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Atomistic Simulations

If we know what the bonding in a material is beforehand,
then we can often find good expressions for the forces
between atoms, e.g.

Ionic⇒ electrostatic potentials
Covalent⇒ directional potentials, e.g. Stillinger-Weber
Metallic⇒ Bond Order Potentials, EAM...
Van der Waals⇒ Born-Mayer, Lennard-Jones...

These potentials can do a good job of computing the
mechanical properties of materials.
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Atomistic Simulations

These ‘forcefield’ potentials do have problems:

Usually parameterised for bulk equilibrium behaviour
Parameterised for particular class of materials
Cannot handle bond breaking or formation
Cannot provide electronic information, so no
predictions of

Resistance
Thermal conductivity
Colour
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First Principles Simulations

We want to be able to predict what atoms will do from first
principles, without needing to know what they’ll do
beforehand! We can do this using quantum mechanics.

Unfortunately, quantum mechanics is difficult!
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Electronic Structure Simulations

We want to solve the Schrödinger equation. For 1-particle
it’s: (

− ~2

2m
∇2 + V̂

)
Ψ (r, t) = i~

∂Ψ (r, t)
∂t

Now we just have to solve it for a real material.

How hard can it be?
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The horror.... the horror...

For M nuclei and N electrons:{
−~2

2

(
∇2

n1
m1

+ ...+
∇2

nM
mM

,
∇2

e1
m

+ ...+
∇2

eN
m

)
+V̂ (R1, ...,RM , r1, ..., rN , t)

}
Ψ (R1, ...,RM , r1, ..., rN , t)

= i~
∂Ψ (R1, ...,RM , r1, ..., rN , t)

∂t

How big are M and N?

For a few grams of material:

M ∼ 100,000,000,000,000,000,000,000
N ∼ 1000,000,000,000,000,000,000,000

Oh dear.
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Electronic Structure Simulations

How can we make quantum mechanics easier for
ourselves?

Only use QM for the electrons
Concentrate on the groundstate
Exploit periodicity of crystals
Get a computer to do it
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QM for the electrons

Nuclei are heavy, slow and boring
−→ no QM for nuclei
Electrons are light, quick and interesting
−→ Nuclei appear static
−→ No explicit time-dependence for electrons

This is the Born-Oppenheimer approximation.

Ψ (R1, ...,RM , r1, ..., rN , t) −→ ψ (r1, ..., rN)

Now we can solve the time-independent Schrödinger
equation.
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Electronic Structure Simulations

{
− ~2

2m

(
∇2

1 + ...+∇2
N

)
+ V̂ (R1, ...,RM , r1, ..., rN)

}
ψ (r1, ..., rN) = Eψ (r1, ..., rN)

Hmm, looks a bit like an eigenvalue problem...
Still have N ∼ 1023 though.
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Electronic Structure Simulations

How can we make quantum mechanics easier for
ourselves?

Only use QM for the electronsX
Concentrate on the groundstate
Exploit periodicity of crystals
Get a computer to do it
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Concentrate on the groundstate

Materials’ properties are dominated by the groundstate
For the groundstate we can use a different form of QM
Density Functional Theory
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Density Functional Theory

The groundstate energy E and density ρ (r) of electrons are
exactly the same as those of non-interacting particles in a
specially modified potential.
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Density Functional Theory

Solve N non-interacting Schrödinger equations:{
− ~2

2m
∇2 + V [ρ] (r)

}
ψj (r) = εjψj (r)

V [ρ] is a density functional.

ρ(r) =
N∑

j=1

|ψj(r)|2

We don’t know V [ρ] exactly, but there are reasonable
approximations available.
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Density Functional Theory

We know the classical contributions to V [ρ], e.g.

EH [ρ] (r) =
1
2

∫∫
ρ (r) ρ (r′)
|r− r′|

but what about QM exchange and electron correlation? We
have to approximate this exchange-correlation functional:

Local density approximation (LDA)
Tends to over-bind.
In your param file use xc_functional : LDA

Generalised gradient approximations (GGAs) PBE is
the most popular. Tends to under-bind.
In your param file use xc_functional : PBE

These approximations do not handle dynamic correlation
well, e.g. no van der Waal’s or Cooper pairs...
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The story so far...

Started with time-dependent 1023-electron-nuclear
wavefunction
Born-Oppenheimer approximation
−→ time-independent, 1023-electron wavefunction
DFT −→ 1023 1-electron wavefunctions
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Electronic Structure Simulations

How can we make quantum mechanics easier for
ourselves?

Only use QM for the electronsX
Concentrate on the groundstateX
Exploit periodicity of crystals
Get a computer to do it
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Crystals and Unit Cells

In the solid state, most materials like to have their atoms
arranged in some kind of regular, repeating pattern, e.g.
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Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

where L is any lattice vector.

What does this mean for the density and wavefunction?
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Bloch’s Theorem

If the potential is periodic, then so is the density:

ρ(r + L) = ρ(r)

What about the wavefunction?

ρ(r) = |ψ(r)|2

i.e. if ρ(r) is periodic, so is the magnitude of the
wavefunction.

Remember wavefunctions are complex; their magnitude is
periodic, but their phase can be anything.
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Bloch’s Theorem

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

ψk (r) = eik.ruk (r),

where uk (r + L) = uk (r), and eik.r is an arbitrary phase
factor.
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Brillouin zone sampling

There are solutions for any k⇒ general solution is integral
over Brillouin zone.

We approximate this integral by a sum over discrete k;
these ‘k-points’ form a regular 3D grid in reciprocal space.

In your cell file use one of:
kpoint_mp_grid 5 5 5
kpoint_mp_spacing 0.04

Always need to ensure we have enough k-points to
approximate the integral well.
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k-point convergence
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Exploiting periodicity

Only compute ψj(r) and ρ(r) in a single unit cell
No longer have 1023 wavefunctions, more like 102

Now computing energy per unit cell

In fact because we’ve exploited the periodicity, in some ways
we’re now calculating for an infinite number of electrons!
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Electronic Structure Simulations

How can we make quantum mechanics easier for
ourselves?

Only use QM for the electronsX
Concentrate on the groundstateX
Exploit periodicity of crystalsX
Get a computer to do it
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Basis sets

We need to choose a suitable basis set to represent our
wavefunctions, but what should we choose...

Points on a grid?
Polynomials?
Gaussians?
Atomic orbitals?

None of these reflect the periodicity of our problem.
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Plane-waves

Since ψ(r) is periodic, we express it as a 3D Fourier series

ψ(r) =
∑

G

cGeiG.r

where cG are complex Fourier coefficients, and the sum is
over all wavevectors (spatial frequencies) with the right
periodicity.

Each ψ is now a vector of coefficients cG.
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Cut-off Energy

eiG.r is a plane-wave travelling perpendicular to G
There are an infinite number of allowed G
As |G| → ∞, |cG| → 0
⇒ can truncate the Fourier expansion safely
In your param file:
cut_off_energy : 420 eV
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Cut-off Energy
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An Eigenvalue Problem

{
− ~2

2m
∇2 + V [ρ] (r)

}
ψj (r) = εjψj (r)

ψj is a vector of num_pw Fourier coefficients
The {...} is a num_pw×num_pw matrix
−→ just an eigenvalue problem!

Hψj = εjψj
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A Large Eigenvalue Problem

Solve using the variational principle:

The groundstate energy E0 is the lowest possible
energy
Any wavefunction has energy E ≥ E0
−→ guess a wavefunction ψ (cG)
−→ compute E = ψ†Hψ
−→ tweak cG to lower E
When we can’t lower E any more,
ψ is the groundstate!
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Steepest Descent Diagonalisation

Starting with ψj , compute εj

Compute the gradient δεj

δψ†
j

This is the change to cG that increases εj quickest

We want to decrease εj , so use − δεj

δψ†
j
.

Make a new guess eigenstate, ψnew
j = ψj − λ

δεj

δψ†
j

Vary λ until we’ve found the lowest εj in this direction.
This procedure is often called a line search.

There are better methods than steepest descent, e.g.
conjugate gradients.
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Finding the Groundstate
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Sample CASTEP output
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Valence electrons and pseudopotentials

Core electrons do not affect material’s properties.

Compute core electronic states for isolated atom
Treat nucleus and core electrons as single ‘ion’
−→ replace nuclear potential with ionic
pseudopotential.

In your cell file:
%block species_pot
Co Co_00.usp
Mn Mn_00.usp
Si Si_00.usp
%endblock species_pot
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Fame and fortune

Now have all the tools we need
Can find solve DFT eq. for lowest N eigenstates
−→ get energy and electron density
Can now predict:

Crystal and molecular structure
Bond breaking and formation
IR spectra
Reactivities
Colour, X-ray absorption, NMR spectra
... and much more!
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Summary

Predictive materials simulations need QM calculations
DFT reduces QM to a large, simple eigenvalue problem
Use periodicity and pseudopotentials to improve speed
Need to converge wrt k-points and cut-off energy

With these tools we can predict a vast range of properties
for all kinds of materials and chemicals.
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cell file

Your simulation system; important keywords are:

Lattice
%block lattice_abc
2.4 2.4 3.5
90 90 120
%endblock lattice_abc
or specify fully (as row vectors)
%block lattice_cart
1.2000000 -2.0784610 0.0000000
1.2000000 2.0784610 0.0000000
0.0000000 0.0000000 3.0000000
%endblock lattice_cart
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cell file

Atomic positions
%block positions_frac
C 0.000000 0.00000 0.5
C 0.333333 0.66667 0.5
%endblock positions_frac
(or %block positions_abs for absolute Cartesian
coordinates; length units specified on 1st line)
Pseudopotentials
%block species_pot
C C_00.recpot
%endblock species_pot
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cell file

k-points
kpoint_mp_grid nkx nky nkz
or
kpoint_mp_spacing k-dist unit
or
%block kpoint_mp_list
kx ky kz weight
%endblock kpoint_mp_list
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cell file

Symmetry
symmetry_generate
snap_to_symmetry

Geometry optimisation
fix_all_ions : false
Do not fix the ionic positions.
fix_all_cell : false
Do not fix the cell lattice parameters.
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param file

What you want to do. Important keywords are:

Task
task: energy
task: geometryoptimisation
task: elnes

Calculation
spin_polarized : true
nextra_bands : 25

Approximations
xc_functional : lda
cut_off_energy : 500 eV
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More information

http://www.castep.org
Lots of information including talks, tutorials and
documentation.
http://www.jiscmail.ac.uk/lists/CASTEP.html
The CASTEP email list (website includes archives).
castep -help <castep keyword>
Returns information about that particular CASTEP
keyword (if it exists).
castep -help search <any word>
Searches the CASTEP keyword descriptions for all
occurrences of the word.
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