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Abstract

Boundary Properties and Construction Techniques
in General Topology

Paul A. Cairns D.Phil. Thesis
Corpus Christi College Submitted 2274 September, 1995
Oxford OX1 4JF

The aim of this thesis is twofold. First, we investigate spaces defined by asserting that their nowhere dense
subsets have certain properties. Secondly, we develop some techniques for the construction of topological
spaces.

We consider spaces where the nowhere dense sets are asserted to have some property P, calling such
spaces boundary-P. We show that if there are no Lusin spaces then every compact boundary-metrizable
space is metrizable. Boundary-separability is also studied and we show that if there are no L-spaces then
every boundary-separable space is separable.

By adapting the absolute dimension function of Arhangel’skii, we define the new concept of cohesion. We
show that every compact cohesive and every Hausdorff, sequential cohesive space is scattered. However,
we construct regular, crowded spaces of all finite cohesions though there are no regular spaces of transfinite
cohesion. We consider too the preservation of cohesion under various mappings and under the formation
of products.

Turning to construction, we consider the class of compact monotonically normal spaces. It is well-known
that it contains the class of spaces which are the continuous images of compact ordered spaces but it is
still open as to whether they are actually distinct classes. Using Watson’s resolutions, we give a method
for constructing monotonically normal spaces. Though this also preserves continuous images of arcs, we
show that it is because of a powerful result of Cornette rather than any trivial observation.

We also examine more closely monotone normality in images of compact ordered spaces using the Collins-
Roscoe structuring mechanism. From this, we extract a strong instance of the mechanism, linear chain
(F), which is held by all images of ordered compacta and all proto-metrizable spaces and implies Junnila’s
concept of utter normality.

Elementary submodels are an important tool in the construction of topological spaces. We develop
a general method for applying them in varying circumstances and illustrate it by constructing three
examples: Balogh’s Q-set space, Rudin’s normal but not collectionwise Hausdorff space and Balogh’s
small Dowker space.
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Chapter 1

Introduction

1.1 An outline of the thesis

This thesis divides into three main sections: the first consisting of Chapters 2 and 3 deals with spaces
where the nowhere dense subsets are asserted to have certain properties; the second (Chapter 4 and 5)
addresses some topics concerning compact monotonically normal spaces; the third (Chapter 6) develops
the use of elementary submodels in topology.

Nowhere dense subsets are fundamental objects in topological spaces and their importance is evident
in such powerful results as the Baire Category Theorem and the topological reformulation of Martin’s
Axiom, see [K;] p.62. Despite this, there are few instances where classes of spaces have been defined by
asserting that the nowhere dense subsets have certain properties.

The most prominent example of a theory which is founded on the properties of nowhere dense sets is
dimension theory. Here, the small inductive dimension ind and the large inductive dimension Ind are
defined as follows:

Definition 1.1.1 For a space X, indX = —1 = IndX if and only if X = (). Then inductively, for n € w,
indX < n if and only if X has a basis of open sets whose boundaries have small inductive dimension
strictly less than n. Similarly, IndX < n if and only if, for every closed subset C' of X and open set
U containing C, there is an open set V in X for which C C V C U and the boundary of V has large
inductive dimension strictly less then n.

Thus, these dimension functions can be regarded as asserting that certain closed nowhere dense subsets
(the boundaries referred to in the definitions) fit into the given inductive hierarchy. However, even in
spaces with well-defined dimension in both senses, there are still many nowhere dense subsets which are
entirely unrestricted by this definition. Because of this, the inductive dimensions are rarely considered
in terms of nowhere dense sets.

As a strengthening of these definitions, Arhangel’skii [A»] defined the notion of absolute dimension. This
gives the same meaning to zero-dimensional as the small inductive dimension but the higher dimensions
are modified so that, for n € w, a space has absolute dimension at most n if every nowhere dense subset
has absolute dimension strictly less than n. Absolute dimension was defined as a tool by which to study
cleavability over the reals but only a few facts about it were used.

Possibly the most well-known example of a space all of whose nowhere dense sets have a given property
is a Lusin set. This is an uncountable subset of the real line for which every nowhere dense subset is
countable (see [M]). Lusin sets are easily constructed under the Continuum Hypothesis but it is also
consistent, for instance under Martin’s Axiom and the negation of the Continuum Hypothesis, that there

are none. However, they are very useful, occurring 4in a number of different places in topology. Kunen



[K>] has also extended the definition to give the more general concept of a Lusin space.

There is a much less well-known body of work which considers spaces all of whose nowhere dense subsets
have a given covering property. This work was initiated by Katétov [Ka] who proved that T; spaces
without isolated points in which every closed nowhere dense subset is compact are themselves compact.
Mills and Wattel [MW] and Blair [Bl] have generalised this result to encompass a wide range of different
covering properties including countable compactness, the Lindel6f property and pseudo-compactness.

Our aim in Chapter 2 is to study spaces whose closed nowhere dense subsets all have P for various
topological properties P. Such spaces are said to have the new property boundary-P. We consider three
main cases of P being metrizability, separability and scattered-ness, in each case giving conditions which
determine when boundary-P spaces have P. We obtain the rather surprising results that if there are no
Lusin spaces then every compact boundary-metrizable space is metrizable and if there are no L-spaces
then every boundary-separable space is separable.

In Chapter 3, we define a dimension-like function which we call cohesion. This is based on absolute
dimension but, in order to avoid imposing atypical, good behaviour in the lower “dimensions”, the base
case of the definition is altered: a space has cohesion zero if and only if it is discrete. We examine many
properties of cohesion, its effect on scattered, crowded and compact spaces applying some results from the
previous chapter. The preservation of cohesion under various topological constructions is also considered.

Monotonically normal spaces have proven themselves to be an important class of spaces ever since their
definition in 1973 [HLZ]. They include many of the major types of spaces such as metrizable spaces and
ordered spaces. Yet, even with such diversity, they have a great deal of structure. For some of the more
elegant results on monotone normality, see [HLZ], [G], [Mi] inter alia.

One of the most exciting problems concerning monotonically normal spaces comes from a quite unexpected
direction, namely, from attempting to generalise the Hahn-Mazurkiewicz Theorem. The classical Hahn-
Mazurkiewicz Theorem states that a Hausdorff space is the continuous image of the unit interval in the
real line if and only if it is a non-empty, metrizable, locally connected continuum. As the unit interval
is the unique metrizable arc, the natural generalisation would be to say that a space is the continuous
image of an arc if and only if it is a locally connected continuum. However, this is not the case as is
demonstrated by an example of Mardesi¢ [Ma]. Actually, counter-examples are easily found on noting
that continuous images of arcs must be monotonically normal. Thus, any locally connected continuum
which is not monotonically normal, for example the product of the closed unit interval with the one point
compactification of the long line, is a counter-example. This does not render Mardesi¢’s example obsolete
because it still has many other nice properties, such as arc-wise connectivity, which might conceivably
have provided alternative characterisations of the continuous images of arcs. But this does provoke
the question: is every locally connected, monotonically normal continuum the continuous image of an
arc (arctic)? Or more generally, there is the famous question of Nikiel, is every monotonically normal
compactum the continuous image of a compact LOTS (CICLOTS)?

Various classes of spaces have been shown to be arctic, see [Way, Na]. Nikiel, following on from the
work of Treybig [Tr] and Ward [Wa], has provided a number of characterisations of arctic spaces [Ny].
These have been extremely useful in determining many of the properties of arctic spaces and also those
of CICLOTS. For a good, brief summary of the main results in this area, see Section 6 of [MO]. However,
the question of whether there is a compact monotonically normal space which is not a CICLOTS is still
open.

There are two main difficulties in answering this problem. The first is that it is very difficult to construct
monotonically normal compacta from which to obtain possible counter-examples to the problem. The
second is that the characterisations of CICLOTS which have been obtained seem to bear little relation
to the monotone normality structure of these spaces.

In Chapter 4, we will turn our attention to constructing monotonically normal spaces by applying Wat-
son’s recently developed theory of resolutions [W]. We give a new type of resolution which does preserve
monotone normality when resolving over a locally connected, monotonically normal continuum.



In Chapter 5, we analyse CICLOTS in a new way using the Collins-Roscoe structuring mechanism. The
structuring mechanism has much in common with monotone normality and properties derived from it,
such as acyclic monotone normality [MRRC] and Borges normality [St2]. Also, it plays a key rdle in
many aspects of the study of generalised metric spaces. We will give a full discussion of the structuring
mechanism and define a new and rather strong instance of it. This is possessed not only by CICLOTS,
as required, but also by all proto-metrizable spaces. As well as this, it implies Junnila’s newly formulated
notion of utter normality.

Another recent development in the construction of topological spaces is the use of elementary submodels.
There have been a number of results which have used them in an essential way for simplifying and eluci-
dating otherwise convoluted proofs. However, as yet there is no standard technique for using elementary
submodels, indeed it seems as if there are as many techniques as topologists who use them!

In Chapter 6, we have developed a method for utilising elementary submodels in a number of different
circumstances. We illustrate the method by applying it in the construction of three important, yet varied,
examples. The three examples are a Q-set space [By], a “small” normal but not collectionwise Hausdorff
space [R3] and a small Dowker space [Ba]. By way of an introduction to reflection techniques, we also
give elementary submodel proofs of some of the basic tools which will be needed in the exposition of the
examples. The work of this chapter has been done jointly with Chris Good and Will Pack and I am very
grateful to them for allowing me to incorporate this work into my thesis.

1.2 Definitions, notation and elementary results

Any terms and notation not explained in this section may be found in [E] or [K'V].
Throughout the thesis, all topological spaces are assumed to be T;.

Some elementary topology

For a topological space X, 7X will denote the topology on X. To avoid confusion, when two distinct
spaces have the same underlying set the spaces will be denoted by different symbols. For the remainder
of this chapter, X and Y are topological spaces.

For A C X, intx A denotes the interior of A in X, A% denotes the closure of A in X and the boundary of

Ain X, bdx A, is defined by bdx A = a¥ \intx A. Where no ambiguity can arise, the X will be omitted
from this notation. A is said to be nowhere dense in X if intA = ().

If a non-empty space X has a basis of clopen sets then X is zero-dimensional. More generally, for a
topological property P, X has rim-P if it has a basis of sets whose boundaries have property P.

For € X, z is an isolated point of X if {x} € 7X otherwise it is an accumulation point. X is discrete if
every point of X is isolated and X is crowded if it has no isolated points. This latter term was introduced
by van Douwen [vD3] and is preferred by the author over the more usual terms “dense-in-itself”, which
is quite clumsy to use, and “perfect”, which has other topological meanings. In fact, we use perfect to
mean that every closed set is a Gg-set, that is, a countable intersection of open sets.

We make explicit a well-known property of isolated points:

Proposition 1.2.1 If A is a subset of X and a € A is an isolated point of A then a is an isolated point
of A.

Corollary 1.2.2 If A C X is crowded then A is also crowded.

A scattered space is one in which every subspace has an isolated point of itself. Taking X? to denote the



set of accumulation points of X, define for each ordinal a:
X0 =x
x(at1) — (X(a))d

X (@) — ﬂ XB) for a a limit ordinal
BEw

It is clear that X is scattered if and only if X(®) = (} for some ordinal «. In this case, the scattered length
of X, denoted sl(X), is the least « for which this holds.

Although nowhere dense sets are natural and familiar topological objects, there are few places in the
literature which explicitly state their basic properties. We therefore set out some of the more elementary
results which will be useful later on. The easier proofs are left to the reader.

Proposition 1.2.3 If ACY C X and Y is nowhere dense in X then A and A% are nowhere dense in
X.

Proposition 1.2.4 If D is a discrete collection of points in a crowded space X then D is nowhere dense.

Proof If, for some U € 7X, U C D and U is non-empty then there exists d € DNU. D is discrete so
{d} € 7D and, by Proposition 1.2.1, {d} € 7D. Thus, there exists V € 7X such that {d} =V N D. As

U C D, {d} = VN U which is an open set in X. This contradicts the fact that X is crowded.
O

Proposition 1.2.5 IfU is a disjoint collection of open subsets of a crowded space X and, for allU € U,
xy is some point in U then {xy : U € U} is nowhere dense.

Proof U is a collection of open sets witnessing that {zy : U € U} is discrete. The result now follows

from Propositions 1.2.4 and 1.2.3.
O

Proposition 1.2.6 IfU is a mazimal disjoint collection of non-empty open sets X then X \|JU is closed
and nowhere dense.

Proposition 1.2.7 For a scattered space X with sl(X) = a for some ordinal o, if 8 < a then X (6+1)
is nowhere dense in X,

Proof It suffices to show that X7 is nowhere dense in X. X¢ is closed in X as it is the complement
of all the isolated points in X. If U € 7X is non-empty, by the definition of scattered, there is a point
x € U which is isolated in U. As an open subset of an open subset of X, {z} € 7X and U contains an
isolated point of X. Thus, no non-empty open set in X is a subset of X¢. That is, X¢ is nowhere dense
in X.

O

Proposition 1.2.8 If X is scattered and Y C X is nowhere dense then Y C X<,

Proof No nowhere dense subset of X can contain any isolated points of X because isolated points are

open in X.
O



Mappings

A continuous mapping f : X — Y is said to be irreducible if f is surjective and for no closed subset A of
X, fla is surjective; open if for all U € 7X, f(U) € 7Y’; closed if for all C closed in X, f(C) is closed in
Y; perfect if f is closed and f~!(y) is compact for all y € Y.

For A C X, define the small image of A under f, denoted f*(A4), tobe {y € Y : f~1(y) C A}.

Closed and irreducible maps are not commonly used in topology but they have some useful properties.
We reproduce here two results which will be important later. Both results are taken from [P].

Proposition 1.2.9 For a surjection f : X =Y

1. f is irreducible if and only if, for every non-empty open subset of X, f*(U) is non-empty

2. f is closed if and only if, for every open subsets of X, f*(U) is open

Proof Note first that, for U C X, f*(U) =Y \ f(X \ U). Using this, both statements follow naturally.

f is irreducible if and only if, for every proper closed subset A of X, f(A) # Y if and ounly if, for every
non-empty open subset U of X, f(X \ U) #Y if and only if, for every non-empty open subset U of X,
f*(U) is non-empty.

f is closed if and only if, for every closed subset A of X, f(A) is closed in Y if and only if, for every open
subset U of X, f(X \ U) is closed in Y if and only if, for every open subset U of X, f*(U) is open in Y.
O

Proposition 1.2.10 If f : X — Y is perfect then there exists A C X which is closed in X such that
fla: X =Y is irreducible and perfect.

Proof TakeU = {U C X : U is open in X and f*(U) = @} and order it by inclusion. If C is a chain in
U, take V = [JC. V is necessarily open. We wish to show that V € U.

If y € f*(V) then f1(y) C V and C is an open cover of f!(y) in X. As f is perfect, f!(y) is compact.
Find a finite subcover for f~!(y) from C, say {U; : i = 1,...,k} for some k € w. The U; are linearly
ordered by inclusion as C is a chain and so there is a largest one, say U; for some j € {1,...,k}. But
then f~'(y) C U;, that is y € f*(U;) which contradicts the fact that U; € U.

Hence V € U which means that every chain in ¢/ has an upper bound in &/ and by Zorn’s Lemma, U/ has
a maximal element, W say.

Take A = X \ W. A is closed from which it easily follows that g = f|4 is perfect. If y ¢ g(A) then
f~Yy)Nn A =0 and f~'(y) C W which contradicts W being in /. Thus g is surjective.

Suppose C'is a proper closed subset of A. Since X \ A C X \ C, X \ C is an open set strictly containing
W so X\ C ¢ U. Hence f*(X \C) # () and there exists y € ¥ such that f~1(y) C X\ C. Hence y & g(C)

and g|¢ is not surjective. Therefore g is irreducible.
O

Set-theoretic notation

We shall always work in ZFC, that is, the Zermelo-Fraenkel axioms with the Axiom of Choice, unless
explicitly stated otherwise. The standard, that is ZFC, set-theoretic universe is denoted by V. CH is the
Continuum Hypothesis, MA is Martin’s Axiom.

As usual, R denotes the real line, Q the rationals and I the closed unit interval in R.



Cardinals are identified with initial ordinals, w denoting the first infinite cardinal and the set of natural
numbers, w; is the first uncountable ordinal, ¢ the cardinality of the continuum.

For f, g € w¥, f < g means that f(m) < g(m) for all m € w, f <, g means that f(m) < g(m) for all
m € w\n and f <* g means f <,, g for some n € w. b denotes the least cardinality of a subset of w*
which is unbounded in (w“, <*). b is an uncountable regular cardinal between w; and ¢ and, regardless
of the value of ¢, these are the only restrictions on the value of b. For more details on b see [vDs].

To avoid confusion with intervals in lines, ordered pairs and n-tuples will be denoted by angle braces, for
example, (z,y).

For a set A, |A| denotes the cardinality of A, P(A) the power set of A. For a cardinal , [A]" is the set
of subsets of A of size x and [A]<" is the set of subsets of A of size strictly less than &.

Cardinal functions

The weight of X, denoted w(X), is the least cardinality of a basis for 7X. If w(X) = w then X is second
countable. The (pseudo-)character of a point z of X, denoted x(z, X) (¢ (z, X)), is the least cardinality of
a local (pseudo-)basis for z in X. The (pseudo-)character of X, denoted x(X) (¢(X)), is the supremum
of the (pseudo-)characters of all points in X. If x(X) = w then X is first countable. The density of X,
denoted d(X), is the least cardinality of a dense subset of X. If d(X) = w then X is separable. The
Lindeldf degree of X, denoted L(X), is the least upper bound on the minimum size of a subcover of any
open cover of X. If L(X) = w then X is simply Lindeldf. The cellularity of X, denoted ¢(X), is the
supremum of the cardinalities of families of disjoint open sets in X. If ¢(X) = w then X satisfies the
countable chain condition or, more simply, is ccc. The spread of X, denoted s(X), is the supremum of
the cardinalities of the discrete subsets of X.

If k is a cardinal function on X then hx(X) = sup{k(Y) : ¥ C X} and hels(X) = sup{s(Y) : YV is a
closed subset of X'}. For a topological property P, X is hereditarily P if every subset of X is P.

Compacta and continua

We shall assume that all compact spaces are Hausdorff and we shall use the term compactum interchange-
ably with compact space. X denotes the Stone-Cech compactification of X. X is locally compact if it
has a basis of open sets whose closures are compact.

A continuum is a connected compactum. A locally connected space is one with a basis of connected open
sets. A point x of a connected space X is a cut-point if X \ {z} is not connected. Given two points a,
b € X, a cut-point x separates a and b if X \ {z} decomposes into two disjoint open sets, one of which
contains a and the other b. A cyclic element of a connected space is a subset which is maximal with
respect to the property of having no cut-point of itself. A cyclic element is trivial if it consists of only
one point.

A dendron is a locally connected continuum all of whose cyclic elements are trivial. Equivalently, any
two points of a dendron are separated by a third.

Cyclic elements are a powerful tool in the study of locally connected continua. They were originally
defined by Whyburn [Wh] for metrizable continua but the theory has been more recently developed for
use in all continua, see [C], [N1]. They are a crucial concept in Nikiel’s characterisation of continuous
images of arcs [Ny].



Ordered spaces

Suppose (X, <) is a linearly ordered set. For a € X, (a,—)x = {x € X :a < z} and («+,a)x = {z €
X :z < a}. Other intervals in X are denoted using the usual conventions of round and square brackets.
If there is a possibility of confusion as to which ordered set is meant, a subscript will be added as in the
above notation.

X is a linearly ordered topological space, or LOTS, if {(+—,a) : a € X} U {(a,—) : a € X} is a sub-basis
for 7X. X is a generalised ordered space, or GO-space, if it has a basis of sets which are convex with

respect to <. Alternatively, a GO-space is a subspace of a LOTS. An arc is a connected, compact LOTS.
A jump in X is a pair (z,y) € X? such that < y and (z,y) = 0. A jump-point is one half of a jump.

For two LOTS, (X,<x) and (Y, <y), the lezicographic order < on X x Y is defined by: for {(a,b),
(z,y) € X xY, {a,b) % (z,y) ifa<x zora==zand b <y y.

We collect here a couple of elementary properties of ordered spaces which may be found in [E].
Proposition 1.2.11 A separable LOTS is metrizable if and only if it has countably many jumps.
Proposition 1.2.12 A compact GO-space is a LOTS.

Proposition 1.2.13 FEvery subset of a compact LOTS has an infimum and supremum.

A CICLOTS is the continuous image of a compact LOTS and an arctic space is the continuous image of
an arc.

Monotone normality and generalised metric spaces

X is monotonically normal [HLZ] if there exists an operator G : X x 7X — 7X, such that:
1.IfforreUerXandyeVerX, Gz, U NGy, V)#Dthenz e VoryelU

Such an operator is called a monotone normality operator. Note that it suffices to define G only on a
basis of X.

X is acyclic monotonically normal [MRRC] if there exists an operator H : X x 7X — 7X, such that:

2. IfzeUerX and U CV € 7X then H(z,U) C H(z,V)
3. Forallzyy e X, H(z, X \{y}) N H(y,X \ {z}) =0

4. For all n € w, and all distinct zg, z1,...,Tn—1 € X with z,, = z0, ﬂ?z_ol H(z;, X\ {ziz1}) =10

Such an H is called an acyclic monotone normality operator. It is easy to see that, given an operator H
on X satisfying (2) and (3), there is an operator G on X satisfying (1) and wice versa. Thus, all acyclic
monotonically normal spaces are also monotonically normal. GO-spaces are acyclic monotonically normal
[MR] and, as acyclic monotone normality is preserved by closed maps, so too are CICLOTS.

In the course of our study of monotonically normal compacta, two well-known classes of spaces emerge
as natural to consider.

The first class is the non-Archimedean spaces. A space X is non-Archimedean if it has a rank-1 base.
That is, there is a base, B, for the topology on X such that if B, B’ € B and BN B’ # () then either
B C B’ or B' C B. Nyikos proved the following;:



Theorem 1.2.14 [Ny] Every non-Archimedean space is a GO-space.

In the same article, Nyikos defined the second class of spaces which we consider - the proto-metrizable
spaces. The most well-known formulation of proto-metrizability is in terms of the scattering process: for
a class C of spaces, transfinitely construct spaces, at successor stages, by isolating a subset of points and
replacing these points with members of C and, at limit stages, by taking a subspace of the inverse limit of
the construction so far. The class of spaces so defined is denoted S(C). A space is proto-metrizable if and
only if it is in S(METRIZABLE). Despite this peculiar definition, proto-metrizability has flourished not
only because it is a good generalisation of metrizability sharing many of the key properties of metrizable
spaces but also because of the wealth of different characterisations of proto-metrizable spaces. We give
now a sample of these.

Recall that a pair-base B = {B = (B1, By) : B € B} for X is a subset of (7X)? such that for all B € B,
By C By and for all x € U € 7X, there exists B € B for which z € B; C By C U.

Theorem 1.2.15 The following are equivalent:

1. X is proto-metrizable

2. [GZ]) X has a rank-one pair-base, that is, a pair-base B such that if B, B' € B and BN B} #
then either By C B} or B} C B

3. [F] X is the perfect image of a non-Archimedean space

4. [GM] X has a continuous monotone normality operator, that is, a monotone normality operator H
such that if x € U € 7X then there exists V € 7X which contains x and, for ally € V, V C H(y,U)

5. [GM] X is monotonically paracompact, that is, if ¥ is the set of open covers of X, then there exists
anm : X — X such that, for allUU,V € *:

(a) m(U) star-refines U
(b) m(U) refines m(V) whenever U refines V

Some exotica

We now give some details of some of the more arcane topological objects which we will encounter in the
course of this work.

A Souslin line is a non-separable, ccc LOTS. Souslin’s Hypothesis (SH) is the assertion that there are no
Souslin lines. It is well-known that SH is both independent and consistent with ZFC. More specifically,
under ©, there is a Souslin line whilst under MA + —CH, SH holds.

If there is a Souslin line, there is one which is also compact and connected - simply take the Dedekind
completion of the given Souslin line.

A pair (T, <) is a tree if T is a set partially ordered by < in such a way that, forallt € T, {s € T : s < t}
is well-ordered by <. A chain in 7T is a linearly ordered subset of 7', a branch is a maximal chain and an
anti-chain is a subset S such that, for all s, t € S, it is the case that neither ¢t < s nor s < ¢t. The height
of a tree, denoted hi¢(T), is the supremum of the order-types of the sets {s € T : s < t}.

A Souslin tree is a tree of height w; with no uncountable chains or anti-chains. There is a Souslin line if
and only if there is a Souslin tree.

A Lusin set is an uncountable subset of R which meets every nowhere dense subset of R in at most
countably many points. It is easily shown that Lusin sets can be constructed under CH. Kunen [Ks]
generalised this notion to Lusin spaces which are uncountable regular spaces, having at most countably
many isolated points and in which every nowhere dense subset is countable. He showed that under MA +



—CH, there are no Lusin spaces. Also, every Souslin line contains a subset which is a Lusin space though
it is consistent with ZFC that there is a Lusin space but no Souslin line.

In his thesis [vD;], van Douwen defined a nodec space to be a crowded space whose nowhere dense
subsets are all closed. A mazimal topology on a set X is a crowded topology any refinement of which is
not crowded. These are easy to find as given any crowded space X, take all crowded topologies refining
7X, partially order it by inclusion and apply Zorn’s Lemma to give a maximal topology. If X is Hausdorff
then the maximal topology is also Hausdorff. Van Douwen has shown [vDs] that all maximal topologies
are nodec. Thus, given any crowded Hausdorff topology on a set there is a finer crowded Hausdorff
topology which is nodec.

Finding a regular nodec space is not so straightforward. Once again, van Douwen provided a method
for constructing these but, rather than using maximal topologies, he used mazimal regular topologies.
These are topologies which are maximal with respect to being crowded and regular. They were originally
defined by Bourbaki as ultraspaces [Bo] and, just like maximal topologies, they can be found by applying
Zorn’s Lemma but this time to the lattice of regular crowded topologies refining the topology on any
given regular crowded space.

Having obtained a countable maximal regular topology, say one refining 7Q, van Douwen gave a method
for finding a dense subspace which is nodec. By Proposition 1.2.1, this is necessarily crowded and is
clearly regular. In the case that the maximal regular space did refine Q, take © to be the dense nodec
subspace and X the subset of Q which underlies ©. If 2 € X were isolated in X then {z} € 7X C ©.
Hence X has no isolated points. As a crowded subspace of Q, X is homoeomorphic to Q. Thus, whenever
we refer to van Douwen’s nodec space, we mean a regular nodec space which refines Q.

Apart from this, the salient properties of van Douwen’s nodec space are that every nowhere dense subset
of it is discrete and that it is not monotonically normal. T am very grateful to Ian Stares for his extremely
useful exposition of van Douwen’s construction [Stq].



Chapter 2

Boundary properties

The boundaries of open sets are fundamental objects in a topological space. However, very few classes of
spaces have been studied solely for the properties of their boundaries - the most notable exceptions being
dimension theory, Lusin sets and nodec spaces. In this chapter, we consider several topological properties
P and consider those spaces in which the boundary of every non-empty open set is P. We refer to this
property as boundary-P. We pay particular attention to the relationship between a space being P and
it being boundary-P.

The first section introduces the notion of boundary-P and summarises the work which has already been
done where P is a covering property. In the second section, boundary-metrizable spaces are analysed
and their metrizability is given in terms of the existence of Lusin spaces. In the third section, boundary-
metrizability is considered in LOTS, not only for its intrinsic interest, but also as it provides a source of
important examples. The exact relationship between boundary-separability and separability is examined
in the fourth section. The next discusses boundary-scattered spaces where we obtain a result which will
be useful later. Finally, we summarise the main results of the chapter and raise some relevant questions.

2.1 Boundary-P spaces
In order to be as flexible as possible, we make the following very general definition:

Definition 2.1.1 For a topological property P, a space X is said to have the property boundary-P if
the boundary of every non-empty open set has property P.

There are some immediate consequences of this definition which are worth noting.

Proposition 2.1.2 For a space X :

1. X is boundary-P if and only if every closed nowhere dense subset of X is P

2. If X is boundary-P then so too is every closed subspace of X

3. For a property P which is hereditary with respect to closed sets, if X is P it is also boundary-P
4. If X is boundary-(hereditarily P) then it is hereditarily boundary-P

5. If X is boundary-P then it is rim-P
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Proof (1) holds because a subset of X is nowhere dense and closed if and only if it is the boundary of
some non-empty open set. (2) now follows since a closed nowhere dense subset of a closed subset of X is
also a closed nowhere dense subset of X. If P is hereditary with respect to closed sets then every closed
nowhere dense set is P hence (3).

To see (4), suppose that X is boundary-(hereditarily P). If Y C X and C' is closed and nowhere dense

inY then D = UX is closed and nowhere dense in X. Thus, D is hereditarily P which means that C, as
a subset of D, is P. That is, Y is boundary-P.

(5) follows trivially from the definition of rim-P. a

Remark In the ensuing work, (1) is particularly useful as it provides a way of discussing boundaries
without referring to specific open sets. Henceforth, it will normally be used without explicit reference.

Proposition 2.1.3 For a space X and Y C X, if

1. P is a property which is hereditary with respect to closed sets
2.Y isP
3. X \Y is a collection of isolated points of X

then X is boundary-P.

Proof Suppose C is a closed and nowhere dense subset of X. As C' is nowhere dense, it contains no
isolated points of X and must therefore be a subset of Y. Thus C is a closed subset of Y and C is P.

Hence X is boundary-P by Proposition 2.1.2 (1). -

This gives an easy method for constructing a number of examples of spaces with certain boundary
properties. Simply start with a space with the required property and throw in as many isolated points
as required.

Examples 2.1.4 The Alexandroff duplicate is a compact boundary-metrizable space which is not metriz-
able.

Any space with all but one point isolated has every boundary property that the one point space has!
O

Thus, the real substance of boundary properties only emerges when the spaces considered have no (or
few) isolated points. For this reason, in the remainder of the chapter, all spaces considered are crowded.

We are, in fact, already familiar with certain boundary properties though they may not have been viewed
this way before. For instance, boundary-(non-empty) simply means connected and boundary-discrete is
equivalent to nodec. Lusin spaces are those boundary-countable spaces which are regular, uncountable
and have at most countably many isolated points.

Boundary-P for a covering property P was considered as early as 1947 by Katétov [Ka] who stud-
ied boundary-compactness albeit not by that name. He showed that (in crowded spaces) boundary-
compactness was the same as compactness. This result was then generalised to [«, A]-compactness by
Mills and Wattel [MW]. (A space X is said to be [k, A]-compact if every open cover of X with cardinality
at most A has a sub-cover of cardinality strictly less than x. This is a natural generalisation of compact-
ness which incorporates both countable compactness and the Lindeldf property as [w, w]-compactness and
[wi, 0o]-compactness respectively.) Blair [Bl] gave a much simpler proof of the Mills and Wattel result
and also considered realcompactness and pseudocompactness. To summarise:



Theorem 2.1.5 For a space X :

1. [Ka] If X is boundary-compact then X is compact
2. [MW] If X is boundary-([x, A]-compact) then X is [k, A]-compact
3. [Bl] If X is boundary-pseudocompact then X is pseudocompact

4. [BY] If X is boundary-realcompact and every closed screenable subset has Ulam-
non-measurable cardinality then X is realcompact

We will use these results only in the following corollary:

Corollary 2.1.6 If X is boundary-Lindeldf then it is Lindeldf.

2.2 Boundary-metrizable spaces

Metrizable spaces have the most friendly properties of all topological spaces but boundary-metrizable
spaces can exhibit some quite unruly behaviour even in the absence of isolated points!

Examples 2.2.1 The nodec space of van Douwen is a regular, countable space with no isolated points
such that every nowhere dense set is discrete. However, it is far from being metrizable.

Take p € SR which is a remote point, that is, for all C' C R which are nowhere dense, p ¢ UBR. The

space R U {p} is connected, boundary-metrizable and not metrizable.
O

Remark The second example was given by van Douwen in his review of [MW] in Mathematical Reviews,
82a:54045. However, finding remote points in R is a non-trivial task but fortunately (for our purposes)
they do exist in ZFC. The details can be found in [Ha] on p.338.

The boundaries in both these examples are particularly well-behaved - they are countable and discrete
in the former case and subsets of R in the latter. To achieve better behaviour, the boundaries must

be further restricted to be compact as well. From Katétov’s result, this simply means that we need to
consider the class of compact boundary-metrizable spaces.

Proposition 2.2.2 If X is a compact boundary-metrizable space then it is boundary-(hereditarily Lin-
deldf) and boundary-(hereditarily separable).

Proof This follows immediately from the fact that compact metrizable spaces are hereditarily Lindel6f

and hereditarily separable.
O

From Proposition 2.1.2 (4), X being boundary-(hereditarily Lindeldf) is actually telling us that X is
hereditarily boundary-Lindel6f from which Corollary 2.1.6 gives:

Corollary 2.2.3 If X is compact and boundary-metrizable then X is hereditarily Lindeldf.
Therefore:

Corollary 2.2.4 If X is compact and boundary-metrizable then X is perfect and first countable.



Proof It is well-known (see [E], p.194) that hereditarily Lindeldf spaces are perfect. Since points are
closed in X, each point has countable pseudo-character in X which together with compactness means

that X is first countable.
O

However, there is a much more direct proof of this which greatly illuminates the relationship between the
boundary properties and the global properties of a space. First, we need a lemma.

Lemma 2.2.5 If X is a boundary-ccc space then s(X) = w. In particular, if X is compact and boundary-
metrizable then it satisfies the countable chain condition.

Proof Suppose D is a discrete subset of X so that D is nowhere dense in X and hence ccc. By
Proposition 1.2.1, {{d} : d € D} is a collection of isolated points in D, in particular, a disjoint collection
of non-empty open subsets of D. Thus there are at most countably many sets in the collection. That is,
D is countable.

The second part is a direct consequence of the fact that compact boundary-metrizable spaces are boundary-
ccc and that ¢(X) < s(X).
O

Proof of Corollary 2.2.4 In order to show that X is perfect, consider first C' C X which is closed and
nowhere dense. We now construct a maximal disjoint family of open sets whose closures do not intersect

C.

Suppose that a is an ordinal and that for all 8 < a, Uz € 7X has been defined such that UsNC = § and

for ' < f<a,UsNUz=0. If X\ U5<a Up is empty then stop and take A to be a. U6</\ Up is thus
dense in X and {Us : < A} is the required maximal family.

If X\ UB<a Us is non-empty, as it is also open and C' is nowhere dense, there exists a point z €
X\ (Us<a Us U C). By regularity of X, take U, such that z € Uy C U, C X\ (Us<a Us U C). This
means that {Up : f < a + 1} is a collection of opens sets whose closures are disjoint and Ug N C' = ) for
all B < a+ 1. This completes the inductive construction.

Define F = X \ Uz, Ug and G = X'\ U3<>\U_ﬁ =Ngr(X \ Us). By Lemma 1.2.6, F' is nowhere dense
and hence metrizable. G is a Gs-set in X since Lemma 2.2.5 implies that A is countable. It is clear that
C C G C F,so Cis a closed subset of the metrizable Gs-set G. Hence C is a Gs-set in G and as a G-set
of a Gs-set, C is Gs-set in X.

Now suppose A is any closed subset of X. A = intA UbdA. bdA is closed and nowhere dense so is a
Gs-set in X. Take bdA = U, for some U, € 7X. Thus A =) U, UintA) and A is a Gs-set in
X. That is, X is perfect.

new new(

O

We are now in a position to consider when compact boundary-metrizable spaces are metrizable. The
outcome is somewhat surprising.

Theorem 2.2.6 If there are no Lusin spaces then every compact boundary-metrizable space is metrizable.

This is proven by constructing in any compact boundary-metrizable space which is not metrizable a
subspace which is a Lusin space. The exposition of the proof is simplified by:

Definition 2.2.7 For Y C X, B C 7X is a base for Y in X if, whenever y € Y and y € U € 17X, there
exists B € B such that y € B CU. Y is second countable in X, if there is a countable base for Y in X.



Lemma 2.2.8 If C C D C X and D is second countable in X then C is second countable in X.

Proof For all ¢ € C' and U € 7X for which ¢ € U, since ¢ € D, there exists B € B such that c € B C U.

Therefore B is a countable base for C in X.
O

Lemma 2.2.9 If B is a base for Y in X and C CY is second countable in X then there exists B' € [B]*
such that B' is a base for C in X.

Proof Suppose A is a countable base for C in X. For a pair A; and As € A, define B(A1, A3) to be
some element of B such that
Ay C B(A1,43) C 4

whenever such an element exists, and to be X otherwise. Take B' = {B(A1, A2) : A1, Ay € A}.

Consider ¢ € C, where ¢ € U for some U € 7X. A is a base for C in X so there exists Ay € A such that
c € As CU. But A, is open in X so there is a B € B such that ¢ € B C A,. And B is also open in X
so there is an A; € A for which ¢ € A; C B. Thus, there is an element of B sitting between A; and A,
and hence, B(A, Ay) is well-defined for 4; and A, giving

cc A CB(A,A) CACU
More concisely, there exists B € B’ such that ¢ € B C U. Not only that, B’ is countable as it is indexed

by pairs from the countable set A. Therefore B’ is our required base.
O

Lemma 2.2.10 If X is a compact and perfect space and D is a closed metrizable subspace of X then D
is second countable in X.

Proof Take B to be a countable base for D, that is, B C 7D. D is closed so, for all B € B, B =B
(which means all closures may be taken in X) and, by perfectness of X, B is a Gs-set in X. Therefore,
there exists a sequence of sets open in X, {U,(B)}necw, for which

Unt1(B) CUn(B) and B = (] Un(B)

new
Define C = {Un(B) : B € B,n € w}. Clearly, C € [7X]“. If d € D and d € U € 7X then there exist
VerX suchthatde VCV CUand B € Bsuchthatde BCVND. AsBCV,BCV CU. Hence,
(Un(B) CU
new

By compactness, for some n € w, U,,1(B) C U and then d € B C U,,1(B) C U,(B) C U. This implies

that C is a countable base for D in X.
O

We now have all the machinery necessary to prove the theorem.

Proof of Theorem 2.2.6 Suppose X is a compact boundary-metrizable space which is not metrizable.
A subset of X which is a Lusin space is constructed by an induction of length w; .

Assume that for a given a < wy and for all § < a, Y3 € [X]¥ and Bs € [tX]“ have been defined such
that:

1. Bg is a countable base for Y3 in X



2. forally< p,Y, CYs, By CBg

3. if z € Y3\ Y, then B, does not contain a local base for z in X

Take Z = Uz, Y35, C = Uz, Bs- Z is countable and it is not hard to see that C is a countable base for
Z in X. But X is not second countable, so there exists z, € X such that C does not contain a local base
for x, in X. It must be that z, € Z. Moreover, X is first countable by Corollary 2.2.4, so there is a
countable local base, B(z,), for 2, in X. Define Y, = ZU {z,} and B, = C UB(z,). By this definition,
Y, and B, must satisfy the inductive hypotheses.

Take Yo, = Uqcy, Yo and Bu, = U,<,, Ba- From the construction, Y,, is uncountable and By, is a
base for Y, in X. Y,,, will be the promised Lusin set and so it is necessary to show that every nowhere
dense subset of Y,,, is countable and that Y, has at most countably many isolated points. The latter
follows easily, though, from the fact that X has countable spread (Lemma 2.2.5) and the set of isolated
points of a subset of X is a discrete set.

Consider C' C Y,,, which is nowhere dense in Y,,,. D = C is nowhere dense in X hence metrizable and
compact. By Lemma 2.2.10, since X is perfect, D is second countable in X. By Lemma 2.2.8, C is second
countable in X. And by Lemma 2.2.9, there exists B’ € [B,,,]¥ such that B’ is a countable base for C' in
X. As B’ is countable, there is some a < w; such that B’ C B,. But then, if C is uncountable, there
exists # > a such that 3 € C. However, B, does not contain a local base for 23 in X and thus neither

does B'. This is a contradiction and so C' must be countable. That is, Y, is a Lusin space.
O

In order to provide an example of a boundary-metrizable compactum which is not metrizable, it is
tempting simply to take a compact non-metrizable Lusin space. However, Corollary 2.5.5 rules out this
option. Somewhat surprisingly though, boundary-metrizability in LOTS is much more tractable than
in general and we can find some characterisations (and hence some examples) of boundary-metrizable,
non-metrizable LOTS.

2.3 Boundary-metrizability in LOTS

Proposition 2.2.5 of the last section tells us that every boundary-separable space is ccc . It seems quite
reasonable therefore that in LOTS the converse is true.

Proposition 2.3.1 Every ccc LOTS is boundary-separable.

Proof First, take X to be a compact LOTS which satisfies the countable chain condition. (At this point,
it is worth noting that we could drop the assumption that there are no isolated points as the countable
chain condition ensures that there are at most countably many and so they can easily be taken care of
in the proof). Suppose C is a closed and nowhere dense subset of X.

X \ C is open and can be divided into disjoint, maximally convex sets called the components of X \ C'.
If U denotes the family of components of X \ C' then, as X is ccc, U is countable and U = {lA : \ € w}
say. Moreover, since X is compact, each component has a supremum and an infimum. This allows us
to assert that each U, can be written in the form (a,,b,) where a,, b, € C for all n € w. Define
D ={a,:ne€w}lU{b,:n €w}. D is a countable subset of C and will be shown to be dense in C as
well.

Since X is compact so too is C and, as a compact subspace of a LOTS, C' is also a LOTS. Thus its basic
open neighbourhoods are (s,t) N C where s, t € C and s < t. Consider such a non-empty basic open
neighbourhood in C and take z € (s,£) N C. As z is not an isolated point of X, either (s,z) or (z,t) is
not empty. Without loss of generality, we may assume the former.



C is nowhere dense so (s, z) € C and some component of X\ C, U,, say, must meet (s, z). Moreover, as it is
convex, U,, must sit entirely inside (s, z). That is, there exists n € w such that U,, = (an,b,) C (s,2). So
certainly b,, < x and hence (s,¢)ND is non-empty. Therefore C is separable and X is boundary-separable.

For the more general case where X is not compact, take Y to be the Dedekind completion of X. Y is a
compact LOTS which has a dense subspace satisfying the countable chain condition. It is easy to see that
Y must also satisfy the countable chain condition and hence, by the previous case, be boundary-separable.

. Y . . .
Suppose B is a closed nowhere dense subset of X. Define C' = B . C' is also nowhere dense in Y and so is
separable. Moreover, C' is a GO-space which means that, since C is separable, it must also be hereditarily

separable. That is, B is separable and X is boundary-separable.
O

This gives an indication of where we can find our first example of a boundary-metrizable, non-metrizable
compactum.

Example 2.3.2 A compact, connected Souslin line is a boundary-metrizable, non-metrizable continuum.

Proof Take X to be a compact, connected Souslin line. Thus X has the countable chain condition and
is not metrizable. By the previous proposition, X is boundary-separable.

Consider C a closed, nowhere dense subset of X. C' is therefore a separable, compact GO-space, hence a
separable LOTS. Moreover, if (a,b)¢ is a jump in C, either (a,b)x is a jump or a component of X \ C.
X is connected so has no jumps and has the countable chain condition so there are at most countably
many components of X \ C. Thus, C has at most countably many jumps. By Proposition 1.2.11, C is

metrizable and X is boundary-metrizable.
O

Of course, Souslin lines need not exist. In which case, since compact boundary-metrizable LOTS are then
separable, we need only consider separable LOTS. These have a great deal of structure which significantly
simplifies their study. To demonstrate this, first we need a definition:

Definition 2.3.3 For a LOTS X and Y C X, the double arrow of X over Y, denoted DA(X;Y), is
the LOTS formed by Z = (X x {0}) U (Y x {1}) with the lexicographic order. Take 7 : DA(X;Y) —» X
to be the natural projection map. 7 is clearly continuous.

Proposition 2.3.4 If L is a separable LOTS then there exists M C R, a LOTS without jumps, and
A C M such that L = DA(M; A).

Proof The proof of this is well-known and is an essentially straightforward technical exercise.

Having obtained such a nice characterisation, we can now express features of a separable LOTS in terms
of its double arrow structure. For the rest of this section, the notation is as defined in Proposition 2.3.4.

Lemma 2.3.5 B C L is nowhere dense in L if and only if 7(B) is nowhere dense in M.

Proof If B C L is not nowhere dense then B contains some non-empty basic open interval of L in
its closure. That is, there are m; and ms € M and i, j € {0,1} such that (mq,i) < (ma,j) and
0 # ((mq,i), (ma,j))r C B. Take I to be the interval ((mq,i), (ms,j))r. If m; = my then it must be
that ¢ = 0 and j = 1 and then I is empty - a contradiction. Thus, m; <ps ms and it easily follows that
J = ((m1,1), (ms,0))r, C B. Now, if .J were empty, since I is non-empty, it must be the case that either



i# 1 or j # 0 and either case would imply that L has an isolated point. However, we have the running
assumption that this is false. Hence, J is non-empty and there exist mg € M and k € {0,1} such that
<m3, k> e J.

Therefore, we have: 7(J) C 7(B) which is a subset of 7(B) by continuity of 7. But 7(J) = (m1,ma)
and msz € 7(J) so w(J) is a non-empty open subset of 7(B) and 7(B) is somewhere dense.
Suppose now that n(B) is somewhere dense for some B C L. Thus, n(B) is dense in some interval
(my, mo)p where m; <p mo. We will show that B is dense in the interval ((mq, 1), (m2,0)); from
which it immediately follows that B is not nowhere dense.

Because L has no isolated points, any non-empty basic open interval in L contains a non-empty interval
of the form ((a,1),(b,0))r where a, b € M and a <ps b. Consider such an interval contained inside
({m1,1),(m2,0))r, so that my <apr @ <pr b <y mo. Since 7(B) is dense in (my,ma), there exists a
¢ € m(B) such that a <pr ¢ <p b. Thus, (c,i) € B for some i € {0,1} and, by simply applying the
definition of the lexicographic order, it is clear that (c,i) € ({(a, 1), (b,0))s,. This means that every basic
open interval in ({(mq,1), (m2,0))r picks up some (c,i) € B. That is, B is dense in ((mq,1), (m2,0))L.
O

Lemma 2.3.6 A LOTS subspace C of L is metrizable if and only if 7(C) N A is countable.

Proof From Proposition 1.2.11, C C L is metrizable if and only if it has countably many jumps. Thus,
C is metrizable if and only if {¢ € C : ¢ is an element of a jump } is countable. Since M has no jumps,
¢ € C is an element of a jump in C if and only if m(¢) € A. This gives: C' C L is metrizable if and only if
{c € C : m(c) € A} is countable if and only if C N 7~1(A) is countable if and only if 7(C') N A is countable

(since 7 has finite fibres).
O

Given the previous lemmas, to construct a boundary-metrizable separable LOTS which is not metrizable
requires that, first, in the double arrow construction, A must be uncountable to kill off metrizability of
L. Secondly, all nowhere dense subsets of L must meet 7~'(A) in only countably many points. This
suggests that taking A to be a Lusin set would be the right place to look for such an example.

Theorem 2.3.7 Every boundary-metrizable separable LOTS is metrizable if and only if there are no
Lusin sets.

Remark This theorem, in one direction at least, seems to be a consequence of Theorem 2.2.6. However,
the hypothesis that there are no Lusin sets is not as sweeping as the hypothesis that there are no Lusin
spaces.

Proof Suppose there is a Lusin set A in the closed unit interval. Define X = DA(A; A). X is clearly
a compact LOTS. If D is a countable, dense subset of A then it is easily shown that D x {0,1} is a
countable dense subset of X. X is not metrizable as A is uncountable.

Take C to be a closed, nowhere dense subset of X. By Lemma 2.3.5, n(C) is nowhere dense in A and
closed as C' is compact. Suppose for some U € 74, U C 7(C) N A. There exists V € 7A such that
U =V NA and since A is dense in A, U is dense in V. Thus, U = V. As n(C) is closed, U C 7(C)
which implies that V' C 7(C). However, 7(C) is nowhere dense so V', and hence U, must be empty and
m(C) N A is nowhere dense in A. Because A is a Lusin set, 7(C') N A is countable and then Lemma 2.3.6
tells us that C' is metrizable.

In summary, X is a compact, separable, boundary-metrizable LOTS which is not metrizable.

For the converse, assume that X is a boundary-metrizable, separable LOTS which is not metrizable.
Then X = DA(M; A) for some M C R and A C M. By Proposition 1.2.11, A must be uncountable as X
is not metrizable and M is free from jumps. Consider C' C A which is nowhere dense in A. By Lemma



2.3.5, 7 1(C) is nowhere dense in X because 7(71(C)) = C. Thus, n(7~(C)) N A is countable since

7~ 1(C) is metrizable and Lemma 2.3.6 holds. This implies that C' is countable and A is a Lusin set.
O

Thus, the examples we required of boundary-metrizable non-metrizable compacta can all be found to be
LOTS as well. Of course, our examples require set-theoretic hypotheses but we know from Theorem 2.2.6
that we can not eliminate this.

Remark Boundary-metrizability in LOTS has already been briefly considered before by M. E. Rudin
in [Ro]. She asserted that:

(0) For LOTS, X and Y where every nowhere dense subset is second
countable, X x Y is ccc if and only if X x Y is hereditarily Lindelof.

Phrased in another way, (¢) simply says that if the product of two boundary-(second countable) LOTS
is ccc then it is hereditarily Lindel6f. This however is not true in general as Pursich pointed out in [Pur].
He proved that statement (Q) was equivalent to the non-existence of Lusin sets. In fact, his example
showing that (0) is false is the same one given in Theorem 2.3.7.

Now, since the Dedekind completion of a boundary-(second countable) LOTS is a boundary-metrizable
compactum (as in the proofs of Theorem 2.3.1 and Example 2.3.2), if there are no Lusin sets, Theorem
2.2.6 tells us that every boundary-(second countable) LOTS is metrizable and (¢) holds. However, (0)
holding does not imply that every boundary-metrizable compact LOTS is metrizable hence it cannot
imply the non-existence of all Lusin spaces.

2.4 Comparing separability and boundary-separability

Boundary-separability appeared in the last section as a useful notion for analysing Example 2.3.2 and so we
now turn our attention to that. The two key questions in relating boundary-separable spaces to separable
spaces are: “When are separable spaces boundary-separable?” and “When are boundary-separable spaces
separable?” The answer to the first question is straightforward and was given by Malykhin [M]].

Proposition 2.4.1 If X is boundary-separable then d(X) = hcld(X).

Proof Take D to be a subset of X which is dense in X and |D| = d(X). For a closed subset ¥ of X,
define Dy = DNintY. Since Y is closed, Y\ int} is nowhere dense and closed in X hence separable. Take
D, to be a countable dense subset of Y\ intY". It is clear that Dy U D5 is dense in Y and has cardinality
no greater than d(X). Hence, d(Y) < d(X) and d(X) = held(X).

O

Corollary 2.4.2 Any separable space is boundary-separable if and only if every closed subspace is sepa-
rable.

It is not possible to improve on this result as was also shown in [MI] where, under CH, Malykhin pro-
duced a separable Lusin space which is not hereditarily separable. Another such example was given by
Todorcevié [T2] under the weaker set-theoretic assumption that b = w; (recall the definition of b from
the introduction). We provide this example not only for the sake of completeness but also to provide
some of the details which Todorcevié omitted from his proof. As far as possible, the notation is the same
as that used in Section 0 of [T1] and Section 3 of [Ts] bar a few minor modifications in order to improve
clarity. The proof makes use of an elementary submodel and so it may be useful to read Chapter 6 before
going through the construction.



Theorem 2.4.3 There is a completely regular space X such that hd(X) = b but d(F) < b for every
closed subset F' of X.

Proof The proof will fall into three parts: the first is a definition of the space X and the proof that it
is completely regular; the second shows that hd(X) = b; the last proves that for all closed subsets F' of
X,d(F)<b.

1. Take A to be an unbounded subset of monotone increasing functions in w® which is well-ordered by
<* in order type b. Such a set is shown to exist in [vD2] Theorem 3.3. Define D to be the set of all those
d € (w + 1)* which are monotone increasing and such that, for some n € w, d|, € w™ and for all i > n,
d(i) = w. Z is taken to be AU D with the topology inherited from (w + 1)¥.

Now refine 77 by declaring {g € Z : g > f} to be open for all f € A. Take X to be the same underlying
set as Z with this new topology (in Todoréevié’s notation, X = Z[A, >]). Since 7X is a refinement of
the Hausdorff topology 77, X is Hausdorff.

We will now show that X is zero-dimensional (has a basis of clopen sets) from which it follows that X is
completely regular ([E] p.360).

Consider X[>f] = {9 € X : g > f}. If g ¢ X then there exists n € w for which g(n) < f(n). Take
U, ={h € Z:h(n)=g(n)}. U, is a basic open set in Z which clearly contains g yet misses X[>f]. Thus
X[>f] is closed in Z. As 7X refines 7Z, X[>f] must also be closed in X. Moreover, as it is declared
open in X, X[>f] is a clopen subset of X for all f € A.

7 is zero-dimensional because it is a subset of the zero-dimensional space (w + 1)*. Hence we can find a
basis, B say, consisting of clopen sets in Z. Moreover, we may assume that B is countable and consists
of canonical basic open sets induced by the Tychonoff topology. If B € B, B must also be clopen in X.
But note, {BN X[>f]: B € B, f € A} forms a basis for X every element of which is clopen in X. Thus
X is zero-dimensional and completely regular.

2. Consider A as a subset of X. Because A is well-ordered by <*, every B C A has a <*-minimum
element and it is not hard to see that this element must also be <-minimal as well. Hence (4, <) is
well-founded and there is some well-ordering < on A which extends < on A. This well-ordering need not
coincide with <*. If f, g € A and f < g then it cannot be the case that f € X[>g] since < extends <.
This means {X[>f]N A : f € A} is a collection in T7A witnessing that A is left-separated in type b (see
[Ro] p.301). Hence d(A) > b and, as the cardinality of X is b, this implies that hd(X) = b.

3. Before proceeeding with the last section of this proof, it is worth remarking that, since b is regular
and A is well-ordered by <* in order type b, any family in A of size b is cofinal in A and hence is also
an unbounded collection in w*. In addition, any family in A of cardinality less than b has a <*-upper
bound.

Suppose now that F' is a closed subset of X[A, >]. Define Yo = F\ F N D. As D is countable, in order to
show that d(F') < b, it would suffice to show that |Yp| < b. Thus, assume for contradiction that |Yp| = b.
By shrinking, we can find Y; C Yj also of size b and for which there exists m € w such that:

(@) flm =g|m forall f,geY;
(b) flm # g|m for all f €Y, andge FND

Choose a suitable countable elementary submodel M which contains A, X, b, F', Yy, Y1, D, B and <.

{f € M : { € A} is necessarily countable so by the earlier remark there exists h € A such that f <* h
for all f € AN M. And, since Y is well-ordered by <*, |[{g € Y1 : h <* g}| = b. By the pigeon-hole
principle and the definition of <*, there exists p € w for which Y5> = {g € Y1 : h <, g} is also of size b
and hence unbounded in w*.

If, for each n € w, R, = {g(n) : n € w, g € Y5} is bounded in w, define f € w* by f(n) = max R,
for all n € w. But then, for all g € Y5, g < f which contradicts the unboundedness of Y5. Thus there



exists n € w for which R,, is unbounded in w. Choose n to be minimal (though it is necessarily greater
than m) whence Ry, is bounded for each k < n. This implies that {g|, : g € Y2} is finite and, again by
the pigeonhole principle, we may choose t € w™ such that {g(n) : g € Y5 and t C g} is unbounded in w.
Given this, it is easy to find a sequence in Y3, {g;}icy say, such that for all i € w:

(c)tCgi
(d) gi(n) < git1(n)

Define d € D by d|, =t and, for all i > n, d(i) = w. D is a countable element of M hence is a subset of
M (see Proposition 6.2.4) and d € M. By (b), d € F so in particular d ¢ F N A. Thus there exist f € A
and B € B such that d € BN X[>f] and

(BAX[>f)N(FNA) =0
As B is a basic open set induced by 7Z, we may suppose that B has the form:
B={geX:glo.=t}n{geX:g9()2rforj=nn+1,...,n+ s}
where 7, s € w.

Take ®(f) to be the statement (BN X[>f])) N (FNA) =0) A (d€ (BN X[>f])) and so we have that
V =3f € A(®(f)). Since B € M and B is countable, by Proposition 6.2.4, B € M and we have already
assumed that all the other objects mentioned in ® are in M hence by elementarity M = 3f € A(®(f)).
Take f; € AN M which witnesses the truth of this statement so that M |= ®(f;). Again by elementarity,
V |= ®(f:). Or more plainly,

(e) ft £ f for every f € F N A which extends ¢ and for which f(j) >rforj=nn+1,....n+s

Now f; € M so fr <* h. Fix k > p such that f; <x h. By (d), {g:(n)}icn is unbounded in w and there
exists 7 € w such that

(f) fe(k) < h(k) < gi(n) and gi(n) > r

d € BN X[>f] thus d|, =t > fi|n. But gi|n =t, hence giln = ft|n. As fi <p h <k ¢i, if j = k then
ft(j) € 9i(j). For n < j <k, fi and g; are monotone so fi(j) < fi(k) < gi(n) < ¢i(j). So overall, we
have that f; < g;.

However, g; € Yo C FNA, g; extends t by its definition and, since g;(n) > r and g; is monotone increasing,
9i(j) =rfor j=n,n+1,...,n+ s. This contradicts (e). Hence |Yy| < b and d(F) < b as required.

Example 2.4.4 [Todoréevié] If b = w; then there exists a separable boundary-separable space which
is not, hereditarily separable.

Proof Take the space X of Theorem 2.4.3. If b = wq then hd(X) = wy but d(F) = w for every closed
subspace F of X. Therefore, held(X) = w. Thus X is a separable, boundary-separable (by Proposition

2.4.1) and not hereditarily separable. -

Ideally, it would be better if the set-theoretic hypothesis could be removed from the example. However,
Todoréevié¢ remarked that all examples, X, where held(X) < hd(X) must contain a subspace, Y, for
which Al(Y) < hd(Y). In our situation, this would be an L-space - one which is hereditarily Lindel6f
but not hereditarily separable. It may yet be the case that there are L-spaces in ZFC. However, it is
possible that all L-spaces with the extra properties which we require in this context dualise to S-spaces.
This would mean that there are no such examples in ZFC as it is consistent with ZFC that there are no
S-spaces. Either way, Todorcevié¢’s remark implies:



Proposition 2.4.5 If there are no L-spaces then every separable boundary-separable space is hereditarily
separable.

We now move on to the second question of when boundary-separable spaces are separable. This is
actually quite complex and it is easier to consider first when boundary-(hereditarily separable) spaces are
separable. Even in this case, though, the answer is somewhat remarkable.

Theorem 2.4.6 FEvery boundary-(hereditarily separable) space is separable if and only if there are no
non-separable Lusin spaces.

Proof First, suppose there is a non-separable Lusin space. It is boundary-countable hence is a boundary-
(hereditarily separable) non-separable space, as required.

Now suppose X is a non-separable boundary-separable space. The proof works by showing that inside X
there is a subset which is a non-separable Lusin space. The construction of the Lusin subspace proceeds
by an induction of length w;.

For @ < wy, assume {23 : f < a} has been defined such that for all 8 < «a, 23 & {2, :7 < }. Now
{z5 : B < a} is not dense in X as X is not separable. Thus there exists z, € X \ {25 : 8 < a}. Define
YV ={2q:a<w}.

If 1T is the set of isolated points of Y, I is discrete. X is boundary-separable hence boundary-ccc and so,
by Lemma 2.2.5, I is countable. Y is clearly uncountable as the z, are all distinct by their definition.
Also, Y is non-separable since if D were a countable subset of Y then for some @ € w1, D C {235 : f < a}
from which it follows that x4, ¢ D.

It remains to show that every nowhere dense subset of Y is countable. Thus take C' to be a nowhere dense
. . . —C
subset of Y. C is nowhere dense in X hence separable and there exists D € [C]¥ such that C = D .
Now D CY and D is countable so there exists @ < wy such that D C {z5: f < a}. If C is uncountable,
. X X _ =C ..
there is a v < wy such that vy > o and z, € C. But 2, ¢ {zg: 8 <~} D{zg:8<a} DD . Thisis
a contradiction.

Hence C must be countable and Y is a non-separable Lusin subspace of X.

Remark Example 2.3.2 together with Theorem 2.4.6 provide an alternative to Kunen’s method in [Ks]
for constructing a Lusin subspace of a Souslin line.

Whilst the above theorem may seem to avoid dealing with boundary-separability, it is actually crucial in
determining when boundary-separable spaces are separable as can be seen in the next proof.

Theorem 2.4.7 If there are no L-spaces then every boundary-separable space is separable.

Proof Suppose X is boundary-separable. Consider C' C X which is closed and nowhere dense in X.
Thus C' is separable and boundary-separable by Proposition 2.1.2 (2). Now, by Proposition 2.4.5, C' is
hereditarily separable and hence X is boundary-(hereditarily separable). But note that any non-separable
Lusin space is an L-space as it is obviously not hereditarily separable and it is hereditarily Lindeldf by
the fact that it is boundary-countable and Corollary 2.1.6. So the assumption that there are no L-spaces

also kills off non-separable Lusin spaces and then Theorem 2.4.6 tells us that X is separable.
O

In certain classes of spaces, the situation is much less complicated. In particular, in compact spaces we
have the following result which was proven independently by both Sapirovskii and Arhangel’skii.



Theorem 2.4.8 [S] [A}] If X is compact then held(X) = hd(X).

This does for us what the assumption of no L-spaces did for us in the first part of the proof of Theorem
2.4.7. Hence, in the same way, we have:

Proposition 2.4.9 If X is a boundary-separable compactum then X is boundary-(hereditarily separable).
Taking this together with Theorem 2.4.6 gives:

Corollary 2.4.10 If there are no non-separable Lusin spaces then every boundary-separable compactum
is separable.

However, we cannot greatly improve upon this since compactness does not kill off potential Lusin sub-
spaces as can be seen in Example 2.3.2.

The assumption that there are no Lusin spaces is stronger than the assumption that there are no Souslin
lines but we know that, in general, Lusin spaces are necessary for the existence of boundary-(hereditarily
separable) spaces which are not separable. However, this can be weakened to Souslin’s Hypothesis in
certain classes of spaces.

Theorem 2.4.11 Souslin’s Hypothesis holds if and only if every boundary-separable locally connected
space is separable.

Proof By Example 2.3.2, it is enough to show that if X is boundary-separable and locally connected
but non-separable then there is a Souslin line. In fact, it will be shown that there is a Souslin tree made
up of open sets in X and ordered by reverse inclusion.

Take 7y to be an infinite, maximal family of disjoint open sets. Suppose that for a given ordinal «a, for
all 8 < a, Ts has been defined. If a = 5+ 1 then take 7, to be a maximal disjoint family of open subsets
of | J 73 such that, for every U € T,, there exists V(U) € T such that

UCV(U)and V(U)\U # 0
If v is a limit ordinal then take
Ta = {intﬂC : C is a branch in U Ts}
B<a

The process stops when 7, = {@}. Define T = [Js_, 75 so that 7 is a tree of subsets of X ordered by
reverse inclusion and take A to be the height of 7. That A is a limit ordinal can easily be seen from the
construction of 7.

If A < wy define 0T, = UTa \ UTa. 074 is a boundary hence there exists D, € [07T,]¥ which is dense
in 7,. Define D = J D,. As A < wy, D is countable and D will be shown to be dense in X which
gives a contradiction.

a<A

Suppose that V is a non-empty open subset of X for which VN D = ). X is locally connected so there is
some non-empty, open, connected subset, U say, of V' which also misses D. Now |J 7 is dense in X by
its definition hence U meets some Ty € To. However, U N D = (} implies that U N Dy = () which implies
that U N 3Ty = 0. Clearly Ty \ Ty C 0T whence U N'bdTy = (. This means that Ty NU = Ty N U and
To N U is a non-empty clopen subset of U. U is connected so it must be the case that To N U = U and
U CT,.

Suppose for o < X and every § < a that there exists a Tz € T3 for which U C Tz. If a = 5 + 1 then,
similarly to when « = 0, there exists T, € T, for which U C T,,. If « is a limit ordinal then it is easily



shown that, for all v < 8 < a, U C Ty C T,. Therefore, C = {Ts: f < a} is a chain in UB<a T3, indeed,
a branch as CN7Tp # 0 for all B < o, and U C [ C. More specifically, U C int[C € T,. So in both cases,
there is a T, € T, such that U C T,.

Thus for all @ < A, there exists T,, € T, for which U C T,,. But then C = {T,, : @ < A} is a branch in T
such that U C int (C. This contradicts 7, = {0}.

Hence it must be that U meets D which implies that D is a countable dense subset of X. This contradicts
the hypothesis on X.

Thus A > w;. However, since X is boundary-separable, it is boundary-ccc and, by Lemma 2.2.5, X itself
satisfies the countable chain condition. It is well known that this implies that all chains and anti-chains
of open sets (when ordered by inclusion) are countable. In particular, there can be no chains of sets as
long as wy and 7, is empty. It follows that 7 is an w;-tree without countable chains or anti-chains.

That is, 7 is a Souslin tree.
O

2.5 Boundary-scattered spaces

Scattered spaces have a great deal of structure due to the possibility of layering the space via its scattered
length. But like boundary-metrizable spaces, boundary-scattered spaces need not have especially nice
structures. Once again the nodec space witnesses this - it is a regular, countable crowded space which is
not only boundary-scattered but boundary-discrete. Moreover, the nodec space can be used as a building
block to show that specifying the scattered length of the boundaries does not prevent scatteredness. To
clarify what is meant by “specifying”, we make a definition.

Definition 2.5.1 For a boundary-scattered space X, define the boundary-(scattered length) of X, de-
noted bdy-sl(X), to be the supremum of the scattered lengths of the boundaries of X.

Examples 2.5.2 For every ordinal o, there is a boundary-scattered, crowded, completely regular space
X, such that bdy-sl(X,) = a.

Remark The construction of these examples uses resolutions as described in [W] and Chapter 5.

Proof Fix an ordinal a and choose some scattered space, Y, say, for which sl(Y,) = a. Taking © to be
a regular nodec space, fix some point yg € ©. Now resolve Y, over the set of isolated points into O by
constant mappings to yo. Take the subspace of the resolved space X, = YIUJ{{z} x O :z € Y, \ V.I}.

X, is completely regular as it is a subspace of a compact space. Note that Y, is homeomorphic to
YAU{(z,yo) : ® € Y, \ Y4} s0 Y, is identified with this set in X,. Also, for each z € Y, \Y? and V € 70,
{z} x V is open in X,.

Suppose C is a closed and nowhere dense subset of X,. C N ({z} x ©) is nowhere dense in {z} x ©
otherwise {z} x V is a subset of C for some V € 70 \ {#} which contradicts C' being nowhere dense.
Thus, C N ({z} x O©) is discrete and it is not too hard to see that C NJ{{z} x © : z € Y, \ Y2} must be
a collection of isolated points of C. Therefore, C? C Y% C X, and C? is scattered with sl(C?) < sl(Y'?).
Hence, C is scattered, sl(C) < sl(Y,) and X is scattered with bdy-sl(X) < a.

Consider U € 7X, which meets Y,. From the definition of resolutions, U = (VNY4) U J{{z} x O :z €
V\ Y1} for some V € 7Y,, and UNY{{z} x © : z € Y, \ Y2} # 0 since Y is nowhere dense in Y,
hence in X,. But then for some 2 € Y, \ Y, {z} x © is a subset of U and U cannot be a subset of Y.
Moreover, Y, is closed as it is the complement of the open set [J{{z} x (©\ {yo}) : # € Y, \ Y.?}. Hence

Y, is a closed nowhere dense subset of X, and sl(Y,) = a. Therefore, bdy-sl(X,) = a.
O



Like the metrizable situation, compactness comes to the rescue. I am indebted to Robin Knight for
providing me with the proof of this next result.

Theorem 2.5.3 Every crowded compact space has a nowhere dense subset which is also crowded.

Proof Suppose X is a crowded compact space. We will essentially mimic the construction of a Cantor
set in R in order to produce a nowhere dense crowded subspace of X. However, as X need not have all
the structure of R, we must considerably strengthen the analysis of the construction.

For each f € 3<¥, inductively define Uy € 7X as follows:

Up = X. Suppose that n € w and that for all f € 3S" U; € 7X \ {0} has been defined in such a way
that if g € 35" properly extends f then U, C Uy.

Consider f € 3". Uy is non-empty and X is crowded so Uy is infinite. Choose three points g, 71, 2 € Uy
and find V; € 7X for which z; € V; CV; C Uy and V; NV; = ) when i # j for i, j € {1,2,3}. For each
g € 3! which extends f, define U, = V; where g(n) =i. Then the U, satsify the inductive hypothesis.

We now throw away the “middle thirds”: for all f € 2 define Cy = (1, ., Uy, (which means that

Ct =Nyew Uy, as well) and also define C' = {J;,. Cy. Note that

c=U Nu.=NUT

fE2¥ nEw nEw fe2n
Hence C' is the intersection of closed sets and so is itself closed and compact.

C has many of the features of a Cantor set but it may not be nowhere dense. Therefore we define
Y = bdC so that Y is clearly nowhere dense. Y however could still have some isolated points but we
will show that it is at least not scattered by proving that Y'(®) #£ § for every ordinal a. The proof of this
proceeds by induction but to make it work we actually need the stronger inductive hypothesis that for
all ordinals a and for all f € 2¥, C% = Cy NY(®) #£ .

For the base step in the induction, we must show that, for all f € 2¥, C? = C;NY # . Fix f € 2¥,
pick z, € m and, by compactness, find € {z, : n € w}. By their definition, z, ¢ C, for all
g € 2% hence z, € X\ C foralln € wand 2 € X \ C. However, z € Cy since z € {z,, : n > k} for all
k € w. But {z, :n >k} C Uy, for all k € w. Therefore, 2 € (N, Us|, = C¢. This means that

zeCynCNX\C=CY}
which completes the base step.

Consider a limit ordinal A such that for all a < A, C¢ # 0. C’}‘ =C;nYW™ =0 n Na<n Vi) =
Naca(CrNY @) =N, ., CF. Thus C} is the intersection of a strictly decreasing sequence of non-empty
closed sets. Because X is compact, this means that C’}‘ is non-empty for all f € 2.

This leaves the successor step. Suppose that, for an ordinal a and for all f € 2¢, C,‘?‘ is non-empty.
Fix f € 2¢ and a non-trivial sequence, {fy}new which converges to f in 2. Choose z, € C¢ and,

again by compactness, find z € {z, : n € w}. V(@) ig closed in X and z is an accumulation point of a
sequence in V() so z € Y(@+1) | Moreover, since {f,} converegs to f in 2¢, given any k € w, there exists
N € w such that for all n > N, f,|r = f|x. But then C¢ C Uy, for all n > N which implies that

{Zn:n 2> N} C Uy, and z € Uy, for all k € w. Hence z € Cy from which it follows that = € C’](ca'H)
and C\"*) £ 0 for all f € 2¢.

This completes the transfinite induction. Hence Y is non-scattered and nowhere dense in X. Take

Z =Y where a is such that Y(® = Y(@+1) Then Z is a nowhere dense, crowded subspace of X.
O



Corollary 2.5.4 FEvery compact boundary-scattered space is scattered.

Proof Suppose X were a compact boundary-scattered space. If X is not scattered then there is a subset
Y of X which is crowded. By taking the closure of Y if necessary, Y can be assumed to be closed and,
therefore, compact. By the previous result, Y would have a nowhere dense subset which was crowded.

But Proposition 2.1.2 (2) implies that Y is also boundary-scattered. This is clearly a contradiction.
O

Corollary 2.5.5 There are no compact Lusin spaces.

Proof Suppose X were a compact Lusin space. X is boundary-countable and, since countable compact
spaces are scattered, X is also boundary-scattered. By Corollary 2.5.4, X is scattered so X% is nowhere
dense in X hence countable. By the definition of a Lusin space, X has only countably many isolated
points. This means that X in total can only be countable which is a contradiction as Lusin spaces are

assumed to be uncountable.
O

2.6 Summary and questions

The second and third sections of this chapter are concerned with characterising boundary-metrizable
compacta. The second section deals with general spaces and we obtain the surprising result that if there
are no Lusin spaces then every boundary-metrizable compactum is metrizable. By studying boundary-
metrizability in LOTS, we obtain two important examples of boundary-metrizable non-metrizable com-
pacta. These results are summarised here:

Theorem 2.6.1 1. If there are no Lusin spaces then every boundary-metrizable compactum is metriz-
able
2. If there is a Souslin line then there is a boundary-metrizable, non-metrizable arc

3. If there is a Lusin set then there is a separable boundary-metrizable, non-metrizable compact LOTS

From this, it is clear that there is a discrepancy between the hypotheses for an example and for a theorem.
This gap could be filled by a positive answer to:

Question 2.1 If there exists a Lusin space, is there a boundary-metrizable non-metrizable compactum?
One way of solving this may arise by using (3) and answering:

Question 2.2 If there is a Lusin space, is there also a Lusin subspace of R?

(2) also suggests a possible converse:

Question 2.3 If there is a boundary-metrizable non-metrizable continuum, is there a Souslin line?

The fourth section dealt with boundary-separability and gave two key results: first, if there are no L-spaces
then every boundary-separable space is separable and, secondly, every boundary-(hereditarily separable)
space is separable if and only if there are no non-separable Lusin spaces. However the hypothesis that
there are no L-spaces may be inconsistent with ZFC so this would be improved if we could answer either
of the following affirmatively:



Question 2.4 If is there an L-space, is there a boundary-separable, non-separable space?

Question 2.5 If there are no S-spaces, is every boundary-separable space separable?

We also saw that if there are no Lusin spaces then every boundary-separable compactum is separable.
Does the converse hold?

Question 2.6 If there is a Lusin space, is there are boundary-separable, non-separable compactum?

The fifth section gives some ZFC results and we have that every boundary-scattered compactum is
scattered. This also rules out the trivial answer of a compact Lusin set to Questions 2.1 and 2.6.



Chapter 3

Cohesion

The most well-known theory which is based on spaces defined by the properties of their boundaries is
the theory of inductive dimension. The inductive dimension functions assert that certain open sets have
boundaries of a lower dimension.

Following the flavour of this idea, in [As], Arhangel’skii defined inductively a “function of the dimensional
type” which he called absolute dimension: a space has absolute dimension n if every boundary has absolute
dimension strictly less than n starting from the base case that a space has absolute dimension 0 if and
only if it has small inductive dimension zero. This notion does not actually produce a dimension function
in the usual sense - it is shown in the last section of this chapter that the absolute dimension of the unit
square cannot be defined. However, absolute dimension is well-behaved on the real line - every subset of
R has absolute dimension of at most 1.

In order to understand more closely what an inductive function of this nature says about a space, we
modify the base case definition of absolute dimension to give the new notion of cohesion. In the first
section of this chapter, cohesion and related terms are defined and we establish some basic properties.
The relationship between cohesion and scattered length is fully investigated in the next section. Crowded
cohesive spaces are considered in the third section and examples of finitely cohesive, regular, crowded
spaces are constructed. It is also shown that there cannot be transfinitely cohesive, regular spaces. Using
the results on boundary—scattered spaces, compact cohesive spaces are examined in the fourth section.
The fifth gives some theorems on when cohesion is preserved under continuous maps and taking products.
Finally, we show that absolute dimension is not defined on the unit square.

3.1 Definition and basic properties
Without further ado, we define cohesion.

Definition 3.1.1 For a topological space X, the cohesion of X, abbreviated to cohX, is defined by

transfinite recursion as follows:
cohX = —1 if and only if X =

for an ordinal a, cohX < a if for every nowhere dense subset C' C X, cohC < «

For a space X and an ordinal a, cohX = «a if cohX < a and for every § < « it is not the case that
cohX < B. Finally, X is said to be cohesive if for some ordinal a, cohX = «, finitely cohesive if a is
finite and transfinitely cohesive if « is infinite.

Remark Despite the fact that we will prove that there is no regular space of transfinite cohesion, we
have given the definition in its full generality. This é%for two reasons. First, in proving this fact, we wish



to use certain lemmas which tell us about the structure of spaces with transfinite cohesion. Secondly,
there may yet be some interesting Hausdorff spaces of transfinite cohesion.

Clearly, cohesion will have a similar feel to the boundary properties of the previous chapter. However,
it is the inductive element of the definition which makes it very different in character as it forces the
nowhere dense subsets into a rigid hierarchy. Because of the close relation between the nowhere dense
subsets and the topology of a space, we are able to examine this hierarchy quite closely.

We now prove some basic properties of cohesion.
Proposition 3.1.2 If X is a space such that, for some ordinal a;, cohX < a andY C X then cohY < a.

Proof This follows immediately on noting that a nowhere dense subset of Y is a nowhere dense subset

of X.
O

Proposition 3.1.3 A non-empty space X is discrete if and only if cohX = 0.

Proof If X is discrete then every subset of X is open. This means that the only nowhere dense subset
of X is the empty set so from the definition it follows that cohX = 0.

If cohX = 0 then every nowhere dense subset has a cohesion of —1. Thus, no non-empty subset is nowhere
dense. Consider {z}. This is closed as X is T} but is not nowhere dense so contains a non-empty subset

open in X. This must be {z}. Hence every point of X is open and X is discrete.
O

Remark By inducting up a step, Proposition 3.1.3 implies that a space has cohesion 1 if and only if it
is boundary-discrete.

Proposition 3.1.4 If X is a space such that, for some ordinal a, cohX = « then, for all 8 < «, there
ezxists a closed nowhere dense subset Cg C X such that cohCz = 3.

Proof If a = —1 then there is literally nothing to prove! Assume the proposition has been proven for
all spaces X such that cohX = g where 8 < a.

Consider the case where a = v 4+ 1. If every nowhere dense subset of X has cohesion less than # then, by
definition, cohX < «. Since this is not the case it must be that there is a nowhere dense subset A of X
for which cohA = v. Define C,, = A so C, is nowhere dense in X. Hence cohC, < v and, since A C C,,
Proposition 3.1.2 implies that cohC, > cohA = 7. Therefore cohC, = 7.

Suppose 3 < a. If § = v then Cj is already defined. If § < « then by the inductive hypothesis there
exists a Cg C C,, closed and nowhere dense in C, such that cohCg = . But then Cj is also closed and
nowhere dense in X and the hypothesis holds for a.

Consider now the case where « is a limit ordinal. For every < «, there exist v < a and a nowhere
dense subset A, of X such that 8 < 7 and cohA, = v (otherwise cohX < f + 1). As before, taking
C = A,, C is closed and nowhere dense in X with v € cohC' < a. Then cohC > 3 and, by the inductive
hypothesis, there exists a C3 closed and nowhere dense in C, and hence in X, such that cohCs = §.

One other useful property is:

Proposition 3.1.5 If {Uy : X\ € A} is an open cover of X such that, for some n € w and for all X € A,
cohUy < n then X is cohesive and cohX < n.



Proof Suppose cohUy < —1 for all A € A, then each Uy, is empty but still form a cover of X so X must
be empty and cohX < —1.

Assume now that for any space X and some n € w the proposition holds and consider the case where
cohUy <n+1forall A € A.

Suppose A is nowhere dense in X. Take C = A whence C is nowhere dense and closed in X. Consider
C NU, for some XA € A. If C NU, is not nowhere dense in Uy, since C N U, is closed in U,, there exists
V e 7Uy such that V. C CNU,. But V € 7X as Uy, € 7X and V C C which means that C is not
nowhere dense in X - a contradiction. Therefore C' N Uy is nowhere dense in Uy and then, by definition
of cohesion, coh(C NUy) < n.

Taking Vi, = CNUy, {Va: A € A} is an open cover for C such that cohVy < n for all A € A. So by the

inductive hypothesis, cohC < n giving cohA < n and hence cohX < n + 1. -

From the remark after Proposition 3.1.3, we know that any boundary-discrete space has cohesion defined
on it. This gives us a source of spaces with cohesion 1 but it is informative to have some elementary
examples of spaces which have higher cohesion.

Examples 3.1.6 For each n € w, there exists C), C R such that cohC,, = n.

Proof Take C; C R to be C1 = {0} U{L : n € w)\ {0}}. This is clearly non-empty and not discrete.
By Propositions 1.2.7 and 1.2.8, the only possible non-empty, nowhere dense subset of Cy is {0} which
clearly has cohesion 0, therefore cohC; = 1.

Taking C; to be the base case, for each n € w inductively define scattered, closed subsets of Q, call them
C,,, such that cohC),, = n as follows:

1 1

Cn+1 ZCnU{k——l—...-Fk— 2 ki, kn+1 Ew\{O}, k‘i+1 > le(k/'l—l) for s = 1,...,’!7,}
1 n+1

This gives sequences of points which converge down to every point of C,. Hence C’gﬂ = C,, and since

C)y, is scattered so too is Cpy1. If A is nowhere dense in C),41 then, by Proposition 1.2.8, A C C), and

cohA < n. However, (), is nowhere dense in C),41, by Proposition 1.2.7, and cohC,, = n so by definition

of cohesion cohC)p 11 =n + 1. -

Since each of these spaces is a subset of Q this shows that if cohQ exists then it is transfinite. However,
we in fact have:

Theorem 3.1.7 cohQ is not defined.

Proof Suppose for contradiction that cohQ is defined. @Q is homeomorphic to Q x Q which contains
{0} x Q as a nowhere dense subset. Thus, by definition of cohesion, coh({0} x Q) < coh(Q x Q). But as

{0} x Q is also homeomorphic to Q this gives us our required contradiction. -

Remark This is actually a consequence of Theorem 3.2.1 but this proof is considerably shorter and
more elegant and I am grateful to the referee of an earlier form of this work for suggesting it.

3.2 Cohesion and scattered spaces

The last theorem of the previous section was basically shown by finding a nowhere dense subspace of Q
which was homeomorphic to Q. The result then followed directly from the definition of cohesion. This



is not in general possible but it is possible to find in certain spaces a subspace which contains a nowhere
dense homeomorph of itself. It then follows, as for QQ, that such spaces cannot have cohesion defined on
them.

The following theorem gives the details of how such subspaces can be constructed in a more general
context.

Theorem 3.2.1 If X is a Hausdorff, sequential, cohesive space then X is scattered.

Proof Suppose X is not scattered. This means that there exists an A C X which has no isolated points.
Define Y = A%, Y is a closed subset of X so is also Hausdorff and sequential. Moreover, by Corollary
1.2.2, Y is crowded. Thus, foreachy € Y, y € Y\ {y}y and hence Y \ {y} # Y\ {y}y or more simply
Y\ {y} is not closed in Y. Since Y is sequential, this implies that there exists a sequence in Y\ {y} which
converges to a point outside of Y\ {y}. There is only one possible point left in ¥ which this sequence
could converge to and this is y. Denote such a sequence by {y,}72, and since Y is Hausdorff we can
assume all elements of the sequence are distinct.

We need to separate the points of such sequences quite some way so we require the following;:

Fact For all n € w, there exists U,(y) C Y open in Y such that y, € U,(y), y & Un(y) and U,(y) N
U (y) = B whenever n, m € w and n # m.

This can be proved using only that Y is Hausdorff.

We now show how, for a given z € Y contained in some open set U, there exist sets I,(z,U) C U for
each n € w such that (I,,41(2,U))? = I,(2,U) , i (z,U) = {z} and for every z € I,,11(z,U) \ In(z,U),
there is a U, C X which is open in X with U, N I,41(z,U) = {2} and whenever z # 2/, U, NU, = .
These sets are equivalent to the C), in Examples 3.1.6.

Take Iy(z,U) = {2} and define U, = U. This trivially satisfies the conditions.

Suppose then that for some n € w, if i < n the set I;(z,U) and the corresponding U,’s are defined.
Consider a z € I,,(2,U) \ I,—1(z,U) (taking I_1(z,U) = 0). Take {2z} to be the sequence contained in
U, converging to z whose existence is demonstrated at the beginning of this proof. Define

Int1(z2,U) = I (2, U) U {2 : z € I,(z,U) \ I,_1(2,U) and k € w}

U., =U.NU(2)
where Uy (z) is defined by the Fact.

Suppose 2,z" € In(z,U) \ In—1(z,U). If z # 2’ then for all j,k € w, U;; NU.; CU.NU = (. And
if z = 2' then, for j,k € w with j # k, U,; NU.; C Uj(2) N Uk(2z) = @ by their definition. From this,
U, does not contain any 2} whenever either (j # k) or (z # z'). Moreover, from the Fact, 2 ¢ U, and
U,, N In+1 = {zr}. Thus the U,, are the open sets required in the definition of I, (z,U).

The U, also show that if z € I,41(2,U) \ I,(z,U) then z is an isolated point of I,+1(z,U). And if
z € I,, then by its definition there is a sequence in I,,+1 converging to z. These two statements together
give

(Int1(z,U))* = In(2,U)

from which it follows by part of the induction hypothesis that
(Int1 (2, U) " = {a}

Hence I, ;1 is scattered.
We now take
Z= U L (yn, Un(y))
new
If z € Z is isolated then, by the definition of the I, it cannot be the case that z € I, (yn, Un(y)) for
any n € w and so it must be that z is isolated in some TI,,(yn,Un(y)). In the opposite direction, if z is



isolated in I, (yn, Un(y)) for some n € w then {z} =V N I,,(yn, Un(y)) for some V open in Y. But then
{2} =Zn(VnUy(y)) as In(yn,Un(y)) C Un(y) and the U,(y) are pairwise disjoint. This means z is

isolated in Z. Hence we have
7%= U (In(yn: Un(y)))d

new

z% = U L(Yn+1, Unt1(y))
new
which is clearly homeomorphic to Z. It is not hard to see that Z is scattered (with sl(z) = w + 1) giving
that Z? is nowhere dense in Z.

But if X is cohesive then so too are Z% and Z. By the definition of cohesion, cohZ¢ < cohZ which is
impossible since Z% is homeomorphic to Z. Thus we have a contradiction.

Hence it must be the case that X is scattered.

In cohesive spaces which are scattered, we have two numbers attached to the space, the cohesion and the
scattered length. The next two theorems give the relation between them in scattered spaces.

Theorem 3.2.2 For X a scattered space and n € w, si(X) =n if and only if cohX =n — 1.

Proof Firstly suppose X is scattered with sl(X) = 0. Then X = X(®) =) and hence cohX = —1.

Assume for the purposes of induction that if sl(X) = n then cohX = n — 1 and consider a space X of
scattered length n+1. X7 is nowhere dense in X and clearly has scattered length n. Thus cohX? = n—1.

If C is a nowhere dense subset of X then, by Proposition 1.2.8, C C X?. By Proposition 3.1.2, this implies
that for every nowhere dense subset C of X, cohC' < n — 1. From the definition of cohesion, cohX < n.
However X? is a nowhere dense subset of X of cohesion n — 1. Hence cohX = n and induction gives the
implication in one direction.

To do the reverse implication, if cohX = —1 then X = ) and hence sl(X) = 0. Assume now that if
cohX = n — 1 then sl(X) = n. If X is a scattered space such that cohX = n, then X? is nowhere dense
in X and, since any nowhere dense subset of X is contained in X?, this gives cohX? = n — 1. But then
by the inductive hypothesis, sI(X¢) = n which clearly implies that sl(X) = n + 1. This completes the

induction and the proof.
O

Theorem 3.2.3 If X is scattered and cohesive then si(X) is finite.

Proof Suppose sl(X) = k and cohX = p for some ordinals £ , u where & is infinite. Define a function

fiw— uby
f(n) = coh(X™) for n € w

Since X(+1) = (X4 X+ is nowhere dense in X(™. Thus cohX ™+ < cohX (. But then
{f(n) : n € w} forms a strictly decreasing sequence in the ordinal u which contradicts the well-ordering

of p. Hence k cannot be infinite and we have sl(X) is finite.
O

Putting these last three results together we have the following:

Corollary 3.2.4 If X is a cohesive, sequential Hausdorff space then X is scattered and sl(X) = n for
some n € w. Moreover, cohX =n — 1.



3.3 Cohesion in non-scattered spaces

The results of the previous section fully characterise cohesion in scattered spaces. This, of course, leads us
to inquire into the behaviour of more general cohesive spaces. In order to get cohesion in non-scattered
spaces, we need look no further than the remark after Proposition 3.1.3 and consider our favourite
boundary-discrete crowded space - the nodec space of van Douwen. This is a crowded space of cohesion
1. We now produce examples with higher cohesion using the nodec space as a building block.

The examples are based on products. However, the nowhere dense subsets of products can be very
complicated and so we devise a different topology on a product which essentially adds only one new
nowhere dense set.

Theorem 3.3.1 If X and Y are topological spaces such that cohX = n, for somen € w, and Y is a
crowded boundary—discrete space then (X x Y, T) is a topological space such that

coh(X xY)=n+1

where T is the topology determined by the following basis:
fix some yo € Y and for (z,y) € X x Y, a basic open neighbourhood of (z,y) is of the form:

1. {2} x U when y # yo and where U € 7Y with yo ¢ U
2. U{{a} x Uy :a € V} when y = yo and where x € V € 7X and, for alla € V, yo € U, € TY

Proof It is not too hard to check that the definition given does indeed define a topology on X x Y.
First of all, we shall show that coh(X xY) >n+ 1.

The set X x {yo} is a subset of X x Y. It is closed since if (z,y) € X XY then y # yo and {z} x (Y \ {yo})
is an open neighbourhood of (z,y) which misses X x {yo}. Moreover, it is nowhere dense because any
open set, say V', about (z,yo) € X x Y contains {z} x U for some open neighbourhood U of yo. But yo
is not isolated so for some y € Y\ {yo}, (z,y) € {} x U C V. Thus, V cannot be a subset of X x {yo}.
Clearly, X x {yo} is homeomorphic to X so that coh(X x {yo}) = n and, by definition of cohesion,
coh(X xY)>n+ 1.

Secondly, we show that coh(X X Y) < n + 1 and then the proof is complete.

Suppose C is nowhere dense in X x Y. Since, for all z € X, {z} x (Y \ {yo}) is open in X x Y then
C, = Cn{z} x (Y \{yo})) is nowhere dense in {z} x (Y \ {yo}) and hence in {z} x Y. Clearly
coh({z} xY) =1 giving us that cohC, < 0, that is, C; is either empty or closed and discrete in {2} x Y.
(Note also that C, is open in C.) But then there exists an open neighbourhood U, of yo such that
{zx}xU,)NC, =0.

Take V = J,cx({#} x U;). By definition of 7, V is open in X x Y and by definition of the U,’s,
CnNV C X x {yo} so that coh(CNV) < n. But we now have that {CNV}U{C, : z € X} is an
open cover of C' such that each element of the cover has cohesion at most n. So by Proposition 3.1.5,

cohC < n. Hence, by definition of cohesion, coh(X xY) < n + 1.
O

We can now inductively construct our examples which, as they are all regular and countable have many
nice properties such as hereditary Lindel6fness and hereditary separability.

Examples 3.3.2 For all n € w \ {0}, there exists a space X,, which is countable, crowded, regular and
cohX,, = n.



Proof For n =1, take X; to be van Douwen’s nodec space. Assume that for some n € w, X,, has been
shown to exist. Now apply the previous theorem with X = X,,, Y also van Douwen’s nodec space and
yo some point of Y. Define X,,;1 to be this new space.

It is clear to see that X,,4; is countable and that cohX, ; = n + 1 by the previous result. That X,
is crowded follows since every open neighbourhood of a point (z,y) € X,, x Y contains a set of the form
{z} x U where U is an open neighbourhood of y in Y. But no y € Y is isolated so U contains some point
other than y and hence every neighbourhood of {x,y) contains some point other than (z,y).

We must show that X4 is also a Ti-space. Consider (z,y) € Xp41. Theset U = (X, \ {z}) xY is a
basic open set as X, is T1. Also V =Y \ {y} isopenin Y as Y is Ty.

Case (1): If y # yo of the last theorem then X,, 11 \ {{z,y)} = U{{a} x U, : a € X} where U, =Y for
a # z and U, = V. Hence the point (z,y) is closed.

Case (2): If y = yo then {z} x V is open in X,,;1 and then complement of (z,y) is U UV which is open
and hence (z,y) is closed.

It remains to show that X1 is regular. Suppose U is an open neighbourhood of (z,y) in X,,11. We
need to find an open set W C X,,;1 such that (z,y) € W C WX"+1 cU.

Case (1): If y # yo then U contains an open set of the form {z} x U’ for some U’ open in V. In
this case there exists a V C Y open such that y € V C VY C U'. It is not too hard to see that
e Xa XY — . .

{z} xV = {z} x V" andso W = {z} x V is our required open set.

Case (2): If y = yo, then U contains an open set of the form |J{{a} x U, : a € V} where V is an
open neighbourhood of = in X, and each U, is an open neighbourhood of yy in Y. Take G to be an
open set in X,, such that x € G C aXn C V and, for all a € ﬁxn, take an H, open in Y such that
yo € H, C EY C U,. Setting W = J{{a} x H, : a € G}, it is clear to see that W is an open
neighbourhood of (z,y) which is contained in the closed set |J{{a} x EY ta€ @X"} which is in turn
contained in U.

Hence X1 is regular and so by induction on the natural numbers the theorem is proven.

It would be ideal if this construction could be improved upon thereby allowing us to produce examples
of crowded spaces with all possible cohesions. However, the next theorem shows that we cannot do this
and keep regularity.

Theorem 3.3.3 There is no reqular, transfinitely cohesive space.

We actually demonstrate that there is no regular space of cohesion w. This suffices since Proposition 3.1.4
says that any regular space of transfinite cohesion contains a subset of cohesion w which is necessarily
regular.

The proof proceeds by demonstrating that if a space of cohesion w exists then it contains a nowhere dense
subset also of cohesion w. This contradicts the definition of cohesion. To construct this nowhere dense
subset, we need a couple of technical lemmas.

Lemma 3.3.4 Forn, m € w, if A, U C X and U is open with coh(A\ U) < n and cohU < m then
coh(AUU) <n+m+ 1.

Proof Induct on m for a given n. Assume m = —1 so U = {) and cohA < n. Hence coh(A U U) <
n+ —1+4+ 1 = n as required.



Thus suppose it has been proven for m = k and assume m = k + 1. If C' is nowhere dense in A U U then
C NU is nowhere dense in U as U is open in AUU. Thus, coh(CNU) < k. But also C\U C A\ U so
that coh(C' \ U) < n by Proposition 3.1.2.

Thus, taking C = X in the inductive hypothesis and noting that C N U is open in C, cohC' = coh((C \
U)u(CnNU)) <n+k+ 1. But this was for an arbitrary nowhere dense subset of AU U hence

coh(AuU)<n+k+2=n+(k+1)+1

By induction the lemma holds for all m.

Lemma 3.3.5 If X is reqular and cohX = w then for all n € w, there exist C CU € 17X such that C is
nowhere dense in X, cohC' =n and coh(X \U) = w.

Proof By Proposition 3.1.4, for X as in the statement of the lemma and some n € w, there exists A C X
which is closed and nowhere dense in X such that cohA = n. If there exists a U € 7X such that A CU
and coh(X \ U) = w then simply take C = A. Otherwise, assume that for all open sets U in X which
contain A, coh(X \ U) < w. Taking X \ U to be A in Lemma 3.3.4, if cohU < w then cohX < w. Hence
cohU = w for all such U. Define U to be the collection of all open sets containing A and index this set
by A.

Claim:

A:ﬂUT

AEA

Certainly A C (0,4 Ux so consider z ¢ A. By regularity, there exists a A € A such that A C Uy C Uy C
X \ {z}. But then z ¢ U, and moreover z & (], Ur. Hence [,c, Ux C A and we have our claim.

Suppose now that, for all A € A and some M € w,coh(X \ U)) < M.

The set {X \ Uy : A € A} is an open cover for X \ A by the Claim. Thus, by Proposition 3.1.5,
coh(X \ A) < M. But we now have that cohA =n, coh(X \ A) < M and X \ 4 is open in X. Hence, by
Lemma 3.3.4, coh((X \ A)UA) < M +n+1 or in other words, cohX < w which is a contradiction.

Therefore, for the given n, there exists A € A such that cohﬁ( \ U») > n + 1. By Proposition 3.1.4, take
C to be a subset of X \ Uy which is nowhere dense in X \ Uy and for which cohC' = n. This gives that

ACUNCUNCX\C
Define U = X \ Uy so that C C U, cohC = n and w > coh(X \ U) = cohUy > cohUy, = w. C is also

nowhere dense in X and hence C and U are the sets which satisfy the lemma.
O

This last lemma allows us to find nowhere dense subsets of a space of cohesion w of each finite cohesion,
which are sufficiently well separated so that their union is still nowhere dense. But then, this nowhere
dense subset has cohesion w and this is the set we require for the contradiction. The details are as follows:

Proof of Theorem 3.3.3 Suppose X is a regular space of cohesion w. First of all we construct nowhere
dense subsets of X of each finite cohesion in a particularly nice way. By Lemma 3.3.5, we can find
Co, Uy C X where Cy is nowhere dense in X, cohCy = 0, Uy is open in X, Cy C Up and coh(X \ Up) = w.

We now define inductively Cy, U, C X such that:

1. C} is nowhere dense in X
2. cohCy = k

3. Uy, is open with C}, C Uy,



4. coh(X \U) =w
d. UigUi_Hfori=0,1,2,...,k—1
6. Oi+1gX\UifOTiZO,l,Q,...,k—l

Assume that, for ¢ < n, C; and U; have been defined satisfying the inductive assumptions. Define
Cnt1,V C X\ U, by applying Lemma 3.3.5, so that C,,11 is nowhere dense subset of X \ U, and hence
of X, contained in the set V open in X \ U, such that cohCp11 =n + 1 and coh((X \ U,) \ V) = w.

Take V' to be a set open in X such that V =V'N(X \ U,). Take U,41 = V' UU,. It is easy to see from
their definitions that C),41 and U, satisfy all the inductive conditions for ¥ = n + 1 except possibly
(4). But note
X\Unp1 =X\ (V'UU) = (X\U)\V' = (X \Un)\V
Therefore,
coh(X \ Upt1) = coh((X \Up)\V) =w

Thus Cp41 and U, 41 are sets satisfying all of the inductive conditions for £ = n 4+ 1 and this completes
the induction.

Define C = |J;_, Cp. Clearly cohC > cohC), for all n € w and C C X so cohC = w.

It remains to show that C' is nowhere dense in X and we have our contradiction. Suppose not then there
is an open set U of X such that U C C. Thus UNC # () and therefore, for some n € w, UNC,, # 0. Since
Cyn CU,, V=UNU, is a non-empty open set in X. Moreover, for alli >n+1, C;11 C X\U; C X\U,
by (5) and (6) of the inductive assumptions. Thus U,NCiy1 = @ for alli > n. That is, U,NU;2,,, Ci =0
and therefore, we have ()

U, N G Ci=10
i=n+1

Now U C C hence V C C or, in other words,

VCCoUC,U...UC,U U C;

i=n-+1

But then () implies

VCCulCiU...ug,

This means that the closure of the union of the first n of the C contains a non-empty open set and hence
the union of the first n of the C}, is not nowhere dense. This contradicts the fact that a finite union of
nowhere dense sets is nowhere dense.

Thus C' must be nowhere dense in X and we can conclude that there is no regular space of transfinite

cohesion.
O

Given this result, we may now feel justified in upgrading Lemma 3.3.4 to give a theorem very much like
a sum theorem in dimension theory.

Theorem 3.3.6 If A and B are subsets of some space X, at least one of which is closed, such that
cohA < n, cohB <m and AUB = X then cohX <n+m+ 1.

3.4 The cohesion of compacta

In the previous chapter, it was shown that in the presence of compactness boundary properties are well-
behaved and manageable. The same is true of cohesion. Arhangel’skii asked whether every compact



cohesive space is scattered and we provide here a positive answer. As the first stage in proving this, we
have:

Lemma 3.4.1 There is no compact crowded space of cohesion 1.

Proof Suppose X is compact, crowded and cohX = 1. If C C X is closed and nowhere dense then
C is compact and discrete therefore finite. However, X is crowded and Hausdorff so it is easy to find a
countably infinite cellular family ¢/. Choose for each U € U, a point xzy of U. {zy : U € U} is infinite
and nowhere dense, by Proposition 1.2.5. Thus {zy : U € U} is finite which is contradictory. Thus there

is no such X.
O

Applying Theorem 2.5.4 and using the previous Lemma as a base step, we inductively show:
Proposition 3.4.2 FEvery cohesive compactum is scattered.

Proof By Theorem 3.3.3, we need only prove that every finitely cohesive compactum is scattered. By
Lemma 3.4.1, when cohX =1, X is scattered.

Assume that, for k¥ € w, if X is a compact space such that cohX < k then X is scattered. Consider a
compactum X for which cohX =k + 1. If C C X is closed and nowhere dense then C' is compact and
cohC < k. By the inductive hypothesis, C is scattered. Therefore, X is a compact boundary-scattered

space and, by Corollary 2.5.4, X is itself scattered. This completes the induction and the proof.
O

Given this result, it is natural to ask how cohesion behaves in the presence of other covering properties.
Examples 3.3.2 demonstrate that the Lindelof property does not induce scatteredness. Generalising in a
different direction, it is natural to consider local compactness. Using the Alexandroff compactification,
this can be promoted to compactness and cohesion still behaves well as the following proposition shows.
Because locally compact Hausdorff spaces are regular, we still only consider finitely cohesive spaces.

Proposition 3.4.3 If X is a locally compact Hausdorff space with cohX < n, for somen € w, and X*
denotes the one-point compactification of X then cohX™* < n + 1.

Proof For a space X define X* = X U {Q} for some Q ¢ X and a topology on X* by
X =1 XU{(X\F)U{Q}: FCX and F is compact}

It is well-known that if X is T5 and is locally compact then X* is compact with the given topology.
Moreover, if X is not compact then X is embedded as a dense subset in X*.

Assume that it has been shown for all locally compact Hausdorff spaces X with cohX < m where m < n
that cohX* < m + 1. Consider a locally compact Hausdorff space X such that cohX = n. (In the cases
where cohX < n the theorem follows by the induction hypothesis.)

Suppose C' C X* is nowhere dense in X*. Then D = 6X is also nowhere dense in X*. Define B = DNX.
As D is closed in X* so B is closed in X. If there is a non-empty set U € 7X such that U C B then
U € 7X* and U C D which contradicts the fact that D is nowhere dense. Hence B is nowhere dense in
X and cohB = m for some m < n.

IfQ ¢ D then C CD=BC X and, by Theorem 3.1.2, cohC < m < n.

Thus suppose Q2 € C. As B is closed in X, it is T and locally compact. It is not too difficult to see that
7B*, the topology on B*(= D) coincides with the topology induced on D by 7X*.



If B is not compact then D is the one-point compactification of B and hence by the inductive hypothesis,
as cohB < m < n then cohD < m + 1 < n. If B is compact then from the definition of 7B* it is clear
that € is an isolated point of D. But then any nowhere dense subset of D must not contain 2 and hence
is a nowhere dense subset of B. Since cohB = m, the cohesion of any such subset is strictly less than m.
This means that cohD < m < n.

Hence overall cohD < n and C C D so cohC' < n. But then from the definition of cohesion it follows

that cohX™* < n +1.
O

This immediately gives:
Corollary 3.4.4 FEvery locally compact cohesive space is scattered.

Proof Suppose X is a locally compact cohesive space. By the previous result, the one-point compacti-
fication of X, X*, is also cohesive. Proposition 3.4.2 implies that X* is scattered and, as the subset of a

scattered space, X is scattered.
O

3.5 Preserving cohesion

We have already seen a few methods for constructing cohesive spaces. These however are not amongst the
more commonly used techniques for building topological spaces. We therefore examine in this section the
behaviour of cohesion under the more familiar constructions of taking continuous images and products.

It is immediately clear that cohesion is not preserved under arbitrary continuous mappings.

Examples 3.5.1 Let f: w — © be a denumeration of van Douwen’s nodec space, then f is a continuous
bijection. However, cohw = 0 and coh® = 1; so, continuous maps in general do not lower cohesion.

Moreover, if g : w = Q is a denumeration of the rationals, then it is a continuous bijection with domain
having cohesion 0 but for which the image is not even cohesive!
O

In order to maintain cohesion under continuous maps, it is necessary to ensure that the nowhere dense
subsets of the image are related to the nowhere dense subsets of the domain. This can be done by
constraining in some way the behaviour of the images of the open sets under the mapping. Both open
maps and perfect maps will do this and it transpires that they also constrain the behaviour of cohesion
in the process.

Theorem 3.5.2 If f : X = Y is an open, continuous surjection and cohX < «, for some ordinal a,
then cohY < a.

Proof The proof is by transfinite induction.
If cohX = —1 then X is empty and f is surjective so it must be that Y is empty and hence cohY = —1.

Thus assume that the theorem holds for all ordinals # < « and that cohX = «a. Consider C C Y
which is nowhere dense in Y. If f~!(C) is not nowhere dense in X then there exists U € 7X such that
U C f~1(C). But f is continuous so f~1(C) C f~1(C). Hence U C f~1(C) and f(U) C C. But f is
open so f(U) is open and non-empty in Y giving intyﬁy # (), contradicting the fact that C' is nowhere
dense.




Therefore f~!(C) is nowhere dense in X and cohf*(C) < a. Define g = f [;-1(¢) so that g : f1(C) —
C is a continuous surjection. If V C f~1(C) is open in f~1(C) then V = U N f~1(C) for some U open
in X. However,

g(V) = fUNfHC) = FU)NF(F7H(C) = fU)NC
and f(U) is open in Y so g(V) is open in C.

Now, from the inductive hypothesis, cohC' < . But this is for an arbitrary nowhere dense subset of Y

hence cohY < a.
O

Theorem 3.5.3 If f : X — Y is perfect and cohX < a, for some ordinal c, then cohY < a.

Proof Assume for the purposes of induction that, for all ordinals 8 < a, the theorem is true and consider
X such that cohX = a.

Take A C X and g = f |a: A = Y as given in Proposition 1.2.10. If C' is a nowhere dense subset of Y so
toois D =C" . If g~ 1(D) is not nowhere dense in A then there exists a non-empty open set U C A such

that U C g~ 1(D)(= g*l(D)X as D is closed and g is continuous). However, by Proposition 1.2.9, ¢*(U)
is non-empty and open in Y since g is closed and irreducible. Also ¢g*(U) C ¢g(U) C D which contradicts
the fact that D is nowhere dense in Y. Therefore g~'(D) is nowhere dense in X and hence, for some
B < a, coh(g~H(D)) < B < a.

Define h = g |,-1(py: g~ (D) = D. h is clearly a continuous surjection. As g~ (D) is closed it follows
that h is perfect. Hence by the induction hypothesis cohD < < a. Since C' C D, by Theorem 3.1.2,

cohC < a. C was an arbitrary nowhere dense subset of Y so this implies cohY < a.
O

Preserving cohesion in products of cohesive spaces is quite complex as the nowhere dense subsets of a
product need have almost no relationship with the nowhere dense subsets of the factor spaces. This is
clearly demonstrated in the next result.

Theorem 3.5.4 If O is a crowded, boundary-discrete space refining the rationals then ©2 is not cohesive.

Proof Assume for contradiction that ©2 is cohesive and hence we are able to discuss the cohesion of its
subsets. If © is regular, it suffices to show that coh®? > w in order to obtain a contradiction. However,
we will actually obtain a contradiction in the more general case but we must work a little harder to do
this.

Throughout the proof, Q is the rationals with the usual topology. d is the usual metric on Q. © is
the same underlying set but with the finer nodec topology. Thus, all subsets of ©2 have the subspace
topology induced by the nodec topology of © and the usual Tychonoff topology of products.

The first step is to construct inside ©2 subsets C}, for each k € w where cohCy, > k. These subsets are
built up inductively from each other, however it is useful to be able to place them precisely where they
are needed. This is gives rise to the following inductive hypotheses:

Fix k € w, for every pair of open intervals U and V in Q and y € V, there exist C;(U,V,y) CU x V, for
1=1,2,...,k, such that
L Ci(U,V,y) =U x {y}
2. C;(U,V,y)isclosedin U x V fori=1,2,...,k
)

w

C;(U,V,y) is a nowhere dense subset of Ciy1(U,V,y) for i =1,2,... k-1

o~

. Cr(U,V,y) is nowhere dense in U x V



5. k < cohCr(U,V,y) <2k —1

For all open intervals U and V in Q and any point y € V, when k = 1 simply take (1) as the definition
of Ol(U, V, y).

Assuming we have found such C;’s for i = 1,2,...,k, we shall now construct the C41’s. In order to
simplify the construction, we shall only construct Ci41(U,V,y) in the case U = V = 0 and, moreover,
we shall take C; = {0} x ©. It is easy to see how to re-phrase this in order to produce Cj1’s satisfying
the inductive hypotheses.

Define U,, = (n_—\/l2, n+/2)’ a clopen interval in Q, for each n € w\ {0} and Uy = Q. As O refines Q, U, is
clopen in © for all n € w. Now denumerate © = {y, : n € w} and for each n € w, separate the first n
points of © by V,,;, clopen intervals in Q, such that y; € V,,; and V,,; NV, =@ for i, j =1,2,...,n and

i # j. Finally, define C; = {0} x © and, for j =2,...,k+ 1,

C]' = 01 U U U Cj_1(Un \ Un+1,Vm',yz')

new i=1

For j=1,2,..., k, C; C Cj41 by (3) of the inductive hypothesis.

3 3

C) is defined to have the form of (1) in the inductive hypothesis and is clearly closed in ©2.

For j € {2,....k+ 1} and (z,y) & C;, as ¢ # 0, there exists n € w such that € U, \ Up41. Consider
the two cases: when for some i < n, (z,y) € (Up \ Unt1) X Vi and when there are no such n and i. In
the first case, (z,y) & Cj—1(Uyn \ Un+1, Vi, yi) but this is closed in (Uy, \ Up41) X Vp; so there exists W
open in (U, \ Upy1) X Vi containing (z,y) for which W N Cj_1(Up \ Up+1, Vai,yi) = 0. But then W is
open in ©? and, since (U, \ Un41) X Vi) N ((Up \ Umnt1) X Vinj) = 0 whenever either m # n or i # j,
we have that W NC; = (. In the second case, U?zl Vi is closed as the finite union of closed sets so there

exists W € 70 for which y € W and W N {J;_, Vs = 0. This means that (z,y) € (U, \ Upt1) x W and
((Unp \ Up41) x W)N C; = 0. Hence, C; must be closed.

to show that if U, V € 7@ and (U x V)N C; # 0 then (U x V)N (Cj4+1 \ C;) # 0. Consider first U and
V € 10 for which (U x V)N C; # §. Choose an n € w such that (0,y,) € U x V. U is a neighbourhood
of 0 as is U, and 0 is not an isolated point of © hence there exists z € (U NU,) \ {0}. This implies that
(z,yn) € (U x V)N (Cy\ C1) and C; is nowhere dense in Cs.

In order to show that C; is nowhere dense in Cj41 for j =1,2,..., k, since the C; are closed, it is enough

For some j € {2,...,k}, assume that U, V € 70O are such that U x V meets C;. It has already
been shown that (U x V) N (Cy \ C1) # 0 which means that there are suitable i and n € w for which
(U X V) N Cl(Un \ Un,l,Vm',yi) # 0. Cy (Un \ Un_1, Vm,yi) - Cj—l(Un \ Un_1, Vm,yi) so U x V must
meet Cj_1(Up \ Un—1, Vni, ¥;). By the inductive hypothesis, C;j_1 (Up \ Un—1, Vni, y;) is nowhere dense in

Cy(Un \ Un—l: Vm yi)- Thus:
(U x V)N (Cj(Un \ Un—1,Vni, yi) \ Cj—1(Un \ Un—1,Vai,yi)) # 0
From the definition of C; it follows that (U x V)N (Cj+1 \ C;) # 0 and C; is nowhere dense in Cj;.

Showing that Cjyq is nowhere dense in ©2 can be done in a way similar to that used to show Cj is
nowhere dense in Cj;; but the following is a little more slick. Suppose U, V € 1O are such that
(U xV)NnCy # 0. Define d2(U) = sup{d(z,z') : =, ' € U} if the supremum exists and d(U) = 1
otherwise. V is infinite so there exists n € w for which y,, € V and L < 9(U). Thus there exists
x e U\U, and (z,yn) € (U x V) \ Cry1. If (U x V)N Cry1 # 0 but does not meet C; then for some n
and i € w, (U X V)NCr(Un \ Unt1, Vai,yi) # 0. That U x V does not lie in Cy1 now follows from the
inductive hypothesis that Cy (U, \ Upt1, Vai, yi) is nowhere dense in U,, x Vy;.

It remains to check the cohesion of Cj4;1. Since the C;’s form a chain of sets nowhere dense in their
successors and cohCy = 1, a simple induction shows that cohCy > k. Moreover, Ci1 N ((Up \ Upt1) X
Vi) = Ck(Up \ Unt1, Vai,ys) for n, i € w, hence

{Ck(Un\Un+1Vnzyz) nEw, 1= 1,2,...,”}



is a cover of Cg4+1\ Cy by sets open in Cj41. Proposition 3.1.5 and (5) of the inductive hypothesis together
imply that coh(Cg+1 \ C1) < 2k — 1. By Theorem 3.3.6, cohCj+1 < cohCy 4 coh(Cr41 \ C1) + 1, that is
cohCyi1 <14 (2k—1)+1=2(k+ 1) — 1. This completes the inductive construction.

Remark Thus far, we have found in ©? subsets whose cohesions are finite but unbounded in w so
coh®? > w. If © were regular we could stop here. However, by carefully placing the C} we can achieve
the required contradiction without assuming regularity.

For each n € w, define W,, = (ﬁ ﬁ + %) a clopen interval in Q and hence clopen in ©. Choose y,, to
be some fixed point in W,,. Now define

C={J Cu(®,Wn,yn)

new

As the W, are a closed discrete family in Q, they are a closed discrete family in © and hence {© x W, :
n € w} is a closed discrete family in ©2. This implies that C,,(©, W,,,y,) are a closed discrete family in
©2 and C is closed in ©. Moreover, the C,,(©,W,,,y,) are subsets of C' whose cohesions are unbounded
in w hence cohC > w. By Proposition 3.1.4, find D C C which is closed and has cohesion precisely w.

{DNCr(O,Wy,yn) : n € w} form an open cover of D because DN (© x W,,) = DN C,(0,W,,y,) and
O x W, € 702 for all n € w. Also, the elements of the cover are finitely cohesive. This means that
{coh(D N C,(©,Wy,yn)) : n € w} is unbounded in w otherwise Proposition 3.1.5 gives that cohD < w.
Thus, for all k¥ € w, there exists ny > k for which D N Cy, (0, Wy, ,yn,) > k and, again applying
Proposition 3.1.4, find Ej, which is closed and nowhere dense in D N C),, (0, Wy, ,yn,) and for which
cohEy > k.

Define E = J,.,, Ex. As a discrete union of closed sets (in the same way that D is), E is closed. Suppose
E were not nowhere dense then for some U, V € 70, (U x V)N D C E where (U x V)N E is non-empty.
But this implies that for some &k € w, (U x V) N Cy, (0, Wy, , yn,) # 0 and

(U X V) n an(®7Wnk3ynk) c Emcnk(eaWnk:ynk) = Ej

In other words, Ej, is not nowhere dense in C, (0, Wy, ,yn, ). This is a contradiction on the definition
of Ej. Hence E is nowhere dense in D which implies that cohE < w.

From the definition of the E}’s, {cohE} : k € w} is an unbounded set in w and, therefore, cohE > w.

Thus, we have our contradiction and ©2 is not cohesive. -

Remark The () generated in the above proof are finitely cohesive by the inductive assumption and
they are clearly crowded. They do not, however, supercede Examples 3.3.2 as we cannot guarantee that,
for all n € w, there exists a k € w for which cohC} = n as we can for the previous examples.

However, when one of the factors is scattered, the nowhere dense subsets can be specified more precisely
than in general. Thus, we have:

Proposition 3.5.5 If X andY are finitely cohesive spaces for which 'Y is scattered then X XY is cohesive
and coh(X xY) < (cohX + 1)(cohY) + cohX .

Proof We induct on the cohesion of Y and, we assume that Y is finitely cohesive so the induction is
only of length w.

First, consider the case when cohY = 0 so that Y is discrete. Clearly, {X x {y} : y € Y} is an open cover
of X xY every member of which has the same cohesion as X. Thus, by Proposition 3.1.5,

coh(X xY) < cohX = (cohX + 1)(cohY’) + cohX

Suppose now that, for n € w, if cohY < n then X x Y is cohesive and coh(X xY) = (cohX +1)(cohY) +
cohX and assume that cohY = n+1. Divide X x Y into A = X x (Y \Y?) and B = X x Y. B is clearly



a closed subset of X x Y. Since sl(Y'?) = sl(Y) — 1, Theorem 3.2.2 implies that cohY? = n. Applying the
inductive hypothesis, cohB < (cohX + 1)n + cohX and by the base step case cohA = cohX. Proposition
3.3.6 then gives

coh(X x Y) < cohX + ((cohX + 1)n + cohX) + 1

from which it follows that coh(X xY) < (cohX +1)(n+1)4cohX. This proves the case when cohY = n+1

and completes the induction.
O

By considering the case when X and Y are both scattered cohesive spaces, it can be seen that the bound
given in Proposition 3.5.5 is optimal. This follows by noting that sl(X x V) =sl(X) - sl(Y) and then, by
Theorem 3.2.2, this means that coh(X x Y) 4+ 1 = (cohX + 1)(cohY + 1). Simplifying this expression,
we find that X x Y attains the bound on its cohesion.

3.6 Absolute dimension

Arhangel’skii defined absolute dimension as a tool by which to examine spaces which are cleavable over
the reals.

Definition 3.6.1 [A,] The absolute dimension of a space X, denoted adimX is defined inductively to
be:
adimX = —1 if and only if X = ()

adimX = 0 if and only if indX =0
for n € w\ {0}, adimX <n if for every nowhere dense subset C of X, adimC < n

For a space X, adimX = n means that adimX < n but for any k¥ € w such that k& < n it is not true that
adimX < k.

Arhangel’skii went on from this definition to show that a space which is cleavable over the reals has an
absolute dimension of at most one. For our purposes it is sufficient to know that every subset of R is
cleavable over the reals. It is straightforward to see that for a space X, if adimX = n for some n€w,
then, for every A C X, adimA < n holds.

The definition of cohesion is based on that of absolute dimension. So, it will come as no surprise
that absolute dimension has rather different properties from the usual inductive dimension functions. In
particular, absolute dimension does not agree with these functions on compact metric spaces. If I denotes
the closed unit interval of R, then we have:

Theorem 3.6.2 adimI? is not defined.

Proof Suppose adimI? is defined. We shall construct nowhere dense subsets C,, of I? for each n€w such
that adimC,, > n. The definition of adim then gives that adimI? > n + 1, for all n € w, which obviously
contradicts the fact that adimI? is defined.

Trivially Co = {(0,0)} satisfies the case when n = 0. Take C; = I x {0}. C} is cleavable over the reals
as it is embeddable in the real line and it is not empty or zero-dimensional so adimC, = 1. Clearly Cy
is closed and contains no open set in I? hence C; is nowhere dense in I2.

Define C = I x ({0} U{X :n € wand n > 2}). This gives a sequence of lines converging down to C.
As a product of two closed subsets of I, Cs is closed in I? and clearly it cannot contain any open subset
of I? so Cy is nowhere dense in I2. Any open set, U, in Cy about a point (x,0) € I x {0} contains an
open ball of radius ¢, for some € > 0, so for all n € w such that % <e, (z, %) € U. Thus C} contains no



non-empty open subset of Cs and is closed in Cy so C; is nowhere dense in C5. But adim(C; = 1 hence
adimCy > 2. (adimCsy exists because of the assumption that adimI? exists.)

In general given Cj and noting that ﬁ — % = m, define Cyy1 = Cy, U{nL1 +...+ nl—k ing > 2,n41 >
2n;(n; — 1) fori =1,...,k — 1}. As before this gives a sequence of lines converging down to each line in

Ci. It can be seen that Cj; is closed and nowhere dense in I? (as a countable collection of horizontal
lines, C 11 cannot contain a non-empty open subset of I?). As for C; in Cy, Cy is nowhere dense in Cj1
and hence adimCry1 > k + 1.

Therefore, for all n € w, there is a C,, C I? such that adimC,, > n which are the sets prophesied at the

beginning of the proof and we are done.
O

3.7 Summary and questions

One of the important features of cohesion is its relationship to scattered spaces. The second section of
the chapter shows that cohesive sequential spaces are scattered and the fourth that compact or even
locally compact cohesive spaces are also scattered. Moreover, cohesive spaces which are scattered are
only finitely cohesive as was seen in the second section. Whilst there are examples of crowded, finitely
cohesive spaces which are regular and countable (and hence very well-behaved), it is also remarkable that
there are no regular, transfinitely cohesive spaces. This raises the natural question:

Question 3.1 Is there a transfinitely cohesive (Hausdorff) space?

Such an example must not be regular, scattered or sequential and so may be quite a curiosity.

In the fifth section, it was seen that, provided one of the factors in a product is scattered a product of
two cohesive spaces is cohesive and a bound for the cohesion of the product can be found. However,
when both factors are crowded, the situation changes drastically and the square of a nodec space refining
the rationals is not cohesive at all. Also, though not in general preserved by continuous maps, cohesion
is preserved by open and perfect maps as they strongly control the behaviour of open sets under the
mapping. It would therefore be interesting to find if other maps also preserve cohesion. For instance:

Question 3.2 Is cohesion preserved under closed maps? quotient maps?

The last theorem of the chapter proves that absolute dimension is not defined on the unit square. One
of the important aspects of this result is that it uses techniques which were applied to cohesion. This
demonstrates that varying the base case of cohesion might give useful notions (such as absolute dimension)
but beyond the base case, the structure is very similar to that of cohesive spaces. Thus, minor alterations
to the proofs and examples of the chapter would give corresponding results on any such variant.



Chapter 4

On compact monotonically normal
spaces

Nikiel [N1] has obtained a number of characterisations of arctic spaces and CICLOTS. However, these
seem to bear little relation to the monotone normality structure of CICLOTS. Indeed, all that is known
is that CICLOTS must be acyclic monotonically normal as LOTS are acyclic monotonically normal and
this is preserved under closed maps. The Collins-Roscoe structuring mechanism, since its inception [CR],
has been a powerful tool in the field of generalised metric spaces; in particular, in spaces related to
monotonically normal spaces. The aim of this chapter is to analyse ordered spaces with respect to the
structuring mechanism in order to find a structuring mechanism on CICLOTS which is as strong as
possible. We hope that this will provide new insight into Nikiel’s question.

The first section of this chapter defines the Collins-Roscoe structuring mechanism and gives a flavour
of its strength and diversity by reviewing some key theorems. In the second section, we introduce the
new property, linear chain (F), and show that it is held by all CICLOTS and all proto-metrizable spaces.
We also observe that utter normality, which has recently been defined by Junnila, is implied by linear
chain (F) and we extend Junnila’s results. Finally, we summarise the chapter and raise some relevant
questions.

4.1 The structuring mechanism and generalised metric spaces

Collins defined the structuring mechanism in order to abstract precisely the conditions used to show that
separable metric spaces are second countable. He called his original condition (A) and, in [CR], (A) is
shown to be equivalent to metrizability. There are many generalisations of (A) and the most general,
in keeping with the notation of [CR], is called (F). A space X is said to satisfy condition (F) (or, more
simply, is (F)) whenever there are an operator V : X x 7X — 7X and, for every x € X, families W(z)
of subsets of X each containing = such that:

(F) forallz € X and U € 7X such that z € U, if y € V(x,U) then there exists
W € W(y) such that z € W C U

(F) is so general that any space satisfies it! To see this, simply take W(y) = {{z,y} : x € X} and

V(xz,U) = U. The strength of (F) comes only when further constraints are imposed on the W(z)’s.

There are three sorts of constraints: W(z) has a specified cardinality; 0V (z), D) has a specified order

structure, for example, being well-ordered; every W € W(z) is of a certain type, for example, open.

When the W(z) are taken to be countable, this is a special case of the structuring mechanism called

(G) [CR]. If also each W(z) = {W,, : n € w} and, for all n € w, W, 11 C W, then the W(x) are said
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to be decreasing. The syntax of these conditions is: (ordering property of WV (x), D)) (property of each
W e W(x)) (F) or (G).

The structuring mechanism has been extensively studied, see for instance [CR], [CRRR], [MRRC] and
[Sto] for some of the many important results in this area. We give here a sample of these results.

In the same spirit which gave rise to (A), we have:
Theorem 4.1.1 [CRRR] If X is separable and open (G) then X is second countable.

It is well known that X being open (@) is implied by X having a point countable base and that in many
circumstances the converse holds, see [MRRC]. However, the following question remains open:

Question 4.1 If X is open (G), does it have a point countable base?

If open (G) is strengthened to be decreasing as well, we obtain an unusual metrization theorem:
Theorem 4.1.2 [CRRR] A space is decreasing open (G) if and only if it is metrizable.

Even without open-ness, decreasing (G) is an important condition:

Theorem 4.1.3 [Sto] If a space is decreasing (G) then it has the Dugundji extension property.

Despite the triviality of unrestricted (F), the addition of any constraints immediately gives useful notions.

Theorem 4.1.4 [CRRR] If X is chain neighbourhood (F) or well-ordered (F) then X is hereditarily
paracompact.

In fact, chain (F) on its own implies acyclic monotone normality as the V' operator in chain (F) is also
an acyclic monotone normality operator. More surprisingly, the converse holds:

Theorem 4.1.5 [MRRC] A space is chain (F) if and only if it is acyclic monotonically normal.

A full discussion of the properties of chain (F) spaces is given in [MR]. It was also remarked there that the
monotone normality operator defined in [HLZ] for GO-spaces is actually an acyclic monotone normality
operator. Hence GO-spaces are chain (F). It is precisely this statement which provoked the next section.

4.2 The linear chain (F) condition

In the proof that a LOTS is (acyclic) monotonically normal, the Axiom of Choice is used to well-order
the LOTS in question. In showing that acyclic monotone normality implies chain (F), Choice is again
invoked, this time to extend a partial order induced by an acyclic monotone normality operator up to a
total order. It is by combining these two instances of choice in showing that a LOTS is chain (F) that a
much stronger version of chain (F) is defined. We call the new property linear chain (F) as it is derived
from considering lines.

Definition 4.2.1 For a space X with an operator V : X x 7X — 7X and, for each x € X, a family
W(x), X is linear chain (F) if the V and W’s satisfy chain (F) in such a way that, for some z € U € 7X,
y € V(z,U), the W € W(y) given by (F) also satisfies:



l.zeW CV(x,U)
2. x €intW for z # y

Remarks In regular spaces, a simple argument shows that, for given x € U € 7X, V(z,U) can be
assumed to be contained in U. Thus, when checking that linear chain (F) holds in a regular space, it is
sufficient to check condition (1) only as it then implies condition (F). For the remainder of this section,
the notation of Definition 4.2.1 will be standard and, in any linear chain (F) space, V will be assumed to
satisfy this regularity condition.

We now show that every ordered space is indeed linear chain (F). Because of the similarities with the
proof that an acyclic monotonically normal space is chain (F), we try to follow as closely as possible the
notation of [MRRC].

Theorem 4.2.2 Every GO-space is linear chain (F).

Proof Take (X, <) to be a GO-space. Applying the Axiom of Choice, well-order X and denote the
well-ordering by <. Any intervals are assumed to be the usual intervals in the natural GO-space ordering
<. However, for Y C X, minY denotes the least element of Y with respect to the well-ordering <.

For each a € X, a further order is defined on X. This is used to construct the WW(a) and hence guarantee
that it is a chain. The order is given by:

a < min[z,y] forz <y

x <y y if and only if z # y and { o> minfy,z] forz >y

We need to check that this is indeed a total order on X, that is, an irreflexive, transitive relation with
respect to which any pair of elements from X are comparable.

The irreflexivity of <, follows immediately from its definition.
For transitivity, suppose z, y, z € X and that (%)
<,y and y <, 2z
We must show that z <, z. There are six cases to consider:
1. 2 < y < z. Then (x) means that ¢ < min[z,y] and that a < minfy,z]. Clearly, min[z, z] =
min{min[z, y], min[y, z]} which implies that ¢ < min[z, z]. That is, z <, 2.

2. # < z < y. In this case, (x) means that a < min[z,y] and a > minfz,y]. But a > min[z,y] >
min[z, y] > a which is impossible. So this case does not occur.

3. y < z < z. Then (x) means that a < min[y, z]. Either min[y, 2] = min[y, 2] or min[z, z] and hence
a < min[z, z]. That is, z <, 2.

4. y < z < x. This cannot happen for the same reasons as the second case.

5. z < & <y. Then (%) means that ¢ > min[z, y] but min[z, 2] < min[z, y]. Hence, a > min[z, z], that
is, £ g4 2.

6. z <y <z <, 2 follows similarly to the first case.
For totality, consider z, y € X. If z < y and & A,y then a € min[z,y] so since < is a total order, it

must be that ¢ > min[z,y] and thus y <, . Similarly, if z > y and z &,y then y <, z. Hence, any two
distinct elements of X are always comparable and <, is a total order.



Now define S,(z) = {y € X : y <, z} U {z}. Explicitly,
So(z) ={y < z:a <minfy,z]} U{z} U{y >z : a > min[z,y]}

{y < z:a < minfy,z]} U {z} and [a,z]

= Sa(z) C (+,2]. And if a > =z,
x : a > minfz,y]} giving that [z,a] C S,(x)

So if a < z, Su(x)
y > [,—). In both cases, S,(z) is a

Sa(z) = {z} U{

convex set.

c
C

Let W(a) = {Su(x) : € X}. Given any z, y € X, either z <, y or y <, = and so either S,(z) C S,(y)
or S,(y) C S,(z) correspondingly. Since containment is preserved when taking closures, W(a) is a chain
of closed sets. Also, obviously a <, « for all z € X \ {a} therefore a € W for all W € W(a). This gives
the families of W(z)’s. We must now define the corresponding V' operator.

For z € U € 7X, let U, denote the convex component of U which contains z and U, ={y € U, : y < =}
and U = {y € U, : y > x}. Now define V(z,U) € 7X by:

{z} if x is isolated

Via,U) [z, min U;") if 2 € Uf \ Uy
€T =

’ (min U, 7] if z € Uy \UsS

(minU, ,minU}) ifzecU; NUS

It is straightforward to check that V(z,U) is indeed open in the GO-space topology.

Since min U7 and min U, € U, and V(2,U) C [min Uz, min U], it is clear that
zeV(z,U) CV(z,U)CU

Consider a € V(z,U). Take W = S,(z) € W(a) and suppose first that a < x so that S,(z) = {y < z:
a < min[z,y]}U{z}. fy < 2 but y ¢ V(x,U) then, from the definition of V(z,U), y < min U, . But this
implies that minfy, 2] < minU, < a since a € V(z,U). Therefore, y ¢ S,(z). Hence, S,(z) C V(z,U)
and

z € Sy(x) CWCV(z,U)CU
Thus, conditions (F) and (1) hold for a < z.

Also, since a < z and a € V(z,U), it must be the case that © € U, . Thus, if x € T € 7X, it follows
that TNU, # 0 so TN (a,z) # 0. But we know that [a,z] C S,(z), therefore T N intW # . That is,
x € intW.

If > a then the proof that W has the required properties follows in a similar fashion.

Finally, if a = = then W = S, (z) = {z} satisfies the required properties. Thus, in all cases, conditions

(1) and (2) hold and X is a linear chain (F) space. 5

Because of the strong interaction between the W’s and the operator V, it is difficult for us to ascertain
whether linear chain (F) is preserved under the usual topological constructions. First, with regards to
hereditary properties, we do not know if a closed subspace of a linear chain (F) space is also linear chain
(F). However we do have:

Proposition 4.2.83 If X is linear chain (F) and U is a non-empty open subset of X then U is linear
chain (F).

Proof Define Viy : U x U — 7U by Vy(2,T) = V(2,T) whenever z € T € 7U. This is valid as T € 7U
implies that T € 7X. For all # € U, define Wy (z) = {W € W(z) : W C U}. These will witness that U
is linear chain (F).

Clearly, for all z € U, Wy (z) C W(z) hence is a chain of sets containing z. Suppose now that z € T € 7U
and that y € Vy(z,T). Asy € V(x,T), there exists W € W(y) such that z € W C V(CU,T)X and, for



. - X _
Ty, 1€ inthX. But V(z,T) C T CU, by regularity, therefore W C U. Thus, W € Wy (x) and it

is easy to see that

reW CV@T) =Vo@T) CT

that is, conditions (1) and (F) are satisfied.

Moreover, since U € 7X and wr cU, inthX = intUWU. Thus, condition (2) is also satisfied and U
is linear chain (F).
O

Proposition 4.2.4 If X is linear chain (F) and Y is a dense subspace of X then'Y is linear chain (F).

Proof If X is a linear chain (F) space, define the operator Vy : Y x 7Y — 7Y by: for all y € U € 7Y,
Vv (y,U) = V(y,U')NY where U’ is some open set in X such that U = U' NY. Define also for each
yeY Wy(y) ={WnY :WeWy}

From this, it is clear that Wy (y) is a chain of closed subsets of Y which contain y, that Vy (y,U) € 7Y
and, by regularity, that y € Vy (y,U) C Vy (y, U)Y C U. Now consider z € Vy(y,U) where y € U € 7Y
From the definition, z € V(y,U’) so there exists a W' € W(z) such that y € W' C V(y, U’)X and, for

y#z,yE€ inth’X.

Take W = W'NY so that W € Wy (z). Since Y isdense in X, YNV (y, U’)X )Y =V(y, U)Y

=YnV(y, U

Thus, W = W' NY C V(5,0 NY = V(y,0)

Moreover, if T € 7Y such that y € T, there exists T' € 7X for which T =T'NY and T' Nintx W' # 0.

Since Y is dense in X, this means that 7' Nintx W' NY # (. That is, TNintyW # @ and y € intyWY.

Hence, Y is linear chain (F).
|

With regard to taking continuous images, the structuring mechanism is not generally preserved by ar-
bitrary maps. For an example of this, consider Theorem 4.1.2 and the fact that the continuous image
of a metric space need not be metric. Certain mechanisms, though, are preserved under taking closed
images and these are listed in [Sts]. Unfortunately, the method of proof given there does not obviously
carry over to linear chain (F). However, we can preserve linear chain (F) under closed mappings if the
mappings are also irreducible. The key to this is the next lemma.

Lemma 4.2.5 If f : X — Y is an irreducible map, V € 7X and z € VY then flz) € f*(V)Y and,
hence, f*(V°) € F(V) .

Proof Suppose z € V' and that f(x) € U € 7Y. Then z € f~1(U) so that f~1({U)NV # 0. Let
T = f~Y(U)NV. Since f is irreducible and T is non-empty and open in X, f*(T) is non-empty. Clearly,
(T CrrV)nf(f~'(U)) = f*(V)NU. Hence, U N f*(V) is non-empty and
— v
(

f(x) € f+(V)

Now if y € f*(VX) then there exists € f~1(y) N V¥, The above gives that y = f(z) € f*(V)Y. Thus,

T cFm.

O

Using Lemma 4.2.5, the proof of the next theorem follows the general form of proofs that certain struc-
turing mechanisms are preserved under closed maps [St»].



Theorem 4.2.6 If X is linear chain (F) and f: X =Y is a closed and irreducible map then 'Y is linear
chain (F).

Proof The notation of Definition 4.2.1 will also be used for Y but no confusion should arise. For each
y € Y, choose some point z, € f~'(y). Define

— Y
W(y) ={f(W) U{y}: W eW(z,)}
Since W(z,) is a chain of sets, W(y) is also a chain of sets which trivially contain y.

Consider some y € Y for which y € U € 7Y. Define V' = Uzef,l(y) V(x, f~1(U)) so that, by regularity,
Vi C f~1(U). Now define V(y,U) = f*(V'). Since f is closed, V (y, U) is open in Y. Moreover, from the
definition of V", it is clear that f~'(y) C V! C V7" C f~'(U) and, therefore, y € f*(V') C f(V7") C U.
But f being closed also implies f*(V’)Y C f(WX) Hence, overall, we have

yeVy,U)CV(0) CHVT)CU

Consider z € V(y,U) \ {y}. The definition of V means that f~'(z) C V' = U,cp-1(, V(y, f~1(U))
and so, for some z € f~!(y), z. € V(x, f~1(U)). As X is linear chain (F) and z. # z, there exists
W' e W(x,) such that

l.zeW'C V(:U,T)X

2. ¢z € intW’X

Take W = f*(W’)Y U {z} which is an element of W(z). Now, W' C V(:E,T)X - WX, which, by Lemma
4.2.5, implies f*(W') C f*(WX) C f*(V’)Y. That is, f*(W') C V(y,U)Y. By taking closures and

adding z this gives W C V(y,U)

Since z € intW’X, again by Lemma 4.2.5, f(z) € f*(intW’)Y C f*(W’)Y. Thus y € f*(intW’)Y cw
and f being closed implies that f*(intWW') € Y. Hence y € intWY.

Finally, suppose that z =y then y € W for all W € W(y) from the definition. Find W' € W(z,) by the
linear chain (F) property on X and let W = f*(W’)Y U {y}. Just as the previous case, this W satisfies

condition (1). Hence Y is linear chain (F).
O

Theorem 4.2.6 now allows us to find some important classes of spaces which are linear chain (F). However,
the result is applied indirectly through the following;:

Corollary 4.2.7 The perfect image of a GO-space is hereditarily linear chain (F).

Proof Suppose X is a GO-space and that f : X — Y is a perfect map onto Y. Then there exists A C X
which is closed such that f|4: A — Y is perfect and irreducible. As a subspace of a GO-space, A is also
a GO-space and so is linear chain (F). Therefore, by the previous result, Y is linear chain (F).

Moreover, if B C Y, then f|g: f~!(B) — B is a perfect map from the GO-space f~'(B) to B. So B is

linear chain (F). Hence, Y is hereditarily linear chain (F).
|

This gives us our first important class of spaces which are linear chain (F).



Proposition 4.2.8 All CICLOTS are hereditarily linear chain (F).

By Theorems 1.2.14 and 1.2.15 (3), every proto-metrizable spaces is the perfect image of a GO-space.
Hence, we obtain a second large class of spaces which are linear chain (F).

Proposition 4.2.9 Every proto-metrizable space is hereditarily linear chain (F).

4.3 Utter normality

Linear chain (F) clearly implies chain (F) and hence linear chain (F) spaces are acyclic monotonically
normal. However, linear chain (F) also implies another strengthening of monotone normality which has
recently been defined by Junnila:

Definition 4.3.1 A regular space X is utterly normal if, for all z € X, there is a neighbourhood base
B, of x such that

for all B, € B, and B, € B,, B, N B, # () implies either = € B, or y € B,
Such a collection of B,’s is called an wutterly normal neighbourhood base assignment.

Remark Junnnila identifies different types of utter normality according as to whether the utterly normal
neighbourhood bases consist of open, closed or simply any neighbourhoods. We consider only the case
where the neighbourhood bases consist entirely of open sets.

To see that this does indeed imply monotone normality, for z € U € 7X, find V € 7X such that
€V CV CU. As B, is a neighbourhood base, there exists a B € B, such that x € B C V. Define

H(z,U) = B so that x € H(z,U) C H(z,U) C U. If, for some y € W € 7X, H(z,U)NH(y,W) # 0

then, as H(z,U) € B, and H(y, W) € By, either x € H(y, W) CW ory € H(z,U) CU. Hence, H is a
monotone normality operator.

As yet, no details of utter normality have been published though some may be found in [Co]. However,
we have that:

Theorem 4.3.2 If X is linear chain (F) then X is utterly normal.

Proof If V is a linear chain (F) operator on X, take B, = {V(z,U) : 2 € U € 7X}. If B, € B, and
B, € B, then there exist U, U' € 7X such that B, = V(z,U) and B, = V(2',U"). If z € B, N B, then
there exist W and W' € W(z) such that z € W, 2 ¢ W C V(z,U) and ' € W', z € W' C V(2',U").
By the definition of linear chain (F), W(z) is a chain hence either W C W' or W' C W. Without loss of
generality, assume the former. This means that z € W C W' C V(2/,U’). That is, 2 € B,». Hence X is

utterly normal.

O

Using the results already obtained on linear chain (F), we can encompass many of the classes which
Junnila has so far identified as utterly normal.

Corollary 4.3.3 The following classes of spaces are (hereditarily) utterly normal:

1. GO-spaces



2. [Junnila] proto-metrizable spaces

3. CICLOTS

The preservation of utter normality has the same complications as that of linear chain (F). Open subsets
of an utterly normal space are utterly normal which is easily seen by considering the obvious restriction
of the utterly normal neighbourhood base assignments. Also, in a similar fashion to Proposition 4.2.4,
dense subspaces of an utterly normal space are utterly normal. With regards to mappings, we are unable
to determine if utter normality is preserved under closed mappings but, just like linear chain (F), we do
have:

Proposition 4.3.4 If f : X — Y is closed and irreducible and X is utterly normal then Y is utterly
normal.

Proof Given z € U € 7X, choose B(z,U) € B, such that B(xz,U) CU. For y € Y, define
By ={f*( U Bz, f'(V))):y eV e X}
z€f7(y)
Since f is closed and, for any y € V € 7X, C =, c;-1(1) B(z, f~%(V)) is open in X, f*(C) is open in
Y. Moreover, it is clear from the definition of B(,) that:
imc U Baflvycv
zef~1(y)
Therefore, y € f*(C) C V. Thus, B, is indeed a neighbourhood base for y in Y.
Suppose, for each i € {1,2}, B; € B,, where B; = f*(Umef*I(y,-) B(z, f~'(V;))) for some V; €
7Y. If 2 € By N By, from the definition of small image, f~!(z) C Uzef_1(y1)B($,f_1(V1)) N

Uses-1(ys) B, f1(V2)). Hence, for i € {1,2}, there exist z; € f'(y;) such that B(zy, f~'(V1)) N
B(xo, f~1(V5)) # 0. Without loss of generality, the utter normality of X implies that

21 € Baa, [ 10R)

By Lemma 4.2.5, f(z1) € f*(B(xg,ffl(V2)))Y. From this it follows that y; € B—yZY.

That is, the B, form an utterly normal neighbourhood base assignment and Y is utterly normal. -

Junnila asked if stratifiable spaces are utterly normal. A special subclass of the stratifiable spaces are
the class of Lasnev spaces - those spaces which are closed images of metric spaces. Towards answering
Junnila’s question:

Proposition 4.3.5 FEvery Lasnev space is utterly normal.

Proof By Lemma 5.4 of [Gr], every Lasnev space is the closed irreducible image of a metric space. As
metric spaces are utterly normal, Proposition 4.3.4 implies that every Lasnev space is utterly normal. -

4.4 Summary and questions

As hoped, by considering the structuring mechanism in GO-spaces, a new and strong version of condition
(F), linear chain (F), was defined and shown to be held by all CICLOTS. This can be used to show that
CICLOTS are acyclic monotonically normal, which was already known, and, moreover, that they are
utterly normal. However, because of the difficulties in preserving linear chain (F), it is hard to see more
precisely how it relates to monotone normality and CICLOTS. For example:



Question 4.2 Is every compact monotonically normal space linear chain (F)?

Question 4.3 If X is compact and linear chain (F), is X a CICLOTS?

Strengthening the results on the preservation of linear chain (F) could possibly help answer these ques-
tions.

Question 4.4 Is linear chain (F) preserved under taking closed images? closed subspaces?

The new notion of utter normality has a lot of potential uses. However, preservation is also a major
difficulty here as well.

Question 4.5 Is utter normality preserved under taking closed images? closed subspaces?

The similarities between linear chain (F) and utter normality suggest a possible positive answer to the
next question.

Question 4.6 Is every utterly normal and acyclic monotonically normal space also linear chain (F)?

Or even:

Question 4.7 Is every compact utterly normal space linear chain (F)?

Of course, as yet it is unclear that not all monotonically normal spaces are also utterly normal. We
therefore re-iterate Junnila’s questions in [Co].

Question 4.8 Is every (compact) monotonically normal space utterly normal?

Question 4.9 Is every stratifiable space utterly normal?

Remark It is easily seen that the local bases given by an utterly normal neighbourhood assignment are
closure-preserving. Ito [I] proved that, for a stratifiable space X, if every point has a closure-preserving
local base then X is M;. Thus, a positive answer to this last question would provide a solution to the
famous M;-M3 problem.



Chapter 5

A new resolution

One of the central problems in the study of monotonically normal spaces is Nikiel’s famous question: is
every compact monotonically normal space a CICLOTS? A major difficulty in answering this question
is that there are almost no constructions which preserve monotonically normal spaces but which do not
trivially preserve CICLOTS. In this chapter, we consider the preservation of monotone normality by
taking resolutions.

The first example of a resolution was described by Fedoréuk [Fe] in order to construct a compact space with
differing inductive and covering dimensions. Watson extracted from this example the general principle
of resolutions. He has presented many important examples which have already been described but which
are more easily and elegantly re-described using resolutions [W].

The first section is a description of resolutions and some of the key results of the general theory. We
have changed the notation for the basic open sets of a resolution from that used in [W] so as to avoid
certain ambiguities which the old notation engenders. We then define a new type of resolution which
preserves monotone normality provided that the space which is being resolved over is a locally connected
continuum. It is also shown that arctic spaces are preserved by this resolution but the proof of this relies
on a deep result of Cornette [C] rather than any trivial observation.

Remark The resolution of monotonically normal spaces has already been considered by Nikiel and
Treybig [NT] via the more general concept of fully closed maps. The outcome of their result is that if
a resolved space is separable and monotonically normal then the resolution into spaces with cardinality
greater than three was only made over countably many points of the original space. This however does
not greatly effect our work as the resolved spaces we consider are generally non-separable.

5.1 Defining resolutions

For a space X, fix a family of spaces {Y, : © € X}. For each z € X, take f, : X \ {z} — Y, to be a
continuous function.

Definition 5.1.1 The resolution of X at each x into Y, by f, has the underlying set Z = |J, .y ({2} x
Y.). Forz € U € 7X and V € 7Y}, define

(2,0,V) = ({z} x VU J{{a"} x Yo 2" €U N £71 (V)
and then B={(z,U,V):z € X ,z €U € 7X ,V € 7Y, } is a basis for the topology on Z.

Remark If a space Y, is not specified at every point of X then it is assumed that Y, is the one-point
space and f, is just the constant map. If C' C X is5‘;5he set of € X for which Y, and f, are given then



it is easy to see that X \ C is embedded in Z as Z \ ,c-({#} x Y2). In the sequel, we simply identify
these sets and say that X \ C C Z.

Theorem 5.1.2 (The fundamental theorem of resolutions [Fe], [W]) If X is a compact Haus-
dorff space and, for all x € X, Y, is a compact Hausdorff space then Z is a compact Hausdor[f space.

This theorem is particularly useful since it means that when working with compact spaces we can guar-
antee that the resolution is normal. In general, this is not always possible. However, if the spaces
involved are Tychonoff and the f, are in some sense well-behaved, then by embedding the spaces in
suitable compactifications and considering the required resolution as a subspace of the resolution of the
compactifications, we can still assert that the space is Tychonoff.

In order to use resolutions, the following map is very convenient.

Definition 5.1.3 7 : Z — X is the projection from Z on to X defined by n({x,y)) = = for all z € X
and y € Y,.

This allows us to abbreviate the description of the basic open sets. For suitable x, U and V' we have that
(@,U,V)=({z} x V)Ur~ (U N f71(V))

We now give a few basic properties of resolutions some of which are straightforward. Their proofs can
be found in Watson’s article [W].

Proposition 5.1.4 7 is a continuous surjection.
Proposition 5.1.5 For all x € X, {z} xY,, as a subset of Z, is homeomorphic to Y.

The next result is a consequence of a theorem in [W]. However, the theorem there is much more general
and so we give a simplified version for the special case.

Proposition 5.1.6 If X is a continuum and for allx € X, Y, is also a continuum then Z is a continuum.

Proof By the fundamental theorem of resolutions, it remains to show that Z is connected.

Suppose that A is a clopen subset of Z. If (x,y) € A then since each Y, is connected, {z} x Y, is a subset
of A. Thus, A = 7~ (n(A)). Since Z is compact and X is Hausdorff, 7 is closed which means that 7(A)
is closed in X. Moreover, Z \ A is also clopen so, just as for 4, Z\ A = 7= '(7(Z \ A)). But then 7(A)
and w(Z \ A) form a closed partition of X. By the connectedness of X, one of them must be empty and,

hence, either A = Z or A is empty. That is, Z is connected. -

5.2 Constructing monotonically normal spaces

As a particular type of resolution, Watson defined resolutions by order mappings of a LOTS into other
LOTS:

Definition 5.2.1 [W] If (X,<) is a compact LOTS, z € X and Y, is also a compact LOTS with
a, =minY, and b, = maxY, then an order mapping f, : X \ {x} = Y is defined by:

n_ [ ay forallz' <z
fz(x)_{bx for all ' >z



Resolving by order mappings is equivalent to taking the LOTS topology induced on the resolved space
by the lexicographic order. As the resolved space is still a LOTS, it is also monotonically normal. It is
by adapting this construction that we are able to produce a resolution preserving monotone normality in
more general spaces. For this reason, the resolution is said to be by order-like mappings.

Throughout this section, X is a continuum with the set of cut-points F and {Y, : z € E} is a family
of compact spaces with two distinguished points a, and b,. Other properties of X and the Y,’s will be
specified as they are required.

Definition 5.2.2 For each z € E, X \ {z} is not connected so specify two open sets in X which witness
this. These are denoted by X and X, so that X \ {#} = X, U XS and X, N X} = (. Define
fo: X\ {2z} = Y, by:

_Joap ifpe X,
These are called order-like mappings and are clearly continuous. The space Z formed by resolving X at
each z into Y, by these f, is said to be the resolution of X into the Y, by order-like mappings.

Remark The resolution of LOTS into other LOTS by order mappings can be obtained from order-like
mappings by defining a, = minY,, b, = maxV,, X; = (+,z) and X = (z,—).

The key property of order like mappings is given in this next theorem.

Theorem 5.2.3 If X is locally connected and monotonically normal and, for all x € E, Y, is monoton-
ically normal then Z is monotonically normal.

Proof From the fundamental theorem of resolutions, we know that Z is T;. We need to construct a
monotone normality operator.

Suppose that G : X x 7X — 7X is a monotone normality operator on X and, given that X is locally
connected, we may assume that G(z,U) is connected for all z € U € 7X. For all z € X, take G, :
Y, x 7Y, — Y, to be monotone normality operator on Y,. Now monotone normality operators need only
be defined on a basis of a space so we define the operator H : Z x B = 7Z by:

H(<I=y>a <$,U,V>) = <xaG(x=U)an (y,V))
wherez € U € 7X and y € V € 7Y,.

To show that H is a monotone normality operator, we must show that for (x,y) € (z,U,V) € B and
(s,t) € (5, P,Q) € B, if (x):

H((z,y), (z,U,V)) N H((s,1), (s, P, Q) #

then either (z,y) € (s, P,@) or (s,t) € (x,U,V). By considering the definition of the basic open sets of
Z, it becomes clear that if (%) holds then there are four ways in which it may do so.

1. ({z} X Go(y, V) N ({s} x Gs(t,Q)) # 0. In this case, z = s and G, (y,V) N G4(t,Q) # 0 so that
either y € Q or t € V. This gives the respective conclusions that either (z,y) € (s, P,Q) or that
(s,t) € (x,U, V).

2. ({2} x Go(y,V))Nm 1 (G(s, P) N f71(Gs(t,Q))) # 0. It must be that z € G(s, P) N ;1 (Gs(t, Q)).
Hence {z} x Y, Cn ' (G(s,P) N f; (Gs(t,gg)) C H((s,t),(s, P,Q))

1
1
C (s, P,@). This implies that (z,y) € (s, P,

3. ({s} x G,(t,Q) Nt (G(z,U) N f1(Ga(y,V))) # 0. That (s,t) € (z,U,V) follows similarly to
the previous case.



4. 77 HG(2,U) N fHGa(y, V) N7 1 (G(s, P) N f7H(Gs(t,Q))) # 0. (We may assume that z ¢
G(s, P) otherwise one of the above cases occurs.) Since this implies that G(z,U) N G(s, P) # 0
then either x € P or s € U. Without loss of generality, we may assume that s € U. If a, = b,
then (z,U,V) = 7= (U) and (s,t) € (x,U, V). Thus, also assume that z € E and a, # b,. Since
x € G(s,P), G(s,P) C X, UX; but G(s, P) is connected hence G(s, P) is contained entirely in
either X or X;F. Again without loss of generality, we may assume the latter. This means that
s€G(s,P) C XF. For n 1 (G(z,U)N f; 1 (Ga(y,V))) N7 1 (G(s, P) N fi7H(Gs(t,Q))) # 0 to have
occured, it must be that b, € G,(y,V) so that b, € V and X C f-'(V). Hence, s € {71 (V)NU
which implies that (s,t) € 7= (U N £71(V)) and (s,t) € (z,U, V).

This shows that H is indeed a monotone normality operator.

In order to use this construction to build “interesting” monotonically normal spaces, it is best to start
with a base space X with lots of cut-points. A particularly good example of this is a dendron since,
for any two points in a dendron, there is a cut-point which separates them. Of course, we will need the
dendron to be monotonically normal. This is implied by a theorem of Cornette:

Theorem 5.2.4 [C] A Hausdorff locally connected continuum X is arctic if and only if every cyclic
element of X is arctic.

Corollary 5.2.5 FEwvery dendron is arctic.

Proof Every cyclic element of a dendron is a singleton hence trivially the continuous image of an arc.

Dendra are assumed to be Hausdorff and locally connected so Cornette’s result applies.
O

Corollary 5.2.6 If X is a dendron and, for all x € E, Y, is monotonically normal , then Z is mono-
tonically normal .

Proof Dendra are arctic hence monotonically normal and they are also locally connected. The result

immediately follows from Theorem 5.2.3.
O

Resolving by order-like mappings also preserves other structure.

Proposition 5.2.7 If X is locally connected and, for allx € E, Y, is both locally connected and connected
then Z is locally connected.

Proof Consider (z,y) € Z. If B, is a neighbourhood base for 2 in X and B, is a neighbourhood basis
for y in Y,, then it is easily seen that

By ={{z,U,V):U € B, and V € By}

is a neighbourhood basis for (z,y) in Z. Thus, to show that Z is locally connected, it is sufficient to show
that if U is a connected neighbourhood of z and V' is a connected neighbourhood of y then (z,U, V) is
connected.

Assume that U and V' are such neighbourhoods.

First, suppose that a,, b, ¢ V. Then (z,U,V) = {2} x V. As this is homeomorphic to V, (z,U,V) is
clearly connected.



Suppose now that a, € V but b, € V. (The case when b, € V but a, ¢ V is similar.) Consider a set C
which is clopen in (z,U, V) but which does not contain (z, a,). Since C' is closed in (z,U, V), there exist
SerXand T e 7Y, suchthat € SCU,a, € TCV and (z,5,T)NC = 0.

If Cn ({z} x V) # 0 then this set would witness the fact that {x} x V is not connected. Thus,
C Ca ' (UNX,). If for some p € X, there is a ¢ € Y, for which (p,q) € C then it must be that ¥, C C
otherwise C'NY), witnesses the fact that Y}, is not connected. Hence, C = 7=!(7(C)). Since ﬂ"ﬁ_l(UQX;)
is a closed map, it is also a quotient map. Thus 7(C) is clopen in U N X, . This means that n(C) is in
fact open in X and hence open in U.

If 7(C) were not closed in U then there would exist p € X for which p € (C’)U \n(C). Ifpe

X, NU then p € 7(C) since 7(C) is closed in the open set X, NU. If p € X then p ¢ W(C)U since
m(C)N X} = 0. The only remaining possibility is that p = 2. But z € S and (2, S,T) N C = 0. That is,
Hz} x Tur 1 (SN X, )] N7 (x(C)) = 0. From this, it is straightforward to check that S N7 (C) = 0.

As S is an open neighbourhood of z, = ¢ 7r(C’)U. Therefore, there can be no such p and 7(C) is also
closed in U.

However, U is connected and the complement of 7(C) in U contains z so 7(C) and hence C must be
empty. This means that (z,U, V) is connected.

Finally if both a, and b, are both in (z,U, V) and C is some clopen set which contains a, then it must
also contain b, since V is connected. But then (z,U,V) \ (C Na~!(X;})) are both clopen subsets of
(z,U,V) and, by the above reasoning, they must both be empty.

Thus, every point of Z has a basis of connected sets and Z is locally connected.

The other properties which we consider deal only with continua. Thus for the remainder of this section
assume that X and, for all z € E, Y, are connected. Thus, by Proposition 5.1.6, Z is also connected.
We study the properties of dendra and continuous images of arcs via their cyclic elements. But first, we
need to find the cut-points of Z.

Lemma 5.2.8 For z = (x,y) € Z, 2z is a cut-point of Z if and only if x € E and either

1. y is a cut-point of Y, or

2. y=a, orb,
Proof First, suppose x € E. We consider the two cases for y individually.

1. We may assume that y & {a,,b,} as this is covered in the second case. Suppose Y, \ {y} = GUH
where G, H € 7Y, are disjoint and non-empty. If (p,q) € Z\ {z} and p = x then ¢ € G or ¢ € H so
that (p,q) € (z, X,G)U(x, X, H). If p # x then p € f71(GUH) hence {p,q) € (z, X,G)U(z, X, H)
and Z \ {z} = (z, X,G) U (z, X, H). Since G and H are open, disjoint and non-empty so too are
(z,X,G) and (z, X, H) and z is a cut-point of Z.

2. If y = a, (the case y = b, is similar), it is easy to see that Z \ {z} = 7 1(X,;)U[(z, X, Y, \ {a.}) U
7 1(X}F)] and that these two sets are disjoint, open and non-empty. Thus z is a cut-point of Z.

Now suppose that z = (z,y) is a cut-point of Z. Thus Z \ {2} = AU B where A, B € 7Z are disjoint
and non-empty. Since for all z € X, Y, is connected (for = ¢ E, see the remark after Definition 5.1.1), if
(a,b) € A where a # z, b € Yy, then it must be that {a} x Y, C A otherwise AN ({a} x Y,) is a clopen
subset of {a} x Y,. Hence, we have that

A=(An({z} x Vo)) Ur ! (m(4) \ {z})



and similarly
B=(BNn({z}xY,))Ur~'(x(B)\ {z})

If ¢ E then {2} x Y, = {{x,y)} which, together with the above implies that A = 7=!(n(A4)), B =
7~ (n(B)) and X \ {z} = m(4) Un(B). Tt then follows that 7(A) and 7(B) are disjoint. Moreover, since
they are both closed in Z \ {2z} = 771 (X \ {z}) and 7|,-1(x\{s}) is a closed map, then 7(A) and 7(B)
are closed in X \ {z}. Thus X \ {z} is not connected which contradicts ¢ E. Hence z € E.

Suppose now that y € {a,, b, }. Since z is a cut-point of Z, z € A7nB”. However, z has a neighbourhood
base all of whose elements are contained in {2} X Y,. Thus, AN ({z} xY,) and BN ({z} x Y,) are both
non-empty. They are both open in {z} xY, as A, B € 7Z. But ({z} xY,)\ {{z,9)} = (An({z} xY,))U
(BN ({2} xY,)), so z is a cut-point of {z} x Y. Since {z} x Y, is canonically homeomorphic to Y;, it

follows that y is a cut-point of Y.
O

Having found the cut-points of Z, it is now easy to find the cyclic elements of Z.

Lemma 5.2.9 If X is a continuum and, for all z € E, Y, is a continuum then a cyclic element QQ of Z
has one of the following two forms:

1. for some x € X and cyclic element Q' of Y, Q = {z} x Q'

2. for some cyclic element, Q' of X, Q = (Q'\E)U{(z,y,) : z € Q'NE} where Q' is a cyclic element
of X and y, = a, if Q' meets X, and y, = b, otherwise

Proof It is clear that all the Q’s of the above two forms are a closed cover of Z. If it is shown that these
are indeed cyclic elements of Z then they must be all of them. Thus, it is enough to show that if @) has
one of the above forms then it is cyclic and is maximal with respect to this property.

First, suppose @ = {z} x Q' where x € E and Q' is a cyclic element of Y,. Also, assume that Q' is not
equal to either {a,} or {b,}. This case will be dealt with at the end. Since @ is homeomorphic to Q'
then it is cyclic.

Suppose then that R C Z is cyclic, connected and contains (). If there exists p € Z such that for some
q €Yy, (p,q) € Rand p # z then, for the sake of argument, assume that p € X;\. (z,b,) is a cut-point of
Z which separates any point in 7~ !(X}) from any point in {z} x (Y, \ {b.}). Hence, it separates (p, q)
from any point in @ \ {b,} (note that this is a non-empty set). If (z,b,) ¢ R then, since Q C R, R is not
connected. But if (z,b,) € R then R contains a cut-point of itself.

Thus, R C {z} x Y, and R being homeomorphic to a subset R’ of Y, which is cyclic, connected and
contains @’ implies R’ = @' from which it follows that R = Q. Therefore, () is maximal and any such @
is a cyclic element of Z.

Now suppose that @ = Q' \ EU {(z,y.) : ¢ € Q' N E} where Q' and y, are as in the statement of the
lemma. 7|g : @ — Q' is continuous and injective. Moreover, {z} x (Y, \ {y.}) is open in 771 (Q") for
each z € Q'NE and 77(Q") \ Q = U,eqnp{®} x (Va \ {y2}). Thus, @ is closed in 77'(Q") which is
closed in Z and, therefore, @ is closed in Z. As the restriction of a closed map to a closed set, 7|g is
closed and so is a homeomorphism. Because @' is cyclic, so is Q.

Again, assume that @’ is not equal to a singleton containing a cut-point as this case will be dealt with
at the end. Suppose R C Z is cyclic, connected and contains ). If there exists r € X and some s € Y,
for which (r,s) € R\ @ and r ¢ ©(Q) then there exists p € E which separates r from any point in
Q" \ {p}. Assume, for the sake of argument, that » € X,". Then, from the proof of Lemma 5.2.8, (p, a,)
separates (r,s) from any point in 771(Q’) D Q. Thus, as for the previous case, for R to be both cyclic
and connected (p, a,) can not be in R or its complement, respectively. Hence, there is no such point (r, s)
and R C 771(Q").



Now consider z € @' N E and some point y € Y, for which y # y, and (z,y) € R. By Lemma 5.2.8,
(x,ys) is a cut-point separating (z,y) from Q \ {(z,y.)}. Again, this cannot be the case if R is both
cyclic and connected. Therefore R = () and @ is a cyclic element of Z.

The case which is not covered by the above arguments is when = € F is a cyclic element of X and a, or
b, is a cyclic element of Y. For the sake of argument, suppose a, is a cyclic element of Y,. But in this
case it is straightforward to see that (z,a,) can be separated from any other point of Z by a third point.
This means that {(z, a,)} is a cyclic element of Z and as such satisfies both types of cyclic element given

in the statement of the Lemma.
O

The Lemma immediately gives the following corollary.

Corollary 5.2.10 For Z as in the statement of the previous lemma, any cyclic element of Z is homeo-
morphic to either a cyclic element of X or a cyclic element of Y, for some x € E.

Given this, the next two results are straightforward.
Proposition 5.2.11 If X is a dendron and, for all x € E, Y, is a dendron then Z is a dendron.

Proof By Propositions 5.1.6 and 5.2.7, Z is a locally connected continuum. By Corollary 5.2.10, every
cyclic element of Z is homeomorphic to a cyclic element of a dendron. Hence, every cyclic element of Z

is trivial and Z is also a dendron.
O

Proposition 5.2.12 If X is arctic as too are Yy, for all x € E, then Z is arctic.

Proof By Cornette’s result, since X and Y, for all x € E, are arctic, so too are all their cyclic elements.
Corollary 5.2.10 implies that every cyclic element of Z is arctic. Again, by Cornette’s result, this implies

that Z is also arctic.
O

5.3 Summary and further work

The main result of this chapter is that the resolution of monotonically normal, locally connected connected
spaces into monotonically normal spaces by order-like mappings is monotonically normal. However, the
last proposition tells us that this technique cannot be used on its own to construct a monotonically
normal, locally connected continuum which is not arctic. The following, though, remains open:

Question 5.1 Can resolving by order-like mappings produce a monotonically normal compactum which
is not a CICLOTS?

To help answer this question, the notion of order-like mappings can be expanded to allow more complicated
constructions in two ways.

First, for x € E, the number of distinguished points can be made equal to the number of components of
X \ {z}. The map f, then simply takes each component to a corresponding distinguished point. Local
connectedness is needed here to ensure that each component is open and, hence, that the map f, is
continuous. By adapting the proofs given here, it is straightforward to show that such a construction
preserves monotone normality, dendra and continuous images of arcs.



Secondly, in order to define a topology on the space Z, it is only necessary that, for each x € E, f, maps
from some neighbourhood of z into Y,. This would allow the resolution to occur at points which only cut
one of their neighbourhoods and hence expand the class of spaces which can be used in the construction.
For example, every point in the circle S' has this property but it has no cut-points.

We have not given the details of these generalisations as they are largely the same as the basic technique
given but the description of the more general cases would have obscured the central idea. However, using
these generalisations, it may yet be possible to give a positive answer to the question.



Chapter 6

On reflection

Elementary submodels have recently emerged as a powerful technique in general topology. They have
been used to simplify considerably both proofs of theorems and the construction of counter-examples, see
[Do], [W]. However, there is, as yet, no standard approach to applying them to problems.

The aim of this chapter is to give a new, general technique for using elementary submodels in the
construction of topological spaces. The technique is illustrated by three quite diverse examples: Balogh’s
Q-set space [By], [W], a “small” normal but not collectionwise Hausdorff space [R3], [Do], and Balogh’s
small Dowker space [Bs].

The first section of this chapter defines elementary submodels and raises some points on the practicalities
of using them. The second section gives some straightforward results which are useful tools later on.
Also, the proofs of the results serve to introduce reflection techniques. In the third section, the new
method of construction is outlined and the three examples are described.

The work of this chapter was done jointly with my colleagues Chris Good and Will Pack.

6.1 Elementary submodels

A set N, with some other structure, models a well-formed formula ¢ if, when the formula is interpreted
in terms of the structure on A/, ¢ is true. This is denoted by N |= ¢ and, informally, it is common to say
that A thinks ¢. M C N is an elementary submodel of a model N if every formula ¢ is absolute for M
and A, that is, for any z1,...,z, € M which are the only objects mentioned in some logic formula ¢,

M = ¢ if and only if N |= ¢

Again informally, M thinks the same about its elements as A/ does, hence this property is called elemen-
tarity.

The existence of elementary submodels is given by:

Theorem 6.1.1 (Lowenheim-Skolem-Tarski Theorem) For any model N which is a set and any
subset X of N, there is an elementary submodel M of N such that X C M and |M| < max{w,|X]|}.

See [K;] p.156 for details of this Theorem.

In most applications, we want A to model ZF or ZFC. However, such a model cannot be a set so the
Léwenheim-Skolem-Tarski Theorem is not applicable. Fortunately, any proof is finite so necessarily can
use only finitely many instances of axioms and ref6e§ to only finitely many sets. By taking a model of



those axioms used, which is a set containing those objects referred to, the proof is still valid in that
model. Elementary submodels of that model are then known to exist. In practice, the exact set-model is
unimportant and all elementary submodels are treated as submodels of V.

The real power of an elementary submodel comes from the ability to include in it any collection of objects
which are being studied. What V' thinks of such objects is also thought by the submodel but, because it
is small, the objects are easier to manipulate there. For instance, if wy is in some countable elementary
submodel M then M thinks that w; is uncountable. However, V' knows that w; N M is countable. This
allows us to do many things such as to find a € w; which is not in M. It is because of this ability to find
small objects which reflect the properties of large objects that such techniques are said to be reflective.

Before proceeding to some results, it is worth commenting on a few basic properties of elementary
submodels. First, elements of an elementary submodel are not necessarily subsets as is demonstrated by
considering, as above, w; in a countable model. Secondly, subsets of a model are not necessarily elements
of the model. To see this, take a countable elementary submodel of which w is a subset. If all subsets of
w were in the model then P(w) is a subset of the countable model - obviously impossible. Finally, it is
worth noting that elementarity refers only to logic formulae. This causes many difficulties as the language
of mathematics is at a much higher level than the language of logic. Apparently simple statements may
disguise references to objects which are not in an elementary submodel. Thus, these statements cannot be
reflected down into the submodel. To avoid the confusion this may cause, all of our reflected statements
are reduced to a form where it is clear that they are absolute.

6.2 Some introductory proofs

First, we consider when elements of an elementary submodel are subsets and vice-versa. Throughout this
section, M denotes an elementary submodel of V', the standard model of ZFC.

Proposition 6.2.1 If A C M and A is finite then A € M.

Proof Suppose A = {ay,...,a,} for some n € w. Then
VETVyyer o y=arVy=aV...Vy=ay,))

Namely, A is the z which V' thinks satisfies this statement.
As the only objects which occur in the formula are the a; and these are elements of M, elementarity
gives us

METVylyerz & (y=a V... Vy=ay))

Call the set which is asserted to exist in M by this sentence, B. Thus B € M and the above tells us that
MEYYy@yeB& (y=a1V...Vy=ay))

But now elementarity gives
VEYyyeBs (y=a1V...Vy=ay))

But this sentence defines A as well. Therefore, B = A and since B € M it must be that A € M.

Proposition 6.2.2 If X € M and | X| < k where Kk +1 C M then X C M.

Proof V E 3f : k = X A f is surjective. In order to use elementarity, we need to put this into the
language of logic. A more fundamental way of expressing this statement is, V = 3f®(f) where ®(f) is
the statement

(fCrxX)AVa€erdr e X({a,z) € fAVYy({a,y) € f = 2 =9y)) AVx € XJa € k({a,z) € f)



From this, it is clear to see that the only part which does not easily translate into a logic formula is
f € k x X. This can be expressed as Va(a € f +> a € K x X). In this form 3f®(f) has only two objects
in it, namely &, and X, and these are elements of M. So by elementarity M |= 3f®(f).

Let f € M be such that ®(f) holds. So M |= ®(f) and elementarity now gives us that V |= ®(f). What
we have achieved so far is that, given that V' knows the cardinality of X, we have found a function in M
which witnesses what the cardinality is.

Now suppose z € X. Then there exists a € k such that («,z) € f since f is surjective. Thus we have
VE 3y € X({a,y) € f)

As k C M and a, f € M, elementarity tells us that
M=y e X((y) € f)

Hence for some y € X N M, M [ (a,y) € f. Again by elementarity, we now have that V' |= (a,y) € f.
But given that V' thinks that f is a function and (a,z) € f, it must be that x = y and so z € M. That

is, X C M. 5

The next proposition tells us that we have some familiar, useful objects in any elementary submodel.
Proposition 6.2.3 w+1C M

Proof First we show by induction that w C M.

V |= 32Vy(y & x). The empty set is the set which is asserted to exist in this sentence. Elementarity now
gives us that M |= 32Vy(y € x). Let E be an element of M such that M = Vy(y ¢ E). Elementarity in
the other direction gives that V |= Vy(y ¢ E). That is, E = (). Hence ) € M.

Now consider any z € M. Define 2+ = z U {z}. Thus, V = JyVa(a € y <> (a € x V a = 1)) (namely,
y=x")and so M = FyVa(a € y <> (a €z Va =1x)). Let y € M be a set which is asserted to exist by
this sentence. Then, elementarity tells us that V |= Va(a € y <+ (a € £V a = z)), which is a definition of
z%. So y = 2% which means that 2+ € M.

Thus if for some n € w, n € M then we have that nt € M and by induction, w C M.

Now let ¥(z) be the formula () € z) A (Vy € z(y™ € x)). It is clear from the above that ¥ is absolute
for M and V. The axiom of infinity holds in V', so V |= 32¥(z). Hence M = J2¥(z). Let N € M such
that M |= U(N) A (Vz(¥(z) = N C z)). (N is constructed in the same way that w is constructed in V
from the axiom of infinity.) So N is the object that M thinks of as the natural numbers.

By elementarity, V |= ¥(N) so w C N since w is the smallest inductive set in V. Also by elementarity

V =Vz(¥(x) - N Cz). ¥(w) holds so N C w. Hence N =w and w € M. -

These last two results in combination give:
Proposition 6.2.4 If X € M and X is countable then X C M.

We now present two results which do not tell us about elementary submodels directly but which do typify
elementary submodel proofs. The first is a specific case of the Pressing Down Lemma, the second is the
A-system lemma. Both have well-known combinatorial proofs (see [K;] p.80 and p.49 respectively) but
much of the combinatorics can be effortlessly subsumed into an elementary submodel.

Theorem 6.2.5 (Pressing Down Lemma) If f:w; \ {0} = wy is such that f(a) < a for all a € wy,
then for some v € wy, f~1(v) is stationary.



Proof Take M to be a countable elementary submodel which contains w; and f. Define 8 € w; to be
the least ordinal such that 8 ¢ M. If v = f(B) then v € M since f(8) < 8. Moreover, no ordinal greater
than § is in M otherwise, as it is countable, it is a subset of M and this would imply that 8 € M.

Now define ®(C) to be
NVaewIpelCB>a)ANVaew \CB<aVyew(B<y<a—=v¢ (D))
That is, ®(C) means that C' is a club set in w; and @ is clearly absolute between M and V.

For a given @ < 3, a« € M. Moreover, for each club set C in M, V E 3§ € C(a < §). Hence,
M E 3§ € C(a < §). The § asserted to exist by this statement, tells us that C' N (a, 8] # 0. As this
holds for any @ < 8 and C is a club, g € C.

Thus, for each C € M, V |= ®(C) — Ja € C(f(a) = ), namely 5. Elementarity implies that, for all
CeM, MEPC)— 3a e C(f(a) = v). We therefore have that M |= VC(®(C) — Ja € C(f(a) =
7). Applying elementarity once more gives that V = VC(®(C) — 3a € C(f(a) =+)). In other words,

f () is stationary.
O

Theorem 6.2.6 (A-system Lemma) Any family A = {A, : a € w1} of finite sets contains an un-
countable A-system. That is, there exist an uncountable subset B of wy, an n € w and a finite set r such
that, for all a, f € B, |Aa| =n and Ay N Ag =r.

Proof Take a countable elementary submodel M containing A, w and wy. As M is countable, choose
v € w1 \ M and let r = A, N M. As a finite subset of M, r is an element of M as is the natural number
n = |A,|. Let ®(a, B) be the statement:

(lAal =n) AVB € B((a # B) = (Aa N Ag =T))
The only objects in ®(«a, B) are elements of M. This means that ®(«, B) is absolute between M and V.

Now, V |E Ja € w1 ((JAa] =n) A (An D 7)). In particular, v witnesses the truth of this in V. Therefore,
elementarity tells us that Mg = Ja € wi(|4a] = n A Ay D 7). Take @ € M which is declared to exist
by this expression. If By = {a} then M [ Va € By(®(a, Byp)). Using Zorn’s Lemma, which holds inside
M, find a maximal such B, that is, a B € M for which:

M EVa € B(®(a,B)) AVS € wi (®(8,B) = B € B)

Interpreting this sentence, this means that {A, : § € B} is thought to be a maximal A-system by M.
Applying elementarity gives

V =Va € B(®(a, B)) AVS € wi (®(8, B) = B € B)

Suppose B were countable. As a countable element of M, B C M and so 8 € M for all 8 € B. Hence, for
all 3 € B, Ag € M and as they are finite sets, Ag C M. Thus, for any § € B, A,NAg = A,NMNAz =
r N Ag =r. Note also |A,| = n whence V' |= ®(y, B). Together with V' |=Vj € w(®(8,B) - 3 € B),

this gives v € B. But B C M so v € M - a contradiction.
Hence B is uncountable and {A, : a € B} is a A-system.

6.3 Three examples
The results of the last section are fundamental to practical applications of elementary submodels. They
are not, therefore, explicitly referred to in what follows.

We give a rough outline of our approach to using elementary submodels in constructing examples. It is
based on Watson’s construction of a Q-space in [W]. However, he omits many of the details from his



proof. We have filled in many of these gaps and from it abstracted the general technique used in the
other two examples. This approach is founded on the fact that there are only ¢ many essentially different
countable elementary submodels. This is because any model is fully determined by its interpretation of
€ on the underlying set. Hence, up to isomorphism, there are as many countable elementary submodels
as there are binary relations € on a countable set, that is, ¢ many.

The underlying set in each example is of size ¢ and all countable elementary submodels are listed as
{Mp : B € ¢}. However, we often require that & O M, Nc. This is not always possible, for instance,
if @ < w. Indeed, because w € M, for all a € ¢, many small ordinals, such as w“, are contained in
every countable elementary submodel. Thus, the listing is started from some fixed ordinal e so that, for
all @ > e, a D M, Nc. The neighbourhoods of points in ¢ are defined almost entirely by finitely many
subsets of ¢. Through expressing this functionally, it is possible to obtain all but one of the properties of
each example from quite simple restraints on the functions involved. The remaining property is reduced
to a combinatorial relationship between special functions on ¢ and P(c¢). These functions are defined
in an induction of length ¢ where the values of the functions involved at g € ¢ are determined by the
6th elementary submodel in the list. This definition involves a diagonalisation procedure on families of
pairwise-disjoint finite sets. That they satisfy the required combinatorics is shown by using something
akin to a A-system which reduces all cases into one involving a pairwise-disjoint family. Because of the
importance of the A-system, it is beneficial to be au fait with the proof of Theorem 6.2.6.

A Q-set space

A @-set is an uncountable subset of the reals, every subset of which is a Gs-set. Under MA + —CH,
every uncountable subset of R of size less then ¢ is a Q-set and, under 2¢ < 2%, there are no Q-sets. As
well as this, much work has been done in showing whether Q-sets do and do not exist in a wide range of
different models of ZFC. For a good summary of this work, see Balogh’s article [B4].

Their significance comes in that they provide an easy construction of a separable, normal, non-metrizable
Moore space. The space in question is the subspace (4 x {0}) U (R x (0,—)) of the usual tangent disc
space where A is a Q-set.

The generalisation of a Q-set, a @-set space, is one in which every subset is a G5-set but not for trivial
reasons. That is, a Q-set space is also regular, zero-dimensional space but not o-discrete (the countable
union of discrete subspaces). Given that there are many models of ZFC in which Q-sets do not exist, it is
conceivable that there are models in which there are no Q-set spaces. Balogh’s example [B;] shows that
this is not the case as there is a Q-set space in ZFC.

Balogh'’s space, which we shall call X, has ¢ as its underlying set where the topology is defined in terms
of the following functions:

ForallY C¢, Gy : ¢ » w+ 1 and Gy, : ¢ & w are defined such that G;l (w)y=Y.

For each Y C ¢ and n, k € w,
UY,n,k,1):={B €c:Gy(B) 2n,Gyva(B) =k}
UY,n,k,0):=c\U®Y,n,k, 1)
The topology is then given by the sub-base B = {U(Y,\,|,))}: Y C¢,\,|| €w and ) € {r,00}}.

Clearly, this means that every element of the sub-base is clopen and hence that the space is both regular
and zero-dimensional. Moreover,

Gy ((n,w]) = | UYin, k1)
kEw

which means that for each n € w, G3'((n,w]) is open. Also,

Y = () Gy ((n,w))

new



so that every subset of X is a G. It follows from this that X is T7.

Remark The purpose of the Gy, ’s is simply to allow an easy proof of regularity by declaring the
sub-base to consist of clopen sets. This could not be done using the G'y’s alone as this would mean that
every subset is the intersection of closed sets hence closed. This makes the space discrete!!

As we have a space for all possible Gy’s and Gy,,’s which we could define, the trick now is to carefully
define them so as to avoid o-discreteness.

Suppose the space were o-discrete so that X = |J,,.,, An Where the A, are disjoint discrete subsets.
Define f : ¢ & w by f(a) = n if and only if @ € A, and h: ¢ — [B]<% so that {\h(a):a € f~1(n)}isa
set of neighbourhoods witnessing that each A, is discrete. That is, a € (h(a) and if f(a) = f(5) then
a € (N h(B). The G’s are defined in such a way as to kill off all of these pairs.

List all countable elementary submodels up to isomorphism type as {Mp: 8 € ¢\ €} in such a way that,
for f > €, f D Mgnec. The G’s are now defined by induction. For all 8 < ¢, take Gy (8) and Gy.»(5)
to be defined arbitrarily though still satisfying G;l (w) =Y for all Y C ¢. Suppose that for § € ¢, for all
a < f,Gy(a) and Gy ,(a) have been defined.

In order to prevent a pair f and h from witnessing o-discreteness, we need to enlarge some of the
neighbourhoods already defined by Gy (a) and Gy,(a) for a < 5. However, not every such pair needs
to be considered. As will become clear, any h and f can be reduced to a canonical one for which there
exists k € w such that {wh(a)},es-1(x) contains an infinite pairwise-disjoint collection. We can simplify
further by disguising the fibres of f as just some infinite subset of c.

As Mg is countable, we can list all h : ¢ = [B]<“ and infinite subsets A of ¢ which are in Mg by
{hi : i € w} and {4; : j € w} respectively. Also define 7h(a) = {Y C ¢ : there exist n, k¥ € w and
i € {0,1} such that U(Y,n, k,i) € h(a)}. Denumerate all pairs (i,j) € w? for which {7h;(a)}aca, is an
infinite pairwise disjoint collection by {(iy, jn) : n € w}. Thus, for each n € w,

V |= {7hi, (a)}aeca,;, is an infinite pairwise disjoint collection
It is not too hard to rephrase this as a logic formula and then use elementarity to show that

Mg = {mhi, (a)}aca;, is an infinite pairwise disjoint collection

Define a; to be an arbitrary ordinal in A;, N Mg. Given oy ...apn—1, choose a,, € A;, N Mg such that
anp €{ay,...,a,_1} and
whi, (an) N U whi,, () = 0
m<n
This is possible as (J,, ., Thi,, (a;) is a finite collection of Y’s yet, by the previous comments, M thinks
that {7h;, (a)}aca,, contains an infinite, disjoint collection of finite sets consisting of ¥’s. The definition
of the a, means that the following function is well-defined:

na(Y) = a,, if and only if Y € 7h, (a,)

Whenever na(Y) = apy, define Gy () > max{n € w: U(Y,n, k,i) € h;,, () for some k € w, i € {0,1}}
and still satisfying Gy () = w if and only if 8 € Y. As h;_ (@) is a finite set, this is a good definition.
For each n € w, if for some k € w, a,, € U(Y,n,k,1) € h;_ (am) then let Gy, n(8) = k. Such a k is the
unique value of Gy, () hence this definition is also good. If there is no such k for the given n, then
choose Gy () so that it is not equal to any k for which a,, € U(Y,n,k,0) € h;,, (am). Again, this is
a good definition since h;,, (a,,) is finite. Otherwise, define Gy (3) and Gy, (8) arbitrarily apart from
ensuring that Gy (f) = w if and only if 5 € Y.

The upshot of this definition is that if a,, € U(Y,n,k,i) € h;,, (an) for suitable n, k and 4, then
BeUY,n,k,i).

This completes the construction of the space X. We have that X is a Q-set space provided we can show
that it is not o-discrete. By all of the previous discussion, this follows from:



Theorem 6.3.1 Given any h: ¢ — [B]<¥ and f : ¢ = w such that, for all o € ¢, a € (h(a), there exist
a < 3 < ¢ such that

f(a) = f(B) and B € (| h(a)

Proof Take a countable elementary submodel which contains f, h, {Gy, Gy, :Y C¢, n € w}, ¢. This
submodel is isomorphic to Mp for some S € ¢. Note, we assume that § ¢ Mg. Let f(8) = m € w so
f(B) € Mgs and, as a finite subset of Mg, h(8) N Mg € Mgz. Define ¥(a, A) to be the sentence:

(f(a) = f(B)) AVa' € A((a # o) = (wh(a) N 7h(a') = 7h(B) N Mg))

Since the only objects in ¥(a, A) are elements of Mg, ¥(a, A) is absolute for V and M. It is clear that
V=3 € c(T(a,0)A(mh(a’) D wh(B)NMg)), namely, 3 is the o' which V has in mind. By elementarity,
Mg = Fa' € «(¥(a,0) A (mh(a') 2 mh(B) N Mp)) Take o' € Mg whose existence is asserted by this
statement and define Ag = {&'} . From the definition of ¢, it follows that Mgz |= Va € Aq(¥(a, Ap)).
Just as in the proof of Theorem 6.2.6, use Zorn’s Lemma to find an A € Mg such that

Mp EVa € A(¥(a, A)) AVy € ¢(T(v,A) = v € A)

Forany a € A,V =3a' > a(¥(a’, A)), namely §, and elementarity gives that Mg = 3o’ > a(¥(a’, 4)).
Find an o/ € M3 which witnesses this. By maximality of A in Mg, o' € A. Hence, for any « € A, there
is @' > a which is also in A. Thus A is infinite and, for all @ € A, ¥(a, A). This implies that {7h(a)}aca
is an infinite A-system with root h(8) N Mp. Hence, define (in Mpg), b’ : ¢ = [B]<“ by

h'(@) = h(a) \ (h(B) N Mp)

Clearly, {mh'(a)}aca is an infinite pairwise-disjoint collection such that h', A € Mg. Thus, there is an
m € w such that h = h;,, and A = A; . Take @ = a,,. These a and § will satisfy the theorem.

By definition, o € A so ¥(a, A) and f(a) = f(8). We must show that 3 € [\ h(a). That is, we must
show that for every U(Y,n, k,i) € h(a) that § € U(Y,n, k,1).

Consider such a U(Y,n,k,i) € h(a). By the way in which a was defined, h(«a) is the disjoint union of
K (a) and h(B) N Mga. Thus, there are two cases:

1. U(Y,n,k,i) € h(B) N Mg. In which case, as § € (\h(B), B € U(Y,n, k7).

€

2. U(Y,n,k,i) € W(a). As h'(a) = hy,, (), from the definition of Gy (8) and Gy ,(8), if a €
U(Y,n,k,i) then 8 € U(Y,n,k,i). But we know a € [\ h(a) hence 8 € U(Y,n,k,1).

This completes the proof.

A normal, not collectionwise Hausdorff space

In [R3], Rudin described this space as an answer to a question of Dowker. However, the space also
provides an example of a normal, not collectionwise Hausdorff space which only has cardinality ¢. Prior
to this, the standard example of such a space was Bing’s famous example (G) which has cardinality 22!
[Bi].

Rudin’s original construction does not refer to elementary submodels but it clearly has all the combina-
torial coding which they disguise. In [Do], Dow suggested a way to introduce elementary submodels into
the proof. His method, though, is only sketched and, for those unfamiliar with reflection techniques, it
is hard to decipher what he intends. We therefore give here a full presentation of Rudin’s space using
elementary submodels in exactly the same way as in the previous construction.



The set underlying the space is the continuum with all pairs of points from the continuum, that is,
X = c¢U|[c]?. The topology is as follows. Each pair {a,3} € [¢]? is isolated. A point o € ¢ has sub-
basic neighbourhoods consisting of the point a and some subcollection of [¢]?> for which every pair in the
subcollection contains a. More precisely, we shall define f : ¢ x P(¢) = P(c) and then let the sub-basic
neighbourhoods be:

U(a,V,K) = {a} U{{a, 8} : B € f(a,Y)\ K}

where K is some finite subset of c.

With this topology, [c]? is a collection of isolated points so that ¢ is a closed subset of X. Because any
sub-basic neighbourhood of a € ¢ does not meet ¢ anywhere else, ¢ is a closed discrete subset of X. It
is precisely this subset which will not be pointwise separated by a disjoint collection of open sets in X.
However, it is interesting to note that the only way two neighbourhoods of distinct points o and g in
¢ can meet is if they both contain {«,5}. Thus the possibility of X being collectionwise Hausdorff is
destroyed by a single point!

The K in the definition of the sub-basic neighbourhoods is enough to guarantee that the space is 77 .

To make the space normal, we begin to put some restraints (albeit rather weak ones) on f. Consider two
disjoint closed subsets Y and Z. Isolated points in Y and Z do not cause problems when it comes to
separating Y and Z. Thus we may assume that Y and Z are subsets of ¢. But then, since ¢ is a closed
discrete set, ¢\ Y is closed and disjoint from Y and contains Z. Hence, it suffices to provide a separation
of Y from its complement in ¢. Y is used to index the sub-basic neighbourhoods of the a € ¢ which would
achieve this separation.

Consider the following condition which we shall call (}):

foral Y Cc,a €Y and S €Y implies a & f(5,Y) or 8 & f(a,Y)

Given this, we can simply define U = |J,cy U(a,Y,0) and V = Usey U(B,Y,0). Clearly they are
open sets which contain Y and ¢\ YV respectively. If they were not disjoint, then for some a € Y and
Bec\Y,U(a,Y,0) meets U(B,Y, D) and that must occur at the point {a, }. But this would mean that
a € f(B,Y) and B € f(a,Y) which contradicts (). Hence U and V are the required separation.

We must now ensure that f satisfies (). For each a € cand Y C ¢, define g,y : ¢ = 2 to be any function

and define:
Y a€eY

X“m:{ \Y agV

Let,
fla,Y)=xa(Y)U{B>a:gay(f) =1} U{f <a:gsy(a) =0}

Lemma 6.3.2 For any collection of 9oy, the resulting f satisfies condition (f).

Proof Suppose that Y Cc¢, a € Y and € Y. Assume that a < 5. The other case is almost identical.
Suppose too, for contradiction, that 3 € f(a,Y) and a € f(3,Y).
Since x3(Y) =c¢\Y, a € f(4,Y) means that a € {a < : g3, v(a) = 0}, that is, gg v (a) = 0. Similarly,

B € f(a,Y) means that gz y(a) = 1 which gives the contradiction.
O

So overall, given any collection of g,,y’s and f defined as above, X is a normal, T} space. We can now
use elementary submodels to construct the g,y and prevent X from being collectionwise Hausdorff.

Suppose X were collectionwise Hausdorff. Then there exists h : ¢ — [P(c)]<“ and k : ¢ — [¢]<“ such that
{ﬂYeh(a) U(a,Y, k() : a € ¢} is a disjoint family of open sets which separate all the points in ¢. Note,
the basic open neighbourhoods U(a, Y, K) should have a different K for each Y but as the intersections
are finite and the K’s are finite they can be joined into a single k(). To prevent such a separation, we



need to build the g,y such that for every possible candidate for h and k, there exist a < # < ¢ such that
Ny en(a) Ul Y, k(@) meets (Nycp5) U(B, Y, k(B)). This would happen if (x):

a € k(B) and, for all Y € h(B), a € f(B,Y)

B & k(a) and, for all Y € h(a), B € f(a,Y)

List all the countable elementary submodels up to isomorphism type as {Mgz : § € ¢\ €} and assume
that 8 O Mg Nec. For § < e define g, v (83) arbitrarily. We will define g, v (8) for all @ € cand ¥V C c.
List all h: ¢ = [P(¢)]<¥ in Mg and all infinite subsets A of ¢ in Mg as {h; : i € w} and {4; : j € w}
respectively. As in the Q-space construction, there are only certain h’s and A’s which we need worry
about. Thus, let {(in,jn) : n € w} be an enumeration of the pairs (i,7) € w? for which {h;(a)}aca; is
an infinite pairwise-disjoint collection. The enumeration is done in such a way that each pair is listed
infinitely many times.

Now fix aq € A;;, N Mga. Given ay,...,a,_1 € ¢, using elementarity just as in the Q-space, define
a, € A;, N Mg such that a,, & {a1,...,a,-1} and

hi, (an) 0 hi, (0m) =0

m<n

This is possible since each of the h;_ () is a finite set and Mg thinks that {h;, (a)}aeca, is an infinite
pairwise-disjoint collection.

Define na(Y) = ay, ifand only if Y € h;, (). Otherwise, na(Y") is not defined. This is a good definition,
since if for some Y C ¢, Y € h;, (ay), then, because the h;  (a; ) form a disjoint collection, the a,, for
which this occurs is unique.

Now let fna(Y)
_J 1 ifnaY)=a
9a,v(B) = { 0 otherwise

X is then built as already described from these g,,y and as to be hoped:
Theorem 6.3.3 Given any h: ¢ — [P(c)]<% and k : ¢ — [¢]<¥, (%) is satisfied.

Proof Take a countable elementary submodel which contains h, &, ¢, P(c), and {go,y : @ € cand Y C c}.
This submodel is isomorphic to Mg for some 5 € ¢ (remember that § O Mg N¢). Since h(S) is a finite
set, h(8) N Mg is a finite subset of Mg and hence is an element of Mp. Thus define X(a, A) to be the
formula:

((Xa(¥) = x5(Y)) & (V € h(B) " Mp)) AVa' € A((a # ') — (h(a) N h(e') = h(B) N Mg))

V=3 € c(Z(e,0)A(h(a’) D h(B)NMp)), namely V thinks 3 satisfies this statement. By elementarity,
Mg | Fa' € (Z(e,0) A (h(a) D h(B) N Mp)). Find an o' € Mg which witnesses the truth of this
statement. If Ag = {a'} then Mg = Va € Ag(E(a, Ap)). Now, applying Zorn’s Lemma, produce a
maximal such A € Mg, that is:

Mg |=Va € A(Z(a, A)) AVy € ¢(E(v,4) = (y € A))

For any a € A, V |= 3a' > «(E(c’, A)), namely 8. Elementarity gives Mg |= 3o’ > a(X(a’, A)). Find
such an o' € Mp and maximality of A in Mg implies that o' € A. Hence, for any element of A there is a
strictly greater one whence A is infinite. From the definition, for all a € A, ¥(a, A) and hence {h(a)}aca
is a A-system with root h(3) N Mg. Define b’ : ¢ = [P(c)]<% by

h'(a) = h(a) \ (h(B) N Mp) for all a € c.



This means {h'(a)}aca is an infinite pairwise-disjoint collection where h' and A € Mpg. Hence, there
exists m € w such that h' = h;,, and A = A, . Moreover, as a pair h' and A were listed infinitely often
and k() is finite, we may ensure that «,, ¢ k(5).

We will now show that @ = a,,, and 8 are those required in ().

By definition, a € Mg so a < 3. Also a & k(53). Since k, a € Mg, it is not too hard to use elementarity
to show that k(a) € Mg. But then as a finite element of Mg, k(a) is also a subset of Mz and hence

B & k().

Now consider Y € h(8). Either Y € h(8) N Mg or Y € h(B) \ [h(B) N Mg]. If the first case holds then,
by the fact that @ € A, £(a, A) holds and x,(Y) = xs(Y). Clearly, from the definition of x4, @ € xa(Y)
and hence a € x5(Y). But x3(Y) C f(3,Y) so a € f(B,Y).

IfY € h(B) \ [h(B) N Mg], then Y &€ Mg. But h;, =h' € Ms and a = a,, € Mg, thus b'(a) € Mg.
Moreover, as a finite element of Mg, h'(a) is a subset of Mg. Hence, Y ¢ h'(a) so na(Y) # a and
9o,y (B) = 0. From the definition of f, this implies that a € f(3,Y) and we have demonstrated one half
of ().

Suppose that Y € h(a). Then either Y € h(f) N Mp or Y € h'(a) = h(a) \ [h(5) N Mg]. Just as for the
above, Y € h() N Mp means that 3 € f(a,Y).

IfY € h'(a), na(Y) = a. But then g,,y(8) = 1 from which it follows that g € f(a,Y).

Hence (x) is satisfied.

A small Dowker space

A Dowker space is a normal Hausdorff space the product of which with the unit interval is not normal.
Such spaces are named after Dowker who showed that:

Theorem 6.3.4 [D] For a normal space X, the following are equivalent:

1. X x I is normal
2. X is countably paracompact
3. X s countably metacompact

4. For every countable open cover U = {U, : n € w}, there is an open cover V = {V,, : n € w} such
that V,, C U, for alln € w

5. For any increasing sequence of open sets {G, : n € w} which cover X, there is an increasing
sequence of closed sets {F, : n € w} which also covers X and such that F,, C G, for alln € w

He then asked if all normal Hausdorff spaces are countably paracompact. Answering this question has
provoked a great deal of exciting work and Dowker’s characterisations (5) of countable paracompactness
has been crucial in attacking the problem. The question was finally answered by Rudin [R;] who produced
a Dowker space in ZFC. However, the example is “big” in many senses, for example, it has weight and
cardinality (w,,)“. This has provoked the question of whether Dowker spaces could be smaller than this.
Many excellent examples of small Dowker spaces have been given in various models of set-theory, see
[R4], but until recently Rudin’s remained the quintessential Dowker space in ZFC.

In 1994, Balogh announced at the Spring Topology Conference that he had found a small Dowker space
in ZFC - one which was hereditarily normal, o-discrete and of cardinality c¢. His construction makes
essential use of elementary submodels. Some have challenged that it is not truly “small” because it is



not first countable but it is indisputably a truly new example of a Dowker space and, as such, is of great
value. We describe here the space based on [Bs].

The space has its roots in the normal, not collectionwise Hausdorff space which has just been described.
Whereas that space is made up of two “layers”, ¢ and [¢]?, the Dowker space has countably many and
the underlying set is X = ¢ X w. Take X,, = ¢ x {n} and G,, = ¢ x (n + 1). Each X,, will be discrete
and {G, : n € w} will be the open cover witnessing that X is not countably paracompact. That is, if
F, C G, are closed sets for each n € w then J F, # X.

new

The basic open neighbourhoods are defined in terms of local network elements. More precisely, for a
point (a,n) € X, if n = 0 then N({a,n),Y, K) = {{(a,n)}. For n > 0, we shall define f : ¢ x P(c) = P(c)
and take

N({a,n),Y,K) = {{a,n)} U{(B,n 1) : B € f(a,Y)\ K}

where K is a finite subset of ¢. The presence of the K ensures that X is T}. A set U is open if and only
if, for every point z € U, there exist C € [P(¢)]<% and K € [c]<“ such that

() N(z,Y,K)CU
YeC

This definition immediately implies that G,, is open and X, is discrete for all n € w. In particular, X
is the set of all isolated points of X.

Normality will follow from a straightforward boot-strapping argument once it has been shown that any
two disjoint closed sets in X,, can be separated by disjoint open sets. Because each X, is discrete, we
must consider any pair of disjoint sets in X,,. The proof of this proceeds by induction, the case for
X being trivial. Thus assume that for some n € w, if By, B; C X,,_1 are disjoint then they can be
separated by disjoint open sets. Consider X,. As in the previous example, it suffices to show that for
any A C X,,, A can be separated from its complement. To do this we place a constraint on the f(«a,Y):
define g : P(c) = P(c) and set
[ gY) ifaeY

oY) = { \g(V) ifagy

IfY ={a €c:{(a,n) € A}, it is clear that AU (g(Y") x {n —1}) contains N({a,n),Y, () for all (a,n) € A
and (X, \ A) U (c\ g(Y) x {n — 1}) contains N({a,n),Y,) for all (a,n) ¢ A. g(Y) x {n — 1} and
c\ g(Y) x {n — 1} are disjoint subsets of X, _; and, by the inductive hypothesis, they can be separated
by disjoint open sets U and V. (We may assume that U UV C G,,_;.) It then follows that A U U and
(X, \ A) UV are disjoint open sets separating A from its complement in X,,. Hence X is normal.

To show that X is not countably paracompact, Balogh introduces the notion of o-decomposable. As this
is always used negatively, we define rather the term indecomposable. A subset A of ¢ is indecomposable
ifforany l: A — w, h:c— [P()]<¥ and k : ¢ = [¢]<¥, there exist o, 8 € ¢ such that I(a) = [(8) and
B€N{fla,Y)\k(a):Y € h(a)}. In other words, (})

) =1(8), B & k(a) and, for all Y € h(a), B € g(Y) if and only if a € ¥

Because of the presence of [ in this definition, if Y is indecomposable and the countable union of some
sets then one of those sets must also be indecomposable. Moreover,

Lemma 6.3.5 If n € w and Y C ¢ is indecomposable then Y1 = {a € Y : (a,n + 1) € Y x {n}} is
indecomposable.

Proof Define Yo =Y \Y;. If a € Yj then {(a,n+ 1) ¢ Y x {n}. Hence, there exist Y,...,Y; € P(c)
and Ky,..., Ky € [c]<% such that

k
N N(a,n+1),Y;, K)NY =0

i=1



Therefore, ﬂle(f(a,Yi)\Ki)ﬂY =0and,forallBeY, B ¢ ﬂle f(a,Y;)\ K;. By defining h(a) = {Y; :
i=1,...,k}, k(a) = Ule K; and l(a) = 0, it is easy to check that the resulting h, k and ! witness that

Yy is decomposable. But Y = Yy UY; and Y is indecomposable hence Y; must also be indecomposable.
O

The key to the construction is proving that for some suitable g, ¢ is indecomposable. Given this, consider
the open cover {G,, : m € w} of X. Suppose {F), : m € w} is a sequence of closed sets which also cover
X. Define Y, = {a € ¢ : {@,0) € Fj, }. It must be that ¢ = {J,,,,, Y and since ¢ is indecomposable, for
some mg € w, Yy, is indecomposable. Now F,, D Yy, x {0} and, by inducting up using the Lemma, for
alln € w, X,, N Fyy,, # 0. In particular, F,,, € Gy, Hence, X is not countably paracompact.

This completes the description of the Dowker space. It remains to prove:
Theorem 6.3.6 There is a g : P(c) = P(c) which makes ¢ indecomposable.

Remark A noticeable difference in this construction is the use of pairs of elementary submodels rather
than only one at a time. The reason for this is that in the process of defining the g(Y"), there are two
cases to be considered. The first case treats what happens on the root of some A-system and the second,
what happens off the root. In the previous examples, what happens on the root has been quite trivial
but for this example more care must be taken. However, it is impossible to predict beforehand what this
root will be! What we can say though is that, from the proof of the A-system which we have given, we
can ensure that the root will always lie within any suitable countable elementary submodel. Moreover,
anything which is not in the root is not in that submodel.

Proof List all countable elementary submodels as {Mp : 8 € ¢\ €} and, for each § € ¢, choose another
countable elementary submodel N for which Mg € Ns. Note that since Mg is a countable element of
N3 it is also a subset and anything which is placed in Mg is automatically in A3. We may also assume
that 8 2O ¢ NN whence 8 ¢ Nj.

For all Y € P(c), we inductively define whether 8 € ¢ is an element of g(Y) or not by considering the
model Np. List all the functions h: ¢ — [P(c) \ Mpg]<“ and infinite subsets A of ¢ in Nz as {h; : i € w}
and {4, : j € w} respectively. It will become apparent that we will only need to deal with certain h and
A. Thus, let {(in,jn) : n € w} be a denumeration of the pairs (i,j) € w? such that {h;(a)}aca; is an
infinite disjoint collection.

Just as in the Q-space construction, use the elementarity of Az to choose a, € Aj, N N3 such that
anp €{ay,...,a,_1} and

hi,(an) 0 hi, (0m) =0

m<n

Because {h;, (an)}new forms a disjoint collection, setting na(Y) = a if and only if Y € h;, () is a good
definition.

In order to define g(Y"), there are two case to consider as mentioned in the remark preceding the proof:

1. For Y € Mg, B € g(Y)ifand only if 3 € Y

2. Forna(Y)=a,fecg(Yy)ifandonlyifa €Y.
Since the range of all the h;’s misses Mg, the two cases are not conflicting. For Y € P(c), S is placed
arbitrarily in g(Y").

This completes the definition of the g and it remains to show that this does make ¢ indecompos-
able.Consider some h : ¢ — [P()]<¥, l : ¢ - wand k : ¢ — [¢]<¥. We wish to find a € 8 € ¢
satisfying (1) above.



Define wh(a) = {Y € h(a) : @« € Y}. Take an elementary submodel containing g, h, I, k, ¢, P(c) and
{mh(a)}aec. This submodel is isomorphic to Mg say. Recall, 8 ¢ Nz and Mg C Np. Since h(B3) is a
finite set, h(8) N Mg and 7h(8) N Mg are finite subsets of M and are hence elements of Mg. I(f) being
a natural number is also an element of Mg. Define =(«, A) to be the statement:

(l(e) = U(B)) A (h(a) N Mg = h(B) N M) A (wh(e) N h(B) N Mg = wh(B) N M) A
AVa' € A(a # o' — h(a) N h(a') = h(B) N Mp)

Once again 3 ensures V = 3o’ € ¢(E(«’,0)). By elementarity, Nz E Ja' € ¢(E(a/,0)). Find o/ € N3
which is asserted to exist by this expression. If A = {a'} then N3 = Va € Ag(E(a, Ag)). Just as in the
previous examples, apply Zorn’s Lemma to find a maximal such A € N3 so that:

N3 EVa € A(E(a, A) AVy € ¢(E(y,4) = v € A)

Also as previously, A is an infinite element of Az and for all @ € A, Z(a, A) holds. In particular,
{h(@)}aca is a infinite A-system of sets which only meet Mg on the root h(5) N Mg. Define h' : ¢ —
[P(c) \ Mp]=“, by

b (a) = h(a) \ (h(B) N Mp)

Thus, {h'(a)}aec4 is an infinite pairwise-disjoint family and h' and A were listed so that, for some n € w,
h' =h;, and A = A;, . Take a = a,. a and 3 will satisfy (}).

First, since « € ANNj3 and k € N3, k(a) € N whence 8 & k(a). As a € A, E(a, A) holds . This means
l(a) = 1(B). Now, we know that h(a) = (h(8) N Mg) U h'(a) and that this union is disjoint. There are
two cases to consider:

1. For Y € h(B)N Mg, a € Y if and only if Y € 7h(a). ZE(a, A) implies that wh(a) N h(B) N Mg =
wh(8) N Mga. Therefore, Y € mwh(a) if and only if Y € 7h(B) if and only if 8 € Y. From the
definition of g(Y), 8 € g(Y) if and only if 8 € YV if and only if « € Y.

2. ForY e h'(a), na(Y) =« and B € g(Y) if and only if a € Y.

Thus for all Y € h(a), 8 € g(Y) if and only if @ € Y. That is, @ and 8 do indeed satisfy (f) and ¢ is

indecomposable.
O
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