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Abstra
tBoundary Properties and Constru
tion Te
hniquesin General TopologyPaul A. Cairns D.Phil. ThesisCorpus Christi College Submitted 22nd September, 1995Oxford OX1 4JFThe aim of this thesis is twofold. First, we investigate spa
es de�ned by asserting that their nowhere densesubsets have 
ertain properties. Se
ondly, we develop some te
hniques for the 
onstru
tion of topologi
alspa
es.We 
onsider spa
es where the nowhere dense sets are asserted to have some property P , 
alling su
hspa
es boundary-P . We show that if there are no Lusin spa
es then every 
ompa
t boundary-metrizablespa
e is metrizable. Boundary-separability is also studied and we show that if there are no L-spa
es thenevery boundary-separable spa
e is separable.By adapting the absolute dimension fun
tion of Arhangel'ski��, we de�ne the new 
on
ept of 
ohesion. Weshow that every 
ompa
t 
ohesive and every Hausdor�, sequential 
ohesive spa
e is s
attered. However,we 
onstru
t regular, 
rowded spa
es of all �nite 
ohesions though there are no regular spa
es of trans�nite
ohesion. We 
onsider too the preservation of 
ohesion under various mappings and under the formationof produ
ts.Turning to 
onstru
tion, we 
onsider the 
lass of 
ompa
t monotoni
ally normal spa
es. It is well-knownthat it 
ontains the 
lass of spa
es whi
h are the 
ontinuous images of 
ompa
t ordered spa
es but it isstill open as to whether they are a
tually distin
t 
lasses. Using Watson's resolutions, we give a methodfor 
onstru
ting monotoni
ally normal spa
es. Though this also preserves 
ontinuous images of ar
s, weshow that it is be
ause of a powerful result of Cornette rather than any trivial observation.We also examine more 
losely monotone normality in images of 
ompa
t ordered spa
es using the Collins-Ros
oe stru
turing me
hanism. From this, we extra
t a strong instan
e of the me
hanism, linear 
hain(F), whi
h is held by all images of ordered 
ompa
ta and all proto-metrizable spa
es and implies Junnila's
on
ept of utter normality.Elementary submodels are an important tool in the 
onstru
tion of topologi
al spa
es. We developa general method for applying them in varying 
ir
umstan
es and illustrate it by 
onstru
ting threeexamples: Balogh's Q-set spa
e, Rudin's normal but not 
olle
tionwise Hausdor� spa
e and Balogh'ssmall Dowker spa
e.
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Chapter 1Introdu
tion
1.1 An outline of the thesisThis thesis divides into three main se
tions: the �rst 
onsisting of Chapters 2 and 3 deals with spa
eswhere the nowhere dense subsets are asserted to have 
ertain properties; the se
ond (Chapter 4 and 5)addresses some topi
s 
on
erning 
ompa
t monotoni
ally normal spa
es; the third (Chapter 6) developsthe use of elementary submodels in topology.Nowhere dense subsets are fundamental obje
ts in topologi
al spa
es and their importan
e is evidentin su
h powerful results as the Baire Category Theorem and the topologi
al reformulation of Martin'sAxiom, see [K1℄ p.62. Despite this, there are few instan
es where 
lasses of spa
es have been de�ned byasserting that the nowhere dense subsets have 
ertain properties.The most prominent example of a theory whi
h is founded on the properties of nowhere dense sets isdimension theory. Here, the small indu
tive dimension ind and the large indu
tive dimension Ind arede�ned as follows:De�nition 1.1.1 For a spa
e X , indX = �1 = IndX if and only if X = ;. Then indu
tively, for n 2 !,indX 6 n if and only if X has a basis of open sets whose boundaries have small indu
tive dimensionstri
tly less than n. Similarly, IndX 6 n if and only if, for every 
losed subset C of X and open setU 
ontaining C, there is an open set V in X for whi
h C � V � U and the boundary of V has largeindu
tive dimension stri
tly less then n.Thus, these dimension fun
tions 
an be regarded as asserting that 
ertain 
losed nowhere dense subsets(the boundaries referred to in the de�nitions) �t into the given indu
tive hierar
hy. However, even inspa
es with well-de�ned dimension in both senses, there are still many nowhere dense subsets whi
h areentirely unrestri
ted by this de�nition. Be
ause of this, the indu
tive dimensions are rarely 
onsideredin terms of nowhere dense sets.As a strengthening of these de�nitions, Arhangel'ski�� [A2℄ de�ned the notion of absolute dimension. Thisgives the same meaning to zero-dimensional as the small indu
tive dimension but the higher dimensionsare modi�ed so that, for n 2 !, a spa
e has absolute dimension at most n if every nowhere dense subsethas absolute dimension stri
tly less than n. Absolute dimension was de�ned as a tool by whi
h to study
leavability over the reals but only a few fa
ts about it were used.Possibly the most well-known example of a spa
e all of whose nowhere dense sets have a given propertyis a Lusin set. This is an un
ountable subset of the real line for whi
h every nowhere dense subset is
ountable (see [M℄). Lusin sets are easily 
onstru
ted under the Continuum Hypothesis but it is also
onsistent, for instan
e under Martin's Axiom and the negation of the Continuum Hypothesis, that thereare none. However, they are very useful, o

urring in a number of di�erent pla
es in topology. Kunen4



[K2℄ has also extended the de�nition to give the more general 
on
ept of a Lusin spa
e.There is a mu
h less well-known body of work whi
h 
onsiders spa
es all of whose nowhere dense subsetshave a given 
overing property. This work was initiated by Kat�etov [Ka℄ who proved that T1 spa
eswithout isolated points in whi
h every 
losed nowhere dense subset is 
ompa
t are themselves 
ompa
t.Mills and Wattel [MW℄ and Blair [Bl℄ have generalised this result to en
ompass a wide range of di�erent
overing properties in
luding 
ountable 
ompa
tness, the Lindel�of property and pseudo-
ompa
tness.Our aim in Chapter 2 is to study spa
es whose 
losed nowhere dense subsets all have P for varioustopologi
al properties P . Su
h spa
es are said to have the new property boundary-P . We 
onsider threemain 
ases of P being metrizability, separability and s
attered-ness, in ea
h 
ase giving 
onditions whi
hdetermine when boundary-P spa
es have P . We obtain the rather surprising results that if there are noLusin spa
es then every 
ompa
t boundary-metrizable spa
e is metrizable and if there are no L-spa
esthen every boundary-separable spa
e is separable.In Chapter 3, we de�ne a dimension-like fun
tion whi
h we 
all 
ohesion. This is based on absolutedimension but, in order to avoid imposing atypi
al, good behaviour in the lower \dimensions", the base
ase of the de�nition is altered: a spa
e has 
ohesion zero if and only if it is dis
rete. We examine manyproperties of 
ohesion, its e�e
t on s
attered, 
rowded and 
ompa
t spa
es applying some results from theprevious 
hapter. The preservation of 
ohesion under various topologi
al 
onstru
tions is also 
onsidered.Monotoni
ally normal spa
es have proven themselves to be an important 
lass of spa
es ever sin
e theirde�nition in 1973 [HLZ℄. They in
lude many of the major types of spa
es su
h as metrizable spa
es andordered spa
es. Yet, even with su
h diversity, they have a great deal of stru
ture. For some of the moreelegant results on monotone normality, see [HLZ℄, [G℄, [Mi℄ inter alia.One of the most ex
iting problems 
on
erning monotoni
ally normal spa
es 
omes from a quite unexpe
teddire
tion, namely, from attempting to generalise the Hahn-Mazurkiewi
z Theorem. The 
lassi
al Hahn-Mazurkiewi
z Theorem states that a Hausdor� spa
e is the 
ontinuous image of the unit interval in thereal line if and only if it is a non-empty, metrizable, lo
ally 
onne
ted 
ontinuum. As the unit intervalis the unique metrizable ar
, the natural generalisation would be to say that a spa
e is the 
ontinuousimage of an ar
 if and only if it is a lo
ally 
onne
ted 
ontinuum. However, this is not the 
ase as isdemonstrated by an example of Marde�si�
 [Ma℄. A
tually, 
ounter-examples are easily found on notingthat 
ontinuous images of ar
s must be monotoni
ally normal. Thus, any lo
ally 
onne
ted 
ontinuumwhi
h is not monotoni
ally normal, for example the produ
t of the 
losed unit interval with the one point
ompa
ti�
ation of the long line, is a 
ounter-example. This does not render Marde�si�
's example obsoletebe
ause it still has many other ni
e properties, su
h as ar
-wise 
onne
tivity, whi
h might 
on
eivablyhave provided alternative 
hara
terisations of the 
ontinuous images of ar
s. But this does provokethe question: is every lo
ally 
onne
ted, monotoni
ally normal 
ontinuum the 
ontinuous image of anar
 (ar
ti
)? Or more generally, there is the famous question of Nikiel, is every monotoni
ally normal
ompa
tum the 
ontinuous image of a 
ompa
t LOTS (CICLOTS)?Various 
lasses of spa
es have been shown to be ar
ti
, see [Wa1, N2℄. Nikiel, following on from thework of Treybig [Tr℄ and Ward [Wa2℄, has provided a number of 
hara
terisations of ar
ti
 spa
es [N1℄.These have been extremely useful in determining many of the properties of ar
ti
 spa
es and also thoseof CICLOTS. For a good, brief summary of the main results in this area, see Se
tion 6 of [MO℄. However,the question of whether there is a 
ompa
t monotoni
ally normal spa
e whi
h is not a CICLOTS is stillopen.There are two main diÆ
ulties in answering this problem. The �rst is that it is very diÆ
ult to 
onstru
tmonotoni
ally normal 
ompa
ta from whi
h to obtain possible 
ounter-examples to the problem. These
ond is that the 
hara
terisations of CICLOTS whi
h have been obtained seem to bear little relationto the monotone normality stru
ture of these spa
es.In Chapter 4, we will turn our attention to 
onstru
ting monotoni
ally normal spa
es by applying Wat-son's re
ently developed theory of resolutions [W℄. We give a new type of resolution whi
h does preservemonotone normality when resolving over a lo
ally 
onne
ted, monotoni
ally normal 
ontinuum.



In Chapter 5, we analyse CICLOTS in a new way using the Collins-Ros
oe stru
turing me
hanism. Thestru
turing me
hanism has mu
h in 
ommon with monotone normality and properties derived from it,su
h as a
y
li
 monotone normality [MRRC℄ and Borges normality [St2℄. Also, it plays a key rôle inmany aspe
ts of the study of generalised metri
 spa
es. We will give a full dis
ussion of the stru
turingme
hanism and de�ne a new and rather strong instan
e of it. This is possessed not only by CICLOTS,as required, but also by all proto-metrizable spa
es. As well as this, it implies Junnila's newly formulatednotion of utter normality.Another re
ent development in the 
onstru
tion of topologi
al spa
es is the use of elementary submodels.There have been a number of results whi
h have used them in an essential way for simplifying and elu
i-dating otherwise 
onvoluted proofs. However, as yet there is no standard te
hnique for using elementarysubmodels, indeed it seems as if there are as many te
hniques as topologists who use them!In Chapter 6, we have developed a method for utilising elementary submodels in a number of di�erent
ir
umstan
es. We illustrate the method by applying it in the 
onstru
tion of three important, yet varied,examples. The three examples are a Q-set spa
e [B1℄, a \small" normal but not 
olle
tionwise Hausdor�spa
e [R3℄ and a small Dowker spa
e [B2℄. By way of an introdu
tion to re
e
tion te
hniques, we alsogive elementary submodel proofs of some of the basi
 tools whi
h will be needed in the exposition of theexamples. The work of this 
hapter has been done jointly with Chris Good and Will Pa
k and I am verygrateful to them for allowing me to in
orporate this work into my thesis.1.2 De�nitions, notation and elementary resultsAny terms and notation not explained in this se
tion may be found in [E℄ or [KV℄.Throughout the thesis, all topologi
al spa
es are assumed to be T1.Some elementary topologyFor a topologi
al spa
e X , �X will denote the topology on X . To avoid 
onfusion, when two distin
tspa
es have the same underlying set the spa
es will be denoted by di�erent symbols. For the remainderof this 
hapter, X and Y are topologi
al spa
es.For A � X , intXA denotes the interior of A in X , AX denotes the 
losure of A in X and the boundary ofA in X , bdXA, is de�ned by bdXA = AX n intXA. Where no ambiguity 
an arise, the X will be omittedfrom this notation. A is said to be nowhere dense in X if intA = ;.If a non-empty spa
e X has a basis of 
lopen sets then X is zero-dimensional. More generally, for atopologi
al property P , X has rim-P if it has a basis of sets whose boundaries have property P .For x 2 X , x is an isolated point of X if fxg 2 �X otherwise it is an a

umulation point. X is dis
rete ifevery point of X is isolated and X is 
rowded if it has no isolated points. This latter term was introdu
edby van Douwen [vD3℄ and is preferred by the author over the more usual terms \dense-in-itself", whi
his quite 
lumsy to use, and \perfe
t", whi
h has other topologi
al meanings. In fa
t, we use perfe
t tomean that every 
losed set is a GÆ-set, that is, a 
ountable interse
tion of open sets.We make expli
it a well-known property of isolated points:Proposition 1.2.1 If A is a subset of X and a 2 A is an isolated point of A then a is an isolated pointof A.Corollary 1.2.2 If A � X is 
rowded then A is also 
rowded.A s
attered spa
e is one in whi
h every subspa
e has an isolated point of itself. Taking Xd to denote the



set of a

umulation points of X , de�ne for ea
h ordinal �:X(0) = XX(�+1) = (X(�))dX(�) = \�2�X(�) for � a limit ordinalIt is 
lear that X is s
attered if and only if X(�) = ; for some ordinal �. In this 
ase, the s
attered lengthof X , denoted sl(X), is the least � for whi
h this holds.Although nowhere dense sets are natural and familiar topologi
al obje
ts, there are few pla
es in theliterature whi
h expli
itly state their basi
 properties. We therefore set out some of the more elementaryresults whi
h will be useful later on. The easier proofs are left to the reader.Proposition 1.2.3 If A � Y � X and Y is nowhere dense in X then A and AX are nowhere dense inX.Proposition 1.2.4 If D is a dis
rete 
olle
tion of points in a 
rowded spa
e X then D is nowhere dense.Proof If, for some U 2 �X , U � D and U is non-empty then there exists d 2 D \ U . D is dis
rete sofdg 2 �D and, by Proposition 1.2.1, fdg 2 �D. Thus, there exists V 2 �X su
h that fdg = V \D. AsU � D, fdg = V \ U whi
h is an open set in X . This 
ontradi
ts the fa
t that X is 
rowded. 2Proposition 1.2.5 If U is a disjoint 
olle
tion of open subsets of a 
rowded spa
e X and, for all U 2 U ,xU is some point in U then fxU : U 2 Ug is nowhere dense.Proof U is a 
olle
tion of open sets witnessing that fxU : U 2 Ug is dis
rete. The result now followsfrom Propositions 1.2.4 and 1.2.3. 2Proposition 1.2.6 If U is a maximal disjoint 
olle
tion of non-empty open sets X then X nSU is 
losedand nowhere dense.Proposition 1.2.7 For a s
attered spa
e X with sl(X) = � for some ordinal �, if � < � then X(�+1)is nowhere dense in X(�).Proof It suÆ
es to show that Xd is nowhere dense in X . Xd is 
losed in X as it is the 
omplementof all the isolated points in X . If U 2 �X is non-empty, by the de�nition of s
attered, there is a pointx 2 U whi
h is isolated in U . As an open subset of an open subset of X , fxg 2 �X and U 
ontains anisolated point of X . Thus, no non-empty open set in X is a subset of Xd. That is, Xd is nowhere densein X . 2Proposition 1.2.8 If X is s
attered and Y � X is nowhere dense then Y � Xd.Proof No nowhere dense subset of X 
an 
ontain any isolated points of X be
ause isolated points areopen in X . 2



MappingsA 
ontinuous mapping f : X ! Y is said to be irredu
ible if f is surje
tive and for no 
losed subset A ofX , f jA is surje
tive; open if for all U 2 �X , f(U) 2 �Y ; 
losed if for all C 
losed in X , f(C) is 
losed inY ; perfe
t if f is 
losed and f�1(y) is 
ompa
t for all y 2 Y .For A � X , de�ne the small image of A under f , denoted f�(A), to be fy 2 Y : f�1(y) � Ag.Closed and irredu
ible maps are not 
ommonly used in topology but they have some useful properties.We reprodu
e here two results whi
h will be important later. Both results are taken from [P℄.Proposition 1.2.9 For a surje
tion f : X ! Y1. f is irredu
ible if and only if, for every non-empty open subset of X, f�(U) is non-empty2. f is 
losed if and only if, for every open subsets of X, f�(U) is openProof Note �rst that, for U � X , f�(U) = Y n f(X n U). Using this, both statements follow naturally.f is irredu
ible if and only if, for every proper 
losed subset A of X , f(A) 6= Y if and only if, for everynon-empty open subset U of X , f(X n U) 6= Y if and only if, for every non-empty open subset U of X ,f�(U) is non-empty.f is 
losed if and only if, for every 
losed subset A of X , f(A) is 
losed in Y if and only if, for every opensubset U of X , f(X nU) is 
losed in Y if and only if, for every open subset U of X , f�(U) is open in Y .2Proposition 1.2.10 If f : X ! Y is perfe
t then there exists A � X whi
h is 
losed in X su
h thatf jA: X ! Y is irredu
ible and perfe
t.Proof Take U = fU � X : U is open in X and f�(U) = ;g and order it by in
lusion. If C is a 
hain inU , take V = S C. V is ne
essarily open. We wish to show that V 2 U .If y 2 f�(V ) then f�1(y) � V and C is an open 
over of f�1(y) in X . As f is perfe
t, f�1(y) is 
ompa
t.Find a �nite sub
over for f�1(y) from C, say fUi : i = 1; : : : ; kg for some k 2 !. The Ui are linearlyordered by in
lusion as C is a 
hain and so there is a largest one, say Uj for some j 2 f1; : : : ; kg. Butthen f�1(y) � Uj , that is y 2 f�(Uj) whi
h 
ontradi
ts the fa
t that Uj 2 U .Hen
e V 2 U whi
h means that every 
hain in U has an upper bound in U and by Zorn's Lemma, U hasa maximal element, W say.Take A = X nW . A is 
losed from whi
h it easily follows that g = f jA is perfe
t. If y 62 g(A) thenf�1(y) \ A = ; and f�1(y) �W whi
h 
ontradi
ts W being in U . Thus g is surje
tive.Suppose C is a proper 
losed subset of A. Sin
e X nA � X nC, X nC is an open set stri
tly 
ontainingW so X nC 62 U . Hen
e f�(X nC) 6= ; and there exists y 2 Y su
h that f�1(y) � X nC. Hen
e y 62 g(C)and gjC is not surje
tive. Therefore g is irredu
ible. 2Set-theoreti
 notationWe shall always work in ZFC, that is, the Zermelo-Fraenkel axioms with the Axiom of Choi
e, unlessexpli
itly stated otherwise. The standard, that is ZFC, set-theoreti
 universe is denoted by V . CH is theContinuum Hypothesis, MA is Martin's Axiom.As usual, R denotes the real line, Q the rationals and I the 
losed unit interval in R.



Cardinals are identi�ed with initial ordinals, ! denoting the �rst in�nite 
ardinal and the set of naturalnumbers, !1 is the �rst un
ountable ordinal, 
 the 
ardinality of the 
ontinuum.For f , g 2 !!, f < g means that f(m) < g(m) for all m 2 !, f <n g means that f(m) < g(m) for allm 2 ! n n and f <� g means f <n g for some n 2 !. b denotes the least 
ardinality of a subset of !!whi
h is unbounded in (!!; <�). b is an un
ountable regular 
ardinal between !1 and 
 and, regardlessof the value of 
, these are the only restri
tions on the value of b. For more details on b see [vD2℄.To avoid 
onfusion with intervals in lines, ordered pairs and n-tuples will be denoted by angle bra
es, forexample, hx; yi.For a set A, jAj denotes the 
ardinality of A, P(A) the power set of A. For a 
ardinal �, [A℄� is the setof subsets of A of size � and [A℄<� is the set of subsets of A of size stri
tly less than �.Cardinal fun
tionsThe weight of X , denoted w(X), is the least 
ardinality of a basis for �X . If w(X) = ! then X is se
ond
ountable. The (pseudo-)
hara
ter of a point x of X , denoted �(x;X) ( (x;X)), is the least 
ardinality ofa lo
al (pseudo-)basis for x in X . The (pseudo-)
hara
ter of X , denoted �(X) ( (X)), is the supremumof the (pseudo-)
hara
ters of all points in X . If �(X) = ! then X is �rst 
ountable. The density of X ,denoted d(X), is the least 
ardinality of a dense subset of X . If d(X) = ! then X is separable. TheLindel�of degree of X , denoted L(X), is the least upper bound on the minimum size of a sub
over of anyopen 
over of X . If L(X) = ! then X is simply Lindel�of. The 
ellularity of X , denoted 
(X), is thesupremum of the 
ardinalities of families of disjoint open sets in X . If 
(X) = ! then X satis�es the
ountable 
hain 
ondition or, more simply, is 


. The spread of X , denoted s(X), is the supremum ofthe 
ardinalities of the dis
rete subsets of X .If � is a 
ardinal fun
tion on X then h�(X) = supf�(Y ) : Y � Xg and h
l�(X) = supf�(Y ) : Y is a
losed subset of Xg. For a topologi
al property P , X is hereditarily P if every subset of X is P .Compa
ta and 
ontinuaWe shall assume that all 
ompa
t spa
es are Hausdor� and we shall use the term 
ompa
tum inter
hange-ably with 
ompa
t spa
e. �X denotes the Stone-�Ce
h 
ompa
ti�
ation of X . X is lo
ally 
ompa
t if ithas a basis of open sets whose 
losures are 
ompa
t.A 
ontinuum is a 
onne
ted 
ompa
tum. A lo
ally 
onne
ted spa
e is one with a basis of 
onne
ted opensets. A point x of a 
onne
ted spa
e X is a 
ut-point if X n fxg is not 
onne
ted. Given two points a,b 2 X , a 
ut-point x separates a and b if X n fxg de
omposes into two disjoint open sets, one of whi
h
ontains a and the other b. A 
y
li
 element of a 
onne
ted spa
e is a subset whi
h is maximal withrespe
t to the property of having no 
ut-point of itself. A 
y
li
 element is trivial if it 
onsists of onlyone point.A dendron is a lo
ally 
onne
ted 
ontinuum all of whose 
y
li
 elements are trivial. Equivalently, anytwo points of a dendron are separated by a third.Cy
li
 elements are a powerful tool in the study of lo
ally 
onne
ted 
ontinua. They were originallyde�ned by Whyburn [Wh℄ for metrizable 
ontinua but the theory has been more re
ently developed foruse in all 
ontinua, see [C℄, [N1℄. They are a 
ru
ial 
on
ept in Nikiel's 
hara
terisation of 
ontinuousimages of ar
s [N1℄.



Ordered spa
esSuppose (X;<) is a linearly ordered set. For a 2 X , (a;!)X = fx 2 X : a < xg and ( ; a)X = fx 2X : x < ag. Other intervals in X are denoted using the usual 
onventions of round and square bra
kets.If there is a possibility of 
onfusion as to whi
h ordered set is meant, a subs
ript will be added as in theabove notation.X is a linearly ordered topologi
al spa
e, or LOTS, if f( ; a) : a 2 Xg [ f(a;!) : a 2 Xg is a sub-basisfor �X . X is a generalised ordered spa
e, or GO-spa
e, if it has a basis of sets whi
h are 
onvex withrespe
t to <. Alternatively, a GO-spa
e is a subspa
e of a LOTS. An ar
 is a 
onne
ted, 
ompa
t LOTS.A jump in X is a pair hx; yi 2 X2 su
h that x < y and (x; y) = ;. A jump-point is one half of a jump.For two LOTS, (X;6X) and (Y;6Y ), the lexi
ographi
 order 4 on X � Y is de�ned by: for ha; bi,hx; yi 2 X � Y , ha; bi 4 hx; yi if a <X x or a = x and b 6Y y.We 
olle
t here a 
ouple of elementary properties of ordered spa
es whi
h may be found in [E℄.Proposition 1.2.11 A separable LOTS is metrizable if and only if it has 
ountably many jumps.Proposition 1.2.12 A 
ompa
t GO-spa
e is a LOTS.Proposition 1.2.13 Every subset of a 
ompa
t LOTS has an in�mum and supremum.A CICLOTS is the 
ontinuous image of a 
ompa
t LOTS and an ar
ti
 spa
e is the 
ontinuous image ofan ar
.Monotone normality and generalised metri
 spa
esX is monotoni
ally normal [HLZ℄ if there exists an operator G : X � �X ! �X , su
h that:1. If, for x 2 U 2 �X and y 2 V 2 �X , G(x; U) \G(y; V ) 6= ; then x 2 V or y 2 USu
h an operator is 
alled a monotone normality operator. Note that it suÆ
es to de�ne G only on abasis of X .X is a
y
li
 monotoni
ally normal [MRRC℄ if there exists an operator H : X � �X ! �X , su
h that:2. If x 2 U 2 �X and U � V 2 �X then H(x; U) � H(x; V )3. For all x,y 2 X , H(x;X n fyg) \H(y;X n fxg) = ;4. For all n 2 !, and all distin
t x0; x1; : : : ; xn�1 2 X with xn = x0, Tn�1i=0 H(xi; X n fxi+1g) = ;Su
h an H is 
alled an a
y
li
 monotone normality operator. It is easy to see that, given an operator Hon X satisfying (2) and (3), there is an operator G on X satisfying (1) and vi
e versa. Thus, all a
y
li
monotoni
ally normal spa
es are also monotoni
ally normal. GO-spa
es are a
y
li
 monotoni
ally normal[MR℄ and, as a
y
li
 monotone normality is preserved by 
losed maps, so too are CICLOTS.In the 
ourse of our study of monotoni
ally normal 
ompa
ta, two well-known 
lasses of spa
es emergeas natural to 
onsider.The �rst 
lass is the non-Ar
himedean spa
es. A spa
e X is non-Ar
himedean if it has a rank-1 base.That is, there is a base, B, for the topology on X su
h that if B, B0 2 B and B \ B0 6= ; then eitherB � B0 or B0 � B. Nyikos proved the following:



Theorem 1.2.14 [Ny℄ Every non-Ar
himedean spa
e is a GO-spa
e.In the same arti
le, Nyikos de�ned the se
ond 
lass of spa
es whi
h we 
onsider - the proto-metrizablespa
es. The most well-known formulation of proto-metrizability is in terms of the s
attering pro
ess: fora 
lass C of spa
es, trans�nitely 
onstru
t spa
es, at su

essor stages, by isolating a subset of points andrepla
ing these points with members of C and, at limit stages, by taking a subspa
e of the inverse limit ofthe 
onstru
tion so far. The 
lass of spa
es so de�ned is denoted S(C). A spa
e is proto-metrizable if andonly if it is in S(Metrizable). Despite this pe
uliar de�nition, proto-metrizability has 
ourished notonly be
ause it is a good generalisation of metrizability sharing many of the key properties of metrizablespa
es but also be
ause of the wealth of di�erent 
hara
terisations of proto-metrizable spa
es. We givenow a sample of these.Re
all that a pair-base B = fB = (B1; B2) : B 2 Bg for X is a subset of (�X)2 su
h that for all B 2 B,B1 � B2 and for all x 2 U 2 �X , there exists B 2 B for whi
h x 2 B1 � B2 � U .Theorem 1.2.15 The following are equivalent:1. X is proto-metrizable2. [GZ℄ X has a rank-one pair-base, that is, a pair-base B su
h that if B, B0 2 B and B1 \ B01 6= ;then either B1 � B02 or B01 � B23. [F℄ X is the perfe
t image of a non-Ar
himedean spa
e4. [GM℄ X has a 
ontinuous monotone normality operator, that is, a monotone normality operator Hsu
h that if x 2 U 2 �X then there exists V 2 �X whi
h 
ontains x and, for all y 2 V , V � H(y; U)5. [GM℄ X is monotoni
ally para
ompa
t, that is, if � is the set of open 
overs of X, then there existsan m : �! � su
h that, for all U , V 2 �:(a) m(U) star-re�nes U(b) m(U) re�nes m(V) whenever U re�nes VSome exoti
aWe now give some details of some of the more ar
ane topologi
al obje
ts whi
h we will en
ounter in the
ourse of this work.A Souslin line is a non-separable, 


 LOTS. Souslin's Hypothesis (SH) is the assertion that there are noSouslin lines. It is well-known that SH is both independent and 
onsistent with ZFC. More spe
i�
ally,under 3, there is a Souslin line whilst under MA + :CH, SH holds.If there is a Souslin line, there is one whi
h is also 
ompa
t and 
onne
ted - simply take the Dedekind
ompletion of the given Souslin line.A pair hT ;6i is a tree if T is a set partially ordered by 6 in su
h a way that, for all t 2 T , fs 2 T : s 6 tgis well-ordered by 6. A 
hain in T is a linearly ordered subset of T , a bran
h is a maximal 
hain and ananti-
hain is a subset S su
h that, for all s, t 2 S, it is the 
ase that neither t 6 s nor s 6 t. The heightof a tree, denoted ht(T ), is the supremum of the order-types of the sets fs 2 T : s 6 tg.A Souslin tree is a tree of height !1 with no un
ountable 
hains or anti-
hains. There is a Souslin line ifand only if there is a Souslin tree.A Lusin set is an un
ountable subset of R whi
h meets every nowhere dense subset of R in at most
ountably many points. It is easily shown that Lusin sets 
an be 
onstru
ted under CH. Kunen [K2℄generalised this notion to Lusin spa
es whi
h are un
ountable regular spa
es, having at most 
ountablymany isolated points and in whi
h every nowhere dense subset is 
ountable. He showed that under MA +



:CH, there are no Lusin spa
es. Also, every Souslin line 
ontains a subset whi
h is a Lusin spa
e thoughit is 
onsistent with ZFC that there is a Lusin spa
e but no Souslin line.In his thesis [vD1℄, van Douwen de�ned a node
 spa
e to be a 
rowded spa
e whose nowhere densesubsets are all 
losed. A maximal topology on a set X is a 
rowded topology any re�nement of whi
h isnot 
rowded. These are easy to �nd as given any 
rowded spa
e X , take all 
rowded topologies re�ning�X , partially order it by in
lusion and apply Zorn's Lemma to give a maximal topology. If X is Hausdor�then the maximal topology is also Hausdor�. Van Douwen has shown [vD3℄ that all maximal topologiesare node
. Thus, given any 
rowded Hausdor� topology on a set there is a �ner 
rowded Hausdor�topology whi
h is node
.Finding a regular node
 spa
e is not so straightforward. On
e again, van Douwen provided a methodfor 
onstru
ting these but, rather than using maximal topologies, he used maximal regular topologies.These are topologies whi
h are maximal with respe
t to being 
rowded and regular. They were originallyde�ned by Bourbaki as ultraspa
es [Bo℄ and, just like maximal topologies, they 
an be found by applyingZorn's Lemma but this time to the latti
e of regular 
rowded topologies re�ning the topology on anygiven regular 
rowded spa
e.Having obtained a 
ountable maximal regular topology, say one re�ning �Q, van Douwen gave a methodfor �nding a dense subspa
e whi
h is node
. By Proposition 1.2.1, this is ne
essarily 
rowded and is
learly regular. In the 
ase that the maximal regular spa
e did re�ne Q, take � to be the dense node
subspa
e and X the subset of Q whi
h underlies �. If x 2 X were isolated in X then fxg 2 �X � �.Hen
e X has no isolated points. As a 
rowded subspa
e of Q, X is homoeomorphi
 to Q. Thus, wheneverwe refer to van Douwen's node
 spa
e, we mean a regular node
 spa
e whi
h re�nes Q.Apart from this, the salient properties of van Douwen's node
 spa
e are that every nowhere dense subsetof it is dis
rete and that it is not monotoni
ally normal. I am very grateful to Ian Stares for his extremelyuseful exposition of van Douwen's 
onstru
tion [St1℄.



Chapter 2Boundary properties
The boundaries of open sets are fundamental obje
ts in a topologi
al spa
e. However, very few 
lasses ofspa
es have been studied solely for the properties of their boundaries - the most notable ex
eptions beingdimension theory, Lusin sets and node
 spa
es. In this 
hapter, we 
onsider several topologi
al propertiesP and 
onsider those spa
es in whi
h the boundary of every non-empty open set is P . We refer to thisproperty as boundary-P . We pay parti
ular attention to the relationship between a spa
e being P andit being boundary-P .The �rst se
tion introdu
es the notion of boundary-P and summarises the work whi
h has already beendone where P is a 
overing property. In the se
ond se
tion, boundary-metrizable spa
es are analysedand their metrizability is given in terms of the existen
e of Lusin spa
es. In the third se
tion, boundary-metrizability is 
onsidered in LOTS, not only for its intrinsi
 interest, but also as it provides a sour
e ofimportant examples. The exa
t relationship between boundary-separability and separability is examinedin the fourth se
tion. The next dis
usses boundary-s
attered spa
es where we obtain a result whi
h willbe useful later. Finally, we summarise the main results of the 
hapter and raise some relevant questions.2.1 Boundary-P spa
esIn order to be as 
exible as possible, we make the following very general de�nition:De�nition 2.1.1 For a topologi
al property P , a spa
e X is said to have the property boundary-P ifthe boundary of every non-empty open set has property P .There are some immediate 
onsequen
es of this de�nition whi
h are worth noting.Proposition 2.1.2 For a spa
e X:1. X is boundary-P if and only if every 
losed nowhere dense subset of X is P2. If X is boundary-P then so too is every 
losed subspa
e of X3. For a property P whi
h is hereditary with respe
t to 
losed sets, if X is P it is also boundary-P4. If X is boundary-(hereditarily P) then it is hereditarily boundary-P5. If X is boundary-P then it is rim-P 13



Proof (1) holds be
ause a subset of X is nowhere dense and 
losed if and only if it is the boundary ofsome non-empty open set. (2) now follows sin
e a 
losed nowhere dense subset of a 
losed subset of X isalso a 
losed nowhere dense subset of X . If P is hereditary with respe
t to 
losed sets then every 
losednowhere dense set is P hen
e (3).To see (4), suppose that X is boundary-(hereditarily P). If Y � X and C is 
losed and nowhere densein Y then D = CX is 
losed and nowhere dense in X . Thus, D is hereditarily P whi
h means that C, asa subset of D, is P . That is, Y is boundary-P .(5) follows trivially from the de�nition of rim-P . 2Remark In the ensuing work, (1) is parti
ularly useful as it provides a way of dis
ussing boundarieswithout referring to spe
i�
 open sets. Hen
eforth, it will normally be used without expli
it referen
e.Proposition 2.1.3 For a spa
e X and Y � X, if1. P is a property whi
h is hereditary with respe
t to 
losed sets2. Y is P3. X n Y is a 
olle
tion of isolated points of Xthen X is boundary-P.Proof Suppose C is a 
losed and nowhere dense subset of X . As C is nowhere dense, it 
ontains noisolated points of X and must therefore be a subset of Y . Thus C is a 
losed subset of Y and C is P .Hen
e X is boundary-P by Proposition 2.1.2 (1). 2This gives an easy method for 
onstru
ting a number of examples of spa
es with 
ertain boundaryproperties. Simply start with a spa
e with the required property and throw in as many isolated pointsas required.Examples 2.1.4 The Alexandro� dupli
ate is a 
ompa
t boundary-metrizable spa
e whi
h is not metriz-able.Any spa
e with all but one point isolated has every boundary property that the one point spa
e has! 2Thus, the real substan
e of boundary properties only emerges when the spa
es 
onsidered have no (orfew) isolated points. For this reason, in the remainder of the 
hapter, all spa
es 
onsidered are 
rowded.We are, in fa
t, already familiar with 
ertain boundary properties though they may not have been viewedthis way before. For instan
e, boundary-(non-empty) simply means 
onne
ted and boundary-dis
rete isequivalent to node
. Lusin spa
es are those boundary-
ountable spa
es whi
h are regular, un
ountableand have at most 
ountably many isolated points.Boundary-P for a 
overing property P was 
onsidered as early as 1947 by Kat�etov [Ka℄ who stud-ied boundary-
ompa
tness albeit not by that name. He showed that (in 
rowded spa
es) boundary-
ompa
tness was the same as 
ompa
tness. This result was then generalised to [�; �℄-
ompa
tness byMills and Wattel [MW℄. (A spa
e X is said to be [�; �℄-
ompa
t if every open 
over of X with 
ardinalityat most � has a sub-
over of 
ardinality stri
tly less than �. This is a natural generalisation of 
ompa
t-ness whi
h in
orporates both 
ountable 
ompa
tness and the Lindel�of property as [!; !℄-
ompa
tness and[!1;1℄-
ompa
tness respe
tively.) Blair [Bl℄ gave a mu
h simpler proof of the Mills and Wattel resultand also 
onsidered real
ompa
tness and pseudo
ompa
tness. To summarise:



Theorem 2.1.5 For a spa
e X:1. [Ka℄ If X is boundary-
ompa
t then X is 
ompa
t2. [MW℄ If X is boundary-([�; �℄-
ompa
t) then X is [�; �℄-
ompa
t3. [Bl℄ If X is boundary-pseudo
ompa
t then X is pseudo
ompa
t4. [Bl℄ If X is boundary-real
ompa
t and every 
losed s
reenable subset has Ulam-non-measurable 
ardinality then X is real
ompa
tWe will use these results only in the following 
orollary:Corollary 2.1.6 If X is boundary-Lindel�of then it is Lindel�of.2.2 Boundary-metrizable spa
esMetrizable spa
es have the most friendly properties of all topologi
al spa
es but boundary-metrizablespa
es 
an exhibit some quite unruly behaviour even in the absen
e of isolated points!Examples 2.2.1 The node
 spa
e of van Douwen is a regular, 
ountable spa
e with no isolated pointssu
h that every nowhere dense set is dis
rete. However, it is far from being metrizable.Take p 2 �R whi
h is a remote point, that is, for all C � R whi
h are nowhere dense, p 62 C�R. Thespa
e R [ fpg is 
onne
ted, boundary-metrizable and not metrizable. 2Remark The se
ond example was given by van Douwen in his review of [MW℄ in Mathemati
al Reviews,82a:54045. However, �nding remote points in R is a non-trivial task but fortunately (for our purposes)they do exist in ZFC. The details 
an be found in [Ha℄ on p.338.The boundaries in both these examples are parti
ularly well-behaved - they are 
ountable and dis
retein the former 
ase and subsets of R in the latter. To a
hieve better behaviour, the boundaries mustbe further restri
ted to be 
ompa
t as well. From Kat�etov's result, this simply means that we need to
onsider the 
lass of 
ompa
t boundary-metrizable spa
es.Proposition 2.2.2 If X is a 
ompa
t boundary-metrizable spa
e then it is boundary-(hereditarily Lin-del�of) and boundary-(hereditarily separable).Proof This follows immediately from the fa
t that 
ompa
t metrizable spa
es are hereditarily Lindel�ofand hereditarily separable. 2From Proposition 2.1.2 (4), X being boundary-(hereditarily Lindel�of) is a
tually telling us that X ishereditarily boundary-Lindel�of from whi
h Corollary 2.1.6 gives:Corollary 2.2.3 If X is 
ompa
t and boundary-metrizable then X is hereditarily Lindel�of.Therefore:Corollary 2.2.4 If X is 
ompa
t and boundary-metrizable then X is perfe
t and �rst 
ountable.



Proof It is well-known (see [E℄, p.194) that hereditarily Lindel�of spa
es are perfe
t. Sin
e points are
losed in X , ea
h point has 
ountable pseudo-
hara
ter in X whi
h together with 
ompa
tness meansthat X is �rst 
ountable. 2However, there is a mu
h more dire
t proof of this whi
h greatly illuminates the relationship between theboundary properties and the global properties of a spa
e. First, we need a lemma.Lemma 2.2.5 If X is a boundary-


 spa
e then s(X) = !. In parti
ular, if X is 
ompa
t and boundary-metrizable then it satis�es the 
ountable 
hain 
ondition.Proof Suppose D is a dis
rete subset of X so that D is nowhere dense in X and hen
e 


. ByProposition 1.2.1, ffdg : d 2 Dg is a 
olle
tion of isolated points in D, in parti
ular, a disjoint 
olle
tionof non-empty open subsets of D. Thus there are at most 
ountably many sets in the 
olle
tion. That is,D is 
ountable.The se
ond part is a dire
t 
onsequen
e of the fa
t that 
ompa
t boundary-metrizable spa
es are boundary-


 and that 
(X) 6 s(X). 2Proof of Corollary 2.2.4 In order to show that X is perfe
t, 
onsider �rst C � X whi
h is 
losed andnowhere dense. We now 
onstru
t a maximal disjoint family of open sets whose 
losures do not interse
tC.Suppose that � is an ordinal and that for all � < �, U� 2 �X has been de�ned su
h that U� \C = ; andfor �0 < � < �, U�0 \ U� = ;. If X nS�<� U� is empty then stop and take � to be �. S�<� U� is thusdense in X and fU� : � < �g is the required maximal family.If X n S�<�U� is non-empty, as it is also open and C is nowhere dense, there exists a point x 2X n (S�<� U� [ C). By regularity of X , take U� su
h that x 2 U� � U� � X n (S�<� U� [ C). Thismeans that fU� : � < �+ 1g is a 
olle
tion of opens sets whose 
losures are disjoint and U� \ C = ; forall � < �+ 1. This 
ompletes the indu
tive 
onstru
tion.De�ne F = X nS�<� U� and G = X nS�<� U� = T�<�(X nU�). By Lemma 1.2.6, F is nowhere denseand hen
e metrizable. G is a GÆ-set in X sin
e Lemma 2.2.5 implies that � is 
ountable. It is 
lear thatC � G � F , so C is a 
losed subset of the metrizable GÆ-set G. Hen
e C is a GÆ-set in G and as a GÆ-setof a GÆ-set, C is GÆ-set in X .Now suppose A is any 
losed subset of X . A = intA [ bdA. bdA is 
losed and nowhere dense so is aGÆ-set in X . Take bdA = Tn2! Un for some Un 2 �X . Thus A = Tn2!(Un [ intA) and A is a GÆ-set inX . That is, X is perfe
t. 2We are now in a position to 
onsider when 
ompa
t boundary-metrizable spa
es are metrizable. Theout
ome is somewhat surprising.Theorem 2.2.6 If there are no Lusin spa
es then every 
ompa
t boundary-metrizable spa
e is metrizable.This is proven by 
onstru
ting in any 
ompa
t boundary-metrizable spa
e whi
h is not metrizable asubspa
e whi
h is a Lusin spa
e. The exposition of the proof is simpli�ed by:De�nition 2.2.7 For Y � X , B � �X is a base for Y in X if, whenever y 2 Y and y 2 U 2 �X , thereexists B 2 B su
h that y 2 B � U . Y is se
ond 
ountable in X, if there is a 
ountable base for Y in X .



Lemma 2.2.8 If C � D � X and D is se
ond 
ountable in X then C is se
ond 
ountable in X.Proof For all 
 2 C and U 2 �X for whi
h 
 2 U , sin
e 
 2 D, there exists B 2 B su
h that 
 2 B � U .Therefore B is a 
ountable base for C in X . 2Lemma 2.2.9 If B is a base for Y in X and C � Y is se
ond 
ountable in X then there exists B0 2 [B℄!su
h that B0 is a base for C in X.Proof Suppose A is a 
ountable base for C in X . For a pair A1 and A2 2 A, de�ne B(A1; A2) to besome element of B su
h that A1 � B(A1; A2) � A2whenever su
h an element exists, and to be X otherwise. Take B0 = fB(A1; A2) : A1, A2 2 Ag.Consider 
 2 C, where 
 2 U for some U 2 �X . A is a base for C in X so there exists A2 2 A su
h that
 2 A2 � U . But A2 is open in X so there is a B 2 B su
h that 
 2 B � A2. And B is also open in Xso there is an A1 2 A for whi
h 
 2 A1 � B. Thus, there is an element of B sitting between A1 and A2and hen
e, B(A1; A2) is well-de�ned for A1 and A2 giving
 2 A1 � B(A1; A2) � A2 � UMore 
on
isely, there exists B 2 B0 su
h that 
 2 B � U . Not only that, B0 is 
ountable as it is indexedby pairs from the 
ountable set A. Therefore B0 is our required base. 2Lemma 2.2.10 If X is a 
ompa
t and perfe
t spa
e and D is a 
losed metrizable subspa
e of X then Dis se
ond 
ountable in X.Proof Take B to be a 
ountable base for D, that is, B � �D. D is 
losed so, for all B 2 B, BD = BX(whi
h means all 
losures may be taken in X) and, by perfe
tness of X , B is a GÆ-set in X . Therefore,there exists a sequen
e of sets open in X , fUn(B)gn2!, for whi
hUn+1(B) � Un(B) and B = \n2!Un(B)De�ne C = fUn(B) : B 2 B, n 2 !g. Clearly, C 2 [�X ℄!. If d 2 D and d 2 U 2 �X then there existV 2 �X su
h that d 2 V � V � U and B 2 B su
h that d 2 B � V \D. As B � V , B � V � U . Hen
e,\n2!Un(B) � UBy 
ompa
tness, for some n 2 !, Un+1(B) � U and then d 2 B � Un+1(B) � Un(B) � U . This impliesthat C is a 
ountable base for D in X . 2We now have all the ma
hinery ne
essary to prove the theorem.Proof of Theorem 2.2.6 Suppose X is a 
ompa
t boundary-metrizable spa
e whi
h is not metrizable.A subset of X whi
h is a Lusin spa
e is 
onstru
ted by an indu
tion of length !1.Assume that for a given � < !1 and for all � < �, Y� 2 [X ℄! and B� 2 [�X ℄! have been de�ned su
hthat:1. B� is a 
ountable base for Y� in X



2. for all 
 < �, Y
 � Y� , B
 � B�3. if x 2 Y� n Y
 then B
 does not 
ontain a lo
al base for x in XTake Z = S�<� Y� , C = S�<� B�. Z is 
ountable and it is not hard to see that C is a 
ountable base forZ in X . But X is not se
ond 
ountable, so there exists x� 2 X su
h that C does not 
ontain a lo
al basefor x� in X . It must be that x� 62 Z. Moreover, X is �rst 
ountable by Corollary 2.2.4, so there is a
ountable lo
al base, B(x�), for x� in X . De�ne Y� = Z [ fx�g and B� = C [ B(x�). By this de�nition,Y� and B� must satisfy the indu
tive hypotheses.Take Y!1 = S�<!1 Y� and B!1 = S�<!1 B�. From the 
onstru
tion, Y!1 is un
ountable and B!1 is abase for Y!1 in X . Y!1 will be the promised Lusin set and so it is ne
essary to show that every nowheredense subset of Y!1 is 
ountable and that Y!1 has at most 
ountably many isolated points. The latterfollows easily, though, from the fa
t that X has 
ountable spread (Lemma 2.2.5) and the set of isolatedpoints of a subset of X is a dis
rete set.Consider C � Y!1 whi
h is nowhere dense in Y!1 . D = C is nowhere dense in X hen
e metrizable and
ompa
t. By Lemma 2.2.10, sin
e X is perfe
t, D is se
ond 
ountable in X . By Lemma 2.2.8, C is se
ond
ountable in X . And by Lemma 2.2.9, there exists B0 2 [B!1 ℄! su
h that B0 is a 
ountable base for C inX . As B0 is 
ountable, there is some � < !1 su
h that B0 � B�. But then, if C is un
ountable, thereexists � > � su
h that x� 2 C. However, B� does not 
ontain a lo
al base for x� in X and thus neitherdoes B0. This is a 
ontradi
tion and so C must be 
ountable. That is, Y!1 is a Lusin spa
e. 2In order to provide an example of a boundary-metrizable 
ompa
tum whi
h is not metrizable, it istempting simply to take a 
ompa
t non-metrizable Lusin spa
e. However, Corollary 2.5.5 rules out thisoption. Somewhat surprisingly though, boundary-metrizability in LOTS is mu
h more tra
table thanin general and we 
an �nd some 
hara
terisations (and hen
e some examples) of boundary-metrizable,non-metrizable LOTS.2.3 Boundary-metrizability in LOTSProposition 2.2.5 of the last se
tion tells us that every boundary-separable spa
e is 


 . It seems quitereasonable therefore that in LOTS the 
onverse is true.Proposition 2.3.1 Every 


 LOTS is boundary-separable.Proof First, take X to be a 
ompa
t LOTS whi
h satis�es the 
ountable 
hain 
ondition. (At this point,it is worth noting that we 
ould drop the assumption that there are no isolated points as the 
ountable
hain 
ondition ensures that there are at most 
ountably many and so they 
an easily be taken 
are ofin the proof). Suppose C is a 
losed and nowhere dense subset of X .X n C is open and 
an be divided into disjoint, maximally 
onvex sets 
alled the 
omponents of X n C.If U denotes the family of 
omponents of X n C then, as X is 


, U is 
ountable and U = fUn : n 2 !gsay. Moreover, sin
e X is 
ompa
t, ea
h 
omponent has a supremum and an in�mum. This allows usto assert that ea
h Un 
an be written in the form (an; bn) where an, bn 2 C for all n 2 !. De�neD = fan : n 2 !g [ fbn : n 2 !g. D is a 
ountable subset of C and will be shown to be dense in C aswell.Sin
e X is 
ompa
t so too is C and, as a 
ompa
t subspa
e of a LOTS, C is also a LOTS. Thus its basi
open neighbourhoods are (s; t) \ C where s, t 2 C and s < t. Consider su
h a non-empty basi
 openneighbourhood in C and take x 2 (s; t) \ C. As x is not an isolated point of X , either (s; x) or (x; t) isnot empty. Without loss of generality, we may assume the former.



C is nowhere dense so (s; x) 6� C and some 
omponent ofXnC, Un say, must meet (s; x). Moreover, as it is
onvex, Un must sit entirely inside (s; x). That is, there exists n 2 ! su
h that Un = (an; bn) � (s; x). So
ertainly bn 6 x and hen
e (s; t)\D is non-empty. Therefore C is separable and X is boundary-separable.For the more general 
ase where X is not 
ompa
t, take Y to be the Dedekind 
ompletion of X . Y is a
ompa
t LOTS whi
h has a dense subspa
e satisfying the 
ountable 
hain 
ondition. It is easy to see thatY must also satisfy the 
ountable 
hain 
ondition and hen
e, by the previous 
ase, be boundary-separable.Suppose B is a 
losed nowhere dense subset of X . De�ne C = BY . C is also nowhere dense in Y and so isseparable. Moreover, C is a GO-spa
e whi
h means that, sin
e C is separable, it must also be hereditarilyseparable. That is, B is separable and X is boundary-separable. 2This gives an indi
ation of where we 
an �nd our �rst example of a boundary-metrizable, non-metrizable
ompa
tum.Example 2.3.2 A 
ompa
t, 
onne
ted Souslin line is a boundary-metrizable, non-metrizable 
ontinuum.Proof Take X to be a 
ompa
t, 
onne
ted Souslin line. Thus X has the 
ountable 
hain 
ondition andis not metrizable. By the previous proposition, X is boundary-separable.Consider C a 
losed, nowhere dense subset of X . C is therefore a separable, 
ompa
t GO-spa
e, hen
e aseparable LOTS. Moreover, if (a; b)C is a jump in C, either (a; b)X is a jump or a 
omponent of X n C.X is 
onne
ted so has no jumps and has the 
ountable 
hain 
ondition so there are at most 
ountablymany 
omponents of X n C. Thus, C has at most 
ountably many jumps. By Proposition 1.2.11, C ismetrizable and X is boundary-metrizable. 2Of 
ourse, Souslin lines need not exist. In whi
h 
ase, sin
e 
ompa
t boundary-metrizable LOTS are thenseparable, we need only 
onsider separable LOTS. These have a great deal of stru
ture whi
h signi�
antlysimpli�es their study. To demonstrate this, �rst we need a de�nition:De�nition 2.3.3 For a LOTS X and Y � X, the double arrow of X over Y , denoted DA(X ;Y ), isthe LOTS formed by Z = (X � f0g) [ (Y � f1g) with the lexi
ographi
 order. Take � : DA(X ;Y )! Xto be the natural proje
tion map. � is 
learly 
ontinuous.Proposition 2.3.4 If L is a separable LOTS then there exists M � R, a LOTS without jumps, andA �M su
h that L = DA(M ;A).Proof The proof of this is well-known and is an essentially straightforward te
hni
al exer
ise. 2Having obtained su
h a ni
e 
hara
terisation, we 
an now express features of a separable LOTS in termsof its double arrow stru
ture. For the rest of this se
tion, the notation is as de�ned in Proposition 2.3.4.Lemma 2.3.5 B � L is nowhere dense in L if and only if �(B) is nowhere dense in M .Proof If B � L is not nowhere dense then B 
ontains some non-empty basi
 open interval of L inits 
losure. That is, there are m1 and m2 2 M and i, j 2 f0; 1g su
h that hm1; ii <L hm2; ji and; 6= (hm1; ii; hm2; ji)L � B. Take I to be the interval (hm1; ii; hm2; ji)L. If m1 = m2 then it must bethat i = 0 and j = 1 and then I is empty - a 
ontradi
tion. Thus, m1 <M m2 and it easily follows thatJ = (hm1; 1i; hm2; 0i)L � B. Now, if J were empty, sin
e I is non-empty, it must be the 
ase that either



i 6= 1 or j 6= 0 and either 
ase would imply that L has an isolated point. However, we have the runningassumption that this is false. Hen
e, J is non-empty and there exist m3 2 M and k 2 f0; 1g su
h thathm3; ki 2 J .Therefore, we have: �(J) � �(B) whi
h is a subset of �(B) by 
ontinuity of �. But �(J) = (m1;m2)Mand m3 2 �(J) so �(J) is a non-empty open subset of �(B) and �(B) is somewhere dense.Suppose now that �(B) is somewhere dense for some B � L. Thus, �(B) is dense in some interval(m1;m2)M where m1 <M m2. We will show that B is dense in the interval (hm1; 1i; hm2; 0i)L fromwhi
h it immediately follows that B is not nowhere dense.Be
ause L has no isolated points, any non-empty basi
 open interval in L 
ontains a non-empty intervalof the form (ha; 1i; hb; 0i)L where a, b 2 M and a <M b. Consider su
h an interval 
ontained inside(hm1; 1i; hm2; 0i)L so that m1 6M a <M b 6M m2. Sin
e �(B) is dense in (m1;m2)M , there exists a
 2 �(B) su
h that a <M 
 <M b. Thus, h
; ii 2 B for some i 2 f0; 1g and, by simply applying thede�nition of the lexi
ographi
 order, it is 
lear that h
; ii 2 (ha; 1i; hb; 0i)L. This means that every basi
open interval in (hm1; 1i; hm2; 0i)L pi
ks up some h
; ii 2 B. That is, B is dense in (hm1; 1i; hm2; 0i)L.2Lemma 2.3.6 A LOTS subspa
e C of L is metrizable if and only if �(C) \ A is 
ountable.Proof From Proposition 1.2.11, C � L is metrizable if and only if it has 
ountably many jumps. Thus,C is metrizable if and only if f
 2 C : 
 is an element of a jump g is 
ountable. Sin
e M has no jumps,
 2 C is an element of a jump in C if and only if �(
) 2 A. This gives: C � L is metrizable if and only iff
 2 C : �(
) 2 Ag is 
ountable if and only if C \��1(A) is 
ountable if and only if �(C)\A is 
ountable(sin
e � has �nite �bres). 2Given the previous lemmas, to 
onstru
t a boundary-metrizable separable LOTS whi
h is not metrizablerequires that, �rst, in the double arrow 
onstru
tion, A must be un
ountable to kill o� metrizability ofL. Se
ondly, all nowhere dense subsets of L must meet ��1(A) in only 
ountably many points. Thissuggests that taking A to be a Lusin set would be the right pla
e to look for su
h an example.Theorem 2.3.7 Every boundary-metrizable separable LOTS is metrizable if and only if there are noLusin sets.Remark This theorem, in one dire
tion at least, seems to be a 
onsequen
e of Theorem 2.2.6. However,the hypothesis that there are no Lusin sets is not as sweeping as the hypothesis that there are no Lusinspa
es.Proof Suppose there is a Lusin set A in the 
losed unit interval. De�ne X = DA(A;A). X is 
learlya 
ompa
t LOTS. If D is a 
ountable, dense subset of A then it is easily shown that D � f0; 1g is a
ountable dense subset of X . X is not metrizable as A is un
ountable.Take C to be a 
losed, nowhere dense subset of X . By Lemma 2.3.5, �(C) is nowhere dense in A and
losed as C is 
ompa
t. Suppose for some U 2 �A, U � �(C) \ A. There exists V 2 �A su
h thatU = V \ A and sin
e A is dense in A, U is dense in V . Thus, U = V . As �(C) is 
losed, U � �(C)whi
h implies that V � �(C). However, �(C) is nowhere dense so V , and hen
e U , must be empty and�(C) \A is nowhere dense in A. Be
ause A is a Lusin set, �(C) \A is 
ountable and then Lemma 2.3.6tells us that C is metrizable.In summary, X is a 
ompa
t, separable, boundary-metrizable LOTS whi
h is not metrizable.For the 
onverse, assume that X is a boundary-metrizable, separable LOTS whi
h is not metrizable.Then X = DA(M ;A) for someM � R and A �M . By Proposition 1.2.11, A must be un
ountable as Xis not metrizable and M is free from jumps. Consider C � A whi
h is nowhere dense in A. By Lemma



2.3.5, ��1(C) is nowhere dense in X be
ause �(��1(C)) = C. Thus, �(��1(C)) \ A is 
ountable sin
e��1(C) is metrizable and Lemma 2.3.6 holds. This implies that C is 
ountable and A is a Lusin set. 2Thus, the examples we required of boundary-metrizable non-metrizable 
ompa
ta 
an all be found to beLOTS as well. Of 
ourse, our examples require set-theoreti
 hypotheses but we know from Theorem 2.2.6that we 
an not eliminate this.Remark Boundary-metrizability in LOTS has already been brie
y 
onsidered before by M. E. Rudinin [R2℄. She asserted that:(�) For LOTS, X and Y where every nowhere dense subset is se
ond
ountable, X � Y is 


 if and only if X � Y is hereditarily Lindel�of.Phrased in another way, (�) simply says that if the produ
t of two boundary-(se
ond 
ountable) LOTSis 


 then it is hereditarily Lindel�of. This however is not true in general as Pursi
h pointed out in [Pur℄.He proved that statement (�) was equivalent to the non-existen
e of Lusin sets. In fa
t, his exampleshowing that (�) is false is the same one given in Theorem 2.3.7.Now, sin
e the Dedekind 
ompletion of a boundary-(se
ond 
ountable) LOTS is a boundary-metrizable
ompa
tum (as in the proofs of Theorem 2.3.1 and Example 2.3.2), if there are no Lusin sets, Theorem2.2.6 tells us that every boundary-(se
ond 
ountable) LOTS is metrizable and (�) holds. However, (�)holding does not imply that every boundary-metrizable 
ompa
t LOTS is metrizable hen
e it 
annotimply the non-existen
e of all Lusin spa
es.2.4 Comparing separability and boundary-separabilityBoundary-separability appeared in the last se
tion as a useful notion for analysing Example 2.3.2 and so wenow turn our attention to that. The two key questions in relating boundary-separable spa
es to separablespa
es are: \When are separable spa
es boundary-separable?" and \When are boundary-separable spa
esseparable?" The answer to the �rst question is straightforward and was given by Malykhin [Ml℄.Proposition 2.4.1 If X is boundary-separable then d(X) = h
ld(X).Proof Take D to be a subset of X whi
h is dense in X and jDj = d(X). For a 
losed subset Y of X ,de�ne D1 = D\ intY . Sin
e Y is 
losed, Y n intY is nowhere dense and 
losed in X hen
e separable. TakeD2 to be a 
ountable dense subset of Y n intY . It is 
lear that D1 [D2 is dense in Y and has 
ardinalityno greater than d(X). Hen
e, d(Y ) 6 d(X) and d(X) = h
ld(X). 2Corollary 2.4.2 Any separable spa
e is boundary-separable if and only if every 
losed subspa
e is sepa-rable.It is not possible to improve on this result as was also shown in [Ml℄ where, under CH, Malykhin pro-du
ed a separable Lusin spa
e whi
h is not hereditarily separable. Another su
h example was given byTodor�
evi�
 [T2℄ under the weaker set-theoreti
 assumption that b = !1 (re
all the de�nition of b fromthe introdu
tion). We provide this example not only for the sake of 
ompleteness but also to providesome of the details whi
h Todor�
evi�
 omitted from his proof. As far as possible, the notation is the sameas that used in Se
tion 0 of [T1℄ and Se
tion 3 of [T2℄ bar a few minor modi�
ations in order to improve
larity. The proof makes use of an elementary submodel and so it may be useful to read Chapter 6 beforegoing through the 
onstru
tion.



Theorem 2.4.3 There is a 
ompletely regular spa
e X su
h that hd(X) = b but d(F ) < b for every
losed subset F of X.Proof The proof will fall into three parts: the �rst is a de�nition of the spa
e X and the proof that itis 
ompletely regular; the se
ond shows that hd(X) = b; the last proves that for all 
losed subsets F ofX , d(F ) < b.1. Take A to be an unbounded subset of monotone in
reasing fun
tions in !! whi
h is well-ordered by<� in order type b. Su
h a set is shown to exist in [vD2℄ Theorem 3.3. De�ne D to be the set of all thosed 2 (! + 1)! whi
h are monotone in
reasing and su
h that, for some n 2 !, djn 2 !n and for all i > n,d(i) = !. Z is taken to be A [D with the topology inherited from (! + 1)!.Now re�ne �Z by de
laring fg 2 Z : g > fg to be open for all f 2 A. Take X to be the same underlyingset as Z with this new topology (in Todor�
evi�
's notation, X = Z[A;>℄). Sin
e �X is a re�nement ofthe Hausdor� topology �Z, X is Hausdor�.We will now show that X is zero-dimensional (has a basis of 
lopen sets) from whi
h it follows that X is
ompletely regular ([E℄ p.360).Consider X [>f ℄ = fg 2 X : g > fg. If g 62 X then there exists n 2 ! for whi
h g(n) < f(n). TakeUg = fh 2 Z : h(n) = g(n)g. Ug is a basi
 open set in Z whi
h 
learly 
ontains g yet misses X [>f ℄. ThusX [>f ℄ is 
losed in Z. As �X re�nes �Z, X [>f ℄ must also be 
losed in X . Moreover, as it is de
laredopen in X , X [>f ℄ is a 
lopen subset of X for all f 2 A.Z is zero-dimensional be
ause it is a subset of the zero-dimensional spa
e (! + 1)!. Hen
e we 
an �nd abasis, B say, 
onsisting of 
lopen sets in Z. Moreover, we may assume that B is 
ountable and 
onsistsof 
anoni
al basi
 open sets indu
ed by the Ty
hono� topology. If B 2 B, B must also be 
lopen in X .But note, fB \X [>f ℄ : B 2 B, f 2 Ag forms a basis for X every element of whi
h is 
lopen in X . ThusX is zero-dimensional and 
ompletely regular.2. Consider A as a subset of X . Be
ause A is well-ordered by <�, every B � A has a <�-minimumelement and it is not hard to see that this element must also be 6-minimal as well. Hen
e (A;6) iswell-founded and there is some well-ordering 4 on A whi
h extends 6 on A. This well-ordering need not
oin
ide with <�. If f , g 2 A and f � g then it 
annot be the 
ase that f 2 X [>g℄ sin
e 4 extends 6.This means fX [>f ℄ \ A : f 2 Ag is a 
olle
tion in �A witnessing that A is left-separated in type b (see[Ro℄ p.301). Hen
e d(A) > b and, as the 
ardinality of X is b, this implies that hd(X) = b.3. Before pro
eeeding with the last se
tion of this proof, it is worth remarking that, sin
e b is regularand A is well-ordered by <� in order type b, any family in A of size b is 
o�nal in A and hen
e is alsoan unbounded 
olle
tion in !!. In addition, any family in A of 
ardinality less than b has a <�-upperbound.Suppose now that F is a 
losed subset of X [A;>℄. De�ne Y0 = F nF \D. As D is 
ountable, in order toshow that d(F ) < b, it would suÆ
e to show that jY0j < b. Thus, assume for 
ontradi
tion that jY0j = b.By shrinking, we 
an �nd Y1 � Y0 also of size b and for whi
h there exists m 2 ! su
h that:(a) f jm = gjm for all f , g 2 Y1(b) f jm 6= gjm for all f 2 Y1 and g 2 F \DChoose a suitable 
ountable elementary submodelM whi
h 
ontains A, X , b, F , Y0, Y1, D, B and 6.ff 2 M : f 2 Ag is ne
essarily 
ountable so by the earlier remark there exists h 2 A su
h that f <� hfor all f 2 A \M. And, sin
e Y1 is well-ordered by <�, jfg 2 Y1 : h <� ggj = b. By the pigeon-holeprin
iple and the de�nition of <�, there exists p 2 ! for whi
h Y2 = fg 2 Y1 : h 6p gg is also of size band hen
e unbounded in !!.If, for ea
h n 2 !, Rn = fg(n) : n 2 !, g 2 Y2g is bounded in !, de�ne f 2 !! by f(n) = maxRnfor all n 2 !. But then, for all g 2 Y2, g 6 f whi
h 
ontradi
ts the unboundedness of Y2. Thus there



exists n 2 ! for whi
h Rn is unbounded in !. Choose n to be minimal (though it is ne
essarily greaterthan m) when
e Rk is bounded for ea
h k < n. This implies that fgjn : g 2 Y2g is �nite and, again bythe pigeonhole prin
iple, we may 
hoose t 2 !n su
h that fg(n) : g 2 Y2 and t � gg is unbounded in !.Given this, it is easy to �nd a sequen
e in Y2, fgigi2! say, su
h that for all i 2 !:(
) t � gi(d) gi(n) < gi+1(n)De�ne d 2 D by djn = t and, for all i > n, d(i) = !. D is a 
ountable element ofM hen
e is a subset ofM (see Proposition 6.2.4) and d 2M. By (b), d 62 F so in parti
ular d 62 F \ A. Thus there exist f 2 Aand B 2 B su
h that d 2 B \X [>f ℄ and(B \X [>f ℄) \ (F \ A) = ;As B is a basi
 open set indu
ed by �Z, we may suppose that B has the form:B = fg 2 X : gjn = tg \ fg 2 X : g(j) > r for j = n; n+ 1; : : : ; n+ sgwhere r, s 2 !.Take �(f) to be the statement �(B \X [>f ℄) \ (F \ A) = ;� ^ �d 2 (B \X [>f ℄)� and so we have thatV j= 9f 2 A(�(f)). Sin
e B 2 M and B is 
ountable, by Proposition 6.2.4, B 2M and we have alreadyassumed that all the other obje
ts mentioned in � are inM hen
e by elementarityM j= 9f 2 A(�(f)).Take ft 2 A\M whi
h witnesses the truth of this statement so thatM j= �(ft). Again by elementarity,V j= �(ft). Or more plainly,(e) ft 66 f for every f 2 F \ A whi
h extends t and for whi
h f(j) > r for j = n; n+ 1; : : : ; n+ sNow ft 2 M so ft <� h. Fix k > p su
h that ft 6k h. By (d), fgi(n)gi2! is unbounded in ! and thereexists i 2 ! su
h that(f) ft(k) 6 h(k) 6 gi(n) and gi(n) > rd 2 B \ X [>ft℄ thus djn = t > ftjn. But gijn = t, hen
e gijn > ftjn. As ft 6k h 6k gi, if j > k thenft(j) 6 gi(j). For n 6 j < k, ft and gi are monotone so ft(j) 6 ft(k) 6 gi(n) 6 gi(j). So overall, wehave that ft 6 gi.However, gi 2 Y2 � F \A, gi extends t by its de�nition and, sin
e gi(n) > r and gi is monotone in
reasing,gi(j) > r for j = n; n+ 1; : : : ; n+ s. This 
ontradi
ts (e). Hen
e jY0j < b and d(F ) < b as required. 2Example 2.4.4 [Todor�
evi�
℄ If b = !1 then there exists a separable boundary-separable spa
e whi
his not hereditarily separable.Proof Take the spa
e X of Theorem 2.4.3. If b = !1 then hd(X) = !1 but d(F ) = ! for every 
losedsubspa
e F of X . Therefore, h
ld(X) = !. Thus X is a separable, boundary-separable (by Proposition2.4.1) and not hereditarily separable. 2Ideally, it would be better if the set-theoreti
 hypothesis 
ould be removed from the example. However,Todor�
evi�
 remarked that all examples, X , where h
ld(X) < hd(X) must 
ontain a subspa
e, Y , forwhi
h hl(Y ) < hd(Y ). In our situation, this would be an L-spa
e - one whi
h is hereditarily Lindel�ofbut not hereditarily separable. It may yet be the 
ase that there are L-spa
es in ZFC. However, it ispossible that all L-spa
es with the extra properties whi
h we require in this 
ontext dualise to S-spa
es.This would mean that there are no su
h examples in ZFC as it is 
onsistent with ZFC that there are noS-spa
es. Either way, Todor�
evi�
's remark implies:



Proposition 2.4.5 If there are no L-spa
es then every separable boundary-separable spa
e is hereditarilyseparable.We now move on to the se
ond question of when boundary-separable spa
es are separable. This isa
tually quite 
omplex and it is easier to 
onsider �rst when boundary-(hereditarily separable) spa
es areseparable. Even in this 
ase, though, the answer is somewhat remarkable.Theorem 2.4.6 Every boundary-(hereditarily separable) spa
e is separable if and only if there are nonon-separable Lusin spa
es.Proof First, suppose there is a non-separable Lusin spa
e. It is boundary-
ountable hen
e is a boundary-(hereditarily separable) non-separable spa
e, as required.Now suppose X is a non-separable boundary-separable spa
e. The proof works by showing that inside Xthere is a subset whi
h is a non-separable Lusin spa
e. The 
onstru
tion of the Lusin subspa
e pro
eedsby an indu
tion of length !1.For � < !1, assume fx� : � < �g has been de�ned su
h that for all � < �, x� 62 fx
 : 
 < �g. Nowfx� : � < �g is not dense in X as X is not separable. Thus there exists x� 2 X n fx� : � < �g. De�neY = fx� : � < !1g.If I is the set of isolated points of Y , I is dis
rete. X is boundary-separable hen
e boundary-


 and so,by Lemma 2.2.5, I is 
ountable. Y is 
learly un
ountable as the x� are all distin
t by their de�nition.Also, Y is non-separable sin
e if D were a 
ountable subset of Y then for some � 2 !1, D � fx� : � 6 �gfrom whi
h it follows that x�+1 62 D.It remains to show that every nowhere dense subset of Y is 
ountable. Thus take C to be a nowhere densesubset of Y . C is nowhere dense in X hen
e separable and there exists D 2 [C℄! su
h that C = DC .Now D � Y and D is 
ountable so there exists � < !1 su
h that D � fx� : � < �g. If C is un
ountable,there is a 
 < !1 su
h that 
 > � and x
 2 C. But x
 62 fx� : � < 
gX � fx� : � < �gX � DC . This isa 
ontradi
tion.Hen
e C must be 
ountable and Y is a non-separable Lusin subspa
e of X . 2Remark Example 2.3.2 together with Theorem 2.4.6 provide an alternative to Kunen's method in [K2℄for 
onstru
ting a Lusin subspa
e of a Souslin line.Whilst the above theorem may seem to avoid dealing with boundary-separability, it is a
tually 
ru
ial indetermining when boundary-separable spa
es are separable as 
an be seen in the next proof.Theorem 2.4.7 If there are no L-spa
es then every boundary-separable spa
e is separable.Proof Suppose X is boundary-separable. Consider C � X whi
h is 
losed and nowhere dense in X .Thus C is separable and boundary-separable by Proposition 2.1.2 (2). Now, by Proposition 2.4.5, C ishereditarily separable and hen
e X is boundary-(hereditarily separable). But note that any non-separableLusin spa
e is an L-spa
e as it is obviously not hereditarily separable and it is hereditarily Lindel�of bythe fa
t that it is boundary-
ountable and Corollary 2.1.6. So the assumption that there are no L-spa
esalso kills o� non-separable Lusin spa
es and then Theorem 2.4.6 tells us that X is separable. 2In 
ertain 
lasses of spa
es, the situation is mu
h less 
ompli
ated. In parti
ular, in 
ompa
t spa
es wehave the following result whi
h was proven independently by both �Sapirovski�� and Arhangel'ski��.



Theorem 2.4.8 [�S℄ [A1℄ If X is 
ompa
t then h
ld(X) = hd(X).This does for us what the assumption of no L-spa
es did for us in the �rst part of the proof of Theorem2.4.7. Hen
e, in the same way, we have:Proposition 2.4.9 If X is a boundary-separable 
ompa
tum then X is boundary-(hereditarily separable).Taking this together with Theorem 2.4.6 gives:Corollary 2.4.10 If there are no non-separable Lusin spa
es then every boundary-separable 
ompa
tumis separable.However, we 
annot greatly improve upon this sin
e 
ompa
tness does not kill o� potential Lusin sub-spa
es as 
an be seen in Example 2.3.2.The assumption that there are no Lusin spa
es is stronger than the assumption that there are no Souslinlines but we know that, in general, Lusin spa
es are ne
essary for the existen
e of boundary-(hereditarilyseparable) spa
es whi
h are not separable. However, this 
an be weakened to Souslin's Hypothesis in
ertain 
lasses of spa
es.Theorem 2.4.11 Souslin's Hypothesis holds if and only if every boundary-separable lo
ally 
onne
tedspa
e is separable.Proof By Example 2.3.2, it is enough to show that if X is boundary-separable and lo
ally 
onne
tedbut non-separable then there is a Souslin line. In fa
t, it will be shown that there is a Souslin tree madeup of open sets in X and ordered by reverse in
lusion.Take T0 to be an in�nite, maximal family of disjoint open sets. Suppose that for a given ordinal �, forall � < �, T� has been de�ned. If � = �+1 then take T� to be a maximal disjoint family of open subsetsof S T� su
h that, for every U 2 T�, there exists V (U) 2 T� su
h thatU � V (U) and V (U) n U 6= ;If � is a limit ordinal then takeT� = fint\ C : C is a bran
h in [�<� T�gThe pro
ess stops when T� = f;g. De�ne T = S�<� T� so that T is a tree of subsets of X ordered byreverse in
lusion and take � to be the height of T . That � is a limit ordinal 
an easily be seen from the
onstru
tion of T .If � < !1 de�ne �T� = S T� nS T�. �T� is a boundary hen
e there exists D� 2 [�T�℄! whi
h is densein �T�. De�ne D = S�<�D�. As � < !1, D is 
ountable and D will be shown to be dense in X whi
hgives a 
ontradi
tion.Suppose that V is a non-empty open subset of X for whi
h V \D = ;. X is lo
ally 
onne
ted so there issome non-empty, open, 
onne
ted subset, U say, of V whi
h also misses D. Now S T0 is dense in X byits de�nition hen
e U meets some T0 2 T0. However, U \D = ; implies that U \D0 = ; whi
h impliesthat U \ �T0 = ;. Clearly T0 n T0 � �T0 when
e U \ bdT0 = ;. This means that T0 \ U = T0 \ U andT0 \ U is a non-empty 
lopen subset of U . U is 
onne
ted so it must be the 
ase that T0 \ U = U andU � T0.Suppose for � < � and every � < � that there exists a T� 2 T� for whi
h U � T�. If � = � + 1 then,similarly to when � = 0, there exists T� 2 T� for whi
h U � T�. If � is a limit ordinal then it is easily



shown that, for all 
 < � < �, U � T� � T
 . Therefore, C = fT� : � < �g is a 
hain in S�<� T� , indeed,a bran
h as C \T� 6= ; for all � < �, and U � T C. More spe
i�
ally, U � intT C 2 T�. So in both 
ases,there is a T� 2 T� su
h that U � T�.Thus for all � < �, there exists T� 2 T� for whi
h U � T�. But then C = fT� : � < �g is a bran
h in Tsu
h that U � intT C. This 
ontradi
ts T� = f;g.Hen
e it must be that U meets D whi
h implies that D is a 
ountable dense subset of X . This 
ontradi
tsthe hypothesis on X .Thus � > !1. However, sin
e X is boundary-separable, it is boundary-


 and, by Lemma 2.2.5, X itselfsatis�es the 
ountable 
hain 
ondition. It is well known that this implies that all 
hains and anti-
hainsof open sets (when ordered by in
lusion) are 
ountable. In parti
ular, there 
an be no 
hains of sets aslong as !1 and T!1 is empty. It follows that T is an !1-tree without 
ountable 
hains or anti-
hains.That is, T is a Souslin tree. 22.5 Boundary-s
attered spa
esS
attered spa
es have a great deal of stru
ture due to the possibility of layering the spa
e via its s
atteredlength. But like boundary-metrizable spa
es, boundary-s
attered spa
es need not have espe
ially ni
estru
tures. On
e again the node
 spa
e witnesses this - it is a regular, 
ountable 
rowded spa
e whi
h isnot only boundary-s
attered but boundary-dis
rete. Moreover, the node
 spa
e 
an be used as a buildingblo
k to show that spe
ifying the s
attered length of the boundaries does not prevent s
atteredness. To
larify what is meant by \spe
ifying", we make a de�nition.De�nition 2.5.1 For a boundary-s
attered spa
e X , de�ne the boundary-(s
attered length) of X, de-noted bdy-sl(X), to be the supremum of the s
attered lengths of the boundaries of X .Examples 2.5.2 For every ordinal �, there is a boundary-s
attered, 
rowded, 
ompletely regular spa
eX� su
h that bdy-sl(X�) = �.Remark The 
onstru
tion of these examples uses resolutions as des
ribed in [W℄ and Chapter 5.Proof Fix an ordinal � and 
hoose some s
attered spa
e, Y� say, for whi
h sl(Y�) = �. Taking � to bea regular node
 spa
e, �x some point y0 2 �. Now resolve �Y� over the set of isolated points into �� by
onstant mappings to y0. Take the subspa
e of the resolved spa
e X� = Y d� [Sffxg�� : x 2 Y� n Y d� g.X� is 
ompletely regular as it is a subspa
e of a 
ompa
t spa
e. Note that Y� is homeomorphi
 toY d� [fhx; y0i : x 2 Y� nY d� g so Y� is identi�ed with this set in X�. Also, for ea
h x 2 Y� nY d� and V 2 ��,fxg � V is open in X�.Suppose C is a 
losed and nowhere dense subset of X�. C \ (fxg � �) is nowhere dense in fxg � �otherwise fxg � V is a subset of C for some V 2 �� n f;g whi
h 
ontradi
ts C being nowhere dense.Thus, C \ (fxg��) is dis
rete and it is not too hard to see that C \Sffxg�� : x 2 Y� n Y d� g must bea 
olle
tion of isolated points of C. Therefore, Cd � Y d� � X� and Cd is s
attered with sl(Cd) 6 sl(Y d).Hen
e, C is s
attered, sl(C) 6 sl(Y�) and X is s
attered with bdy-sl(X) 6 �.Consider U 2 �X� whi
h meets Y�. From the de�nition of resolutions, U = (V \ Y d� ) [Sffxg�� : x 2V n Y d� g for some V 2 �Y�, and U \ Sffxg � � : x 2 Y� n Y d� g 6= ; sin
e Y d� is nowhere dense in Y�hen
e in X�. But then for some x 2 Y� n Y d� , fxg �� is a subset of U and U 
annot be a subset of Y�.Moreover, Y� is 
losed as it is the 
omplement of the open set Sffxg� (� n fy0g) : x 2 Y� n Y d� g. Hen
eY� is a 
losed nowhere dense subset of X� and sl(Y�) = �. Therefore, bdy-sl(X�) = �. 2



Like the metrizable situation, 
ompa
tness 
omes to the res
ue. I am indebted to Robin Knight forproviding me with the proof of this next result.Theorem 2.5.3 Every 
rowded 
ompa
t spa
e has a nowhere dense subset whi
h is also 
rowded.Proof Suppose X is a 
rowded 
ompa
t spa
e. We will essentially mimi
 the 
onstru
tion of a Cantorset in R in order to produ
e a nowhere dense 
rowded subspa
e of X . However, as X need not have allthe stru
ture of R, we must 
onsiderably strengthen the analysis of the 
onstru
tion.For ea
h f 2 3<!, indu
tively de�ne Uf 2 �X as follows:U; = X . Suppose that n 2 ! and that for all f 2 36n, Uf 2 �X n f;g has been de�ned in su
h a waythat if g 2 36n properly extends f then Ug � Uf .Consider f 2 3n. Uf is non-empty and X is 
rowded so Uf is in�nite. Choose three points x0, x1, x2 2 Ufand �nd Vi 2 �X for whi
h xi 2 Vi � Vi � Uf and Vi \ Vj = ; when i 6= j for i, j 2 f1; 2; 3g. For ea
hg 2 3n+1 whi
h extends f , de�ne Ug = Vi where g(n) = i. Then the Ug satsify the indu
tive hypothesis.We now throw away the \middle thirds": for all f 2 2! de�ne Cf = Tn2! Uf jn (whi
h means thatCf = Tn2! Uf jn as well) and also de�ne C = Sf22! Cf . Note thatC = [f22! \n2!Uf jn = \n2! [f22nUfHen
e C is the interse
tion of 
losed sets and so is itself 
losed and 
ompa
t.C has many of the features of a Cantor set but it may not be nowhere dense. Therefore we de�neY = bdC so that Y is 
learly nowhere dense. Y however 
ould still have some isolated points but wewill show that it is at least not s
attered by proving that Y (�) 6= ; for every ordinal �. The proof of thispro
eeds by indu
tion but to make it work we a
tually need the stronger indu
tive hypothesis that forall ordinals � and for all f 2 2!, C�f = Cf \ Y (�) 6= ;.For the base step in the indu
tion, we must show that, for all f 2 2!, C0f = Cf \ Y 6= ;. Fix f 2 2!,pi
k xn 2 Uf jn_fhn;2ig and, by 
ompa
tness, �nd x 2 fxn : n 2 !g. By their de�nition, xn 62 Cg for allg 2 2! hen
e xn 2 X n C for all n 2 ! and x 2 X n C. However, x 2 Cf sin
e x 2 fxn : n > kg for allk 2 !. But fxn : n > kg � Uf jk for all k 2 !. Therefore, x 2 Tk2! Uf jk = Cf . This means thatx 2 Cf \ C \X n C = C0fwhi
h 
ompletes the base step.Consider a limit ordinal � su
h that for all � < �, C�f 6= ;. C�f = Cf \ Y (�) = Cf \ T�<� Y (�) =T�<�(Cf \Y (�)) = T�<� C�� . Thus C�f is the interse
tion of a stri
tly de
reasing sequen
e of non-empty
losed sets. Be
ause X is 
ompa
t, this means that C�f is non-empty for all f 2 2!.This leaves the su

essor step. Suppose that, for an ordinal � and for all f 2 2!, C�f is non-empty.Fix f 2 2! and a non-trivial sequen
e, ffngn2! whi
h 
onverges to f in 2!. Choose xn 2 C�fn and,again by 
ompa
tness, �nd x 2 fxn : n 2 !g. Y (�) is 
losed in X and x is an a

umulation point of asequen
e in Y (�) so x 2 Y (�+1). Moreover, sin
e ffng 
onveregs to f in 2!, given any k 2 !, there existsN 2 ! su
h that for all n > N , fnjk = f jk. But then C�fn � Uf jk for all n > N whi
h implies thatfxn : n > Ng � Uf jk and x 2 Uf jk for all k 2 !. Hen
e x 2 Cf from whi
h it follows that x 2 C(�+1)fand C(�+1)f 6= ; for all f 2 2!.This 
ompletes the trans�nite indu
tion. Hen
e Y is non-s
attered and nowhere dense in X . TakeZ = Y (�) where � is su
h that Y (�) = Y (�+1). Then Z is a nowhere dense, 
rowded subspa
e of X . 2



Corollary 2.5.4 Every 
ompa
t boundary-s
attered spa
e is s
attered.Proof Suppose X were a 
ompa
t boundary-s
attered spa
e. If X is not s
attered then there is a subsetY of X whi
h is 
rowded. By taking the 
losure of Y if ne
essary, Y 
an be assumed to be 
losed and,therefore, 
ompa
t. By the previous result, Y would have a nowhere dense subset whi
h was 
rowded.But Proposition 2.1.2 (2) implies that Y is also boundary-s
attered. This is 
learly a 
ontradi
tion. 2Corollary 2.5.5 There are no 
ompa
t Lusin spa
es.Proof Suppose X were a 
ompa
t Lusin spa
e. X is boundary-
ountable and, sin
e 
ountable 
ompa
tspa
es are s
attered, X is also boundary-s
attered. By Corollary 2.5.4, X is s
attered so Xd is nowheredense in X hen
e 
ountable. By the de�nition of a Lusin spa
e, X has only 
ountably many isolatedpoints. This means that X in total 
an only be 
ountable whi
h is a 
ontradi
tion as Lusin spa
es areassumed to be un
ountable. 22.6 Summary and questionsThe se
ond and third se
tions of this 
hapter are 
on
erned with 
hara
terising boundary-metrizable
ompa
ta. The se
ond se
tion deals with general spa
es and we obtain the surprising result that if thereare no Lusin spa
es then every boundary-metrizable 
ompa
tum is metrizable. By studying boundary-metrizability in LOTS, we obtain two important examples of boundary-metrizable non-metrizable 
om-pa
ta. These results are summarised here:Theorem 2.6.1 1. If there are no Lusin spa
es then every boundary-metrizable 
ompa
tum is metriz-able2. If there is a Souslin line then there is a boundary-metrizable, non-metrizable ar
3. If there is a Lusin set then there is a separable boundary-metrizable, non-metrizable 
ompa
t LOTSFrom this, it is 
lear that there is a dis
repan
y between the hypotheses for an example and for a theorem.This gap 
ould be �lled by a positive answer to:Question 2.1 If there exists a Lusin spa
e, is there a boundary-metrizable non-metrizable 
ompa
tum?One way of solving this may arise by using (3) and answering:Question 2.2 If there is a Lusin spa
e, is there also a Lusin subspa
e of R?(2) also suggests a possible 
onverse:Question 2.3 If there is a boundary-metrizable non-metrizable 
ontinuum, is there a Souslin line?The fourth se
tion dealt with boundary-separability and gave two key results: �rst, if there are no L-spa
esthen every boundary-separable spa
e is separable and, se
ondly, every boundary-(hereditarily separable)spa
e is separable if and only if there are no non-separable Lusin spa
es. However the hypothesis thatthere are no L-spa
es may be in
onsistent with ZFC so this would be improved if we 
ould answer eitherof the following aÆrmatively:



Question 2.4 If is there an L-spa
e, is there a boundary-separable, non-separable spa
e?Question 2.5 If there are no S-spa
es, is every boundary-separable spa
e separable?We also saw that if there are no Lusin spa
es then every boundary-separable 
ompa
tum is separable.Does the 
onverse hold?Question 2.6 If there is a Lusin spa
e, is there are boundary-separable, non-separable 
ompa
tum?The �fth se
tion gives some ZFC results and we have that every boundary-s
attered 
ompa
tum iss
attered. This also rules out the trivial answer of a 
ompa
t Lusin set to Questions 2.1 and 2.6.



Chapter 3Cohesion
The most well-known theory whi
h is based on spa
es de�ned by the properties of their boundaries isthe theory of indu
tive dimension. The indu
tive dimension fun
tions assert that 
ertain open sets haveboundaries of a lower dimension.Following the 
avour of this idea, in [A2℄, Arhangel'ski�� de�ned indu
tively a \fun
tion of the dimensionaltype" whi
h he 
alled absolute dimension: a spa
e has absolute dimension n if every boundary has absolutedimension stri
tly less than n starting from the base 
ase that a spa
e has absolute dimension 0 if andonly if it has small indu
tive dimension zero. This notion does not a
tually produ
e a dimension fun
tionin the usual sense - it is shown in the last se
tion of this 
hapter that the absolute dimension of the unitsquare 
annot be de�ned. However, absolute dimension is well-behaved on the real line - every subset ofR has absolute dimension of at most 1.In order to understand more 
losely what an indu
tive fun
tion of this nature says about a spa
e, wemodify the base 
ase de�nition of absolute dimension to give the new notion of 
ohesion. In the �rstse
tion of this 
hapter, 
ohesion and related terms are de�ned and we establish some basi
 properties.The relationship between 
ohesion and s
attered length is fully investigated in the next se
tion. Crowded
ohesive spa
es are 
onsidered in the third se
tion and examples of �nitely 
ohesive, regular, 
rowdedspa
es are 
onstru
ted. It is also shown that there 
annot be trans�nitely 
ohesive, regular spa
es. Usingthe results on boundary{s
attered spa
es, 
ompa
t 
ohesive spa
es are examined in the fourth se
tion.The �fth gives some theorems on when 
ohesion is preserved under 
ontinuous maps and taking produ
ts.Finally, we show that absolute dimension is not de�ned on the unit square.3.1 De�nition and basi
 propertiesWithout further ado, we de�ne 
ohesion.De�nition 3.1.1 For a topologi
al spa
e X , the 
ohesion of X, abbreviated to 
ohX , is de�ned bytrans�nite re
ursion as follows: 
ohX = �1 if and only if X = ;for an ordinal �, 
ohX 6 � if for every nowhere dense subset C � X , 
ohC < �For a spa
e X and an ordinal �, 
ohX = � if 
ohX 6 � and for every � < � it is not the 
ase that
ohX 6 �. Finally, X is said to be 
ohesive if for some ordinal �, 
ohX = �, �nitely 
ohesive if � is�nite and trans�nitely 
ohesive if � is in�nite.Remark Despite the fa
t that we will prove that there is no regular spa
e of trans�nite 
ohesion, wehave given the de�nition in its full generality. This is for two reasons. First, in proving this fa
t, we wish30



to use 
ertain lemmas whi
h tell us about the stru
ture of spa
es with trans�nite 
ohesion. Se
ondly,there may yet be some interesting Hausdor� spa
es of trans�nite 
ohesion.Clearly, 
ohesion will have a similar feel to the boundary properties of the previous 
hapter. However,it is the indu
tive element of the de�nition whi
h makes it very di�erent in 
hara
ter as it for
es thenowhere dense subsets into a rigid hierar
hy. Be
ause of the 
lose relation between the nowhere densesubsets and the topology of a spa
e, we are able to examine this hierar
hy quite 
losely.We now prove some basi
 properties of 
ohesion.Proposition 3.1.2 If X is a spa
e su
h that, for some ordinal �, 
ohX 6 � and Y � X then 
ohY 6 �.Proof This follows immediately on noting that a nowhere dense subset of Y is a nowhere dense subsetof X . 2Proposition 3.1.3 A non-empty spa
e X is dis
rete if and only if 
ohX = 0.Proof If X is dis
rete then every subset of X is open. This means that the only nowhere dense subsetof X is the empty set so from the de�nition it follows that 
ohX = 0.If 
ohX = 0 then every nowhere dense subset has a 
ohesion of �1. Thus, no non-empty subset is nowheredense. Consider fxg. This is 
losed as X is T1 but is not nowhere dense so 
ontains a non-empty subsetopen in X . This must be fxg. Hen
e every point of X is open and X is dis
rete. 2Remark By indu
ting up a step, Proposition 3.1.3 implies that a spa
e has 
ohesion 1 if and only if itis boundary-dis
rete.Proposition 3.1.4 If X is a spa
e su
h that, for some ordinal �, 
ohX = � then, for all � < �, thereexists a 
losed nowhere dense subset C� � X su
h that 
ohC� = �.Proof If � = �1 then there is literally nothing to prove! Assume the proposition has been proven forall spa
es X su
h that 
ohX = � where � < �.Consider the 
ase where � = 
+1. If every nowhere dense subset of X has 
ohesion less than 
 then, byde�nition, 
ohX 6 
. Sin
e this is not the 
ase it must be that there is a nowhere dense subset A of Xfor whi
h 
ohA = 
. De�ne C
 = A so C
 is nowhere dense in X . Hen
e 
ohC
 6 
 and, sin
e A � C
 ,Proposition 3.1.2 implies that 
ohC
 > 
ohA = 
. Therefore 
ohC
 = 
.Suppose � < �. If � = 
 then C� is already de�ned. If � < 
 then by the indu
tive hypothesis thereexists a C� � C
 
losed and nowhere dense in C
 su
h that 
ohC� = �. But then C� is also 
losed andnowhere dense in X and the hypothesis holds for �.Consider now the 
ase where � is a limit ordinal. For every � < �, there exist 
 < � and a nowheredense subset A
 of X su
h that � < 
 and 
ohA
 = 
 (otherwise 
ohX 6 � + 1). As before, takingC = A
 , C is 
losed and nowhere dense in X with 
 6 
ohC < �. Then 
ohC > � and, by the indu
tivehypothesis, there exists a C� 
losed and nowhere dense in C, and hen
e in X , su
h that 
ohC� = �. 2One other useful property is:Proposition 3.1.5 If fU� : � 2 �g is an open 
over of X su
h that, for some n 2 ! and for all � 2 �,
ohU� 6 n then X is 
ohesive and 
ohX 6 n:



Proof Suppose 
ohU� 6 �1 for all � 2 �, then ea
h U� is empty but still form a 
over of X so X mustbe empty and 
ohX 6 �1.Assume now that for any spa
e X and some n 2 ! the proposition holds and 
onsider the 
ase where
ohU� 6 n+ 1 for all � 2 �.Suppose A is nowhere dense in X . Take C = A when
e C is nowhere dense and 
losed in X . ConsiderC \ U� for some � 2 �. If C \ U� is not nowhere dense in U�, sin
e C \ U� is 
losed in U�, there existsV 2 �U� su
h that V � C \ U�. But V 2 �X as U� 2 �X and V � C whi
h means that C is notnowhere dense in X - a 
ontradi
tion. Therefore C \ U� is nowhere dense in U� and then, by de�nitionof 
ohesion, 
oh(C \ U�) 6 n:Taking V� = C \ U�, fV� : � 2 �g is an open 
over for C su
h that 
ohV� 6 n for all � 2 �. So by theindu
tive hypothesis, 
ohC 6 n giving 
ohA 6 n and hen
e 
ohX 6 n+ 1: 2From the remark after Proposition 3.1.3, we know that any boundary-dis
rete spa
e has 
ohesion de�nedon it. This gives us a sour
e of spa
es with 
ohesion 1 but it is informative to have some elementaryexamples of spa
es whi
h have higher 
ohesion.Examples 3.1.6 For ea
h n 2 !, there exists Cn � R su
h that 
ohCn = n.Proof Take C1 � R to be C1 = f0g [ f 1n : n 2 ! n f0gg. This is 
learly non-empty and not dis
rete.By Propositions 1.2.7 and 1.2.8, the only possible non-empty, nowhere dense subset of C1 is f0g whi
h
learly has 
ohesion 0, therefore 
ohC1 = 1.Taking C1 to be the base 
ase, for ea
h n 2 ! indu
tively de�ne s
attered, 
losed subsets of Q, 
all themCn, su
h that 
ohCn = n as follows:Cn+1 = Cn [ f 1k1 + : : :+ 1kn+1 : ki, kn+1 2 ! n f0g, ki+1 > 2ki(ki � 1) for i = 1; : : : ; ngThis gives sequen
es of points whi
h 
onverge down to every point of Cn. Hen
e Cdn+1 = Cn and sin
eCn is s
attered so too is Cn+1. If A is nowhere dense in Cn+1 then, by Proposition 1.2.8, A � Cn and
ohA 6 n. However, Cn is nowhere dense in Cn+1, by Proposition 1.2.7, and 
ohCn = n so by de�nitionof 
ohesion 
ohCn+1 = n+ 1. 2Sin
e ea
h of these spa
es is a subset of Q this shows that if 
ohQ exists then it is trans�nite. However,we in fa
t have:Theorem 3.1.7 
ohQ is not de�ned.Proof Suppose for 
ontradi
tion that 
ohQ is de�ned. Q is homeomorphi
 to Q � Q whi
h 
ontainsf0g� Q as a nowhere dense subset. Thus, by de�nition of 
ohesion, 
oh(f0g�Q) < 
oh(Q �Q). But asf0g � Q is also homeomorphi
 to Q this gives us our required 
ontradi
tion. 2Remark This is a
tually a 
onsequen
e of Theorem 3.2.1 but this proof is 
onsiderably shorter andmore elegant and I am grateful to the referee of an earlier form of this work for suggesting it.3.2 Cohesion and s
attered spa
esThe last theorem of the previous se
tion was basi
ally shown by �nding a nowhere dense subspa
e of Qwhi
h was homeomorphi
 to Q. The result then followed dire
tly from the de�nition of 
ohesion. This



is not in general possible but it is possible to �nd in 
ertain spa
es a subspa
e whi
h 
ontains a nowheredense homeomorph of itself. It then follows, as for Q, that su
h spa
es 
annot have 
ohesion de�ned onthem.The following theorem gives the details of how su
h subspa
es 
an be 
onstru
ted in a more general
ontext.Theorem 3.2.1 If X is a Hausdor�, sequential, 
ohesive spa
e then X is s
attered.Proof Suppose X is not s
attered. This means that there exists an A � X whi
h has no isolated points.De�ne Y = AX . Y is a 
losed subset of X so is also Hausdor� and sequential. Moreover, by Corollary1.2.2, Y is 
rowded. Thus, for ea
h y 2 Y , y 2 Y n fygY and hen
e Y n fyg 6= Y n fygY or more simplyY nfyg is not 
losed in Y . Sin
e Y is sequential, this implies that there exists a sequen
e in Y nfyg whi
h
onverges to a point outside of Y n fyg. There is only one possible point left in Y whi
h this sequen
e
ould 
onverge to and this is y. Denote su
h a sequen
e by fyng1n=0 and sin
e Y is Hausdor� we 
anassume all elements of the sequen
e are distin
t.We need to separate the points of su
h sequen
es quite some way so we require the following:Fa
t For all n 2 !, there exists Un(y) � Y open in Y su
h that yn 2 Un(y), y 62 Un(y) and Un(y) \Um(y) = ; whenever n, m 2 ! and n 6= m.This 
an be proved using only that Y is Hausdor�.We now show how, for a given x 2 Y 
ontained in some open set U , there exist sets In(x; U) � U forea
h n 2 ! su
h that (In+1(x; U))d = In(x; U) , I(n)n (x; U) = fxg and for every z 2 In+1(x; U) n In(x; U),there is a Uz � X whi
h is open in X with Uz \ In+1(x; U) = fzg and whenever z 6= z0; Uz \ Uz0 = ;.These sets are equivalent to the Cn in Examples 3.1.6.Take I0(x; U) = fxg and de�ne Ux = U . This trivially satis�es the 
onditions.Suppose then that for some n 2 !, if i 6 n the set Ii(x; U) and the 
orresponding Uz's are de�ned.Consider a z 2 In(x; U) n In�1(x; U) (taking I�1(x; U) = ;). Take fzkg to be the sequen
e 
ontained inUz 
onverging to z whose existen
e is demonstrated at the beginning of this proof. De�neIn+1(x; U) = In(x; U) [ fzk : z 2 In(x; U) n In�1(x; U) and k 2 !gUzk = Uz \ Uk(z)where Uk(z) is de�ned by the Fa
t.Suppose z; z0 2 In(x; U) n In�1(x; U). If z 6= z0 then for all j; k 2 !, Uzj \ Uz0k � Uz \ Uz0 = ;. Andif z = z0 then, for j; k 2 ! with j 6= k, Uzj \ Uz0k � Uj(z) \ Uk(z) = ; by their de�nition. From this,Uzk does not 
ontain any z0j whenever either (j 6= k) or (z 6= z0). Moreover, from the Fa
t, z 62 Uzk andUzk \ In+1 = fzkg. Thus the Uzk are the open sets required in the de�nition of In+1(x; U).The Uzk also show that if z 2 In+1(x; U) n In(x; U) then z is an isolated point of In+1(x; U). And ifz 2 In then by its de�nition there is a sequen
e in In+1 
onverging to z. These two statements togethergive (In+1(x; U))d = In(x; U)from whi
h it follows by part of the indu
tion hypothesis that(In+1(x; U))(n+1) = fxgHen
e In+1 is s
attered.We now take Z = [n2! In(yn; Un(y))If z 2 Z is isolated then, by the de�nition of the In, it 
annot be the 
ase that z 2 In�1(yn; Un(y)) forany n 2 ! and so it must be that z is isolated in some In(yn; Un(y)). In the opposite dire
tion, if z is



isolated in In(yn; Un(y)) for some n 2 ! then fzg = V \ In(yn; Un(y)) for some V open in Y . But thenfzg = Z \ (V \ Un(y)) as In(yn; Un(y)) � Un(y) and the Un(y) are pairwise disjoint. This means z isisolated in Z. Hen
e we have Zd = [n2!(In(yn; Un(y)))dZd = [n2! In(yn+1; Un+1(y))whi
h is 
learly homeomorphi
 to Z. It is not hard to see that Z is s
attered (with sl(x) = !+1) givingthat Zd is nowhere dense in Z.But if X is 
ohesive then so too are Zd and Z. By the de�nition of 
ohesion, 
ohZd < 
ohZ whi
h isimpossible sin
e Zd is homeomorphi
 to Z. Thus we have a 
ontradi
tion.Hen
e it must be the 
ase that X is s
attered. 2In 
ohesive spa
es whi
h are s
attered, we have two numbers atta
hed to the spa
e, the 
ohesion and thes
attered length. The next two theorems give the relation between them in s
attered spa
es.Theorem 3.2.2 For X a s
attered spa
e and n 2 !, sl(X) = n if and only if 
ohX = n� 1.Proof Firstly suppose X is s
attered with sl(X) = 0. Then X = X(0) = ; and hen
e 
ohX = �1.Assume for the purposes of indu
tion that if sl(X) = n then 
ohX = n � 1 and 
onsider a spa
e X ofs
attered length n+1. Xd is nowhere dense in X and 
learly has s
attered length n. Thus 
ohXd = n�1.If C is a nowhere dense subset of X then, by Proposition 1.2.8, C � Xd. By Proposition 3.1.2, this impliesthat for every nowhere dense subset C of X , 
ohC 6 n� 1: From the de�nition of 
ohesion, 
ohX 6 n.However Xd is a nowhere dense subset of X of 
ohesion n� 1. Hen
e 
ohX = n and indu
tion gives theimpli
ation in one dire
tion.To do the reverse impli
ation, if 
ohX = �1 then X = ; and hen
e sl(X) = 0. Assume now that if
ohX = n� 1 then sl(X) = n. If X is a s
attered spa
e su
h that 
ohX = n, then Xd is nowhere densein X and, sin
e any nowhere dense subset of X is 
ontained in Xd, this gives 
ohXd = n� 1. But thenby the indu
tive hypothesis, sl(Xd) = n whi
h 
learly implies that sl(X) = n + 1. This 
ompletes theindu
tion and the proof. 2Theorem 3.2.3 If X is s
attered and 
ohesive then sl(X) is �nite.Proof Suppose sl(X) = � and 
ohX = � for some ordinals � , � where � is in�nite. De�ne a fun
tionf : ! ! � by f(n) = 
oh(X(n)) for n 2 !Sin
e X(n+1) = (X(n))d, X(n+1) is nowhere dense in X(n). Thus 
ohX(n+1) < 
ohX(n): But thenff(n) : n 2 !g forms a stri
tly de
reasing sequen
e in the ordinal � whi
h 
ontradi
ts the well-orderingof �. Hen
e � 
annot be in�nite and we have sl(X) is �nite. 2Putting these last three results together we have the following:Corollary 3.2.4 If X is a 
ohesive, sequential Hausdor� spa
e then X is s
attered and sl(X) = n forsome n 2 !. Moreover, 
ohX = n� 1:



3.3 Cohesion in non-s
attered spa
esThe results of the previous se
tion fully 
hara
terise 
ohesion in s
attered spa
es. This, of 
ourse, leads usto inquire into the behaviour of more general 
ohesive spa
es. In order to get 
ohesion in non-s
atteredspa
es, we need look no further than the remark after Proposition 3.1.3 and 
onsider our favouriteboundary-dis
rete 
rowded spa
e - the node
 spa
e of van Douwen. This is a 
rowded spa
e of 
ohesion1. We now produ
e examples with higher 
ohesion using the node
 spa
e as a building blo
k.The examples are based on produ
ts. However, the nowhere dense subsets of produ
ts 
an be very
ompli
ated and so we devise a di�erent topology on a produ
t whi
h essentially adds only one newnowhere dense set.Theorem 3.3.1 If X and Y are topologi
al spa
es su
h that 
ohX = n, for some n 2 !, and Y is a
rowded boundary{dis
rete spa
e then (X � Y; T ) is a topologi
al spa
e su
h that
oh(X � Y ) = n+ 1where T is the topology determined by the following basis:�x some y0 2 Y and for hx; yi 2 X � Y , a basi
 open neighbourhood of hx; yi is of the form:1. fxg � U when y 6= y0 and where U 2 �Y with y0 62 U2. Sffag � Ua : a 2 V g when y = y0 and where x 2 V 2 �X and, for all a 2 V , y0 2 Ua 2 �YProof It is not too hard to 
he
k that the de�nition given does indeed de�ne a topology on X � Y .First of all, we shall show that 
oh(X � Y ) > n+ 1.The set X�fy0g is a subset of X�Y . It is 
losed sin
e if hx; yi 62 X�Y then y 6= y0 and fxg�(Y nfy0g)is an open neighbourhood of hx; yi whi
h misses X � fy0g. Moreover, it is nowhere dense be
ause anyopen set, say V , about hx; y0i 2 X � Y 
ontains fxg � U for some open neighbourhood U of y0. But y0is not isolated so for some y 2 Y n fy0g, hx; yi 2 fxg �U � V . Thus, V 
annot be a subset of X � fy0g.Clearly, X � fy0g is homeomorphi
 to X so that 
oh(X � fy0g) = n and, by de�nition of 
ohesion,
oh(X � Y ) > n+ 1.Se
ondly, we show that 
oh(X � Y ) 6 n+ 1 and then the proof is 
omplete.Suppose C is nowhere dense in X � Y . Sin
e, for all x 2 X , fxg � (Y n fy0g) is open in X � Y thenCx = C \ (fxg � (Y n fy0g)) is nowhere dense in fxg � (Y n fy0g) and hen
e in fxg � Y . Clearly
oh(fxg�Y ) = 1 giving us that 
ohCx 6 0, that is, Cx is either empty or 
losed and dis
rete in fxg�Y .(Note also that Cx is open in C.) But then there exists an open neighbourhood Ux of y0 su
h that(fxg � Ux) \ Cx = ;.Take V = Sx2X(fxg � Ux). By de�nition of T , V is open in X � Y and by de�nition of the Ux's,C \ V � X � fy0g so that 
oh(C \ V ) 6 n. But we now have that fC \ V g [ fCx : x 2 Xg is anopen 
over of C su
h that ea
h element of the 
over has 
ohesion at most n. So by Proposition 3.1.5,
ohC 6 n: Hen
e, by de�nition of 
ohesion, 
oh(X � Y ) 6 n+ 1. 2We 
an now indu
tively 
onstru
t our examples whi
h, as they are all regular and 
ountable have manyni
e properties su
h as hereditary Lindel�ofness and hereditary separability.Examples 3.3.2 For all n 2 ! n f0g, there exists a spa
e Xn whi
h is 
ountable, 
rowded, regular and
ohXn = n.



Proof For n = 1, take X1 to be van Douwen's node
 spa
e. Assume that for some n 2 !, Xn has beenshown to exist. Now apply the previous theorem with X = Xn, Y also van Douwen's node
 spa
e andy0 some point of Y . De�ne Xn+1 to be this new spa
e.It is 
lear to see that Xn+1 is 
ountable and that 
ohXn+1 = n + 1 by the previous result. That Xn+1is 
rowded follows sin
e every open neighbourhood of a point hx; yi 2 Xn � Y 
ontains a set of the formfxg�U where U is an open neighbourhood of y in Y . But no y 2 Y is isolated so U 
ontains some pointother than y and hen
e every neighbourhood of hx; yi 
ontains some point other than hx; yi.We must show that Xn+1 is also a T1-spa
e. Consider hx; yi 2 Xn+1. The set U = (Xn n fxg)� Y is abasi
 open set as Xn is T1. Also V = Y n fyg is open in Y as Y is T1.Case (1): If y 6= y0 of the last theorem then Xn+1 n fhx; yig = Sffag � Ua : a 2 Xg where Ua = Y fora 6= x and Ux = V . Hen
e the point hx; yi is 
losed.Case (2): If y = y0 then fxg � V is open in Xn+1 and then 
omplement of hx; yi is U [ V whi
h is openand hen
e hx; yi is 
losed.It remains to show that Xn+1 is regular. Suppose U is an open neighbourhood of hx; yi in Xn+1. Weneed to �nd an open set W � Xn+1 su
h that hx; yi 2W �WXn+1 � U .Case (1): If y 6= y0 then U 
ontains an open set of the form fxg � U 0 for some U 0 open in Y . Inthis 
ase there exists a V � Y open su
h that y 2 V � V Y � U 0. It is not too hard to see thatfxg � V Xn�Y = fxg � V Y and so W = fxg � V is our required open set.Case (2): If y = y0, then U 
ontains an open set of the form Sffag � Ua : a 2 V g where V is anopen neighbourhood of x in Xn and ea
h Ua is an open neighbourhood of y0 in Y . Take G to be anopen set in Xn su
h that x 2 G � GXn � V and, for all a 2 GXn , take an Ha open in Y su
h thaty0 2 Ha � HaY � Ua. Setting W = Sffag � Ha : a 2 Gg, it is 
lear to see that W is an openneighbourhood of hx; yi whi
h is 
ontained in the 
losed set Sffag �HaY : a 2 GXng whi
h is in turn
ontained in U .Hen
e Xn+1 is regular and so by indu
tion on the natural numbers the theorem is proven. 2It would be ideal if this 
onstru
tion 
ould be improved upon thereby allowing us to produ
e examplesof 
rowded spa
es with all possible 
ohesions. However, the next theorem shows that we 
annot do thisand keep regularity.Theorem 3.3.3 There is no regular, trans�nitely 
ohesive spa
e.We a
tually demonstrate that there is no regular spa
e of 
ohesion !. This suÆ
es sin
e Proposition 3.1.4says that any regular spa
e of trans�nite 
ohesion 
ontains a subset of 
ohesion ! whi
h is ne
essarilyregular.The proof pro
eeds by demonstrating that if a spa
e of 
ohesion ! exists then it 
ontains a nowhere densesubset also of 
ohesion !. This 
ontradi
ts the de�nition of 
ohesion. To 
onstru
t this nowhere densesubset, we need a 
ouple of te
hni
al lemmas.Lemma 3.3.4 For n, m 2 !, if A, U � X and U is open with 
oh(A n U) 6 n and 
ohU 6 m then
oh(A [ U) 6 n+m+ 1.Proof Indu
t on m for a given n. Assume m = �1 so U = ; and 
ohA 6 n. Hen
e 
oh(A [ U) 6n+�1 + 1 = n as required.



Thus suppose it has been proven for m = k and assume m = k +1. If C is nowhere dense in A [U thenC \ U is nowhere dense in U as U is open in A [ U . Thus, 
oh(C \ U) 6 k. But also C n U � A n U sothat 
oh(C n U) 6 n by Proposition 3.1.2.Thus, taking C = X in the indu
tive hypothesis and noting that C \ U is open in C, 
ohC = 
oh((C nU) [ (C \ U)) 6 n+ k + 1: But this was for an arbitrary nowhere dense subset of A [ U hen
e
oh(A [ U) 6 n+ k + 2 = n+ (k + 1) + 1By indu
tion the lemma holds for all m. 2Lemma 3.3.5 If X is regular and 
ohX = ! then for all n 2 !, there exist C � U 2 �X su
h that C isnowhere dense in X, 
ohC = n and 
oh(X n U) = !.Proof By Proposition 3.1.4, for X as in the statement of the lemma and some n 2 !, there exists A � Xwhi
h is 
losed and nowhere dense in X su
h that 
ohA = n. If there exists a U 2 �X su
h that A � Uand 
oh(X n U) = ! then simply take C = A. Otherwise, assume that for all open sets U in X whi
h
ontain A, 
oh(X n U) < !. Taking X n U to be A in Lemma 3.3.4, if 
ohU < ! then 
ohX < !. Hen
e
ohU = ! for all su
h U . De�ne U to be the 
olle
tion of all open sets 
ontaining A and index this setby �.Claim: A = \�2�U�Certainly A � T�2� U� so 
onsider x 62 A. By regularity, there exists a � 2 � su
h that A � U� � U� �X n fxg: But then x 62 U� and moreover x 62 T�2� U�. Hen
e T�2� U� � A and we have our 
laim.Suppose now that, for all � 2 � and some M 2 !; 
oh(X n U�) 6M .The set fX n U� : � 2 �g is an open 
over for X n A by the Claim. Thus, by Proposition 3.1.5,
oh(X nA) 6M . But we now have that 
ohA = n, 
oh(X nA) 6M and X nA is open in X . Hen
e, byLemma 3.3.4, 
oh((X nA) [A) 6M + n+ 1 or in other words, 
ohX < ! whi
h is a 
ontradi
tion.Therefore, for the given n, there exists � 2 � su
h that 
oh(X nU�) > n+ 1. By Proposition 3.1.4, takeC to be a subset of X nU� whi
h is nowhere dense in X n U� and for whi
h 
ohC = n. This gives thatA � U� � U� � X n CDe�ne U = X n U� so that C � U , 
ohC = n and ! > 
oh(X n U) = 
ohU� > 
ohU� = !. C is alsonowhere dense in X and hen
e C and U are the sets whi
h satisfy the lemma. 2This last lemma allows us to �nd nowhere dense subsets of a spa
e of 
ohesion ! of ea
h �nite 
ohesion,whi
h are suÆ
iently well separated so that their union is still nowhere dense. But then, this nowheredense subset has 
ohesion ! and this is the set we require for the 
ontradi
tion. The details are as follows:Proof of Theorem 3.3.3 Suppose X is a regular spa
e of 
ohesion !. First of all we 
onstru
t nowheredense subsets of X of ea
h �nite 
ohesion in a parti
ularly ni
e way. By Lemma 3.3.5, we 
an �ndC0; U0 � X where C0 is nowhere dense in X , 
ohC0 = 0, U0 is open in X , C0 � U0 and 
oh(X nU0) = !.We now de�ne indu
tively Ck ; Uk � X su
h that:1. Ck is nowhere dense in X2. 
ohCk = k3. Uk is open with Ck � Uk



4. 
oh(X n Uk) = !5. Ui � Ui+1 for i = 0; 1; 2; : : : ; k � 16. Ci+1 � X n Ui for i = 0; 1; 2; : : : ; k � 1Assume that, for i 6 n, Ci and Ui have been de�ned satisfying the indu
tive assumptions. De�neCn+1; V � X nUn by applying Lemma 3.3.5, so that Cn+1 is nowhere dense subset of X nUn, and hen
eof X , 
ontained in the set V open in X n Un su
h that 
ohCn+1 = n+ 1 and 
oh((X n Un) n V ) = !.Take V 0 to be a set open in X su
h that V = V 0 \ (X nUn). Take Un+1 = V 0 [Un. It is easy to see fromtheir de�nitions that Cn+1 and Un+1 satisfy all the indu
tive 
onditions for k = n + 1 ex
ept possibly(4). But note X nUn+1 = X n (V 0 [ Un) = (X n Un) n V 0 = (X n Un) n VTherefore, 
oh(X n Un+1) = 
oh((X n Un) n V ) = !Thus Cn+1 and Un+1 are sets satisfying all of the indu
tive 
onditions for k = n+ 1 and this 
ompletesthe indu
tion.De�ne C = S1n=0 Cn. Clearly 
ohC > 
ohCn for all n 2 ! and C � X so 
ohC = !.It remains to show that C is nowhere dense in X and we have our 
ontradi
tion. Suppose not then thereis an open set U of X su
h that U � C . Thus U \C 6= ; and therefore, for some n 2 !, U \Cn 6= ;. Sin
eCn � Un, V = U \Un is a non-empty open set in X . Moreover, for all i > n+1, Ci+1 � X nUi � X nUnby (5) and (6) of the indu
tive assumptions. Thus Un\Ci+1 = ; for all i > n. That is, Un\S1i=n+1 Ci = ;and therefore, we have (}) Un \ 1[i=n+1Ci = ;Now U � C hen
e V � C or, in other words,V � C0 [ C1 [ : : : [ Cn [ 1[i=n+1CiBut then (}) implies V � C0 [ C1 [ : : : [ CnThis means that the 
losure of the union of the �rst n of the Ck 
ontains a non-empty open set and hen
ethe union of the �rst n of the Ck is not nowhere dense. This 
ontradi
ts the fa
t that a �nite union ofnowhere dense sets is nowhere dense.Thus C must be nowhere dense in X and we 
an 
on
lude that there is no regular spa
e of trans�nite
ohesion. 2Given this result, we may now feel justi�ed in upgrading Lemma 3.3.4 to give a theorem very mu
h likea sum theorem in dimension theory.Theorem 3.3.6 If A and B are subsets of some spa
e X, at least one of whi
h is 
losed, su
h that
ohA 6 n, 
ohB 6 m and A [ B = X then 
ohX 6 n+m+ 1.3.4 The 
ohesion of 
ompa
taIn the previous 
hapter, it was shown that in the presen
e of 
ompa
tness boundary properties are well-behaved and manageable. The same is true of 
ohesion. Arhangel'ski�� asked whether every 
ompa
t




ohesive spa
e is s
attered and we provide here a positive answer. As the �rst stage in proving this, wehave:Lemma 3.4.1 There is no 
ompa
t 
rowded spa
e of 
ohesion 1.Proof Suppose X is 
ompa
t, 
rowded and 
ohX = 1. If C � X is 
losed and nowhere dense thenC is 
ompa
t and dis
rete therefore �nite. However, X is 
rowded and Hausdor� so it is easy to �nd a
ountably in�nite 
ellular family U . Choose for ea
h U 2 U , a point xU of U . fxU : U 2 Ug is in�niteand nowhere dense, by Proposition 1.2.5. Thus fxU : U 2 Ug is �nite whi
h is 
ontradi
tory. Thus thereis no su
h X . 2Applying Theorem 2.5.4 and using the previous Lemma as a base step, we indu
tively show:Proposition 3.4.2 Every 
ohesive 
ompa
tum is s
attered.Proof By Theorem 3.3.3, we need only prove that every �nitely 
ohesive 
ompa
tum is s
attered. ByLemma 3.4.1, when 
ohX = 1, X is s
attered.Assume that, for k 2 !, if X is a 
ompa
t spa
e su
h that 
ohX 6 k then X is s
attered. Consider a
ompa
tum X for whi
h 
ohX = k + 1. If C � X is 
losed and nowhere dense then C is 
ompa
t and
ohC 6 k. By the indu
tive hypothesis, C is s
attered. Therefore, X is a 
ompa
t boundary-s
atteredspa
e and, by Corollary 2.5.4, X is itself s
attered. This 
ompletes the indu
tion and the proof. 2Given this result, it is natural to ask how 
ohesion behaves in the presen
e of other 
overing properties.Examples 3.3.2 demonstrate that the Lindel�of property does not indu
e s
atteredness. Generalising in adi�erent dire
tion, it is natural to 
onsider lo
al 
ompa
tness. Using the Alexandro� 
ompa
ti�
ation,this 
an be promoted to 
ompa
tness and 
ohesion still behaves well as the following proposition shows.Be
ause lo
ally 
ompa
t Hausdor� spa
es are regular, we still only 
onsider �nitely 
ohesive spa
es.Proposition 3.4.3 If X is a lo
ally 
ompa
t Hausdor� spa
e with 
ohX 6 n, for some n 2 !, and X�denotes the one-point 
ompa
ti�
ation of X then 
ohX� 6 n+ 1.Proof For a spa
e X de�ne X� = X [ f
g for some 
 62 X and a topology on X� by�X� = �X [ f(X n F ) [ f
g : F � X and F is 
ompa
tgIt is well-known that if X is T2 and is lo
ally 
ompa
t then X� is 
ompa
t with the given topology.Moreover, if X is not 
ompa
t then X is embedded as a dense subset in X�.Assume that it has been shown for all lo
ally 
ompa
t Hausdor� spa
es X with 
ohX 6 m where m < nthat 
ohX� 6 m+ 1. Consider a lo
ally 
ompa
t Hausdor� spa
e X su
h that 
ohX = n. (In the 
aseswhere 
ohX < n the theorem follows by the indu
tion hypothesis.)Suppose C � X� is nowhere dense in X�. Then D = CX� is also nowhere dense in X�. De�ne B = D\X .As D is 
losed in X� so B is 
losed in X . If there is a non-empty set U 2 �X su
h that U � B thenU 2 �X� and U � D whi
h 
ontradi
ts the fa
t that D is nowhere dense. Hen
e B is nowhere dense inX and 
ohB = m for some m < n.If 
 62 D then C � D = B � X and, by Theorem 3.1.2, 
ohC 6 m < n.Thus suppose 
 2 C. As B is 
losed in X , it is T2 and lo
ally 
ompa
t. It is not too diÆ
ult to see that�B�, the topology on B�(= D) 
oin
ides with the topology indu
ed on D by �X�.



If B is not 
ompa
t then D is the one-point 
ompa
ti�
ation of B and hen
e by the indu
tive hypothesis,as 
ohB 6 m < n then 
ohD 6 m + 1 6 n. If B is 
ompa
t then from the de�nition of �B� it is 
learthat 
 is an isolated point of D. But then any nowhere dense subset of D must not 
ontain 
 and hen
eis a nowhere dense subset of B. Sin
e 
ohB = m, the 
ohesion of any su
h subset is stri
tly less than m.This means that 
ohD 6 m < n.Hen
e overall 
ohD 6 n and C � D so 
ohC 6 n. But then from the de�nition of 
ohesion it followsthat 
ohX� 6 n+ 1. 2This immediately gives:Corollary 3.4.4 Every lo
ally 
ompa
t 
ohesive spa
e is s
attered.Proof Suppose X is a lo
ally 
ompa
t 
ohesive spa
e. By the previous result, the one-point 
ompa
ti-�
ation of X , X�, is also 
ohesive. Proposition 3.4.2 implies that X� is s
attered and, as the subset of as
attered spa
e, X is s
attered. 23.5 Preserving 
ohesionWe have already seen a few methods for 
onstru
ting 
ohesive spa
es. These however are not amongst themore 
ommonly used te
hniques for building topologi
al spa
es. We therefore examine in this se
tion thebehaviour of 
ohesion under the more familiar 
onstru
tions of taking 
ontinuous images and produ
ts.It is immediately 
lear that 
ohesion is not preserved under arbitrary 
ontinuous mappings.Examples 3.5.1 Let f : ! ! � be a denumeration of van Douwen's node
 spa
e, then f is a 
ontinuousbije
tion. However, 
oh! = 0 and 
oh� = 1; so, 
ontinuous maps in general do not lower 
ohesion.Moreover, if g : ! ! Q is a denumeration of the rationals, then it is a 
ontinuous bije
tion with domainhaving 
ohesion 0 but for whi
h the image is not even 
ohesive! 2In order to maintain 
ohesion under 
ontinuous maps, it is ne
essary to ensure that the nowhere densesubsets of the image are related to the nowhere dense subsets of the domain. This 
an be done by
onstraining in some way the behaviour of the images of the open sets under the mapping. Both openmaps and perfe
t maps will do this and it transpires that they also 
onstrain the behaviour of 
ohesionin the pro
ess.Theorem 3.5.2 If f : X ! Y is an open, 
ontinuous surje
tion and 
ohX 6 �, for some ordinal �,then 
ohY 6 �.Proof The proof is by trans�nite indu
tion.If 
ohX = �1 then X is empty and f is surje
tive so it must be that Y is empty and hen
e 
ohY = �1.Thus assume that the theorem holds for all ordinals � < � and that 
ohX = �. Consider C � Ywhi
h is nowhere dense in Y . If f�1(C) is not nowhere dense in X then there exists U 2 �X su
h thatU � f�1(C). But f is 
ontinuous so f�1(C) � f�1(C). Hen
e U � f�1(C) and f(U) � C. But f isopen so f(U) is open and non-empty in Y giving intY CY 6= ;, 
ontradi
ting the fa
t that C is nowheredense.



Therefore f�1(C) is nowhere dense in X and 
ohf�1(C) < �. De�ne g = f jf�1(C) so that g : f�1(C)!C is a 
ontinuous surje
tion. If V � f�1(C) is open in f�1(C) then V = U \ f�1(C) for some U openin X . However, g(V ) = f(U \ f�1(C)) = f(U) \ f(f�1(C)) = f(U) \ Cand f(U) is open in Y so g(V ) is open in C.Now, from the indu
tive hypothesis, 
ohC < �. But this is for an arbitrary nowhere dense subset of Yhen
e 
ohY 6 �. 2Theorem 3.5.3 If f : X ! Y is perfe
t and 
ohX 6 �, for some ordinal �, then 
ohY 6 �.Proof Assume for the purposes of indu
tion that, for all ordinals � < �, the theorem is true and 
onsiderX su
h that 
ohX = �.Take A � X and g = f jA: A! Y as given in Proposition 1.2.10. If C is a nowhere dense subset of Y sotoo is D = CY . If g�1(D) is not nowhere dense in A then there exists a non-empty open set U � A su
hthat U � g�1(D)(= g�1(D)X as D is 
losed and g is 
ontinuous). However, by Proposition 1.2.9, g�(U)is non-empty and open in Y sin
e g is 
losed and irredu
ible. Also g�(U) � g(U) � D whi
h 
ontradi
tsthe fa
t that D is nowhere dense in Y . Therefore g�1(D) is nowhere dense in X and hen
e, for some� < �, 
oh(g�1(D)) 6 � < �.De�ne h = g jg�1(D): g�1(D) ! D. h is 
learly a 
ontinuous surje
tion. As g�1(D) is 
losed it followsthat h is perfe
t. Hen
e by the indu
tion hypothesis 
ohD 6 � < �. Sin
e C � D, by Theorem 3.1.2,
ohC < �. C was an arbitrary nowhere dense subset of Y so this implies 
ohY 6 �. 2Preserving 
ohesion in produ
ts of 
ohesive spa
es is quite 
omplex as the nowhere dense subsets of aprodu
t need have almost no relationship with the nowhere dense subsets of the fa
tor spa
es. This is
learly demonstrated in the next result.Theorem 3.5.4 If � is a 
rowded, boundary-dis
rete spa
e re�ning the rationals then �2 is not 
ohesive.Proof Assume for 
ontradi
tion that �2 is 
ohesive and hen
e we are able to dis
uss the 
ohesion of itssubsets. If � is regular, it suÆ
es to show that 
oh�2 > ! in order to obtain a 
ontradi
tion. However,we will a
tually obtain a 
ontradi
tion in the more general 
ase but we must work a little harder to dothis.Throughout the proof, Q is the rationals with the usual topology. d is the usual metri
 on Q. � isthe same underlying set but with the �ner node
 topology. Thus, all subsets of �2 have the subspa
etopology indu
ed by the node
 topology of � and the usual Ty
hono� topology of produ
ts.The �rst step is to 
onstru
t inside �2 subsets Ck for ea
h k 2 ! where 
ohCk > k. These subsets arebuilt up indu
tively from ea
h other, however it is useful to be able to pla
e them pre
isely where theyare needed. This is gives rise to the following indu
tive hypotheses:Fix k 2 !, for every pair of open intervals U and V in Q and y 2 V , there exist Ci(U; V; y) � U � V , fori = 1; 2; : : : ; k, su
h that1. C1(U; V; y) = U � fyg2. Ci(U; V; y) is 
losed in U � V for i = 1; 2; : : : ; k3. Ci(U; V; y) is a nowhere dense subset of Ci+1(U; V; y) for i = 1; 2; : : : ; k � 14. Ck(U; V; y) is nowhere dense in U � V



5. k 6 
ohCk(U; V; y) 6 2k � 1For all open intervals U and V in Q and any point y 2 V , when k = 1 simply take (1) as the de�nitionof C1(U; V; y).Assuming we have found su
h Ci's for i = 1; 2; : : : ; k, we shall now 
onstru
t the Ck+1's. In order tosimplify the 
onstru
tion, we shall only 
onstru
t Ck+1(U; V; y) in the 
ase U = V = � and, moreover,we shall take C1 = f0g��. It is easy to see how to re-phrase this in order to produ
e Ck+1's satisfyingthe indu
tive hypotheses.De�ne Un = ( �1np2 ; 1np2 ), a 
lopen interval in Q, for ea
h n 2 ! n f0g and U0 = Q. As � re�nes Q, Un is
lopen in � for all n 2 !. Now denumerate � = fyn : n 2 !g and for ea
h n 2 !, separate the �rst npoints of � by Vnj , 
lopen intervals in Q, su
h that yj 2 Vnj and Vnj \ Vni = ; for i, j = 1; 2; : : : ; n andi 6= j. Finally, de�ne C1 = f0g �� and, for j = 2; : : : ; k + 1,Cj = C1 [ [n2! n[i=1Cj�1(Un n Un+1; Vni; yi)For j = 1; 2; : : : ; k, Cj � Cj+1 by (3) of the indu
tive hypothesis.C1 is de�ned to have the form of (1) in the indu
tive hypothesis and is 
learly 
losed in �2.For j 2 f2; : : : ; k + 1g and hx; yi 62 Cj , as x 6= 0, there exists n 2 ! su
h that x 2 Un n Un+1. Considerthe two 
ases: when for some i 6 n, hx; yi 2 (Un n Un+1)� Vni and when there are no su
h n and i. Inthe �rst 
ase, hx; yi 62 Cj�1(Un n Un+1; Vni; yi) but this is 
losed in (Un n Un+1) � Vni so there exists Wopen in (Un n Un+1) � Vni 
ontaining hx; yi for whi
h W \ Cj�1(Un n Un+1; Vni; yi) = ;. But then W isopen in �2 and, sin
e ((Un n Un+1) � Vni) \ ((Um n Um+1) � Vmj) = ; whenever either m 6= n or i 6= j,we have that W \Cj = ;. In the se
ond 
ase, Sni=1 Vni is 
losed as the �nite union of 
losed sets so thereexists W 2 �� for whi
h y 2 W and W \Sni=1 Vni = ;. This means that hx; yi 2 (Un n Un+1)�W and((Un n Un+1)�W ) \ Cj = ;. Hen
e, Cj must be 
losed.In order to show that Cj is nowhere dense in Cj+1 for j = 1; 2; : : : ; k, sin
e the Cj are 
losed, it is enoughto show that if U , V 2 �� and (U � V ) \ Cj 6= ; then (U � V ) \ (Cj+1 n Cj) 6= ;. Consider �rst U andV 2 �� for whi
h (U � V ) \ C1 6= ;. Choose an n 2 ! su
h that h0; yni 2 U � V . U is a neighbourhoodof 0 as is Un and 0 is not an isolated point of � hen
e there exists x 2 (U \Un) n f0g. This implies thathx; yni 2 (U � V ) \ (C2 nC1) and C1 is nowhere dense in C2.For some j 2 f2; : : : ; kg, assume that U , V 2 �� are su
h that U � V meets Cj . It has alreadybeen shown that (U � V ) \ (C2 n C1) 6= ; whi
h means that there are suitable i and n 2 ! for whi
h(U � V ) \ C1(Un n Un�1; Vni; yi) 6= ;. C1(Un n Un�1; Vni; yi) � Cj�1(Un n Un�1; Vni; yi) so U � V mustmeet Cj�1(Un nUn�1; Vni; yi). By the indu
tive hypothesis, Cj�1(Un nUn�1; Vni; yi) is nowhere dense inCj(Un n Un�1; Vni; yi). Thus,(U � V ) \ (Cj(Un n Un�1; Vni; yi) n Cj�1(Un n Un�1; Vni; yi)) 6= ;From the de�nition of Cj it follows that (U � V ) \ (Cj+1 n Cj) 6= ; and Cj is nowhere dense in Cj+1.Showing that Ck+1 is nowhere dense in �2 
an be done in a way similar to that used to show Cj isnowhere dense in Cj+1 but the following is a little more sli
k. Suppose U , V 2 �� are su
h that(U � V ) \ C1 6= ;. De�ne d(U) = supfd(x; x0) : x, x0 2 Ug if the supremum exists and d(U) = 1otherwise. V is in�nite so there exists n 2 ! for whi
h yn 2 V and 1n < d(U). Thus there existsx 2 U n Un and hx; yni 2 (U � V ) n Ck+1. If (U � V ) \ Ck+1 6= ; but does not meet C1 then for some nand i 2 !, (U � V ) \ Ck(Un n Un+1; Vni; yi) 6= ;. That U � V does not lie in Ck+1 now follows from theindu
tive hypothesis that Ck(Un n Un+1; Vni; yi) is nowhere dense in Un � Vni.It remains to 
he
k the 
ohesion of Ck+1. Sin
e the Cj 's form a 
hain of sets nowhere dense in theirsu

essors and 
ohC1 = 1, a simple indu
tion shows that 
ohCk > k. Moreover, Ck+1 \ ((Un n Un+1)�Vni) = Ck(Un n Un+1; Vni; yi) for n, i 2 !, hen
efCk(Un n Un+1; Vni; yi) : n 2 !, i = 1; 2; : : : ; ng



is a 
over of Ck+1nC1 by sets open in Ck+1. Proposition 3.1.5 and (5) of the indu
tive hypothesis togetherimply that 
oh(Ck+1 nC1) 6 2k � 1. By Theorem 3.3.6, 
ohCk+1 6 
ohC1 + 
oh(Ck+1 n C1) + 1, that is
ohCk+1 6 1 + (2k � 1) + 1 = 2(k + 1)� 1. This 
ompletes the indu
tive 
onstru
tion.Remark Thus far, we have found in �2 subsets whose 
ohesions are �nite but unbounded in ! so
oh�2 > !. If � were regular we 
ould stop here. However, by 
arefully pla
ing the Ck we 
an a
hievethe required 
ontradi
tion without assuming regularity.For ea
h n 2 !, de�ne Wn = ( 1p2 ; 1p2 + 1n ) a 
lopen interval in Q and hen
e 
lopen in �. Choose yn tobe some �xed point in Wn. Now de�ne C = [n2!Cn(�;Wn; yn)As the Wn are a 
losed dis
rete family in Q, they are a 
losed dis
rete family in � and hen
e f��Wn :n 2 !g is a 
losed dis
rete family in �2. This implies that Cn(�;Wn; yn) are a 
losed dis
rete family in�2 and C is 
losed in �. Moreover, the Cn(�;Wn; yn) are subsets of C whose 
ohesions are unboundedin ! hen
e 
ohC > !. By Proposition 3.1.4, �nd D � C whi
h is 
losed and has 
ohesion pre
isely !.fD \ Cn(�;Wn; yn) : n 2 !g form an open 
over of D be
ause D \ (��Wn) = D \ Cn(�;Wn; yn) and� �Wn 2 ��2 for all n 2 !. Also, the elements of the 
over are �nitely 
ohesive. This means thatf
oh(D \ Cn(�;Wn; yn)) : n 2 !g is unbounded in ! otherwise Proposition 3.1.5 gives that 
ohD < !.Thus, for all k 2 !, there exists nk > k for whi
h D \ Cnk (�;Wnk ; ynk) > k and, again applyingProposition 3.1.4, �nd Ek whi
h is 
losed and nowhere dense in D \ Cnk (�;Wnk ; ynk) and for whi
h
ohEk > k.De�ne E = Sk2! Ek. As a dis
rete union of 
losed sets (in the same way that D is), E is 
losed. SupposeE were not nowhere dense then for some U , V 2 ��, (U �V )\D � E where (U � V )\E is non-empty.But this implies that for some k 2 !, (U � V ) \ Cnk (�;Wnk ; ynk) 6= ; and(U � V ) \ Cnk (�;Wnk ; ynk) � E \ Cnk(�;Wnk ; ynk) = EkIn other words, Ek is not nowhere dense in Cnk (�;Wnk ; ynk). This is a 
ontradi
tion on the de�nitionof Ek. Hen
e E is nowhere dense in D whi
h implies that 
ohE < !.From the de�nition of the Ek's, f
ohEk : k 2 !g is an unbounded set in ! and, therefore, 
ohE > !.Thus, we have our 
ontradi
tion and �2 is not 
ohesive. 2Remark The Ck generated in the above proof are �nitely 
ohesive by the indu
tive assumption andthey are 
learly 
rowded. They do not, however, super
ede Examples 3.3.2 as we 
annot guarantee that,for all n 2 !, there exists a k 2 ! for whi
h 
ohCk = n as we 
an for the previous examples.However, when one of the fa
tors is s
attered, the nowhere dense subsets 
an be spe
i�ed more pre
iselythan in general. Thus, we have:Proposition 3.5.5 If X and Y are �nitely 
ohesive spa
es for whi
h Y is s
attered then X�Y is 
ohesiveand 
oh(X � Y ) 6 (
ohX + 1)(
ohY ) + 
ohX.Proof We indu
t on the 
ohesion of Y and, we assume that Y is �nitely 
ohesive so the indu
tion isonly of length !.First, 
onsider the 
ase when 
ohY = 0 so that Y is dis
rete. Clearly, fX�fyg : y 2 Y g is an open 
overof X � Y every member of whi
h has the same 
ohesion as X . Thus, by Proposition 3.1.5,
oh(X � Y ) 6 
ohX = (
ohX + 1)(
ohY ) + 
ohXSuppose now that, for n 2 !, if 
ohY 6 n then X�Y is 
ohesive and 
oh(X�Y ) = (
ohX+1)(
ohY )+
ohX and assume that 
ohY = n+1. Divide X�Y into A = X� (Y nY d) and B = X�Y d. B is 
learly



a 
losed subset of X�Y . Sin
e sl(Y d) = sl(Y )� 1, Theorem 3.2.2 implies that 
ohY d = n. Applying theindu
tive hypothesis, 
ohB 6 (
ohX +1)n+
ohX and by the base step 
ase 
ohA = 
ohX . Proposition3.3.6 then gives 
oh(X � Y ) 6 
ohX + ((
ohX + 1)n+ 
ohX) + 1from whi
h it follows that 
oh(X�Y ) 6 (
ohX+1)(n+1)+
ohX . This proves the 
ase when 
ohY = n+1and 
ompletes the indu
tion. 2By 
onsidering the 
ase when X and Y are both s
attered 
ohesive spa
es, it 
an be seen that the boundgiven in Proposition 3.5.5 is optimal. This follows by noting that sl(X � Y ) = sl(X) � sl(Y ) and then, byTheorem 3.2.2, this means that 
oh(X � Y ) + 1 = (
ohX + 1)(
ohY + 1). Simplifying this expression,we �nd that X � Y attains the bound on its 
ohesion.3.6 Absolute dimensionArhangel'ski�� de�ned absolute dimension as a tool by whi
h to examine spa
es whi
h are 
leavable overthe reals.De�nition 3.6.1 [A2℄ The absolute dimension of a spa
e X , denoted adimX is de�ned indu
tively tobe: adimX = �1 if and only if X = ;adimX = 0 if and only if indX = 0for n 2 ! n f0g, adimX6n if for every nowhere dense subset C of X , adimC < nFor a spa
e X , adimX = n means that adimX 6 n but for any k 2 ! su
h that k < n it is not true thatadimX 6 k.Arhangel'ski�� went on from this de�nition to show that a spa
e whi
h is 
leavable over the reals has anabsolute dimension of at most one. For our purposes it is suÆ
ient to know that every subset of R is
leavable over the reals. It is straightforward to see that for a spa
e X , if adimX = n for some n2!,then, for every A � X , adimA 6 n holds.The de�nition of 
ohesion is based on that of absolute dimension. So, it will 
ome as no surprisethat absolute dimension has rather di�erent properties from the usual indu
tive dimension fun
tions. Inparti
ular, absolute dimension does not agree with these fun
tions on 
ompa
t metri
 spa
es. If I denotesthe 
losed unit interval of R, then we have:Theorem 3.6.2 adimI2 is not de�ned.Proof Suppose adimI2 is de�ned. We shall 
onstru
t nowhere dense subsets Cn of I2 for ea
h n2! su
hthat adimCn > n. The de�nition of adim then gives that adimI2 > n+1, for all n 2 !, whi
h obviously
ontradi
ts the fa
t that adimI2 is de�ned.Trivially C0 = fh0; 0ig satis�es the 
ase when n = 0. Take C1 = I � f0g. C1 is 
leavable over the realsas it is embeddable in the real line and it is not empty or zero-dimensional so adimC1 = 1. Clearly C1is 
losed and 
ontains no open set in I2 hen
e C1 is nowhere dense in I2.De�ne C2 = I � (f0g [ f 1n : n 2 ! and n > 2g). This gives a sequen
e of lines 
onverging down to C1.As a produ
t of two 
losed subsets of I , C2 is 
losed in I2 and 
learly it 
annot 
ontain any open subsetof I2 so C2 is nowhere dense in I2. Any open set, U , in C2 about a point hx; 0i 2 I � f0g 
ontains anopen ball of radius ", for some " > 0, so for all n 2 ! su
h that 1n 6 ", hx; 1n i 2 U . Thus C1 
ontains no



non-empty open subset of C2 and is 
losed in C2 so C1 is nowhere dense in C2. But adimC1 = 1 hen
eadimC2 > 2. (adimC2 exists be
ause of the assumption that adimI2 exists.)In general given Ck and noting that 1n�1� 1n = 1n(n�1) , de�ne Ck+1 = Ck[f 1n1 + : : :+ 1nk : n1 > 2; ni+1 >2ni(ni � 1) for i = 1; : : : ; k � 1g. As before this gives a sequen
e of lines 
onverging down to ea
h line inCk. It 
an be seen that Ck+1 is 
losed and nowhere dense in I2 (as a 
ountable 
olle
tion of horizontallines, Ck+1 
annot 
ontain a non-empty open subset of I2). As for C1 in C2, Ck is nowhere dense in Ck+1and hen
e adimCk+1 > k + 1.Therefore, for all n 2 !, there is a Cn � I2 su
h that adimCn > n whi
h are the sets prophesied at thebeginning of the proof and we are done. 23.7 Summary and questionsOne of the important features of 
ohesion is its relationship to s
attered spa
es. The se
ond se
tion ofthe 
hapter shows that 
ohesive sequential spa
es are s
attered and the fourth that 
ompa
t or evenlo
ally 
ompa
t 
ohesive spa
es are also s
attered. Moreover, 
ohesive spa
es whi
h are s
attered areonly �nitely 
ohesive as was seen in the se
ond se
tion. Whilst there are examples of 
rowded, �nitely
ohesive spa
es whi
h are regular and 
ountable (and hen
e very well-behaved), it is also remarkable thatthere are no regular, trans�nitely 
ohesive spa
es. This raises the natural question:Question 3.1 Is there a trans�nitely 
ohesive (Hausdor�) spa
e?Su
h an example must not be regular, s
attered or sequential and so may be quite a 
uriosity.In the �fth se
tion, it was seen that, provided one of the fa
tors in a produ
t is s
attered a produ
t oftwo 
ohesive spa
es is 
ohesive and a bound for the 
ohesion of the produ
t 
an be found. However,when both fa
tors are 
rowded, the situation 
hanges drasti
ally and the square of a node
 spa
e re�ningthe rationals is not 
ohesive at all. Also, though not in general preserved by 
ontinuous maps, 
ohesionis preserved by open and perfe
t maps as they strongly 
ontrol the behaviour of open sets under themapping. It would therefore be interesting to �nd if other maps also preserve 
ohesion. For instan
e:Question 3.2 Is 
ohesion preserved under 
losed maps? quotient maps?The last theorem of the 
hapter proves that absolute dimension is not de�ned on the unit square. Oneof the important aspe
ts of this result is that it uses te
hniques whi
h were applied to 
ohesion. Thisdemonstrates that varying the base 
ase of 
ohesion might give useful notions (su
h as absolute dimension)but beyond the base 
ase, the stru
ture is very similar to that of 
ohesive spa
es. Thus, minor alterationsto the proofs and examples of the 
hapter would give 
orresponding results on any su
h variant.



Chapter 4On 
ompa
t monotoni
ally normalspa
es
Nikiel [N1℄ has obtained a number of 
hara
terisations of ar
ti
 spa
es and CICLOTS. However, theseseem to bear little relation to the monotone normality stru
ture of CICLOTS. Indeed, all that is knownis that CICLOTS must be a
y
li
 monotoni
ally normal as LOTS are a
y
li
 monotoni
ally normal andthis is preserved under 
losed maps. The Collins-Ros
oe stru
turing me
hanism, sin
e its in
eption [CR℄,has been a powerful tool in the �eld of generalised metri
 spa
es; in parti
ular, in spa
es related tomonotoni
ally normal spa
es. The aim of this 
hapter is to analyse ordered spa
es with respe
t to thestru
turing me
hanism in order to �nd a stru
turing me
hanism on CICLOTS whi
h is as strong aspossible. We hope that this will provide new insight into Nikiel's question.The �rst se
tion of this 
hapter de�nes the Collins-Ros
oe stru
turing me
hanism and gives a 
avourof its strength and diversity by reviewing some key theorems. In the se
ond se
tion, we introdu
e thenew property, linear 
hain (F), and show that it is held by all CICLOTS and all proto-metrizable spa
es.We also observe that utter normality, whi
h has re
ently been de�ned by Junnila, is implied by linear
hain (F) and we extend Junnila's results. Finally, we summarise the 
hapter and raise some relevantquestions.4.1 The stru
turing me
hanism and generalised metri
 spa
esCollins de�ned the stru
turing me
hanism in order to abstra
t pre
isely the 
onditions used to show thatseparable metri
 spa
es are se
ond 
ountable. He 
alled his original 
ondition (A) and, in [CR℄, (A) isshown to be equivalent to metrizability. There are many generalisations of (A) and the most general,in keeping with the notation of [CR℄, is 
alled (F). A spa
e X is said to satisfy 
ondition (F) (or, moresimply, is (F)) whenever there are an operator V : X � �X ! �X and, for every x 2 X , families W(x)of subsets of X ea
h 
ontaining x su
h that:(F) for all x 2 X and U 2 �X su
h that x 2 U , if y 2 V (x; U) then there existsW 2 W(y) su
h that x 2 W � U(F) is so general that any spa
e satis�es it! To see this, simply take W(y) = ffx; yg : x 2 Xg andV (x; U) = U . The strength of (F) 
omes only when further 
onstraints are imposed on the W(x)'s.There are three sorts of 
onstraints: W(x) has a spe
i�ed 
ardinality; (W(x);�) has a spe
i�ed orderstru
ture, for example, being well-ordered; every W 2 W(x) is of a 
ertain type, for example, open.When the W(x) are taken to be 
ountable, this is a spe
ial 
ase of the stru
turing me
hanism 
alled(G) [CR℄. If also ea
h W(x) = fWn : n 2 !g and, for all n 2 !, Wn+1 � Wn then the W(x) are said46



to be de
reasing. The syntax of these 
onditions is: (ordering property of (W(x);�)) (property of ea
hW 2 W(x)) (F) or (G).The stru
turing me
hanism has been extensively studied, see for instan
e [CR℄, [CRRR℄, [MRRC℄ and[St2℄ for some of the many important results in this area. We give here a sample of these results.In the same spirit whi
h gave rise to (A), we have:Theorem 4.1.1 [CRRR℄ If X is separable and open (G) then X is se
ond 
ountable.It is well known that X being open (G) is implied by X having a point 
ountable base and that in many
ir
umstan
es the 
onverse holds, see [MRRC℄. However, the following question remains open:Question 4.1 If X is open (G), does it have a point 
ountable base?If open (G) is strengthened to be de
reasing as well, we obtain an unusual metrization theorem:Theorem 4.1.2 [CRRR℄ A spa
e is de
reasing open (G) if and only if it is metrizable.Even without open-ness, de
reasing (G) is an important 
ondition:Theorem 4.1.3 [St2℄ If a spa
e is de
reasing (G) then it has the Dugundji extension property.Despite the triviality of unrestri
ted (F), the addition of any 
onstraints immediately gives useful notions.Theorem 4.1.4 [CRRR℄ If X is 
hain neighbourhood (F) or well-ordered (F) then X is hereditarilypara
ompa
t.In fa
t, 
hain (F) on its own implies a
y
li
 monotone normality as the V operator in 
hain (F) is alsoan a
y
li
 monotone normality operator. More surprisingly, the 
onverse holds:Theorem 4.1.5 [MRRC℄ A spa
e is 
hain (F) if and only if it is a
y
li
 monotoni
ally normal.A full dis
ussion of the properties of 
hain (F) spa
es is given in [MR℄. It was also remarked there that themonotone normality operator de�ned in [HLZ℄ for GO-spa
es is a
tually an a
y
li
 monotone normalityoperator. Hen
e GO-spa
es are 
hain (F). It is pre
isely this statement whi
h provoked the next se
tion.4.2 The linear 
hain (F) 
onditionIn the proof that a LOTS is (a
y
li
) monotoni
ally normal, the Axiom of Choi
e is used to well-orderthe LOTS in question. In showing that a
y
li
 monotone normality implies 
hain (F), Choi
e is againinvoked, this time to extend a partial order indu
ed by an a
y
li
 monotone normality operator up to atotal order. It is by 
ombining these two instan
es of 
hoi
e in showing that a LOTS is 
hain (F) that amu
h stronger version of 
hain (F) is de�ned. We 
all the new property linear 
hain (F) as it is derivedfrom 
onsidering lines.De�nition 4.2.1 For a spa
e X with an operator V : X � �X ! �X and, for ea
h x 2 X , a familyW(x), X is linear 
hain (F) if the V and W 's satisfy 
hain (F) in su
h a way that, for some x 2 U 2 �X ,y 2 V (x; U), the W 2 W(y) given by (F) also satis�es:



1. x 2W � V (x; U)2. x 2 intW for x 6= yRemarks In regular spa
es, a simple argument shows that, for given x 2 U 2 �X , V (x; U) 
an beassumed to be 
ontained in U . Thus, when 
he
king that linear 
hain (F) holds in a regular spa
e, it issuÆ
ient to 
he
k 
ondition (1) only as it then implies 
ondition (F). For the remainder of this se
tion,the notation of De�nition 4.2.1 will be standard and, in any linear 
hain (F) spa
e, V will be assumed tosatisfy this regularity 
ondition.We now show that every ordered spa
e is indeed linear 
hain (F). Be
ause of the similarities with theproof that an a
y
li
 monotoni
ally normal spa
e is 
hain (F), we try to follow as 
losely as possible thenotation of [MRRC℄.Theorem 4.2.2 Every GO-spa
e is linear 
hain (F).Proof Take (X;<) to be a GO-spa
e. Applying the Axiom of Choi
e, well-order X and denote thewell-ordering by �. Any intervals are assumed to be the usual intervals in the natural GO-spa
e ordering<. However, for Y � X , minY denotes the least element of Y with respe
t to the well-ordering �.For ea
h a 2 X , a further order is de�ned on X . This is used to 
onstru
t the W(a) and hen
e guaranteethat it is a 
hain. The order is given by:x�a y if and only if x 6= y and � a 6 min[x; y℄ for x < ya > min[y; x℄ for x > yWe need to 
he
k that this is indeed a total order on X , that is, an irre
exive, transitive relation withrespe
t to whi
h any pair of elements from X are 
omparable.The irre
exivity of �a follows immediately from its de�nition.For transitivity, suppose x, y, z 2 X and that (?)x�a y and y �a zWe must show that x�a z. There are six 
ases to 
onsider:1. x < y < z. Then (?) means that a 6 min[x; y℄ and that a 6 min[y; z℄. Clearly, min[x; z℄ =minfmin[x; y℄;min[y; z℄g whi
h implies that a 6 min[x; z℄. That is, x�a z.2. x < z < y. In this 
ase, (?) means that a 6 min[x; y℄ and a > min[z; y℄. But a > min[z; y℄ >min[x; y℄ > a whi
h is impossible. So this 
ase does not o

ur.3. y < x < z. Then (?) means that a 6 min[y; z℄. Either min[y; z℄ = min[y; x℄ or min[x; z℄ and hen
ea 6 min[x; z℄. That is, x�a z.4. y < z < x. This 
annot happen for the same reasons as the se
ond 
ase.5. z < x < y. Then (?) means that a > min[z; y℄ but min[z; x℄ 6 min[z; y℄. Hen
e, a > min[z; x℄, thatis, x�a z.6. z < y < x. x�a z follows similarly to the �rst 
ase.For totality, 
onsider x, y 2 X . If x < y and x 6 �ay then a 66 min[x; y℄ so sin
e < is a total order, itmust be that a > min[x; y℄ and thus y �a x. Similarly, if x > y and x 6 �ay then y �a x. Hen
e, any twodistin
t elements of X are always 
omparable and �a is a total order.



Now de�ne Sa(x) = fy 2 X : y �a xg [ fxg. Expli
itly,Sa(x) = fy < x : a 6 min[y; x℄g [ fxg [ fy > x : a > min[x; y℄gSo if a < x, Sa(x) = fy < x : a 6 min[y; x℄g [ fxg and [a; x℄ � Sa(x) � ( ; x℄. And if a > x,Sa(x) = fxg [ fy > x : a > min[x; y℄g giving that [x; a℄ � Sa(x) � [x;!). In both 
ases, Sa(x) is a
onvex set.Let W(a) = fSa(x) : x 2 Xg. Given any x, y 2 X , either x �a y or y �a x and so either Sa(x) � Sa(y)or Sa(y) � Sa(x) 
orrespondingly. Sin
e 
ontainment is preserved when taking 
losures, W(a) is a 
hainof 
losed sets. Also, obviously a�a x for all x 2 X n fag therefore a 2 W for all W 2 W(a). This givesthe families of W(x)'s. We must now de�ne the 
orresponding V operator.For x 2 U 2 �X , let Ux denote the 
onvex 
omponent of U whi
h 
ontains x and U�x = fy 2 Ux : y < xgand U+x = fy 2 Ux : y > xg. Now de�ne V (x; U) 2 �X by:V (x; U) =8>>><>>>: fxg if x is isolated[x;minU+x ) if x 2 U+x n U�x(minU�x ; x℄ if x 2 U�x n U+x(minU�x ;minU+x ) if x 2 U�x \ U+xIt is straightforward to 
he
k that V (x; U) is indeed open in the GO-spa
e topology.Sin
e minU�x and minU+x 2 Ux and V (x; U) � [minU�x ;minU+x ℄, it is 
lear thatx 2 V (x; U) � V (x; U) � UConsider a 2 V (x; U). Take W = Sa(x) 2 W(a) and suppose �rst that a < x so that Sa(x) = fy < x :a 6 min[x; y℄g[fxg. If y < x but y 62 V (x; U) then, from the de�nition of V (x; U), y < minU�x . But thisimplies that min[y; x℄ 6 minUx < a sin
e a 2 V (x; U). Therefore, y 62 Sa(x). Hen
e, Sa(x) � V (x; U)and x 2 Sa(x) �W � V (x; U) � UThus, 
onditions (F) and (1) hold for a < x.Also, sin
e a < x and a 2 V (x; U), it must be the 
ase that x 2 U�x . Thus, if x 2 T 2 �X , it followsthat T \ U�x 6= ; so T \ (a; x) 6= ;. But we know that [a; x℄ � Sa(x), therefore T \ intW 6= ;. That is,x 2 intW .If x > a then the proof that W has the required properties follows in a similar fashion.Finally, if a = x then W = Sx(x) = fxg satis�es the required properties. Thus, in all 
ases, 
onditions(1) and (2) hold and X is a linear 
hain (F) spa
e. 2Be
ause of the strong intera
tion between the W 's and the operator V , it is diÆ
ult for us to as
ertainwhether linear 
hain (F) is preserved under the usual topologi
al 
onstru
tions. First, with regards tohereditary properties, we do not know if a 
losed subspa
e of a linear 
hain (F) spa
e is also linear 
hain(F). However we do have:Proposition 4.2.3 If X is linear 
hain (F) and U is a non-empty open subset of X then U is linear
hain (F).Proof De�ne VU : U � �U ! �U by VU (x; T ) = V (x; T ) whenever x 2 T 2 �U . This is valid as T 2 �Uimplies that T 2 �X . For all x 2 U , de�ne WU (x) = fW 2 W(x) : W � Ug. These will witness that Uis linear 
hain (F).Clearly, for all x 2 U ,WU (x) � W(x) hen
e is a 
hain of sets 
ontaining x. Suppose now that x 2 T 2 �Uand that y 2 VU (x; T ). As y 2 V (x; T ), there exists W 2 W(y) su
h that x 2 W � V (x; T )X and, for



x 6= y, x 2 intXWX . But V (x; T )X � T � U , by regularity, therefore W � U . Thus, W 2 WU (x) and itis easy to see that x 2 W � V (x; T )X = VU (x; T )U � Tthat is, 
onditions (1) and (F) are satis�ed.Moreover, sin
e U 2 �X and WX � U , intXWX = intUWU . Thus, 
ondition (2) is also satis�ed and Uis linear 
hain (F). 2Proposition 4.2.4 If X is linear 
hain (F) and Y is a dense subspa
e of X then Y is linear 
hain (F).Proof If X is a linear 
hain (F) spa
e, de�ne the operator VY : Y � �Y ! �Y by: for all y 2 U 2 �Y ,VY (y; U) = V (y; U 0) \ Y where U 0 is some open set in X su
h that U = U 0 \ Y . De�ne also for ea
hy 2 Y , WY (y) = fW \ Y : W 2 W(y)g.From this, it is 
lear that WY (y) is a 
hain of 
losed subsets of Y whi
h 
ontain y, that VY (y; U) 2 �Yand, by regularity, that y 2 VY (y; U) � VY (y; U)Y � U . Now 
onsider z 2 VY (y; U) where y 2 U 2 �Y .From the de�nition, z 2 V (y; U 0) so there exists a W 0 2 W(z) su
h that y 2 W 0 � V (y; U 0)X and, fory 6= z, y 2 intXW 0X .TakeW =W 0\Y so thatW 2 WY (z). Sin
e Y is dense inX , Y \V (y; U 0)X = Y \ V (y; U 0)Y = V (y; U)Y .Thus, W =W 0 \ Y � V (y; U 0)X \ Y = V (y; U)Y .Moreover, if T 2 �Y su
h that y 2 T , there exists T 0 2 �X for whi
h T = T 0 \ Y and T 0 \ intXW 0 6= ;.Sin
e Y is dense in X , this means that T 0 \ intXW 0 \ Y 6= ;. That is, T \ intYW 6= ; and y 2 intYWY .Hen
e, Y is linear 
hain (F). 2With regard to taking 
ontinuous images, the stru
turing me
hanism is not generally preserved by ar-bitrary maps. For an example of this, 
onsider Theorem 4.1.2 and the fa
t that the 
ontinuous imageof a metri
 spa
e need not be metri
. Certain me
hanisms, though, are preserved under taking 
losedimages and these are listed in [St2℄. Unfortunately, the method of proof given there does not obviously
arry over to linear 
hain (F). However, we 
an preserve linear 
hain (F) under 
losed mappings if themappings are also irredu
ible. The key to this is the next lemma.Lemma 4.2.5 If f : X ! Y is an irredu
ible map, V 2 �X and x 2 V X then f(x) 2 f�(V )Y and,hen
e, f�(V X) � f�(V )Y .Proof Suppose x 2 V X and that f(x) 2 U 2 �Y . Then x 2 f�1(U) so that f�1(U) \ V 6= ;. LetT = f�1(U)\V . Sin
e f is irredu
ible and T is non-empty and open in X , f�(T ) is non-empty. Clearly,f�(T ) � f�(V ) \ f(f�1(U)) = f�(V ) \ U . Hen
e, U \ f�(V ) is non-empty andf(x) 2 f�(V )YNow if y 2 f�(V X) then there exists x 2 f�1(y) \ V X . The above gives that y = f(x) 2 f�(V )Y . Thus,f�(V X) � f�(V )Y . 2Using Lemma 4.2.5, the proof of the next theorem follows the general form of proofs that 
ertain stru
-turing me
hanisms are preserved under 
losed maps [St2℄.



Theorem 4.2.6 If X is linear 
hain (F) and f : X ! Y is a 
losed and irredu
ible map then Y is linear
hain (F).Proof The notation of De�nition 4.2.1 will also be used for Y but no 
onfusion should arise. For ea
hy 2 Y , 
hoose some point xy 2 f�1(y). De�neW(y) = ff�(W )Y [ fyg :W 2 W(xy)gSin
e W(xy) is a 
hain of sets, W(y) is also a 
hain of sets whi
h trivially 
ontain y.Consider some y 2 Y for whi
h y 2 U 2 �Y . De�ne V 0 = Sx2f�1(y) V (x; f�1(U)) so that, by regularity,V 0X � f�1(U). Now de�ne V (y; U) = f�(V 0). Sin
e f is 
losed, V (y; U) is open in Y . Moreover, from thede�nition of V 0, it is 
lear that f�1(y) � V 0 � V 0X � f�1(U) and, therefore, y 2 f�(V 0) � f(V 0X) � U .But f being 
losed also implies f�(V 0)Y � f(V 0X). Hen
e, overall, we havey 2 V (y; U) � V (y; U)Y � f(V 0X) � UConsider z 2 V (y; U) n fyg. The de�nition of V means that f�1(z) � V 0 = Sx2f�1(y) V (y; f�1(U))and so, for some x 2 f�1(y), xz 2 V (x; f�1(U)). As X is linear 
hain (F) and xz 6= x, there existsW 0 2 W(xz) su
h that1. x 2W 0 � V (x; T )X2. x 2 intW 0XTake W = f�(W 0)Y [ fzg whi
h is an element of W(z). Now, W 0 � V (x; T )X � V 0X , whi
h, by Lemma4.2.5, implies f�(W 0) � f�(V 0X) � f�(V 0)Y . That is, f�(W 0) � V (y; U)Y . By taking 
losures andadding z this gives W � V (y; U)Y .Sin
e x 2 intW 0X , again by Lemma 4.2.5, f(x) 2 f�(intW 0)Y � f�(W 0)Y . Thus y 2 f�(intW 0)Y � Wand f being 
losed implies that f�(intW 0) 2 �Y . Hen
e y 2 intW Y .Finally, suppose that z = y then y 2 W for all W 2 W(y) from the de�nition. Find W 0 2 W(xy) by thelinear 
hain (F) property on X and let W = f�(W 0)Y [ fyg. Just as the previous 
ase, this W satis�es
ondition (1). Hen
e Y is linear 
hain (F). 2Theorem 4.2.6 now allows us to �nd some important 
lasses of spa
es whi
h are linear 
hain (F). However,the result is applied indire
tly through the following:Corollary 4.2.7 The perfe
t image of a GO-spa
e is hereditarily linear 
hain (F).Proof Suppose X is a GO-spa
e and that f : X ! Y is a perfe
t map onto Y . Then there exists A � Xwhi
h is 
losed su
h that f jA : A! Y is perfe
t and irredu
ible. As a subspa
e of a GO-spa
e, A is alsoa GO-spa
e and so is linear 
hain (F). Therefore, by the previous result, Y is linear 
hain (F).Moreover, if B � Y , then f jB : f�1(B)! B is a perfe
t map from the GO-spa
e f�1(B) to B. So B islinear 
hain (F). Hen
e, Y is hereditarily linear 
hain (F). 2This gives us our �rst important 
lass of spa
es whi
h are linear 
hain (F).



Proposition 4.2.8 All CICLOTS are hereditarily linear 
hain (F).By Theorems 1.2.14 and 1.2.15 (3), every proto-metrizable spa
es is the perfe
t image of a GO-spa
e.Hen
e, we obtain a se
ond large 
lass of spa
es whi
h are linear 
hain (F).Proposition 4.2.9 Every proto-metrizable spa
e is hereditarily linear 
hain (F).4.3 Utter normalityLinear 
hain (F) 
learly implies 
hain (F) and hen
e linear 
hain (F) spa
es are a
y
li
 monotoni
allynormal. However, linear 
hain (F) also implies another strengthening of monotone normality whi
h hasre
ently been de�ned by Junnila:De�nition 4.3.1 A regular spa
e X is utterly normal if, for all x 2 X , there is a neighbourhood baseBx of x su
h thatfor all Bx 2 Bx and By 2 By, Bx \ By 6= ; implies either x 2 By or y 2 BxSu
h a 
olle
tion of Bx's is 
alled an utterly normal neighbourhood base assignment.Remark Junnnila identi�es di�erent types of utter normality a

ording as to whether the utterly normalneighbourhood bases 
onsist of open, 
losed or simply any neighbourhoods. We 
onsider only the 
asewhere the neighbourhood bases 
onsist entirely of open sets.To see that this does indeed imply monotone normality, for x 2 U 2 �X , �nd V 2 �X su
h thatx 2 V � V � U . As Bx is a neighbourhood base, there exists a B 2 Bx su
h that x 2 B � V . De�neH(x; U) = B so that x 2 H(x; U) � H(x; U) � U . If, for some y 2 W 2 �X , H(x; U) \ H(y;W ) 6= ;then, as H(x; U) 2 Bx and H(y;W ) 2 By, either x 2 H(y;W ) � W or y 2 H(x; U) � U . Hen
e, H is amonotone normality operator.As yet, no details of utter normality have been published though some may be found in [Co℄. However,we have that:Theorem 4.3.2 If X is linear 
hain (F) then X is utterly normal.Proof If V is a linear 
hain (F) operator on X , take Bx = fV (x; U) : x 2 U 2 �Xg. If Bx 2 Bx andBx0 2 Bx0 then there exist U , U 0 2 �X su
h that Bx = V (x; U) and Bx0 = V (x0; U 0). If z 2 Bx\Bx0 thenthere exist W and W 0 2 W(z) su
h that x 2 W , z 2 W � V (x; U) and x0 2 W 0, z 2 W 0 � V (x0; U 0).By the de�nition of linear 
hain (F), W(z) is a 
hain hen
e either W �W 0 or W 0 �W . Without loss ofgenerality, assume the former. This means that x 2 W �W 0 � V (x0; U 0). That is, x 2 Bx0 . Hen
e X isutterly normal. 2Using the results already obtained on linear 
hain (F), we 
an en
ompass many of the 
lasses whi
hJunnila has so far identi�ed as utterly normal.Corollary 4.3.3 The following 
lasses of spa
es are (hereditarily) utterly normal:1. GO-spa
es



2. [Junnila℄ proto-metrizable spa
es3. CICLOTSThe preservation of utter normality has the same 
ompli
ations as that of linear 
hain (F). Open subsetsof an utterly normal spa
e are utterly normal whi
h is easily seen by 
onsidering the obvious restri
tionof the utterly normal neighbourhood base assignments. Also, in a similar fashion to Proposition 4.2.4,dense subspa
es of an utterly normal spa
e are utterly normal. With regards to mappings, we are unableto determine if utter normality is preserved under 
losed mappings but, just like linear 
hain (F), we dohave:Proposition 4.3.4 If f : X ! Y is 
losed and irredu
ible and X is utterly normal then Y is utterlynormal.Proof Given x 2 U 2 �X , 
hoose B(x; U) 2 Bx su
h that B(x; U) � U . For y 2 Y , de�neBy = ff�� [x2f�1(y)B(x; f�1(V ))� : y 2 V 2 �XgSin
e f is 
losed and, for any y 2 V 2 �X , C = Sx2f�1(V )B(x; f�1(V )) is open in X , f�(C) is open inY . Moreover, it is 
lear from the de�nition of B(; ) that:f�1(y) � [x2f�1(y)B(x; f�1(V )) � VTherefore, y 2 f�(C) � V . Thus, By is indeed a neighbourhood base for y in Y .Suppose, for ea
h i 2 f1; 2g, Bi 2 Byi where Bi = f��Sx2f�1(yi)B(x; f�1(Vi))� for some Vi 2�Y . If z 2 B1 \ B2, from the de�nition of small image, f�1(z) � Sx2f�1(y1)B(x; f�1(V1)) \Sx2f�1(y2)B(x; f�1(V2)). Hen
e, for i 2 f1; 2g, there exist xi 2 f�1(yi) su
h that B(x1; f�1(V1)) \B(x2; f�1(V2)) 6= ;. Without loss of generality, the utter normality of X implies thatx1 2 B(x2; f�1(V2))XBy Lemma 4.2.5, f(x1) 2 f�(B(x2; f�1(V2)))Y . From this it follows that y1 2 By2Y .That is, the By form an utterly normal neighbourhood base assignment and Y is utterly normal. 2Junnila asked if strati�able spa
es are utterly normal. A spe
ial sub
lass of the strati�able spa
es arethe 
lass of Lasnev spa
es - those spa
es whi
h are 
losed images of metri
 spa
es. Towards answeringJunnila's question:Proposition 4.3.5 Every Lasnev spa
e is utterly normal.Proof By Lemma 5.4 of [Gr℄, every Lasnev spa
e is the 
losed irredu
ible image of a metri
 spa
e. Asmetri
 spa
es are utterly normal, Proposition 4.3.4 implies that every Lasnev spa
e is utterly normal. 24.4 Summary and questionsAs hoped, by 
onsidering the stru
turing me
hanism in GO-spa
es, a new and strong version of 
ondition(F), linear 
hain (F), was de�ned and shown to be held by all CICLOTS. This 
an be used to show thatCICLOTS are a
y
li
 monotoni
ally normal, whi
h was already known, and, moreover, that they areutterly normal. However, be
ause of the diÆ
ulties in preserving linear 
hain (F), it is hard to see morepre
isely how it relates to monotone normality and CICLOTS. For example:



Question 4.2 Is every 
ompa
t monotoni
ally normal spa
e linear 
hain (F)?Question 4.3 If X is 
ompa
t and linear 
hain (F), is X a CICLOTS?Strengthening the results on the preservation of linear 
hain (F) 
ould possibly help answer these ques-tions.Question 4.4 Is linear 
hain (F) preserved under taking 
losed images? 
losed subspa
es?The new notion of utter normality has a lot of potential uses. However, preservation is also a majordiÆ
ulty here as well.Question 4.5 Is utter normality preserved under taking 
losed images? 
losed subspa
es?The similarities between linear 
hain (F) and utter normality suggest a possible positive answer to thenext question.Question 4.6 Is every utterly normal and a
y
li
 monotoni
ally normal spa
e also linear 
hain (F)?Or even:Question 4.7 Is every 
ompa
t utterly normal spa
e linear 
hain (F)?Of 
ourse, as yet it is un
lear that not all monotoni
ally normal spa
es are also utterly normal. Wetherefore re-iterate Junnila's questions in [Co℄.Question 4.8 Is every (
ompa
t) monotoni
ally normal spa
e utterly normal?Question 4.9 Is every strati�able spa
e utterly normal?Remark It is easily seen that the lo
al bases given by an utterly normal neighbourhood assignment are
losure-preserving. Ito [I℄ proved that, for a strati�able spa
e X , if every point has a 
losure-preservinglo
al base then X is M1. Thus, a positive answer to this last question would provide a solution to thefamous M1-M3 problem.



Chapter 5A new resolution
One of the 
entral problems in the study of monotoni
ally normal spa
es is Nikiel's famous question: isevery 
ompa
t monotoni
ally normal spa
e a CICLOTS? A major diÆ
ulty in answering this questionis that there are almost no 
onstru
tions whi
h preserve monotoni
ally normal spa
es but whi
h do nottrivially preserve CICLOTS. In this 
hapter, we 
onsider the preservation of monotone normality bytaking resolutions.The �rst example of a resolution was des
ribed by Fedor�
uk [Fe℄ in order to 
onstru
t a 
ompa
t spa
e withdi�ering indu
tive and 
overing dimensions. Watson extra
ted from this example the general prin
ipleof resolutions. He has presented many important examples whi
h have already been des
ribed but whi
hare more easily and elegantly re-des
ribed using resolutions [W℄.The �rst se
tion is a des
ription of resolutions and some of the key results of the general theory. Wehave 
hanged the notation for the basi
 open sets of a resolution from that used in [W℄ so as to avoid
ertain ambiguities whi
h the old notation engenders. We then de�ne a new type of resolution whi
hpreserves monotone normality provided that the spa
e whi
h is being resolved over is a lo
ally 
onne
ted
ontinuum. It is also shown that ar
ti
 spa
es are preserved by this resolution but the proof of this relieson a deep result of Cornette [C℄ rather than any trivial observation.Remark The resolution of monotoni
ally normal spa
es has already been 
onsidered by Nikiel andTreybig [NT℄ via the more general 
on
ept of fully 
losed maps. The out
ome of their result is that ifa resolved spa
e is separable and monotoni
ally normal then the resolution into spa
es with 
ardinalitygreater than three was only made over 
ountably many points of the original spa
e. This however doesnot greatly e�e
t our work as the resolved spa
es we 
onsider are generally non-separable.5.1 De�ning resolutionsFor a spa
e X , �x a family of spa
es fYx : x 2 Xg. For ea
h x 2 X , take fx : X n fxg ! Yx to be a
ontinuous fun
tion.De�nition 5.1.1 The resolution of X at ea
h x into Yx by fx has the underlying set Z = Sx2X(fxg �Yx). For x 2 U 2 �X and V 2 �Yx, de�nehx; U; V i = (fxg � V ) [[ffx0g � Yx0 : x0 2 U \ f�1x (V )gand then B = fhx; U; V i : x 2 X , x 2 U 2 �X , V 2 �Yxg is a basis for the topology on Z.Remark If a spa
e Yx is not spe
i�ed at every point of X then it is assumed that Yx is the one-pointspa
e and fx is just the 
onstant map. If C � X is the set of x 2 X for whi
h Yx and fx are given then55



it is easy to see that X n C is embedded in Z as Z nSx2C(fxg � Yx). In the sequel, we simply identifythese sets and say that X n C � Z.Theorem 5.1.2 (The fundamental theorem of resolutions [Fe℄, [W℄) If X is a 
ompa
t Haus-dor� spa
e and, for all x 2 X, Yx is a 
ompa
t Hausdor� spa
e then Z is a 
ompa
t Hausdor� spa
e.This theorem is parti
ularly useful sin
e it means that when working with 
ompa
t spa
es we 
an guar-antee that the resolution is normal. In general, this is not always possible. However, if the spa
esinvolved are Ty
hono� and the fx are in some sense well-behaved, then by embedding the spa
es insuitable 
ompa
ti�
ations and 
onsidering the required resolution as a subspa
e of the resolution of the
ompa
ti�
ations, we 
an still assert that the spa
e is Ty
hono�.In order to use resolutions, the following map is very 
onvenient.De�nition 5.1.3 � : Z ! X is the proje
tion from Z on to X de�ned by �(hx; yi) = x for all x 2 Xand y 2 Yx.This allows us to abbreviate the des
ription of the basi
 open sets. For suitable x, U and V we have thathx; U; V i = (fxg � V ) [ ��1(U \ f�1x (V ))We now give a few basi
 properties of resolutions some of whi
h are straightforward. Their proofs 
anbe found in Watson's arti
le [W℄.Proposition 5.1.4 � is a 
ontinuous surje
tion.Proposition 5.1.5 For all x 2 X, fxg � Yx, as a subset of Z, is homeomorphi
 to Yx.The next result is a 
onsequen
e of a theorem in [W℄. However, the theorem there is mu
h more generaland so we give a simpli�ed version for the spe
ial 
ase.Proposition 5.1.6 If X is a 
ontinuum and for all x 2 X, Yx is also a 
ontinuum then Z is a 
ontinuum.Proof By the fundamental theorem of resolutions, it remains to show that Z is 
onne
ted.Suppose that A is a 
lopen subset of Z. If hx; yi 2 A then sin
e ea
h Yx is 
onne
ted, fxg�Yx is a subsetof A. Thus, A = ��1(�(A)). Sin
e Z is 
ompa
t and X is Hausdor�, � is 
losed whi
h means that �(A)is 
losed in X . Moreover, Z n A is also 
lopen so, just as for A, Z nA = ��1(�(Z n A)). But then �(A)and �(Z nA) form a 
losed partition of X . By the 
onne
tedness of X , one of them must be empty and,hen
e, either A = Z or A is empty. That is, Z is 
onne
ted. 25.2 Constru
ting monotoni
ally normal spa
esAs a parti
ular type of resolution, Watson de�ned resolutions by order mappings of a LOTS into otherLOTS:De�nition 5.2.1 [W℄ If (X;6) is a 
ompa
t LOTS, x 2 X and Yx is also a 
ompa
t LOTS withax = min Yx and bx = maxYx then an order mapping fx : X n fxg ! Y is de�ned by:fx(x0) = � ax for all x0 < xbx for all x0 > x



Resolving by order mappings is equivalent to taking the LOTS topology indu
ed on the resolved spa
eby the lexi
ographi
 order. As the resolved spa
e is still a LOTS, it is also monotoni
ally normal. It isby adapting this 
onstru
tion that we are able to produ
e a resolution preserving monotone normality inmore general spa
es. For this reason, the resolution is said to be by order-like mappings.Throughout this se
tion, X is a 
ontinuum with the set of 
ut-points E and fYx : x 2 Eg is a familyof 
ompa
t spa
es with two distinguished points ax and bx. Other properties of X and the Yx's will bespe
i�ed as they are required.De�nition 5.2.2 For ea
h x 2 E, X n fxg is not 
onne
ted so spe
ify two open sets in X whi
h witnessthis. These are denoted by X+x and X�x so that X n fxg = X�x [ X+x and X�x \ X+x = ;. De�nefx : X n fxg ! Yx by: fx(p) = � ax if p 2 X�xbx if p 2 X+xThese are 
alled order-like mappings and are 
learly 
ontinuous. The spa
e Z formed by resolving X atea
h x into Yx by these fx is said to be the resolution of X into the Yx by order-like mappings.Remark The resolution of LOTS into other LOTS by order mappings 
an be obtained from order-likemappings by de�ning ax = min Yx, bx = maxYx, X�x = ( ; x) and X+x = (x;!).The key property of order like mappings is given in this next theorem.Theorem 5.2.3 If X is lo
ally 
onne
ted and monotoni
ally normal and, for all x 2 E, Yx is monoton-i
ally normal then Z is monotoni
ally normal.Proof From the fundamental theorem of resolutions, we know that Z is T1. We need to 
onstru
t amonotone normality operator.Suppose that G : X � �X ! �X is a monotone normality operator on X and, given that X is lo
ally
onne
ted, we may assume that G(x; U) is 
onne
ted for all x 2 U 2 �X . For all x 2 X , take Gx :Yx� �Yx ! Yx to be monotone normality operator on Yx. Now monotone normality operators need onlybe de�ned on a basis of a spa
e so we de�ne the operator H : Z �B ! �Z by:H(hx; yi; hx; U; V i) = hx;G(x; U); Gx(y; V )iwhere x 2 U 2 �X and y 2 V 2 �Yx.To show that H is a monotone normality operator, we must show that for hx; yi 2 hx; U; V i 2 B andhs; ti 2 hs; P;Qi 2 B, if (�): H(hx; yi; hx; U; V i) \H(hs; ti; hs; P;Qi) 6= ;then either hx; yi 2 hs; P;Qi or hs; ti 2 hx; U; V i. By 
onsidering the de�nition of the basi
 open sets ofZ, it be
omes 
lear that if (�) holds then there are four ways in whi
h it may do so.1. (fxg � Gx(y; V )) \ (fsg �Gs(t; Q)) 6= ;. In this 
ase, x = s and Gx(y; V ) \ Gs(t; Q) 6= ; so thateither y 2 Q or t 2 V . This gives the respe
tive 
on
lusions that either hx; yi 2 hs; P;Qi or thaths; ti 2 hx; U; V i.2. (fxg�Gx(y; V ))\��1�G(s; P )\ f�1s (Gs(t; Q))� 6= ;: It must be that x 2 G(s; P )\ f�1s (Gs(t; Q)).Hen
e fxg � Yx � ��1�G(s; P ) \ f�1s (Gs(t; Q))� � H(hs; ti; hs; P;Qi)� hs; P;Qi. This implies that hx; yi 2 hs; P;Qi.3. (fsg � Gs(t; Q)) \ ��1�G(x; U) \ f�1x (Gx(y; V ))� 6= ;. That hs; ti 2 hx; U; V i follows similarly tothe previous 
ase.



4. ��1�G(x; U) \ f�1x (Gx(y; V ))� \ ��1�G(s; P ) \ f�1s (Gs(t; Q))� 6= ;. (We may assume that x 62G(s; P ) otherwise one of the above 
ases o

urs.) Sin
e this implies that G(x; U) \ G(s; P ) 6= ;then either x 2 P or s 2 U . Without loss of generality, we may assume that s 2 U . If ax = bxthen hx; U; V i = ��1(U) and hs; ti 2 hx; U; V i. Thus, also assume that x 2 E and ax 6= bx. Sin
ex 62 G(s; P ), G(s; P ) � X�x [ X+x but G(s; P ) is 
onne
ted hen
e G(s; P ) is 
ontained entirely ineither X�x or X+x . Again without loss of generality, we may assume the latter. This means thats 2 G(s; P ) � X+x . For ��1�G(x; U) \ f�1x (Gx(y; V ))� \ ��1�G(s; P ) \ f�1s (Gs(t; Q))� 6= ; to haveo

ured, it must be that bx 2 Gx(y; V ) so that bx 2 V and X+x � f�1x (V ). Hen
e, s 2 f�1x (V ) \ Uwhi
h implies that hs; ti 2 ��1(U \ f�1x (V )) and hs; ti 2 hx; U; V i.This shows that H is indeed a monotone normality operator. 2In order to use this 
onstru
tion to build \interesting" monotoni
ally normal spa
es, it is best to startwith a base spa
e X with lots of 
ut-points. A parti
ularly good example of this is a dendron sin
e,for any two points in a dendron, there is a 
ut-point whi
h separates them. Of 
ourse, we will need thedendron to be monotoni
ally normal. This is implied by a theorem of Cornette:Theorem 5.2.4 [C℄ A Hausdor� lo
ally 
onne
ted 
ontinuum X is ar
ti
 if and only if every 
y
li
element of X is ar
ti
.Corollary 5.2.5 Every dendron is ar
ti
.Proof Every 
y
li
 element of a dendron is a singleton hen
e trivially the 
ontinuous image of an ar
.Dendra are assumed to be Hausdor� and lo
ally 
onne
ted so Cornette's result applies. 2Corollary 5.2.6 If X is a dendron and, for all x 2 E, Yx is monotoni
ally normal , then Z is mono-toni
ally normal .Proof Dendra are ar
ti
 hen
e monotoni
ally normal and they are also lo
ally 
onne
ted. The resultimmediately follows from Theorem 5.2.3. 2Resolving by order-like mappings also preserves other stru
ture.Proposition 5.2.7 If X is lo
ally 
onne
ted and, for all x 2 E, Yx is both lo
ally 
onne
ted and 
onne
tedthen Z is lo
ally 
onne
ted.Proof Consider hx; yi 2 Z. If Bx is a neighbourhood base for x in X and By is a neighbourhood basisfor y in Yx, then it is easily seen thatBhx;yi = fhx; U; V i : U 2 Bx and V 2 Bygis a neighbourhood basis for hx; yi in Z. Thus, to show that Z is lo
ally 
onne
ted, it is suÆ
ient to showthat if U is a 
onne
ted neighbourhood of x and V is a 
onne
ted neighbourhood of y then hx; U; V i is
onne
ted.Assume that U and V are su
h neighbourhoods.First, suppose that ax, bx 62 V . Then hx; U; V i = fxg � V . As this is homeomorphi
 to V , hx; U; V i is
learly 
onne
ted.



Suppose now that ax 2 V but bx 62 V . (The 
ase when bx 2 V but ax 62 V is similar.) Consider a set Cwhi
h is 
lopen in hx; U; V i but whi
h does not 
ontain hx; axi. Sin
e C is 
losed in hx; U; V i, there existS 2 �X and T 2 �Yx su
h that x 2 S � U , ax 2 T � V and hx; S; T i \ C = ;.If C \ (fxg � V ) 6= ; then this set would witness the fa
t that fxg � V is not 
onne
ted. Thus,C � ��1(U \X�x ). If for some p 2 X , there is a q 2 Yp for whi
h hp; qi 2 C then it must be that Yp � Cotherwise C \ Yp witnesses the fa
t that Yp is not 
onne
ted. Hen
e, C = ��1(�(C)). Sin
e �j��1(U\X�x )is a 
losed map, it is also a quotient map. Thus �(C) is 
lopen in U \X�x . This means that �(C) is infa
t open in X and hen
e open in U .If �(C) were not 
losed in U then there would exist p 2 X for whi
h p 2 �(C)U n �(C). If p 2X�x \ U then p 2 �(C) sin
e �(C) is 
losed in the open set X�x \ U . If p 2 X+x then p 62 �(C)U sin
e�(C) \X+x = ;. The only remaining possibility is that p = x. But x 2 S and hx; S; T i \ C = ;. That is,[fxg � T [ ��1(S \X�x )℄ \ ��1(�(C)) = ;. From this, it is straightforward to 
he
k that S \ �(C) = ;.As S is an open neighbourhood of x, x 62 �(C)U . Therefore, there 
an be no su
h p and �(C) is also
losed in U .However, U is 
onne
ted and the 
omplement of �(C) in U 
ontains x so �(C) and hen
e C must beempty. This means that hx; U; V i is 
onne
ted.Finally if both ax and bx are both in hx; U; V i and C is some 
lopen set whi
h 
ontains ax then it mustalso 
ontain bx sin
e V is 
onne
ted. But then hx; U; V i n (C \ ��1(X�x )) are both 
lopen subsets ofhx; U; V i and, by the above reasoning, they must both be empty.Thus, every point of Z has a basis of 
onne
ted sets and Z is lo
ally 
onne
ted. 2The other properties whi
h we 
onsider deal only with 
ontinua. Thus for the remainder of this se
tionassume that X and, for all x 2 E, Yx are 
onne
ted. Thus, by Proposition 5.1.6, Z is also 
onne
ted.We study the properties of dendra and 
ontinuous images of ar
s via their 
y
li
 elements. But �rst, weneed to �nd the 
ut-points of Z.Lemma 5.2.8 For z = hx; yi 2 Z, z is a 
ut-point of Z if and only if x 2 E and either1. y is a 
ut-point of Yx or2. y = ax or bxProof First, suppose x 2 E. We 
onsider the two 
ases for y individually.1. We may assume that y 62 fax; bxg as this is 
overed in the se
ond 
ase. Suppose Yx n fyg = G [Hwhere G, H 2 �Yx are disjoint and non-empty. If hp; qi 2 Z nfzg and p = x then q 2 G or q 2 H sothat hp; qi 2 hx;X;Gi[hx;X;Hi. If p 6= x then p 2 f�1x (G[H) hen
e hp; qi 2 hx;X;Gi[hx;X;Hiand Z n fzg = hx;X;Gi [ hx;X;Hi. Sin
e G and H are open, disjoint and non-empty so too arehx;X;Gi and hx;X;Hi and z is a 
ut-point of Z.2. If y = ax (the 
ase y = bx is similar), it is easy to see that Z n fzg = ��1(X�x )[ [hx;X; Yx n faxgi [��1(X+x )℄ and that these two sets are disjoint, open and non-empty. Thus z is a 
ut-point of Z.Now suppose that z = hx; yi is a 
ut-point of Z. Thus Z n fzg = A [ B where A, B 2 �Z are disjointand non-empty. Sin
e for all x 2 X , Yx is 
onne
ted (for x 62 E, see the remark after De�nition 5.1.1), ifha; bi 2 A where a 6= x, b 2 Ya, then it must be that fag � Ya � A otherwise A \ (fag � Ya) is a 
lopensubset of fag � Ya. Hen
e, we have thatA = (A \ (fxg � Yx)) [ ��1(�(A) n fxg)



and similarly B = (B \ (fxg � Yx)) [ ��1(�(B) n fxg)If x 62 E then fxg � Yx = fhx; yig whi
h, together with the above implies that A = ��1(�(A)), B =��1(�(B)) and X n fxg = �(A)[�(B). It then follows that �(A) and �(B) are disjoint. Moreover, sin
ethey are both 
losed in Z n fzg = ��1(X n fxg) and �j��1(Xnfxg) is a 
losed map, then �(A) and �(B)are 
losed in X n fxg. Thus X n fxg is not 
onne
ted whi
h 
ontradi
ts x 62 E. Hen
e x 2 E.Suppose now that y 62 fax; bxg. Sin
e z is a 
ut-point of Z, z 2 AZ\BZ . However, z has a neighbourhoodbase all of whose elements are 
ontained in fxg� Yx. Thus, A \ (fxg� Yx) and B \ (fxg� Yx) are bothnon-empty. They are both open in fxg�Yx as A, B 2 �Z. But (fxg�Yx)nfhx; yig = (A\ (fxg�Yx))[(B \ (fxg � Yx)), so z is a 
ut-point of fxg � Yx. Sin
e fxg � Yx is 
anoni
ally homeomorphi
 to Yx, itfollows that y is a 
ut-point of Yx. 2Having found the 
ut-points of Z, it is now easy to �nd the 
y
li
 elements of Z.Lemma 5.2.9 If X is a 
ontinuum and, for all x 2 E, Yx is a 
ontinuum then a 
y
li
 element Q of Zhas one of the following two forms:1. for some x 2 X and 
y
li
 element Q0 of Yx, Q = fxg �Q02. for some 
y
li
 element, Q0 of X, Q = (Q0 nE)[fhx; yxi : x 2 Q0\Eg where Q0 is a 
y
li
 elementof X and yx = ax if Q0 meets X�x and yx = bx otherwiseProof It is 
lear that all the Q's of the above two forms are a 
losed 
over of Z. If it is shown that theseare indeed 
y
li
 elements of Z then they must be all of them. Thus, it is enough to show that if Q hasone of the above forms then it is 
y
li
 and is maximal with respe
t to this property.First, suppose Q = fxg �Q0 where x 2 E and Q0 is a 
y
li
 element of Yx. Also, assume that Q0 is notequal to either faxg or fbxg. This 
ase will be dealt with at the end. Sin
e Q is homeomorphi
 to Q0then it is 
y
li
.Suppose then that R � Z is 
y
li
, 
onne
ted and 
ontains Q. If there exists p 2 Z su
h that for someq 2 Yp, hp; qi 2 R and p 6= x then, for the sake of argument, assume that p 2 X+x . hx; bxi is a 
ut-point ofZ whi
h separates any point in ��1(X+x ) from any point in fxg � (Yx n fbxg). Hen
e, it separates hp; qifrom any point in Q n fbxg (note that this is a non-empty set). If hx; bxi 62 R then, sin
e Q � R, R is not
onne
ted. But if hx; bxi 2 R then R 
ontains a 
ut-point of itself.Thus, R � fxg � Yx and R being homeomorphi
 to a subset R0 of Yx whi
h is 
y
li
, 
onne
ted and
ontains Q0 implies R0 = Q0 from whi
h it follows that R = Q. Therefore, Q is maximal and any su
h Qis a 
y
li
 element of Z.Now suppose that Q = Q0 n E [ fhx; yxi : x 2 Q0 \ Eg where Q0 and yx are as in the statement of thelemma. �jQ : Q ! Q0 is 
ontinuous and inje
tive. Moreover, fxg � (Yx n fyxg) is open in ��1(Q0) forea
h x 2 Q0 \ E and ��1(Q0) n Q = Sx2Q0\Efxg � (Yx n fyxg). Thus, Q is 
losed in ��1(Q0) whi
h is
losed in Z and, therefore, Q is 
losed in Z. As the restri
tion of a 
losed map to a 
losed set, �jQ is
losed and so is a homeomorphism. Be
ause Q0 is 
y
li
, so is Q.Again, assume that Q0 is not equal to a singleton 
ontaining a 
ut-point as this 
ase will be dealt withat the end. Suppose R � Z is 
y
li
, 
onne
ted and 
ontains Q. If there exists r 2 X and some s 2 Yrfor whi
h hr; si 2 R n Q and r 62 �(Q) then there exists p 2 E whi
h separates r from any point inQ0 n fpg. Assume, for the sake of argument, that r 2 X�p . Then, from the proof of Lemma 5.2.8, hp; apiseparates hr; si from any point in ��1(Q0) � Q. Thus, as for the previous 
ase, for R to be both 
y
li
and 
onne
ted hp; api 
an not be in R or its 
omplement, respe
tively. Hen
e, there is no su
h point hr; siand R � ��1(Q0).



Now 
onsider x 2 Q0 \ E and some point y 2 Yx for whi
h y 6= yx and hx; yi 2 R. By Lemma 5.2.8,hx; yxi is a 
ut-point separating hx; yi from Q n fhx; yxig. Again, this 
annot be the 
ase if R is both
y
li
 and 
onne
ted. Therefore R = Q and Q is a 
y
li
 element of Z.The 
ase whi
h is not 
overed by the above arguments is when x 2 E is a 
y
li
 element of X and ax orbx is a 
y
li
 element of Yx. For the sake of argument, suppose ax is a 
y
li
 element of Yx. But in this
ase it is straightforward to see that hx; axi 
an be separated from any other point of Z by a third point.This means that fhx; axig is a 
y
li
 element of Z and as su
h satis�es both types of 
y
li
 element givenin the statement of the Lemma. 2The Lemma immediately gives the following 
orollary.Corollary 5.2.10 For Z as in the statement of the previous lemma, any 
y
li
 element of Z is homeo-morphi
 to either a 
y
li
 element of X or a 
y
li
 element of Yx for some x 2 E.Given this, the next two results are straightforward.Proposition 5.2.11 If X is a dendron and, for all x 2 E, Yx is a dendron then Z is a dendron.Proof By Propositions 5.1.6 and 5.2.7, Z is a lo
ally 
onne
ted 
ontinuum. By Corollary 5.2.10, every
y
li
 element of Z is homeomorphi
 to a 
y
li
 element of a dendron. Hen
e, every 
y
li
 element of Zis trivial and Z is also a dendron. 2Proposition 5.2.12 If X is ar
ti
 as too are Yx, for all x 2 E, then Z is ar
ti
.Proof By Cornette's result, sin
e X and Yx, for all x 2 E, are ar
ti
, so too are all their 
y
li
 elements.Corollary 5.2.10 implies that every 
y
li
 element of Z is ar
ti
. Again, by Cornette's result, this impliesthat Z is also ar
ti
. 25.3 Summary and further workThe main result of this 
hapter is that the resolution of monotoni
ally normal, lo
ally 
onne
ted 
onne
tedspa
es into monotoni
ally normal spa
es by order-like mappings is monotoni
ally normal. However, thelast proposition tells us that this te
hnique 
annot be used on its own to 
onstru
t a monotoni
allynormal, lo
ally 
onne
ted 
ontinuum whi
h is not ar
ti
. The following, though, remains open:Question 5.1 Can resolving by order-like mappings produ
e a monotoni
ally normal 
ompa
tum whi
his not a CICLOTS?To help answer this question, the notion of order-like mappings 
an be expanded to allowmore 
ompli
ated
onstru
tions in two ways.First, for x 2 E, the number of distinguished points 
an be made equal to the number of 
omponents ofX n fxg. The map fx then simply takes ea
h 
omponent to a 
orresponding distinguished point. Lo
al
onne
tedness is needed here to ensure that ea
h 
omponent is open and, hen
e, that the map fx is
ontinuous. By adapting the proofs given here, it is straightforward to show that su
h a 
onstru
tionpreserves monotone normality, dendra and 
ontinuous images of ar
s.



Se
ondly, in order to de�ne a topology on the spa
e Z, it is only ne
essary that, for ea
h x 2 E, fx mapsfrom some neighbourhood of x into Yx. This would allow the resolution to o

ur at points whi
h only 
utone of their neighbourhoods and hen
e expand the 
lass of spa
es whi
h 
an be used in the 
onstru
tion.For example, every point in the 
ir
le S1 has this property but it has no 
ut-points.We have not given the details of these generalisations as they are largely the same as the basi
 te
hniquegiven but the des
ription of the more general 
ases would have obs
ured the 
entral idea. However, usingthese generalisations, it may yet be possible to give a positive answer to the question.



Chapter 6On re
e
tion
Elementary submodels have re
ently emerged as a powerful te
hnique in general topology. They havebeen used to simplify 
onsiderably both proofs of theorems and the 
onstru
tion of 
ounter-examples, see[Do℄, [W℄. However, there is, as yet, no standard approa
h to applying them to problems.The aim of this 
hapter is to give a new, general te
hnique for using elementary submodels in the
onstru
tion of topologi
al spa
es. The te
hnique is illustrated by three quite diverse examples: Balogh'sQ-set spa
e [B1℄, [W℄, a \small" normal but not 
olle
tionwise Hausdor� spa
e [R3℄, [Do℄, and Balogh'ssmall Dowker spa
e [B2℄.The �rst se
tion of this 
hapter de�nes elementary submodels and raises some points on the pra
ti
alitiesof using them. The se
ond se
tion gives some straightforward results whi
h are useful tools later on.Also, the proofs of the results serve to introdu
e re
e
tion te
hniques. In the third se
tion, the newmethod of 
onstru
tion is outlined and the three examples are des
ribed.The work of this 
hapter was done jointly with my 
olleagues Chris Good and Will Pa
k.6.1 Elementary submodelsA set N , with some other stru
ture, models a well-formed formula � if, when the formula is interpretedin terms of the stru
ture on N , � is true. This is denoted by N j= � and, informally, it is 
ommon to saythat N thinks �. M� N is an elementary submodel of a model N if every formula � is absolute forMand N , that is, for any x1; : : : ; xn 2M whi
h are the only obje
ts mentioned in some logi
 formula �,M j= � if and only if N j= �Again informally,M thinks the same about its elements as N does, hen
e this property is 
alled elemen-tarity.The existen
e of elementary submodels is given by:Theorem 6.1.1 (L�owenheim-Skolem-Tarski Theorem) For any model N whi
h is a set and anysubset X of N , there is an elementary submodel M of N su
h that X �M and jMj 6 maxf!; jX jg.See [K1℄ p.156 for details of this Theorem.In most appli
ations, we want N to model ZF or ZFC. However, su
h a model 
annot be a set so theL�owenheim-Skolem-Tarski Theorem is not appli
able. Fortunately, any proof is �nite so ne
essarily 
anuse only �nitely many instan
es of axioms and refer to only �nitely many sets. By taking a model of63



those axioms used, whi
h is a set 
ontaining those obje
ts referred to, the proof is still valid in thatmodel. Elementary submodels of that model are then known to exist. In pra
ti
e, the exa
t set-model isunimportant and all elementary submodels are treated as submodels of V .The real power of an elementary submodel 
omes from the ability to in
lude in it any 
olle
tion of obje
tswhi
h are being studied. What V thinks of su
h obje
ts is also thought by the submodel but, be
ause itis small, the obje
ts are easier to manipulate there. For instan
e, if !1 is in some 
ountable elementarysubmodelM thenM thinks that !1 is un
ountable. However, V knows that !1 \M is 
ountable. Thisallows us to do many things su
h as to �nd � 2 !1 whi
h is not inM. It is be
ause of this ability to �ndsmall obje
ts whi
h re
e
t the properties of large obje
ts that su
h te
hniques are said to be re
e
tive.Before pro
eeding to some results, it is worth 
ommenting on a few basi
 properties of elementarysubmodels. First, elements of an elementary submodel are not ne
essarily subsets as is demonstrated by
onsidering, as above, !1 in a 
ountable model. Se
ondly, subsets of a model are not ne
essarily elementsof the model. To see this, take a 
ountable elementary submodel of whi
h ! is a subset. If all subsets of! were in the model then P(!) is a subset of the 
ountable model - obviously impossible. Finally, it isworth noting that elementarity refers only to logi
 formulae. This 
auses many diÆ
ulties as the languageof mathemati
s is at a mu
h higher level than the language of logi
. Apparently simple statements maydisguise referen
es to obje
ts whi
h are not in an elementary submodel. Thus, these statements 
annot bere
e
ted down into the submodel. To avoid the 
onfusion this may 
ause, all of our re
e
ted statementsare redu
ed to a form where it is 
lear that they are absolute.6.2 Some introdu
tory proofsFirst, we 
onsider when elements of an elementary submodel are subsets and vi
e-versa. Throughout thisse
tion,M denotes an elementary submodel of V , the standard model of ZFC.Proposition 6.2.1 If A �M and A is �nite then A 2M.Proof Suppose A = fa1; : : : ; ang for some n 2 !. ThenV j= 9x8y(y 2 x$ (y = a1 _ y = a2 _ : : : _ y = an))Namely, A is the x whi
h V thinks satis�es this statement.As the only obje
ts whi
h o

ur in the formula are the ai and these are elements of M, elementaritygives us M j= 9x8y(y 2 x$ (y = a1 _ : : : _ y = an))Call the set whi
h is asserted to exist inM by this senten
e, B. Thus B 2M and the above tells us thatM j= 8y(y 2 B $ (y = a1 _ : : : _ y = an))But now elementarity gives V j= 8y(y 2 B $ (y = a1 _ : : : _ y = an))But this senten
e de�nes A as well. Therefore, B = A and sin
e B 2 M it must be that A 2 M. 2Proposition 6.2.2 If X 2 M and jX j 6 � where �+ 1 �M then X �M.Proof V j= 9f : � ! X ^ f is surje
tive. In order to use elementarity, we need to put this into thelanguage of logi
. A more fundamental way of expressing this statement is, V j= 9f�(f) where �(f) isthe statement(f � ��X) ^ 8� 2 �9x 2 X(h�; xi 2 f ^ 8y(h�; yi 2 f ! x = y)) ^ 8x 2 X9� 2 �(h�; xi 2 f)



From this, it is 
lear to see that the only part whi
h does not easily translate into a logi
 formula isf � ��X . This 
an be expressed as 8a(a 2 f $ a 2 ��X). In this form 9f�(f) has only two obje
tsin it, namely �, and X , and these are elements ofM. So by elementarityM j= 9f�(f).Let f 2 M be su
h that �(f) holds. SoM j= �(f) and elementarity now gives us that V j= �(f). Whatwe have a
hieved so far is that, given that V knows the 
ardinality of X , we have found a fun
tion inMwhi
h witnesses what the 
ardinality is.Now suppose x 2 X . Then there exists � 2 � su
h that h�; xi 2 f sin
e f is surje
tive. Thus we haveV j= 9y 2 X(h�; yi 2 f)As � �M and �; f 2M, elementarity tells us thatM j= 9y 2 X(h�; yi 2 f)Hen
e for some y 2 X \M,M j= h�; yi 2 f . Again by elementarity, we now have that V j= h�; yi 2 f .But given that V thinks that f is a fun
tion and h�; xi 2 f , it must be that x = y and so x 2 M. Thatis, X �M. 2The next proposition tells us that we have some familiar, useful obje
ts in any elementary submodel.Proposition 6.2.3 ! + 1 �MProof First we show by indu
tion that ! �M.V j= 9x8y(y 62 x). The empty set is the set whi
h is asserted to exist in this senten
e. Elementarity nowgives us thatM j= 9x8y(y 62 x). Let E be an element ofM su
h thatM j= 8y(y 62 E). Elementarity inthe other dire
tion gives that V j= 8y(y 62 E). That is, E = ;. Hen
e ; 2 M.Now 
onsider any x 2 M. De�ne x+ = x [ fxg. Thus, V j= 9y8a(a 2 y $ (a 2 x _ a = x)) (namely,y = x+) and soM j= 9y8a(a 2 y $ (a 2 x _ a = x)). Let y 2 M be a set whi
h is asserted to exist bythis senten
e. Then, elementarity tells us that V j= 8a(a 2 y $ (a 2 x _ a = x)), whi
h is a de�nition ofx+. So y = x+ whi
h means that x+ 2M.Thus if for some n 2 !, n 2 M then we have that n+ 2M and by indu
tion, ! �M.Now let 	(x) be the formula (; 2 x) ^ (8y 2 x(y+ 2 x)). It is 
lear from the above that 	 is absoluteforM and V . The axiom of in�nity holds in V , so V j= 9x	(x). Hen
eM j= 9x	(x). Let N 2M su
hthatM j= 	(N) ^ (8x(	(x) ! N � x)). (N is 
onstru
ted in the same way that ! is 
onstru
ted in Vfrom the axiom of in�nity.) So N is the obje
t thatM thinks of as the natural numbers.By elementarity, V j= 	(N) so ! � N sin
e ! is the smallest indu
tive set in V . Also by elementarityV j= 8x(	(x)! N � x). 	(!) holds so N � !. Hen
e N = ! and ! 2M. 2These last two results in 
ombination give:Proposition 6.2.4 If X 2 M and X is 
ountable then X �M.We now present two results whi
h do not tell us about elementary submodels dire
tly but whi
h do typifyelementary submodel proofs. The �rst is a spe
i�
 
ase of the Pressing Down Lemma, the se
ond is the�-system lemma. Both have well-known 
ombinatorial proofs (see [K1℄ p.80 and p.49 respe
tively) butmu
h of the 
ombinatori
s 
an be e�ortlessly subsumed into an elementary submodel.Theorem 6.2.5 (Pressing Down Lemma) If f : !1 n f0g ! !1 is su
h that f(�) < � for all � 2 !1,then for some 
 2 !1, f�1(
) is stationary.



Proof TakeM to be a 
ountable elementary submodel whi
h 
ontains !1 and f . De�ne � 2 !1 to bethe least ordinal su
h that � 62 M. If 
 = f(�) then 
 2M sin
e f(�) < �. Moreover, no ordinal greaterthan � is inM otherwise, as it is 
ountable, it is a subset ofM and this would imply that � 2 M.Now de�ne �(C) to be(8� 2 !19� 2 C(� > �)) ^ (8� 2 !1 n C9� < �8
 2 !1(� < 
 6 �! 
 62 C))That is, �(C) means that C is a 
lub set in !1 and � is 
learly absolute betweenM and V .For a given � < �, � 2 M. Moreover, for ea
h 
lub set C in M, V j= 9Æ 2 C(� < Æ). Hen
e,M j= 9Æ 2 C(� < Æ). The Æ asserted to exist by this statement, tells us that C \ (�; �℄ 6= ;. As thisholds for any � < � and C is a 
lub, � 2 C.Thus, for ea
h C 2 M, V j= �(C) ! 9� 2 C(f(�) = 
), namely �. Elementarity implies that, for allC 2 M, M j= �(C) ! 9� 2 C(f(�) = 
). We therefore have that M j= 8C(�(C) ! 9� 2 C(f(�) =
)). Applying elementarity on
e more gives that V j= 8C(�(C) ! 9� 2 C(f(�) = 
)). In other words,f�1(
) is stationary. 2Theorem 6.2.6 (�-system Lemma) Any family A = fA� : � 2 !1g of �nite sets 
ontains an un-
ountable �-system. That is, there exist an un
ountable subset B of !1, an n 2 ! and a �nite set r su
hthat, for all �, � 2 B, jA�j = n and A� \A� = r.Proof Take a 
ountable elementary submodelM 
ontaining A, ! and !1. AsM is 
ountable, 
hoose
 2 !1 nM and let r = A
 \M. As a �nite subset ofM, r is an element ofM as is the natural numbern = jA
 j. Let �(�;B) be the statement:(jA�j = n) ^ 8� 2 B((� 6= �)! (A� \A� = r))The only obje
ts in �(�;B) are elements ofM. This means that �(�;B) is absolute betweenM and V .Now, V j= 9� 2 !1((jA�j = n) ^ (A� � r)). In parti
ular, 
 witnesses the truth of this in V . Therefore,elementarity tells us that M� j= 9� 2 !1(jA�j = n ^ A� � r). Take � 2 M whi
h is de
lared to existby this expression. If B0 = f�g thenM j= 8� 2 B0(�(�;B0)). Using Zorn's Lemma, whi
h holds insideM, �nd a maximal su
h B, that is, a B 2M for whi
h:M j= 8� 2 B(�(�;B)) ^ 8� 2 !1(�(�;B) ! � 2 B)Interpreting this senten
e, this means that fA� : � 2 Bg is thought to be a maximal �-system byM.Applying elementarity givesV j= 8� 2 B(�(�;B)) ^ 8� 2 !1(�(�;B)! � 2 B)Suppose B were 
ountable. As a 
ountable element ofM, B �M and so � 2M for all � 2 B. Hen
e, forall � 2 B, A� 2 M and as they are �nite sets, A� �M. Thus, for any � 2 B, A
 \A� = A
 \M\A� =r \ A� = r. Note also jA
 j = n when
e V j= �(
;B). Together with V j= 8� 2 !1(�(�;B) ! � 2 B),this gives 
 2 B. But B �M so 
 2 M - a 
ontradi
tion.Hen
e B is un
ountable and fA� : � 2 Bg is a �-system. 26.3 Three examplesThe results of the last se
tion are fundamental to pra
ti
al appli
ations of elementary submodels. Theyare not, therefore, expli
itly referred to in what follows.We give a rough outline of our approa
h to using elementary submodels in 
onstru
ting examples. It isbased on Watson's 
onstru
tion of a Q-spa
e in [W℄. However, he omits many of the details from his



proof. We have �lled in many of these gaps and from it abstra
ted the general te
hnique used in theother two examples. This approa
h is founded on the fa
t that there are only 
 many essentially di�erent
ountable elementary submodels. This is be
ause any model is fully determined by its interpretation of2 on the underlying set. Hen
e, up to isomorphism, there are as many 
ountable elementary submodelsas there are binary relations 2 on a 
ountable set, that is, 
 many.The underlying set in ea
h example is of size 
 and all 
ountable elementary submodels are listed asfM� : � 2 
g. However, we often require that � � M� \ 
. This is not always possible, for instan
e,if � < !. Indeed, be
ause ! 2 M� for all � 2 
, many small ordinals, su
h as !!, are 
ontained inevery 
ountable elementary submodel. Thus, the listing is started from some �xed ordinal � so that, forall � > �, � � M� \ 
. The neighbourhoods of points in 
 are de�ned almost entirely by �nitely manysubsets of 
. Through expressing this fun
tionally, it is possible to obtain all but one of the properties ofea
h example from quite simple restraints on the fun
tions involved. The remaining property is redu
edto a 
ombinatorial relationship between spe
ial fun
tions on 
 and P(
). These fun
tions are de�nedin an indu
tion of length 
 where the values of the fun
tions involved at � 2 
 are determined by the�th elementary submodel in the list. This de�nition involves a diagonalisation pro
edure on families ofpairwise-disjoint �nite sets. That they satisfy the required 
ombinatori
s is shown by using somethingakin to a �-system whi
h redu
es all 
ases into one involving a pairwise-disjoint family. Be
ause of theimportan
e of the �-system, it is bene�
ial to be au fait with the proof of Theorem 6.2.6.A Q-set spa
eA Q-set is an un
ountable subset of the reals, every subset of whi
h is a GÆ-set. Under MA + :CH,every un
ountable subset of R of size less then 
 is a Q-set and, under 2! < 2!1 , there are no Q-sets. Aswell as this, mu
h work has been done in showing whether Q-sets do and do not exist in a wide range ofdi�erent models of ZFC. For a good summary of this work, see Balogh's arti
le [B1℄.Their signi�
an
e 
omes in that they provide an easy 
onstru
tion of a separable, normal, non-metrizableMoore spa
e. The spa
e in question is the subspa
e (A � f0g) [ (R � (0;!)) of the usual tangent dis
spa
e where A is a Q-set.The generalisation of a Q-set, a Q-set spa
e, is one in whi
h every subset is a GÆ-set but not for trivialreasons. That is, a Q-set spa
e is also regular, zero-dimensional spa
e but not �-dis
rete (the 
ountableunion of dis
rete subspa
es). Given that there are many models of ZFC in whi
h Q-sets do not exist, it is
on
eivable that there are models in whi
h there are no Q-set spa
es. Balogh's example [B1℄ shows thatthis is not the 
ase as there is a Q-set spa
e in ZFC.Balogh's spa
e, whi
h we shall 
all X , has 
 as its underlying set where the topology is de�ned in termsof the following fun
tions:For all Y � 
, GY : 
! ! + 1 and GY;n : 
! ! are de�ned su
h that G�1Y (!) = Y .For ea
h Y � 
 and n; k 2 !,U(Y; n; k; 1) := f� 2 
 : GY (�) > n;GY;n(�) = kgU(Y; n; k; 0) := 
 n U(Y; n; k; 1)The topology is then given by the sub-base B = fU(Y ; n; k; i)g : Y � 
; n; k 2 ! and i 2 f0;1gg:Clearly, this means that every element of the sub-base is 
lopen and hen
e that the spa
e is both regularand zero-dimensional. Moreover, G�1Y ((n; !℄) = [k2!U(Y; n; k; 1)whi
h means that for ea
h n 2 !, G�1Y ((n; !℄) is open. Also,Y = \n2!G�1Y ((n; !℄)



so that every subset of X is a GÆ . It follows from this that X is T1.Remark The purpose of the GY;n's is simply to allow an easy proof of regularity by de
laring thesub-base to 
onsist of 
lopen sets. This 
ould not be done using the GY 's alone as this would mean thatevery subset is the interse
tion of 
losed sets hen
e 
losed. This makes the spa
e dis
rete!!As we have a spa
e for all possible GY 's and GY;n's whi
h we 
ould de�ne, the tri
k now is to 
arefullyde�ne them so as to avoid �-dis
reteness.Suppose the spa
e were �-dis
rete so that X = Sn2! An where the An are disjoint dis
rete subsets.De�ne f : 
! ! by f(�) = n if and only if � 2 An and h : 
! [B℄<! so that fTh(�) : � 2 f�1(n)g is aset of neighbourhoods witnessing that ea
h An is dis
rete. That is, � 2 Th(�) and if f(�) = f(�) then� 62 Th(�). The G's are de�ned in su
h a way as to kill o� all of these pairs.List all 
ountable elementary submodels up to isomorphism type as fM� : � 2 
 n �g in su
h a way that,for � > �, � � M� \ 
. The G's are now de�ned by indu
tion. For all � 6 �, take GY (�) and GY;n(�)to be de�ned arbitrarily though still satisfying G�1Y (!) = Y for all Y � 
. Suppose that for � 2 
, for all� < � , GY (�) and GY;n(�) have been de�ned.In order to prevent a pair f and h from witnessing �-dis
reteness, we need to enlarge some of theneighbourhoods already de�ned by GY (�) and GY;n(�) for � < �. However, not every su
h pair needsto be 
onsidered. As will be
ome 
lear, any h and f 
an be redu
ed to a 
anoni
al one for whi
h thereexists k 2 ! su
h that f�h(�)g�2f�1(k) 
ontains an in�nite pairwise-disjoint 
olle
tion. We 
an simplifyfurther by disguising the �bres of f as just some in�nite subset of 
.As M� is 
ountable, we 
an list all h : 
 ! [B℄<! and in�nite subsets A of 
 whi
h are in M� byfhi : i 2 !g and fAj : j 2 !g respe
tively. Also de�ne �h(�) = fY � 
 : there exist n, k 2 ! andi 2 f0; 1g su
h that U(Y; n; k; i) 2 h(�)g. Denumerate all pairs hi; ji 2 !2 for whi
h f�hi(�)g�2Aj is anin�nite pairwise disjoint 
olle
tion by fhin; jni : n 2 !g. Thus, for ea
h n 2 !,V j= f�hin(�)g�2Ajn is an in�nite pairwise disjoint 
olle
tionIt is not too hard to rephrase this as a logi
 formula and then use elementarity to show thatM� j= f�hin(�)g�2Ajn is an in�nite pairwise disjoint 
olle
tionDe�ne �1 to be an arbitrary ordinal in Aj1 \M�. Given �1 : : : �n�1, 
hoose �n 2 Ajn \M� su
h that�n 62 f�1; : : : ; �n�1g and �hin(�n) \ [m<n�him(�m) = ;This is possible as Sm<n �him(�i) is a �nite 
olle
tion of Y 's yet, by the previous 
omments,M� thinksthat f�hin(�)g�2Ajn 
ontains an in�nite, disjoint 
olle
tion of �nite sets 
onsisting of Y 's. The de�nitionof the �n means that the following fun
tion is well-de�ned:n�(Y ) = �n if and only if Y 2 �hn(�n)Whenever n�(Y ) = �m, de�ne GY (�) > maxfn 2 ! : U(Y; n; k; i) 2 him(�m) for some k 2 !, i 2 f0; 1ggand still satisfying GY (�) = ! if and only if � 2 Y . As him(�m) is a �nite set, this is a good de�nition.For ea
h n 2 !, if for some k 2 !, �m 2 U(Y; n; k; 1) 2 him(�m) then let GY;n(�) = k. Su
h a k is theunique value of GY;n(�m) hen
e this de�nition is also good. If there is no su
h k for the given n, then
hoose GY;n(�) so that it is not equal to any k for whi
h �m 2 U(Y; n; k; 0) 2 him(�m). Again, this isa good de�nition sin
e him(�m) is �nite. Otherwise, de�ne GY (�) and GY;n(�) arbitrarily apart fromensuring that GY (�) = ! if and only if � 2 Y .The upshot of this de�nition is that if �m 2 U(Y; n; k; i) 2 him(�m) for suitable n, k and i, then� 2 U(Y; n; k; i).This 
ompletes the 
onstru
tion of the spa
e X . We have that X is a Q-set spa
e provided we 
an showthat it is not �-dis
rete. By all of the previous dis
ussion, this follows from:



Theorem 6.3.1 Given any h : 
! [B℄<! and f : 
! ! su
h that, for all � 2 
, � 2 Th(�), there exist� < � < 
 su
h that f(�) = f(�) and � 2\h(�)Proof Take a 
ountable elementary submodel whi
h 
ontains f , h, fGY , GY;n : Y � 
, n 2 !g, 
. Thissubmodel is isomorphi
 to M� for some � 2 
. Note, we assume that � 62 M� . Let f(�) = m 2 ! sof(�) 2M� and, as a �nite subset ofM� , h(�) \M� 2M� . De�ne 	(�;A) to be the senten
e:(f(�) = f(�)) ^ 8�0 2 A((� 6= �0)! (�h(�) \ �h(�0) = �h(�) \M�))Sin
e the only obje
ts in 	(�;A) are elements ofM� , 	(�;A) is absolute for V andM�. It is 
lear thatV j= 9�0 2 
(	(�0; ;)^(�h(�0) � �h(�)\M�)), namely, � is the �0 whi
h V has in mind. By elementarity,M� j= 9�0 2 
(	(�0; ;) ^ (�h(�0) � �h(�) \M�)) Take �0 2 M� whose existen
e is asserted by thisstatement and de�ne A0 = f�0g . From the de�nition of �0, it follows that M� j= 8� 2 A0(	(�;A0)).Just as in the proof of Theorem 6.2.6, use Zorn's Lemma to �nd an A 2 M� su
h thatM� j= 8� 2 A(	(�;A)) ^ 8
 2 
(	(
;A)! 
 2 A)For any � 2 A, V j= 9�0 > �(	(�0; A)), namely �, and elementarity gives thatM� j= 9�0 > �(	(�0; A)).Find an �0 2M� whi
h witnesses this. By maximality of A inM�, �0 2 A. Hen
e, for any � 2 A, thereis �0 > � whi
h is also in A. Thus A is in�nite and, for all � 2 A, 	(�;A). This implies that f�h(�)g�2Ais an in�nite �-system with root h(�) \M� . Hen
e, de�ne (inM�), h0 : 
! [B℄<! byh0(�) = h(�) n (h(�) \M�)Clearly, f�h0(�)g�2A is an in�nite pairwise-disjoint 
olle
tion su
h that h0, A 2 M�. Thus, there is anm 2 ! su
h that h = him and A = Ajm . Take � = �m. These � and � will satisfy the theorem.By de�nition, � 2 A so 	(�;A) and f(�) = f(�). We must show that � 2 Th(�). That is, we mustshow that for every U(Y; n; k; i) 2 h(�) that � 2 U(Y; n; k; i).Consider su
h a U(Y; n; k; i) 2 h(�). By the way in whi
h � was de�ned, h(�) is the disjoint union ofh0(�) and h(�) \M� . Thus, there are two 
ases:1. U(Y; n; k; i) 2 h(�) \M� . In whi
h 
ase, as � 2 Th(�), � 2 U(Y; n; k; i).2. U(Y; n; k; i) 2 h0(�). As h0(�) = him(�m), from the de�nition of GY (�) and GY;n(�), if � 2U(Y; n; k; i) then � 2 U(Y; n; k; i). But we know � 2 Th(�) hen
e � 2 U(Y; n; k; i).This 
ompletes the proof. 2A normal, not 
olle
tionwise Hausdor� spa
eIn [R3℄, Rudin des
ribed this spa
e as an answer to a question of Dowker. However, the spa
e alsoprovides an example of a normal, not 
olle
tionwise Hausdor� spa
e whi
h only has 
ardinality 
. Priorto this, the standard example of su
h a spa
e was Bing's famous example (G) whi
h has 
ardinality 22!1[Bi℄.Rudin's original 
onstru
tion does not refer to elementary submodels but it 
learly has all the 
ombina-torial 
oding whi
h they disguise. In [Do℄, Dow suggested a way to introdu
e elementary submodels intothe proof. His method, though, is only sket
hed and, for those unfamiliar with re
e
tion te
hniques, itis hard to de
ipher what he intends. We therefore give here a full presentation of Rudin's spa
e usingelementary submodels in exa
tly the same way as in the previous 
onstru
tion.



The set underlying the spa
e is the 
ontinuum with all pairs of points from the 
ontinuum, that is,X = 
 [ [
℄2. The topology is as follows. Ea
h pair f�; �g 2 [
℄2 is isolated. A point � 2 
 has sub-basi
 neighbourhoods 
onsisting of the point � and some sub
olle
tion of [
℄2 for whi
h every pair in thesub
olle
tion 
ontains �. More pre
isely, we shall de�ne f : 
 � P(
) ! P(
) and then let the sub-basi
neighbourhoods be: U(�; Y;K) = f�g [ ff�; �g : � 2 f(�; Y ) nKgwhere K is some �nite subset of 
.With this topology, [
℄2 is a 
olle
tion of isolated points so that 
 is a 
losed subset of X . Be
ause anysub-basi
 neighbourhood of � 2 
 does not meet 
 anywhere else, 
 is a 
losed dis
rete subset of X . Itis pre
isely this subset whi
h will not be pointwise separated by a disjoint 
olle
tion of open sets in X .However, it is interesting to note that the only way two neighbourhoods of distin
t points � and � in
 
an meet is if they both 
ontain f�; �g. Thus the possibility of X being 
olle
tionwise Hausdor� isdestroyed by a single point!The K in the de�nition of the sub-basi
 neighbourhoods is enough to guarantee that the spa
e is T1.To make the spa
e normal, we begin to put some restraints (albeit rather weak ones) on f . Consider twodisjoint 
losed subsets Y and Z. Isolated points in Y and Z do not 
ause problems when it 
omes toseparating Y and Z. Thus we may assume that Y and Z are subsets of 
. But then, sin
e 
 is a 
loseddis
rete set, 
 nY is 
losed and disjoint from Y and 
ontains Z. Hen
e, it suÆ
es to provide a separationof Y from its 
omplement in 
. Y is used to index the sub-basi
 neighbourhoods of the � 2 
 whi
h woulda
hieve this separation.Consider the following 
ondition whi
h we shall 
all (y):for all Y � 
, � 2 Y and � 62 Y implies � 62 f(�; Y ) or � 62 f(�; Y )Given this, we 
an simply de�ne U = S�2Y U(�; Y; ;) and V = S� 62Y U(�; Y; ;). Clearly they areopen sets whi
h 
ontain Y and 
 n Y respe
tively. If they were not disjoint, then for some � 2 Y and� 2 
 nY , U(�; Y; ;) meets U(�; Y; ;) and that must o

ur at the point f�; �g. But this would mean that� 2 f(�; Y ) and � 2 f(�; Y ) whi
h 
ontradi
ts (y). Hen
e U and V are the required separation.We must now ensure that f satis�es (y). For ea
h � 2 
 and Y � 
, de�ne g�;Y : 
! 2 to be any fun
tionand de�ne: ��(Y ) = � Y � 2 Y
 n Y � 62 YLet f(�; Y ) = ��(Y ) [ f� > � : g�;Y (�) = 1g [ f� < � : g�;Y (�) = 0gLemma 6.3.2 For any 
olle
tion of g�;Y , the resulting f satis�es 
ondition (y).Proof Suppose that Y � 
, � 2 Y and � 62 Y . Assume that � < �. The other 
ase is almost identi
al.Suppose too, for 
ontradi
tion, that � 2 f(�; Y ) and � 2 f(�; Y ).Sin
e ��(Y ) = 
 n Y , � 2 f(�; Y ) means that � 2 f� < � : g�;Y (�) = 0g, that is, g�;Y (�) = 0. Similarly,� 2 f(�; Y ) means that g�;Y (�) = 1 whi
h gives the 
ontradi
tion. 2So overall, given any 
olle
tion of g�;Y 's and f de�ned as above, X is a normal, T1 spa
e. We 
an nowuse elementary submodels to 
onstru
t the g�;Y and prevent X from being 
olle
tionwise Hausdor�.Suppose X were 
olle
tionwise Hausdor�. Then there exists h : 
! [P(
)℄<! and k : 
! [
℄<! su
h thatfTY 2h(�) U(�; Y; k(�)) : � 2 
g is a disjoint family of open sets whi
h separate all the points in 
. Note,the basi
 open neighbourhoods U(�; Y;K) should have a di�erent K for ea
h Y but as the interse
tionsare �nite and the K's are �nite they 
an be joined into a single k(�). To prevent su
h a separation, we



need to build the g�;Y su
h that for every possible 
andidate for h and k, there exist � < � < 
 su
h thatTY 2h(�)U(�; Y; k(�)) meets TY 2h(�)U(�; Y; k(�)). This would happen if (�):� 62 k(�) and, for all Y 2 h(�), � 2 f(�; Y )� 62 k(�) and, for all Y 2 h(�), � 2 f(�; Y )List all the 
ountable elementary submodels up to isomorphism type as fM� : � 2 
 n �g and assumethat � � M� \ 
. For � < � de�ne g�;Y (�) arbitrarily. We will de�ne g�;Y (�) for all � 2 
 and Y � 
.List all h : 
 ! [P(
)℄<! in M� and all in�nite subsets A of 
 in M� as fhi : i 2 !g and fAj : j 2 !grespe
tively. As in the Q-spa
e 
onstru
tion, there are only 
ertain h's and A's whi
h we need worryabout. Thus, let fhin; jni : n 2 !g be an enumeration of the pairs hi; ji 2 !2 for whi
h fhi(�)g�2Aj isan in�nite pairwise-disjoint 
olle
tion. The enumeration is done in su
h a way that ea
h pair is listedin�nitely many times.Now �x �1 2 Ai1 \ M� . Given �1; : : : ; �n�1 2 
, using elementarity just as in the Q-spa
e, de�ne�n 2 Ajn \M� su
h that �n 62 f�1; : : : ; �n�1g andhin(�n) \ [m<nhim(�m) = ;This is possible sin
e ea
h of the him(�m) is a �nite set andM� thinks that fhin(�)g�2An is an in�nitepairwise-disjoint 
olle
tion.De�ne n�(Y ) = �n if and only if Y 2 hin(�n). Otherwise, n�(Y ) is not de�ned. This is a good de�nition,sin
e if for some Y � 
, Y 2 hin(�n), then, be
ause the him(�im) form a disjoint 
olle
tion, the �n forwhi
h this o

urs is unique.Now let g�;Y (�) = � 1 if n�(Y ) = �0 otherwiseX is then built as already des
ribed from these g�;Y and as to be hoped:Theorem 6.3.3 Given any h : 
! [P(
)℄<! and k : 
! [
℄<!, (�) is satis�ed.Proof Take a 
ountable elementary submodel whi
h 
ontains h, k, 
, P(
), and fg�;Y : � 2 
 and Y � 
g.This submodel is isomorphi
 toM� for some � 2 
 (remember that � �M� \ 
). Sin
e h(�) is a �niteset, h(�) \M� is a �nite subset ofM� and hen
e is an element ofM� . Thus de�ne �(�;A) to be theformula:((��(Y ) = ��(Y ))$ (Y 2 h(�) \M�)) ^ 8�0 2 A((� 6= �0)! (h(�) \ h(�0) = h(�) \M�))V j= 9�0 2 
(�(�0; ;)^(h(�0) � h(�)\M�)), namely V thinks � satis�es this statement. By elementarity,M� j= 9�0 2 
(�(�0; ;) ^ (h(�0) � h(�) \M�)). Find an �0 2 M� whi
h witnesses the truth of thisstatement. If A0 = f�0g then M� j= 8� 2 A0(�(�;A0)). Now, applying Zorn's Lemma, produ
e amaximal su
h A 2M�, that is:M� j= 8� 2 A(�(�;A)) ^ 8
 2 
(�(
;A)! (
 2 A))For any � 2 A, V j= 9�0 > �(�(�0; A)), namely �. Elementarity givesM� j= 9�0 > �(�(�0; A)). Findsu
h an �0 2 M� and maximality of A inM� implies that �0 2 A. Hen
e, for any element of A there is astri
tly greater one when
e A is in�nite. From the de�nition, for all � 2 A, �(�;A) and hen
e fh(�)g�2Ais a �-system with root h(�) \M�. De�ne h0 : 
! [P(
)℄<! byh0(�) = h(�) n (h(�) \M�) for all � 2 
:



This means fh0(�)g�2A is an in�nite pairwise-disjoint 
olle
tion where h0 and A 2 M� . Hen
e, thereexists m 2 ! su
h that h0 = him and A = Ajm . Moreover, as a pair h0 and A were listed in�nitely oftenand k(�) is �nite, we may ensure that �m 62 k(�).We will now show that � = �m and � are those required in (�).By de�nition, � 2 M� so � < �. Also � 62 k(�). Sin
e k, � 2M� , it is not too hard to use elementarityto show that k(�) 2 M� . But then as a �nite element of M�, k(�) is also a subset of M� and hen
e� 62 k(�).Now 
onsider Y 2 h(�). Either Y 2 h(�) \M� or Y 2 h(�) n [h(�) \M� ℄. If the �rst 
ase holds then,by the fa
t that � 2 A, �(�;A) holds and ��(Y ) = ��(Y ). Clearly, from the de�nition of ��, � 2 ��(Y )and hen
e � 2 ��(Y ). But ��(Y ) � f(�; Y ) so � 2 f(�; Y ).If Y 2 h(�) n [h(�) \M�℄, then Y 62 M�. But him = h0 2 M� and � = �m 2 M� , thus h0(�) 2 M� .Moreover, as a �nite element of M� , h0(�) is a subset of M� . Hen
e, Y 62 h0(�) so n�(Y ) 6= � andg�;Y (�) = 0. From the de�nition of f , this implies that � 2 f(�; Y ) and we have demonstrated one halfof (�).Suppose that Y 2 h(�). Then either Y 2 h(�) \M� or Y 2 h0(�) = h(�) n [h(�) \M�℄. Just as for theabove, Y 2 h(�) \M� means that � 2 f(�; Y ).If Y 2 h0(�), n�(Y ) = �. But then g�;Y (�) = 1 from whi
h it follows that � 2 f(�; Y ).Hen
e (�) is satis�ed. 2A small Dowker spa
eA Dowker spa
e is a normal Hausdor� spa
e the produ
t of whi
h with the unit interval is not normal.Su
h spa
es are named after Dowker who showed that:Theorem 6.3.4 [D℄ For a normal spa
e X, the following are equivalent:1. X � I is normal2. X is 
ountably para
ompa
t3. X is 
ountably meta
ompa
t4. For every 
ountable open 
over U = fUn : n 2 !g, there is an open 
over V = fVn : n 2 !g su
hthat Vn � Un for all n 2 !5. For any in
reasing sequen
e of open sets fGn : n 2 !g whi
h 
over X, there is an in
reasingsequen
e of 
losed sets fFn : n 2 !g whi
h also 
overs X and su
h that Fn � Gn for all n 2 !He then asked if all normal Hausdor� spa
es are 
ountably para
ompa
t. Answering this question hasprovoked a great deal of ex
iting work and Dowker's 
hara
terisations (5) of 
ountable para
ompa
tnesshas been 
ru
ial in atta
king the problem. The question was �nally answered by Rudin [R1℄ who produ
eda Dowker spa
e in ZFC. However, the example is \big" in many senses, for example, it has weight and
ardinality (!!)! . This has provoked the question of whether Dowker spa
es 
ould be smaller than this.Many ex
ellent examples of small Dowker spa
es have been given in various models of set-theory, see[R4℄, but until re
ently Rudin's remained the quintessential Dowker spa
e in ZFC.In 1994, Balogh announ
ed at the Spring Topology Conferen
e that he had found a small Dowker spa
ein ZFC - one whi
h was hereditarily normal, �-dis
rete and of 
ardinality 
. His 
onstru
tion makesessential use of elementary submodels. Some have 
hallenged that it is not truly \small" be
ause it is



not �rst 
ountable but it is indisputably a truly new example of a Dowker spa
e and, as su
h, is of greatvalue. We des
ribe here the spa
e based on [B2℄.The spa
e has its roots in the normal, not 
olle
tionwise Hausdor� spa
e whi
h has just been des
ribed.Whereas that spa
e is made up of two \layers", 
 and [
℄2, the Dowker spa
e has 
ountably many andthe underlying set is X = 
 � !. Take Xn = 
 � fng and Gn = 
 � (n + 1). Ea
h Xn will be dis
reteand fGn : n 2 !g will be the open 
over witnessing that X is not 
ountably para
ompa
t. That is, ifFn � Gn are 
losed sets for ea
h n 2 ! then Sn2! Fn 6= X .The basi
 open neighbourhoods are de�ned in terms of lo
al network elements. More pre
isely, for apoint h�; ni 2 X , if n = 0 then N(h�; ni; Y;K) = fh�; nig. For n > 0, we shall de�ne f : 
�P(
)! P(
)and take N(h�; ni; Y;K) = fh�; nig [ fh�; n� 1i : � 2 f(�; Y ) nKgwhere K is a �nite subset of 
. The presen
e of the K ensures that X is T1. A set U is open if and onlyif, for every point x 2 U , there exist C 2 [P(
)℄<! and K 2 [
℄<! su
h that\Y 2CN(x; Y;K) � UThis de�nition immediately implies that Gn is open and Xn is dis
rete for all n 2 !. In parti
ular, X0is the set of all isolated points of X .Normality will follow from a straightforward boot-strapping argument on
e it has been shown that anytwo disjoint 
losed sets in Xn 
an be separated by disjoint open sets. Be
ause ea
h Xn is dis
rete, wemust 
onsider any pair of disjoint sets in Xn. The proof of this pro
eeds by indu
tion, the 
ase forX0 being trivial. Thus assume that for some n 2 !, if B0, B1 � Xn�1 are disjoint then they 
an beseparated by disjoint open sets. Consider Xn. As in the previous example, it suÆ
es to show that forany A � Xn, A 
an be separated from its 
omplement. To do this we pla
e a 
onstraint on the f(�; Y ):de�ne g : P(
)! P(
) and set f(�; Y ) = � g(Y ) if � 2 Y
 n g(Y ) if � 62 YIf Y = f� 2 
 : h�; ni 2 Ag, it is 
lear that A[ (g(Y )�fn� 1g) 
ontains N(h�; ni; Y; ;) for all h�; ni 2 Aand (Xn n A) [ (
 n g(Y ) � fn � 1g) 
ontains N(h�; ni; Y; ;) for all h�; ni 62 A. g(Y ) � fn � 1g and
 n g(Y ) � fn� 1g are disjoint subsets of Xn�1 and, by the indu
tive hypothesis, they 
an be separatedby disjoint open sets U and V . (We may assume that U [ V � Gn�1.) It then follows that A [ U and(Xn nA) [ V are disjoint open sets separating A from its 
omplement in Xn. Hen
e X is normal.To show that X is not 
ountably para
ompa
t, Balogh introdu
es the notion of �-de
omposable. As thisis always used negatively, we de�ne rather the term inde
omposable. A subset A of 
 is inde
omposableif for any l : A ! !, h : 
 ! [P(
)℄<! and k : 
 ! [
℄<! , there exist �, � 2 
 su
h that l(�) = l(�) and� 2 Tff(�; Y ) n k(�) : Y 2 h(�)g. In other words, (z)l(�) = l(�), � 62 k(�) and, for all Y 2 h(�), � 2 g(Y ) if and only if � 2 YBe
ause of the presen
e of l in this de�nition, if Y is inde
omposable and the 
ountable union of somesets then one of those sets must also be inde
omposable. Moreover,Lemma 6.3.5 If n 2 ! and Y � 
 is inde
omposable then Y1 = f� 2 Y : h�; n + 1i 2 Y � fngg isinde
omposable.Proof De�ne Y0 = Y n Y1. If � 2 Y0 then h�; n + 1i 62 Y � fng. Hen
e, there exist Y1; : : : ; Yk 2 P(
)and K1; : : : ;Kk 2 [
℄<! su
h that k\i=1N(h�; n+ 1i; Yi;Ki) \ Y = ;



Therefore, Tki=1(f(�; Yi)nKi)\Y = ; and, for all � 2 Y , � 62 Tki=1 f(�; Yi)nKi. By de�ning h(�) = fYi :i = 1; : : : ; kg, k(�) = Ski=1Ki and l(�) = 0, it is easy to 
he
k that the resulting h, k and l witness thatY0 is de
omposable. But Y = Y0 [ Y1 and Y is inde
omposable hen
e Y1 must also be inde
omposable.2The key to the 
onstru
tion is proving that for some suitable g, 
 is inde
omposable. Given this, 
onsiderthe open 
over fGm : m 2 !g of X . Suppose fFm : m 2 !g is a sequen
e of 
losed sets whi
h also 
overX . De�ne Ym = f� 2 
 : h�; 0i 2 Fmg. It must be that 
 = Sm2! Ym and sin
e 
 is inde
omposable, forsome m0 2 !, Ym is inde
omposable. Now Fm0 � Ym0 � f0g and, by indu
ting up using the Lemma, forall n 2 !, Xn \ Fm0 6= ;. In parti
ular, Fm0 6� Gm0 . Hen
e, X is not 
ountably para
ompa
t.This 
ompletes the des
ription of the Dowker spa
e. It remains to prove:Theorem 6.3.6 There is a g : P(
)! P(
) whi
h makes 
 inde
omposable.Remark A noti
eable di�eren
e in this 
onstru
tion is the use of pairs of elementary submodels ratherthan only one at a time. The reason for this is that in the pro
ess of de�ning the g(Y ), there are two
ases to be 
onsidered. The �rst 
ase treats what happens on the root of some �-system and the se
ond,what happens o� the root. In the previous examples, what happens on the root has been quite trivialbut for this example more 
are must be taken. However, it is impossible to predi
t beforehand what thisroot will be! What we 
an say though is that, from the proof of the �-system whi
h we have given, we
an ensure that the root will always lie within any suitable 
ountable elementary submodel. Moreover,anything whi
h is not in the root is not in that submodel.Proof List all 
ountable elementary submodels as fM� : � 2 
 n �g and, for ea
h � 2 
, 
hoose another
ountable elementary submodel N� for whi
hM� 2 N� . Note that sin
eM� is a 
ountable element ofN� it is also a subset and anything whi
h is pla
ed inM� is automati
ally in N� . We may also assumethat � � 
 \N� when
e � 62 N� .For all Y 2 P(
), we indu
tively de�ne whether � 2 
 is an element of g(Y ) or not by 
onsidering themodel N� . List all the fun
tions h : 
! [P(
) nM�℄<! and in�nite subsets A of 
 in N� as fhi : i 2 !gand fAj : j 2 !g respe
tively. It will be
ome apparent that we will only need to deal with 
ertain h andA. Thus, let fhin; jni : n 2 !g be a denumeration of the pairs hi; ji 2 !2 su
h that fhi(�)g�2Aj is anin�nite disjoint 
olle
tion.Just as in the Q-spa
e 
onstru
tion, use the elementarity of N� to 
hoose �n 2 Ajn \ N� su
h that�n 62 f�1; : : : ; �n�1g and hin(�n) \ [m<nhim(�m) = ;Be
ause fhin(�n)gn2! forms a disjoint 
olle
tion, setting n�(Y ) = � if and only if Y 2 hin(�n) is a goodde�nition.In order to de�ne g(Y ), there are two 
ase to 
onsider as mentioned in the remark pre
eding the proof:1. For Y 2 M�, � 2 g(Y ) if and only if � 2 Y2. For n�(Y ) = �, � 2 g(Y ) if and only if � 2 Y .Sin
e the range of all the hi's missesM� , the two 
ases are not 
on
i
ting. For Y 2 P(
), � is pla
edarbitrarily in g(Y ).This 
ompletes the de�nition of the g and it remains to show that this does make 
 inde
ompos-able.Consider some h : 
 ! [P(
)℄<!, l : 
 ! ! and k : 
 ! [
℄<! . We wish to �nd � 2 � 2 
satisfying (z) above.



De�ne �h(�) = fY 2 h(�) : � 2 Y g. Take an elementary submodel 
ontaining g, h, l, k, 
, P(
) andf�h(�)g�2
. This submodel is isomorphi
 to M� say. Re
all, � 62 N� and M� � N� . Sin
e h(�) is a�nite set, h(�)\M� and �h(�)\M� are �nite subsets ofM� and are hen
e elements ofM�. l(�) beinga natural number is also an element ofM�. De�ne �(�;A) to be the statement:(l(�) = l(�)) ^ (h(�) \M� = h(�) \M�) ^ (�h(�) \ h(�) \M� = �h(�) \M�) ^^8�0 2 A(� 6= �0 ! h(�) \ h(�0) = h(�) \M�)On
e again � ensures V j= 9�0 2 
(�(�0; ;)). By elementarity, N� j= 9�0 2 
(�(�0; ;)). Find �0 2 N�whi
h is asserted to exist by this expression. If A0 = f�0g then N� j= 8� 2 A0(�(�;A0)). Just as in theprevious examples, apply Zorn's Lemma to �nd a maximal su
h A 2 N� so that:N� j= 8� 2 A(�(�;A)) ^ 8
 2 
(�(
;A) ! 
 2 A)Also as previously, A is an in�nite element of N� and for all � 2 A, �(�;A) holds. In parti
ular,fh(�)g�2A is a in�nite �-system of sets whi
h only meet M� on the root h(�) \M� . De�ne h0 : 
 ![P(
) nM�℄<!, by h0(�) = h(�) n (h(�) \M�)Thus, fh0(�)g�2A is an in�nite pairwise-disjoint family and h0 and A were listed so that, for some n 2 !,h0 = hin and A = Ajn . Take � = �n. � and � will satisfy (z).First, sin
e � 2 A\N� and k 2 N� , k(�) 2 N� when
e � 62 k(�). As � 2 A, �(�;A) holds . This meansl(�) = l(�). Now, we know that h(�) = (h(�) \M�) [ h0(�) and that this union is disjoint. There aretwo 
ases to 
onsider:1. For Y 2 h(�) \M�, � 2 Y if and only if Y 2 �h(�). �(�;A) implies that �h(�) \ h(�) \M� =�h(�) \ M� . Therefore, Y 2 �h(�) if and only if Y 2 �h(�) if and only if � 2 Y . From thede�nition of g(Y ), � 2 g(Y ) if and only if � 2 Y if and only if � 2 Y .2. For Y 2 h0(�), n�(Y ) = � and � 2 g(Y ) if and only if � 2 Y .Thus for all Y 2 h(�), � 2 g(Y ) if and only if � 2 Y . That is, � and � do indeed satisfy (z) and 
 isinde
omposable. 2
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