
DEPARTMENT OF PHYSICS Y2 COMPUTATIONAL LABORATORY

Experiment 2.4: One-Dimensional Schrödinger Equation

Introduction
At the core of quantum mechanics lays the dualism between particles and waves, by which
a particle – e.g. an electron – will display particle or wave behaviour according to the
characteristics of the system (e.g. its typical lengths) and the quantities we want to measure.
The Schrödinger Equation is the fundamental equation in quantum mechanics, and its solu-
tions provide us with the wave description of particles, their time evolution when interacting
among each other or with external potentials and their corresponding energies.
In this experiment we will consider the time-independent Schrödinger Equation – a second
order differential equation – for a single particle in one dimension, in an external confining
potential given by a square well. The modulus squared of the solution to this equation – the
wave function – will give the probability that the particle is found at certain point x in space
in an experimental measurement.
This time-independent Schrödinger Equation may be written as[

− ~2

2m

d2

dx2
+ V (x)

]
ψ (x) = Eψ (x) (1)

where ψ(x) is the quantum mechanical wave function, m the mass of the particle and E its
energy. If we use the dimensionless units ~2/2m = 1 this can be simplified as

d2ψ (x)

dx2
+ [E − V (x)]ψ (x) = 0 (2)

and the boundary conditions for a bound state are given by ψ(x→ ±∞) = 0.
In general the wave function must satisfy several continuity constraints if moving between
two regions (I and II) of different potential at the point x = a :

ψI (a) = ψII (a) (3)

and as long as the potential is not infinite

dψI (x)

dx

∣∣∣∣
x=a

=
dψII (x)

dx

∣∣∣∣
x=a

(4)

but if the potential is infinite then Eq.4 is replaced by

ψI (a) = 0 (5)

One familiar example of this is the particle in the 1D infinite square well of width L, which
is given by

V (x) =

{
0 |x| < L/2
∞ otherwise

(6)

1

Figure 1: Confining potential V (x)

which has as it solutions the eigenenergies

En =
n2π2

L2
(7)

and corresponding eigenfunctions

ψn (x) =

√
2

L
sin

(
nπ (x− L/2)

L

)
. (8)

Solving the Schrödinger Equation
In this experiment we shall use the the 2nd-order coupled Runge-Kutta method, as developed
in experiment 2.3 (The Duffing Oscillator) to integrate the Schrödinger equation. Hence, just
as with the Duffing Oscillator, we need to rewrite a 2nd-order differential equation as two
coupled 1st-order differential equations. However, unlike the case of the Duffing Oscillator,
we do not know all the terms in the equation we wish to integrate – in particular, we need
to know a value for E to insert into Eq.2 – and for a bound state, this needs to be an exact
eigenenergy. Hence in general we need to solve the equation many times as we search for
the correct value of E , for example by using the shooting method.

The shooting method

This method finds the solutions to a differential equation when the value of a parameter as
well as the solution to the differential equation must be found at the same time. In the case
of Eq. 2, this parameter is the energy E and for bound state solutions, these will only be
allowed for specific, discrete values of E, i.e. E1, E2, E3 . . . The main idea is that Eq. 2 will
be solved many times by varying the value of E and only the values which will satisfy the
boundary conditions and provide continuous solutions are acceptable. A specific example of
V (x) – a square well of width L = 4 and depth V0 – is sketched in figure 1.
In this case, since the boundary conditions are set at the edges of the box, we will solve Eq. 2
from starting from both the left (ψL(x;E)) and (independently) from the right (ψR(x;E))
using the 2nd-order coupled Runge-Kutta method. The correct energies E will be those for
which the solutions and their derivatives match at the centre x = 0. This is described in
Fig. 2, with the notation z1(x) = ψ(x) and z2(x) = dψ/dx. The boundary conditions on the
wavefunction are z1L(x→ −∞) = 0 and z1R(x→∞) = 0 but this is not enough to solve a
2nd-order differential equation – we also need boundary conditions on the derivative of the
wavefunction.

2

-2 2

V(x)

V0

x

E = ETrial

s
z1L

z2L

z2R

z1R

-2 2

V(x)

V0

x

E = ECorrect

s
z1L

z2L

z2R

z1R

Figure 2: Shooting Method in action. The left-hand figure shows what happens if the trial
energy is not right - the left and right solutions for z1 and z2 do not match in the centre. The
right-hand figure shows what happens when the value of the trial energy is correct - we now
have continuity in z1 and z2 in all parts of the well, including the matching in the centre.

For this particular potential, the wavefunction must be symmetric and so we choose a sym-
metric constraint on the derivatives: z2L(x→ −∞) = s and z2R(x→∞) = −s. The value
of s is arbitary – it just sets the scale of the unnormalized wavefunction – and so you may
set s = 1 (but if your box is very large, you may want to reduce the value of s to stabilize
your solution).
Since any linear combination of eigenfunctions (e.g. αψ1 + βψ2) is a solution of the
Schrödinger Equation, we can combine the matching conditions z1L(0) = z1R(0) and
z2L(0) = z2R(0) into a single condition

z2L (0)

z1L (0)
=
z2R (0)

z1R (0)
(9)

=
1

ψ (0)

dψ

dx

∣∣∣∣
x=0

(10)

which is known as the Derivative of the Log of the Solution (DLS). Hence we see that the
values of the DLS for the left and right solutions must match at the centre. By plotting the
DLS versus the parameter E it is then possible to find the solutions to Eq. 9 and to our
problem.

Objectives
• to solve computationally an eigenvalue problem using the shooting method

• to compare the numerical solution with an exact limiting case.

• to analyse computationally how the behaviour of the solutions ψ(x) and the energies
E change as V (x) is varied

3

Experiment
The relative amout of time you should spend on each section is shown as [X%].

1. Basic shooting method and infinite square well ground state [40%]:

(a) Write a simple program to implement the shooting method. You will need to
scan over different values of the trial energyE and test the DLS to see if you have
found an eigenenergy. To do this you will need to reuse the Runge-Kutta module
you created for the Duffing Oscillator experiement. When you are writing code to
test a new algorithm you need to think from the outset about how you can be sure
it is coded correctly, so in this case you should test against the infinite square well
results as given above, with a well of width L = 4 and depth V0 →∞. You will
need to choose your own trial energy value and initial boundary conditions, and
use a sufficiently large (but finite) value for V0 . See how accurately you can find
the value of the lowest bound energy E1 and corresponding wavefunction ψ1(x)
as you integrate the Schrödinger Equation over a box of width l ≥ L, imposing
the boundary conditions at its borders. The precision of your solution will depend
on the size l of this box and on the step size h you use to integrate the equation
using the Runge-Kutta method. You should normalize your solution so that the
integral of |ψ1(x)|2 is equal to 1. Plot a graph of ψ1(x) and the derivative of the
logarithm of the solution (DLS) you have used to find the correct E1. Clearly
record the complete set of final parameter values chosen. N.B. Whenever you
use a discretization approximation (such as the Runge-Kutta method) it is always
important to check for convergence (e.g. if the step size h is appropriate for the
precision required by the problem).

2. Excited states of infinite square well [20%]:

(a) Can you find the next two bound solutions E2 and E3 for this system? You will
need to vary both the trial energy and the initial boundary conditions and plot the
corresponding DLS. How does the accuracy w.r.t. the analytical solution vary as
you go to higher excited states?

(b) Can you now extend your program to automatically test the value of the DLS at
the matching point and adjust the trial energy E up or down as appropriate until
the corresponding eigenenergy En is found to any desired precision?

3. Finite square well [40%]:

(a) Once you are confident that your program is correct, you can now study with
confidence a system for which you do not know the analytical values. One such
potential is the finite well, given by a square well of width L = 4 and depth V0
(see Fig. 1). If V0 is large but finite, the eigenenergies should be very similar to
the infinite well but the eigenfunctions should now show some tunnelling into the
classically forbidden region and hence you shall have to be careful in testing how
large you need to make l. Study how E1 and ψ1(x) change as V0 is reduced from
an initially large value. Plot your results for E1 versus V0 and the wavefunctions

4

ψ1(x) for some representative values of V0. Separately normalise each solution
so that all the wavefunctions are comparable and can be plotted in a single figure.

(b) How low can you make V0 and still have E1 reasonably approximated by
the limiting exact case solution (e.g. when the fractional error in the energy
|E1,num−E1,exact|/E1,exact is no more than 5%)? How low can you makeV0 such
that E2 and E3 can be approximated by the limiting exact solutions, e.g. with a
fractional error in the energy of the order of a few percent? Plot the DLS used to
support your answers and the comparison between the exact and the numerical
wavefunctions.

Coding Hints
It is always a very good idea to plan out your program before you start. Make sure you
understand the physics and what you are required to do, both for the first part and successive
steps – this might change how you design your program, and give you ideas about what
code you can re-use from previous experiments, and what code you might create that could
usefully be resused in the future. Think too about how you can test your code in stages ...

• Flow chart

– This is a useful way of planning out the steps in your program. See
http://en.wikipedia.org/wiki/Flowchart for a simple description of the symbols
to use. The University has a subscription to “lucidchart” as part of its Google
Apps package which you can use to generate elegant flow charts.

• Runge-Kutta module

– For this task you should reuse your Runge-Kutta module from the Duffing Os-
cillator experiment. It would be very useful if it contained a routine for solving
a single 1st order differential equation using RK2, and a pair of coupled first
order equations as used before. All of these routines should work with generic
input functions f1 and f2 . You should also think about what other data should
be stored in this module, e.g. the step size, etc. to make it reasonably complete
and self-contained.

• Other modules

– What other modules would be helpful in writing this program, and might be
reusable in the future? One obvious one is something to hold basic constants,
such as your precision definitions, values of pi, etc.

– What about something for the wavefunction, e.g. a subroutine to normalize an
input wavefunction? What is the best way to store a wavefunction? How can you
plot it?

• Compiler flags

– Finally, don’t forget to use appropriate compiler flags as before.

5

http://en.wikipedia.org/wiki/Flowchart

