets of . Through expressing this funtionally, it is possible to obtain all but one of the properties ofeah example from quite simple restraints on the funtions involved. The remaining property is reduedto a ombinatorial relationship between speial funtions on  and P(). These funtions are de�nedin an indution of length  where the values of the funtions involved at � 2  are determined by the�th elementary submodel in the list. This de�nition involves a diagonalisation proedure on families ofpairwise-disjoint �nite sets. That they satisfy the required ombinatoris is shown by using somethingakin to a �-system whih redues all ases into one involving a pairwise-disjoint family. Beause of theimportane of the �-system, it is bene�ial to be au fait with the proof of Theorem 6.2.6.A Q-set spaeA Q-set is an unountable subset of the reals, every subset of whih is a GÆ-set. Under MA + :CH,every unountable subset of R of size less then  is a Q-set and, under 2! < 2!1 , there are no Q-sets. Aswell as this, muh work has been done in showing whether Q-sets do and do not exist in a wide range ofdi�erent models of ZFC. For a good summary of this work, see Balogh's artile [B1℄.Their signi�ane omes in that they provide an easy onstrution of a separable, normal, non-metrizableMoore spae. The spae in question is the subspae (A � f0g) [ (R � (0;!)) of the usual tangent disspae where A is a Q-set.The generalisation of a Q-set, a Q-set spae, is one in whih every subset is a GÆ-set but not for trivialreasons. That is, a Q-set spae is also regular, zero-dimensional spae but not �-disrete (the ountableunion of disrete subspaes). Given that there are many models of ZFC in whih Q-sets do not exist, it isoneivable that there are models in whih there are no Q-set spaes. Balogh's example [B1℄ shows thatthis is not the ase as there is a Q-set spae in ZFC.Balogh's spae, whih we shall all X , has  as its underlying set where the topology is de�ned in termsof the following funtions:For all Y � , GY : ! ! + 1 and GY;n : ! ! are de�ned suh that G�1Y (!) = Y .For eah Y �  and n; k 2 !,U(Y; n; k; 1) := f� 2  : GY (�) > n;GY;n(�) = kgU(Y; n; k; 0) :=  n U(Y; n; k; 1)The topology is then given by the sub-base B = fU(Y ; n; k; i)g : Y � ; n; k 2 ! and i 2 f0;1gg:Clearly, this means that every element of the sub-base is lopen and hene that the spae is both regularand zero-dimensional. Moreover, G�1Y ((n; !℄) = [k2!U(Y; n; k; 1)whih means that for eah n 2 !, G�1Y ((n; !℄) is open. Also,Y = \n2!G�1Y ((n; !℄)



so that every subset of X is a GÆ . It follows from this that X is T1.Remark The purpose of the GY;n's is simply to allow an easy proof of regularity by delaring thesub-base to onsist of lopen sets. This ould not be done using the GY 's alone as this would mean thatevery subset is the intersetion of losed sets hene losed. This makes the spae disrete!!As we have a spae for all possible GY 's and GY;n's whih we ould de�ne, the trik now is to arefullyde�ne them so as to avoid �-disreteness.Suppose the spae were �-disrete so that X = Sn2! An where the An are disjoint disrete subsets.De�ne f : ! ! by f(�) = n if and only if � 2 An and h : ! [B℄<! so that fTh(�) : � 2 f�1(n)g is aset of neighbourhoods witnessing that eah An is disrete. That is, � 2 Th(�) and if f(�) = f(�) then� 62 Th(�). The G's are de�ned in suh a way as to kill o� all of these pairs.List all ountable elementary submodels up to isomorphism type as fM� : � 2  n �g in suh a way that,for � > �, � � M� \ . The G's are now de�ned by indution. For all � 6 �, take GY (�) and GY;n(�)to be de�ned arbitrarily though still satisfying G�1Y (!) = Y for all Y � . Suppose that for � 2 , for all� < � , GY (�) and GY;n(�) have been de�ned.In order to prevent a pair f and h from witnessing �-disreteness, we need to enlarge some of theneighbourhoods already de�ned by GY (�) and GY;n(�) for � < �. However, not every suh pair needsto be onsidered. As will beome lear, any h and f an be redued to a anonial one for whih thereexists k 2 ! suh that f�h(�)g�2f�1(k) ontains an in�nite pairwise-disjoint olletion. We an simplifyfurther by disguising the �bres of f as just some in�nite subset of .As M� is ountable, we an list all h :  ! [B℄<! and in�nite subsets A of  whih are in M� byfhi : i 2 !g and fAj : j 2 !g respetively. Also de�ne �h(�) = fY �  : there exist n, k 2 ! andi 2 f0; 1g suh that U(Y; n; k; i) 2 h(�)g. Denumerate all pairs hi; ji 2 !2 for whih f�hi(�)g�2Aj is anin�nite pairwise disjoint olletion by fhin; jni : n 2 !g. Thus, for eah n 2 !,V j= f�hin(�)g�2Ajn is an in�nite pairwise disjoint olletionIt is not too hard to rephrase this as a logi formula and then use elementarity to show thatM� j= f�hin(�)g�2Ajn is an in�nite pairwise disjoint olletionDe�ne �1 to be an arbitrary ordinal in Aj1 \M�. Given �1 : : : �n�1, hoose �n 2 Ajn \M� suh that�n 62 f�1; : : : ; �n�1g and �hin(�n) \ [m<n�him(�m) = ;This is possible as Sm<n �him(�i) is a �nite olletion of Y 's yet, by the previous omments,M� thinksthat f�hin(�)g�2Ajn ontains an in�nite, disjoint olletion of �nite sets onsisting of Y 's. The de�nitionof the �n means that the following funtion is well-de�ned:n�(Y ) = �n if and only if Y 2 �hn(�n)Whenever n�(Y ) = �m, de�ne GY (�) > maxfn 2 ! : U(Y; n; k; i) 2 him(�m) for some k 2 !, i 2 f0; 1ggand still satisfying GY (�) = ! if and only if � 2 Y . As him(�m) is a �nite set, this is a good de�nition.For eah n 2 !, if for some k 2 !, �m 2 U(Y; n; k; 1) 2 him(�m) then let GY;n(�) = k. Suh a k is theunique value of GY;n(�m) hene this de�nition is also good. If there is no suh k for the given n, thenhoose GY;n(�) so that it is not equal to any k for whih �m 2 U(Y; n; k; 0) 2 him(�m). Again, this isa good de�nition sine him(�m) is �nite. Otherwise, de�ne GY (�) and GY;n(�) arbitrarily apart fromensuring that GY (�) = ! if and only if � 2 Y .The upshot of this de�nition is that if �m 2 U(Y; n; k; i) 2 him(�m) for suitable n, k and i, then� 2 U(Y; n; k; i).This ompletes the onstrution of the spae X . We have that X is a Q-set spae provided we an showthat it is not �-disrete. By all of the previous disussion, this follows from:



Theorem 6.3.1 Given any h : ! [B℄<! and f : ! ! suh that, for all � 2 , � 2 Th(�), there exist� < � <  suh that f(�) = f(�) and � 2\h(�)Proof Take a ountable elementary submodel whih ontains f , h, fGY , GY;n : Y � , n 2 !g, . Thissubmodel is isomorphi to M� for some � 2 . Note, we assume that � 62 M� . Let f(�) = m 2 ! sof(�) 2M� and, as a �nite subset ofM� , h(�) \M� 2M� . De�ne 	(�;A) to be the sentene:(f(�) = f(�)) ^ 8�0 2 A((� 6= �0)! (�h(�) \ �h(�0) = �h(�) \M�))Sine the only objets in 	(�;A) are elements ofM� , 	(�;A) is absolute for V andM�. It is lear thatV j= 9�0 2 (	(�0; ;)^(�h(�0) � �h(�)\M�)), namely, � is the �0 whih V has in mind. By elementarity,M� j= 9�0 2 (	(�0; ;) ^ (�h(�0) � �h(�) \M�)) Take �0 2 M� whose existene is asserted by thisstatement and de�ne A0 = f�0g . From the de�nition of �0, it follows that M� j= 8� 2 A0(	(�;A0)).Just as in the proof of Theorem 6.2.6, use Zorn's Lemma to �nd an A 2 M� suh thatM� j= 8� 2 A(	(�;A)) ^ 8 2 (	(;A)!  2 A)For any � 2 A, V j= 9�0 > �(	(�0; A)), namely �, and elementarity gives thatM� j= 9�0 > �(	(�0; A)).Find an �0 2M� whih witnesses this. By maximality of A inM�, �0 2 A. Hene, for any � 2 A, thereis �0 > � whih is also in A. Thus A is in�nite and, for all � 2 A, 	(�;A). This implies that f�h(�)g�2Ais an in�nite �-system with root h(�) \M� . Hene, de�ne (inM�), h0 : ! [B℄<! byh0(�) = h(�) n (h(�) \M�)Clearly, f�h0(�)g�2A is an in�nite pairwise-disjoint olletion suh that h0, A 2 M�. Thus, there is anm 2 ! suh that h = him and A = Ajm . Take � = �m. These � and � will satisfy the theorem.By de�nition, � 2 A so 	(�;A) and f(�) = f(�). We must show that � 2 Th(�). That is, we mustshow that for every U(Y; n; k; i) 2 h(�) that � 2 U(Y; n; k; i).Consider suh a U(Y; n; k; i) 2 h(�). By the way in whih � was de�ned, h(�) is the disjoint union ofh0(�) and h(�) \M� . Thus, there are two ases:1. U(Y; n; k; i) 2 h(�) \M� . In whih ase, as � 2 Th(�), � 2 U(Y; n; k; i).2. U(Y; n; k; i) 2 h0(�). As h0(�) = him(�m), from the de�nition of GY (�) and GY;n(�), if � 2U(Y; n; k; i) then � 2 U(Y; n; k; i). But we know � 2 Th(�) hene � 2 U(Y; n; k; i).This ompletes the proof. 2A normal, not olletionwise Hausdor� spaeIn [R3℄, Rudin desribed this spae as an answer to a question of Dowker. However, the spae alsoprovides an example of a normal, not olletionwise Hausdor� spae whih only has ardinality . Priorto this, the standard example of suh a spae was Bing's famous example (G) whih has ardinality 22!1[Bi℄.Rudin's original onstrution does not refer to elementary submodels but it learly has all the ombina-torial oding whih they disguise. In [Do℄, Dow suggested a way to introdue elementary submodels intothe proof. His method, though, is only skethed and, for those unfamiliar with reetion tehniques, itis hard to deipher what he intends. We therefore give here a full presentation of Rudin's spae usingelementary submodels in exatly the same way as in the previous onstrution.



The set underlying the spae is the ontinuum with all pairs of points from the ontinuum, that is,X =  [ [℄2. The topology is as follows. Eah pair f�; �g 2 [℄2 is isolated. A point � 2  has sub-basi neighbourhoods onsisting of the point � and some subolletion of [℄2 for whih every pair in thesubolletion ontains �. More preisely, we shall de�ne f :  � P() ! P() and then let the sub-basineighbourhoods be: U(�; Y;K) = f�g [ ff�; �g : � 2 f(�; Y ) nKgwhere K is some �nite subset of .With this topology, [℄2 is a olletion of isolated points so that  is a losed subset of X . Beause anysub-basi neighbourhood of � 2  does not meet  anywhere else,  is a losed disrete subset of X . Itis preisely this subset whih will not be pointwise separated by a disjoint olletion of open sets in X .However, it is interesting to note that the only way two neighbourhoods of distint points � and � in an meet is if they both ontain f�; �g. Thus the possibility of X being olletionwise Hausdor� isdestroyed by a single point!The K in the de�nition of the sub-basi neighbourhoods is enough to guarantee that the spae is T1.To make the spae normal, we begin to put some restraints (albeit rather weak ones) on f . Consider twodisjoint losed subsets Y and Z. Isolated points in Y and Z do not ause problems when it omes toseparating Y and Z. Thus we may assume that Y and Z are subsets of . But then, sine  is a loseddisrete set,  nY is losed and disjoint from Y and ontains Z. Hene, it suÆes to provide a separationof Y from its omplement in . Y is used to index the sub-basi neighbourhoods of the � 2  whih wouldahieve this separation.Consider the following ondition whih we shall all (y):for all Y � , � 2 Y and � 62 Y implies � 62 f(�; Y ) or � 62 f(�; Y )Given this, we an simply de�ne U = S�2Y U(�; Y; ;) and V = S� 62Y U(�; Y; ;). Clearly they areopen sets whih ontain Y and  n Y respetively. If they were not disjoint, then for some � 2 Y and� 2  nY , U(�; Y; ;) meets U(�; Y; ;) and that must our at the point f�; �g. But this would mean that� 2 f(�; Y ) and � 2 f(�; Y ) whih ontradits (y). Hene U and V are the required separation.We must now ensure that f satis�es (y). For eah � 2  and Y � , de�ne g�;Y : ! 2 to be any funtionand de�ne: ��(Y ) = � Y � 2 Y n Y � 62 YLet f(�; Y ) = ��(Y ) [ f� > � : g�;Y (�) = 1g [ f� < � : g�;Y (�) = 0gLemma 6.3.2 For any olletion of g�;Y , the resulting f satis�es ondition (y).Proof Suppose that Y � , � 2 Y and � 62 Y . Assume that � < �. The other ase is almost idential.Suppose too, for ontradition, that � 2 f(�; Y ) and � 2 f(�; Y ).Sine ��(Y ) =  n Y , � 2 f(�; Y ) means that � 2 f� < � : g�;Y (�) = 0g, that is, g�;Y (�) = 0. Similarly,� 2 f(�; Y ) means that g�;Y (�) = 1 whih gives the ontradition. 2So overall, given any olletion of g�;Y 's and f de�ned as above, X is a normal, T1 spae. We an nowuse elementary submodels to onstrut the g�;Y and prevent X from being olletionwise Hausdor�.Suppose X were olletionwise Hausdor�. Then there exists h : ! [P()℄<! and k : ! [℄<! suh thatfTY 2h(�) U(�; Y; k(�)) : � 2 g is a disjoint family of open sets whih separate all the points in . Note,the basi open neighbourhoods U(�; Y;K) should have a di�erent K for eah Y but as the intersetionsare �nite and the K's are �nite they an be joined into a single k(�). To prevent suh a separation, we



need to build the g�;Y suh that for every possible andidate for h and k, there exist � < � <  suh thatTY 2h(�)U(�; Y; k(�)) meets TY 2h(�)U(�; Y; k(�)). This would happen if (�):� 62 k(�) and, for all Y 2 h(�), � 2 f(�; Y )� 62 k(�) and, for all Y 2 h(�), � 2 f(�; Y )List all the ountable elementary submodels up to isomorphism type as fM� : � 2  n �g and assumethat � � M� \ . For � < � de�ne g�;Y (�) arbitrarily. We will de�ne g�;Y (�) for all � 2  and Y � .List all h :  ! [P()℄<! in M� and all in�nite subsets A of  in M� as fhi : i 2 !g and fAj : j 2 !grespetively. As in the Q-spae onstrution, there are only ertain h's and A's whih we need worryabout. Thus, let fhin; jni : n 2 !g be an enumeration of the pairs hi; ji 2 !2 for whih fhi(�)g�2Aj isan in�nite pairwise-disjoint olletion. The enumeration is done in suh a way that eah pair is listedin�nitely many times.Now �x �1 2 Ai1 \ M� . Given �1; : : : ; �n�1 2 , using elementarity just as in the Q-spae, de�ne�n 2 Ajn \M� suh that �n 62 f�1; : : : ; �n�1g andhin(�n) \ [m<nhim(�m) = ;This is possible sine eah of the him(�m) is a �nite set andM� thinks that fhin(�)g�2An is an in�nitepairwise-disjoint olletion.De�ne n�(Y ) = �n if and only if Y 2 hin(�n). Otherwise, n�(Y ) is not de�ned. This is a good de�nition,sine if for some Y � , Y 2 hin(�n), then, beause the him(�im) form a disjoint olletion, the �n forwhih this ours is unique.Now let g�;Y (�) = � 1 if n�(Y ) = �0 otherwiseX is then built as already desribed from these g�;Y and as to be hoped:Theorem 6.3.3 Given any h : ! [P()℄<! and k : ! [℄<!, (�) is satis�ed.Proof Take a ountable elementary submodel whih ontains h, k, , P(), and fg�;Y : � 2  and Y � g.This submodel is isomorphi toM� for some � 2  (remember that � �M� \ ). Sine h(�) is a �niteset, h(�) \M� is a �nite subset ofM� and hene is an element ofM� . Thus de�ne �(�;A) to be theformula:((��(Y ) = ��(Y ))$ (Y 2 h(�) \M�)) ^ 8�0 2 A((� 6= �0)! (h(�) \ h(�0) = h(�) \M�))V j= 9�0 2 (�(�0; ;)^(h(�0) � h(�)\M�)), namely V thinks � satis�es this statement. By elementarity,M� j= 9�0 2 (�(�0; ;) ^ (h(�0) � h(�) \M�)). Find an �0 2 M� whih witnesses the truth of thisstatement. If A0 = f�0g then M� j= 8� 2 A0(�(�;A0)). Now, applying Zorn's Lemma, produe amaximal suh A 2M�, that is:M� j= 8� 2 A(�(�;A)) ^ 8 2 (�(;A)! ( 2 A))For any � 2 A, V j= 9�0 > �(�(�0; A)), namely �. Elementarity givesM� j= 9�0 > �(�(�0; A)). Findsuh an �0 2 M� and maximality of A inM� implies that �0 2 A. Hene, for any element of A there is astritly greater one whene A is in�nite. From the de�nition, for all � 2 A, �(�;A) and hene fh(�)g�2Ais a �-system with root h(�) \M�. De�ne h0 : ! [P()℄<! byh0(�) = h(�) n (h(�) \M�) for all � 2 :



This means fh0(�)g�2A is an in�nite pairwise-disjoint olletion where h0 and A 2 M� . Hene, thereexists m 2 ! suh that h0 = him and A = Ajm . Moreover, as a pair h0 and A were listed in�nitely oftenand k(�) is �nite, we may ensure that �m 62 k(�).We will now show that � = �m and � are those required in (�).By de�nition, � 2 M� so � < �. Also � 62 k(�). Sine k, � 2M� , it is not too hard to use elementarityto show that k(�) 2 M� . But then as a �nite element of M�, k(�) is also a subset of M� and hene� 62 k(�).Now onsider Y 2 h(�). Either Y 2 h(�) \M� or Y 2 h(�) n [h(�) \M� ℄. If the �rst ase holds then,by the fat that � 2 A, �(�;A) holds and ��(Y ) = ��(Y ). Clearly, from the de�nition of ��, � 2 ��(Y )and hene � 2 ��(Y ). But ��(Y ) � f(�; Y ) so � 2 f(�; Y ).If Y 2 h(�) n [h(�) \M�℄, then Y 62 M�. But him = h0 2 M� and � = �m 2 M� , thus h0(�) 2 M� .Moreover, as a �nite element of M� , h0(�) is a subset of M� . Hene, Y 62 h0(�) so n�(Y ) 6= � andg�;Y (�) = 0. From the de�nition of f , this implies that � 2 f(�; Y ) and we have demonstrated one halfof (�).Suppose that Y 2 h(�). Then either Y 2 h(�) \M� or Y 2 h0(�) = h(�) n [h(�) \M�℄. Just as for theabove, Y 2 h(�) \M� means that � 2 f(�; Y ).If Y 2 h0(�), n�(Y ) = �. But then g�;Y (�) = 1 from whih it follows that � 2 f(�; Y ).Hene (�) is satis�ed. 2A small Dowker spaeA Dowker spae is a normal Hausdor� spae the produt of whih with the unit interval is not normal.Suh spaes are named after Dowker who showed that:Theorem 6.3.4 [D℄ For a normal spae X, the following are equivalent:1. X � I is normal2. X is ountably paraompat3. X is ountably metaompat4. For every ountable open over U = fUn : n 2 !g, there is an open over V = fVn : n 2 !g suhthat Vn � Un for all n 2 !5. For any inreasing sequene of open sets fGn : n 2 !g whih over X, there is an inreasingsequene of losed sets fFn : n 2 !g whih also overs X and suh that Fn � Gn for all n 2 !He then asked if all normal Hausdor� spaes are ountably paraompat. Answering this question hasprovoked a great deal of exiting work and Dowker's haraterisations (5) of ountable paraompatnesshas been ruial in attaking the problem. The question was �nally answered by Rudin [R1℄ who produeda Dowker spae in ZFC. However, the example is \big" in many senses, for example, it has weight andardinality (!!)! . This has provoked the question of whether Dowker spaes ould be smaller than this.Many exellent examples of small Dowker spaes have been given in various models of set-theory, see[R4℄, but until reently Rudin's remained the quintessential Dowker spae in ZFC.In 1994, Balogh announed at the Spring Topology Conferene that he had found a small Dowker spaein ZFC - one whih was hereditarily normal, �-disrete and of ardinality . His onstrution makesessential use of elementary submodels. Some have hallenged that it is not truly \small" beause it is



not �rst ountable but it is indisputably a truly new example of a Dowker spae and, as suh, is of greatvalue. We desribe here the spae based on [B2℄.The spae has its roots in the normal, not olletionwise Hausdor� spae whih has just been desribed.Whereas that spae is made up of two \layers",  and [℄2, the Dowker spae has ountably many andthe underlying set is X =  � !. Take Xn =  � fng and Gn =  � (n + 1). Eah Xn will be disreteand fGn : n 2 !g will be the open over witnessing that X is not ountably paraompat. That is, ifFn � Gn are losed sets for eah n 2 ! then Sn2! Fn 6= X .The basi open neighbourhoods are de�ned in terms of loal network elements. More preisely, for apoint h�; ni 2 X , if n = 0 then N(h�; ni; Y;K) = fh�; nig. For n > 0, we shall de�ne f : �P()! P()and take N(h�; ni; Y;K) = fh�; nig [ fh�; n� 1i : � 2 f(�; Y ) nKgwhere K is a �nite subset of . The presene of the K ensures that X is T1. A set U is open if and onlyif, for every point x 2 U , there exist C 2 [P()℄<! and K 2 [℄<! suh that\Y 2CN(x; Y;K) � UThis de�nition immediately implies that Gn is open and Xn is disrete for all n 2 !. In partiular, X0is the set of all isolated points of X .Normality will follow from a straightforward boot-strapping argument one it has been shown that anytwo disjoint losed sets in Xn an be separated by disjoint open sets. Beause eah Xn is disrete, wemust onsider any pair of disjoint sets in Xn. The proof of this proeeds by indution, the ase forX0 being trivial. Thus assume that for some n 2 !, if B0, B1 � Xn�1 are disjoint then they an beseparated by disjoint open sets. Consider Xn. As in the previous example, it suÆes to show that forany A � Xn, A an be separated from its omplement. To do this we plae a onstraint on the f(�; Y ):de�ne g : P()! P() and set f(�; Y ) = � g(Y ) if � 2 Y n g(Y ) if � 62 YIf Y = f� 2  : h�; ni 2 Ag, it is lear that A[ (g(Y )�fn� 1g) ontains N(h�; ni; Y; ;) for all h�; ni 2 Aand (Xn n A) [ ( n g(Y ) � fn � 1g) ontains N(h�; ni; Y; ;) for all h�; ni 62 A. g(Y ) � fn � 1g and n g(Y ) � fn� 1g are disjoint subsets of Xn�1 and, by the indutive hypothesis, they an be separatedby disjoint open sets U and V . (We may assume that U [ V � Gn�1.) It then follows that A [ U and(Xn nA) [ V are disjoint open sets separating A from its omplement in Xn. Hene X is normal.To show that X is not ountably paraompat, Balogh introdues the notion of �-deomposable. As thisis always used negatively, we de�ne rather the term indeomposable. A subset A of  is indeomposableif for any l : A ! !, h :  ! [P()℄<! and k :  ! [℄<! , there exist �, � 2  suh that l(�) = l(�) and� 2 Tff(�; Y ) n k(�) : Y 2 h(�)g. In other words, (z)l(�) = l(�), � 62 k(�) and, for all Y 2 h(�), � 2 g(Y ) if and only if � 2 YBeause of the presene of l in this de�nition, if Y is indeomposable and the ountable union of somesets then one of those sets must also be indeomposable. Moreover,Lemma 6.3.5 If n 2 ! and Y �  is indeomposable then Y1 = f� 2 Y : h�; n + 1i 2 Y � fngg isindeomposable.Proof De�ne Y0 = Y n Y1. If � 2 Y0 then h�; n + 1i 62 Y � fng. Hene, there exist Y1; : : : ; Yk 2 P()and K1; : : : ;Kk 2 [℄<! suh that k\i=1N(h�; n+ 1i; Yi;Ki) \ Y = ;



Therefore, Tki=1(f(�; Yi)nKi)\Y = ; and, for all � 2 Y , � 62 Tki=1 f(�; Yi)nKi. By de�ning h(�) = fYi :i = 1; : : : ; kg, k(�) = Ski=1Ki and l(�) = 0, it is easy to hek that the resulting h, k and l witness thatY0 is deomposable. But Y = Y0 [ Y1 and Y is indeomposable hene Y1 must also be indeomposable.2The key to the onstrution is proving that for some suitable g,  is indeomposable. Given this, onsiderthe open over fGm : m 2 !g of X . Suppose fFm : m 2 !g is a sequene of losed sets whih also overX . De�ne Ym = f� 2  : h�; 0i 2 Fmg. It must be that  = Sm2! Ym and sine  is indeomposable, forsome m0 2 !, Ym is indeomposable. Now Fm0 � Ym0 � f0g and, by induting up using the Lemma, forall n 2 !, Xn \ Fm0 6= ;. In partiular, Fm0 6� Gm0 . Hene, X is not ountably paraompat.This ompletes the desription of the Dowker spae. It remains to prove:Theorem 6.3.6 There is a g : P()! P() whih makes  indeomposable.Remark A notieable di�erene in this onstrution is the use of pairs of elementary submodels ratherthan only one at a time. The reason for this is that in the proess of de�ning the g(Y ), there are twoases to be onsidered. The �rst ase treats what happens on the root of some �-system and the seond,what happens o� the root. In the previous examples, what happens on the root has been quite trivialbut for this example more are must be taken. However, it is impossible to predit beforehand what thisroot will be! What we an say though is that, from the proof of the �-system whih we have given, wean ensure that the root will always lie within any suitable ountable elementary submodel. Moreover,anything whih is not in the root is not in that submodel.Proof List all ountable elementary submodels as fM� : � 2  n �g and, for eah � 2 , hoose anotherountable elementary submodel N� for whihM� 2 N� . Note that sineM� is a ountable element ofN� it is also a subset and anything whih is plaed inM� is automatially in N� . We may also assumethat � �  \N� whene � 62 N� .For all Y 2 P(), we indutively de�ne whether � 2  is an element of g(Y ) or not by onsidering themodel N� . List all the funtions h : ! [P() nM�℄<! and in�nite subsets A of  in N� as fhi : i 2 !gand fAj : j 2 !g respetively. It will beome apparent that we will only need to deal with ertain h andA. Thus, let fhin; jni : n 2 !g be a denumeration of the pairs hi; ji 2 !2 suh that fhi(�)g�2Aj is anin�nite disjoint olletion.Just as in the Q-spae onstrution, use the elementarity of N� to hoose �n 2 Ajn \ N� suh that�n 62 f�1; : : : ; �n�1g and hin(�n) \ [m<nhim(�m) = ;Beause fhin(�n)gn2! forms a disjoint olletion, setting n�(Y ) = � if and only if Y 2 hin(�n) is a goodde�nition.In order to de�ne g(Y ), there are two ase to onsider as mentioned in the remark preeding the proof:1. For Y 2 M�, � 2 g(Y ) if and only if � 2 Y2. For n�(Y ) = �, � 2 g(Y ) if and only if � 2 Y .Sine the range of all the hi's missesM� , the two ases are not oniting. For Y 2 P(), � is plaedarbitrarily in g(Y ).This ompletes the de�nition of the g and it remains to show that this does make  indeompos-able.Consider some h :  ! [P()℄<!, l :  ! ! and k :  ! [℄<! . We wish to �nd � 2 � 2 satisfying (z) above.



De�ne �h(�) = fY 2 h(�) : � 2 Y g. Take an elementary submodel ontaining g, h, l, k, , P() andf�h(�)g�2. This submodel is isomorphi to M� say. Reall, � 62 N� and M� � N� . Sine h(�) is a�nite set, h(�)\M� and �h(�)\M� are �nite subsets ofM� and are hene elements ofM�. l(�) beinga natural number is also an element ofM�. De�ne �(�;A) to be the statement:(l(�) = l(�)) ^ (h(�) \M� = h(�) \M�) ^ (�h(�) \ h(�) \M� = �h(�) \M�) ^^8�0 2 A(� 6= �0 ! h(�) \ h(�0) = h(�) \M�)One again � ensures V j= 9�0 2 (�(�0; ;)). By elementarity, N� j= 9�0 2 (�(�0; ;)). Find �0 2 N�whih is asserted to exist by this expression. If A0 = f�0g then N� j= 8� 2 A0(�(�;A0)). Just as in theprevious examples, apply Zorn's Lemma to �nd a maximal suh A 2 N� so that:N� j= 8� 2 A(�(�;A)) ^ 8 2 (�(;A) !  2 A)Also as previously, A is an in�nite element of N� and for all � 2 A, �(�;A) holds. In partiular,fh(�)g�2A is a in�nite �-system of sets whih only meet M� on the root h(�) \M� . De�ne h0 :  ![P() nM�℄<!, by h0(�) = h(�) n (h(�) \M�)Thus, fh0(�)g�2A is an in�nite pairwise-disjoint family and h0 and A were listed so that, for some n 2 !,h0 = hin and A = Ajn . Take � = �n. � and � will satisfy (z).First, sine � 2 A\N� and k 2 N� , k(�) 2 N� whene � 62 k(�). As � 2 A, �(�;A) holds . This meansl(�) = l(�). Now, we know that h(�) = (h(�) \M�) [ h0(�) and that this union is disjoint. There aretwo ases to onsider:1. For Y 2 h(�) \M�, � 2 Y if and only if Y 2 �h(�). �(�;A) implies that �h(�) \ h(�) \M� =�h(�) \ M� . Therefore, Y 2 �h(�) if and only if Y 2 �h(�) if and only if � 2 Y . From thede�nition of g(Y ), � 2 g(Y ) if and only if � 2 Y if and only if � 2 Y .2. For Y 2 h0(�), n�(Y ) = � and � 2 g(Y ) if and only if � 2 Y .Thus for all Y 2 h(�), � 2 g(Y ) if and only if � 2 Y . That is, � and � do indeed satisfy (z) and  isindeomposable. 2
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