Introduction to first-principles modelling and CASTEP

Phil Hasnip

Introduction to DFT + CASTEP

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Atomistic Simulations

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

If we know what the bonding in a material is beforehand, then we can often find good expressions for the forces between atoms, e.g.

- Ionic \Rightarrow electrostatic potentials
- Covalent \Rightarrow directional potentials, e.g. Stillinger-Weber

(ロ) (同) (三) (三) (三) (○) (○)

- Metallic \Rightarrow Bond Order Potentials, EAM...
- Van der Waals \Rightarrow Born-Mayer, Lennard-Jones...

These potentials can do a good job of computing the mechanical properties of materials.

Atomistic Simulations

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

These 'forcefield' potentials do have problems:

• Usually parameterised for bulk equilibrium behaviour

- Parameterised for particular class of materials
- Cannot handle bond breaking or formation
- Cannot provide electronic information, so no predictions of
 - Resistance
 - Thermal conductivity
 - Colour

Introduction

DFT

Bloch's Theorem Plane-waves An eigenvalu problem

AATER

First Principles Simulations

Introduction

DFT

Bloch's Theorem Plane-waves An eigenvalue problem Summary

We want to be able to predict what atoms will do from *first principles*, without needing to know what they'll do beforehand! We can do this using quantum mechanics.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Unfortunately, quantum mechanics is difficult!

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

We want to solve the Schrödinger equation. For 1-particle it's:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + \hat{V}\right)\Psi(\mathbf{r},t) = i\hbar\frac{\partial\Psi(\mathbf{r},t)}{\partial t}$$

Now we just have to solve it for a real material.

How hard can it be?

The horror.... the horror...

For *M* nuclei and *N* electrons:

Introduction

DFT

Bloch's Theorem Plane-way

An eigenvalue problem -

Summary

CASTEP

$$\begin{cases} -\frac{\hbar^2}{2} \left(\frac{\nabla_{n1}^2}{m_1} + \dots + \frac{\nabla_{nM}^2}{m_M}, \frac{\nabla_{e1}^2}{m} + \dots + \frac{\nabla_{eN}^2}{m} \right) \\ + \hat{V} \left(\mathbf{R}_1, \dots, \mathbf{R}_M, \mathbf{r}_1, \dots, \mathbf{r}_N, t \right) \end{cases} \Psi \left(\mathbf{R}_1, \dots, \mathbf{R}_M, \mathbf{r}_1, \dots, \mathbf{r}_N, t \right) \\ = i\hbar \frac{\partial \Psi \left(\mathbf{R}_1, \dots, \mathbf{R}_M, \mathbf{r}_1, \dots, \mathbf{r}_N, t \right)}{\partial t} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

How big are M and N?

The horror.... the horror...

For *M* nuclei and *N* electrons:

Introduction

DFT

Bloch s Theorem Plane-wave An eigenva

Summary

CASTEP

$$\begin{cases} -\frac{\hbar^2}{2} \left(\frac{\nabla_{n1}^2}{m_1} + \dots + \frac{\nabla_{nM}^2}{m_M}, \frac{\nabla_{e1}^2}{m} + \dots + \frac{\nabla_{eN}^2}{m} \right) \\ + \hat{V} \left(\mathbf{R}_1, \dots, \mathbf{R}_M, \mathbf{r}_1, \dots, \mathbf{r}_N, t \right) \end{cases} \Psi \left(\mathbf{R}_1, \dots, \mathbf{R}_M, \mathbf{r}_1, \dots, \mathbf{r}_N, t \right) \\ = i\hbar \frac{\partial \Psi \left(\mathbf{R}_1, \dots, \mathbf{R}_M, \mathbf{r}_1, \dots, \mathbf{r}_N, t \right)}{\partial t} \end{cases}$$

How big are *M* and *N*? For a few grams of material:

M ~ 100,000,000,000,000,000,000 *N* ~ 1000,000,000,000,000,000,000,000

The horror.... the horror...

For *M* nuclei and *N* electrons:

Introduction

DFT

Theorem Plane-wave An eigenva

Summary

CASTEP

$$\begin{cases} -\frac{\hbar^2}{2} \left(\frac{\nabla_{n1}^2}{m_1} + \dots + \frac{\nabla_{nM}^2}{m_M}, \frac{\nabla_{e1}^2}{m} + \dots + \frac{\nabla_{eN}^2}{m} \right) \\ + \hat{V} \left(\mathbf{R}_1, \dots, \mathbf{R}_M, \mathbf{r}_1, \dots, \mathbf{r}_N, t \right) \end{cases} \Psi \left(\mathbf{R}_1, \dots, \mathbf{R}_M, \mathbf{r}_1, \dots, \mathbf{r}_N, t \right) \\ = i\hbar \frac{\partial \Psi \left(\mathbf{R}_1, \dots, \mathbf{R}_M, \mathbf{r}_1, \dots, \mathbf{r}_N, t \right)}{\partial t} \end{cases}$$

How big are *M* and *N*? For a few grams of material:

M ~ 100,000,000,000,000,000,000 *N* ~ 1000,000,000,000,000,000,000,000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Oh dear.

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

How can we make quantum mechanics easier for ourselves?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

How can we make quantum mechanics easier for ourselves?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Only use QM for the electrons

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

How can we make quantum mechanics easier for ourselves?

- Only use QM for the electrons
- Concentrate on the groundstate

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

How can we make quantum mechanics easier for ourselves?

- Only use QM for the electrons
- Concentrate on the groundstate
- Exploit periodicity of crystals

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

How can we make quantum mechanics easier for ourselves?

- Only use QM for the electrons
- Concentrate on the groundstate
- Exploit periodicity of crystals
- Get a computer to do it

Introduction

- DFT
- Bloch's Theorem
- Plane-waves
- An eigenvalue problem
- Summary
- CASTEP

How can we make quantum mechanics easier for ourselves?

- Only use QM for the electrons
- Concentrate on the groundstate
- Exploit periodicity of crystals
- Get a computer to do it

QM for the electrons

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

- Nuclei are heavy, slow and boring → no QM for nuclei
- Electrons are light, quick and interesting
 - \longrightarrow Nuclei appear static
 - \longrightarrow No explicit time-dependence for electrons

This is the Born-Oppenheimer approximation.

$$\Psi\left(\mathbf{R}_{1},...,\mathbf{R}_{M},\mathbf{r}_{1},...,\mathbf{r}_{N},t\right)\longrightarrow\psi\left(\mathbf{r}_{1},...,\mathbf{r}_{N}\right)$$

Now we can solve the time-independent Schrödinger equation.

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

$$\left\{ -\frac{\hbar^2}{2m} \left(\nabla_1^2 + ... + \nabla_N^2 \right) + \hat{V} \left(\mathbf{R}_1, ..., \mathbf{R}_M, \mathbf{r}_1, ..., \mathbf{r}_N \right) \right\}$$

$$\psi \left(\mathbf{r}_1, ..., \mathbf{r}_N \right) = E \psi \left(\mathbf{r}_1, ..., \mathbf{r}_N \right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hmm, looks a bit like an eigenvalue problem... Still have $N \sim 10^{23}$ though.

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

How can we make quantum mechanics easier for ourselves?

- Only use QM for the electrons√
- Concentrate on the groundstate
- Exploit periodicity of crystals
- Get a computer to do it

Concentrate on the groundstate

Introduction

- DFT
- Plane-wave An eigenva
- . Summori
- CASTEP

- Materials' properties are dominated by the groundstate
- For the groundstate we can use a different form of QM Density Functional Theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Density Functional Theory

Introduction

DFT

Bloch's Theorem

An eigenvalue problem

Summary

CASTEP

The groundstate energy *E* and density $\rho(\mathbf{r})$ of electrons are exactly the same as those of *non-interacting* particles in a specially modified potential.

Density Functional Theory

Introductior

DFT

Bloch's Theorem Plane-wave An eigenval problem Solve N non-interacting Schrödinger equations:

$$\left\{-\frac{\hbar^2}{2m}\nabla^2+V\left[\rho\right](\mathbf{r})\right\}\psi_j(\mathbf{r})=\epsilon_j\psi_j(\mathbf{r})$$

 $V[\rho]$ is a density functional.

$$ho(\mathbf{r}) = \sum_{j=1}^{N} |\psi_j(\mathbf{r})|^2$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We don't know $V[\rho]$ exactly, but there are reasonable approximations available.

Density Functional Theory

We know the classical contributions to $V[\rho]$, e.g.

$$E_{H}\left[
ho
ight]\left(\mathbf{r}
ight) \ = \ rac{1}{2} \int \int rac{
ho\left(\mathbf{r}
ight)
ho\left(\mathbf{r}'
ight)}{\left|\mathbf{r}-\mathbf{r}'
ight|}$$

but what about QM exchange and electron correlation? We have to approximate this exchange-correlation functional:

- Local density approximation (LDA) Tends to over-bind.
 In your param file use xc_functional : LDA
- Generalised gradient approximations (GGAs) PBE is the most popular. Tends to under-bind.
 In your param file use xc_functional : PBE

These approximations do not handle dynamic correlation well, e.g. no van der Waal's or Cooper pairs...

Introduction

DFT

Theorem Plane-wave An eigenva

Summary

CASTEP

The story so far...

Introduction

- DFT
- Bloch's Theorem
- An eigenvalue problem
- Summary
- CASTEP

- Started with time-dependent 10²³-electron-nuclear wavefunction
- Born-Oppenheimer approximation
 - \longrightarrow time-independent, 10²³-electron wavefunction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• DFT $\longrightarrow 10^{23}$ 1-electron wavefunctions

Introduction

DFT

Bloch's Theorem

An eigenvalue problem

Summary

CASTEP

How can we make quantum mechanics easier for ourselves?

- Only use QM for the electrons√
- Concentrate on the groundstate√
- Exploit periodicity of crystals
- Get a computer to do it

Crystals and Unit Cells

In the solid state, most materials like to have their atoms arranged in some kind of regular, repeating pattern, e.g.

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalu problem

Summary

CASTEP

Crystals and Unit Cells

In the solid state, most materials like to have their atoms arranged in some kind of regular, repeating pattern, e.g.

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalu problem

Summary

CASTEP

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

If the nuclei are arranged in a periodically repeating pattern, their potential acting on the electrons must also be periodic.

$$V(\mathbf{r} + \mathbf{L}) = V(\mathbf{r})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

where L is any lattice vector.

What does this mean for the density and wavefunction?

Introductio

DF1

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

If the potential is periodic, then so is the density:

$$\rho(\mathbf{r} + \mathbf{L}) = \rho(\mathbf{r})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

What about the wavefunction?

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem Summary

CASTEP

If the potential is periodic, then so is the density:

$$\rho(\mathbf{r} + \mathbf{L}) = \rho(\mathbf{r})$$

What about the wavefunction?

$$\rho(\mathbf{r}) = |\psi(\mathbf{r})|^2$$

i.e. if $\rho(\mathbf{r})$ is periodic, so is the magnitude of the wavefunction.

Remember wavefunctions are complex; their magnitude is periodic, but their phase can be anything.

(ロ) (同) (三) (三) (三) (○) (○)

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

unnary

CASTEP

Bloch's theorem: in a periodic potential, the density has the same periodicity. The possible wavefunctions are all 'quasi-periodic':

$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_k(\mathbf{r}),$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

where $u_k(\mathbf{r} + \mathbf{L}) = u_k(\mathbf{r})$, and $e^{i\mathbf{k}\cdot\mathbf{r}}$ is an arbitrary phase factor.

Brillouin zone sampling

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem Summary

CASTEP

There are solutions for any $\mathbf{k} \Rightarrow$ general solution is integral over Brillouin zone.

We approximate this integral by a sum over discrete **k**; these 'k-points' form a regular 3D grid in reciprocal space.

In your cell file use one of: kpoint_mp_grid 5 5 5 kpoint_mp_spacing 0.04

Always need to ensure we have enough k-points to approximate the integral well.

(ロ) (同) (三) (三) (三) (○) (○)

k-point convergence

Exploiting periodicity

Introduction

DFT

Bloch's Theorem Plane-wa

An eigenvalue problem

Summary

CASTEP

- Only compute $\psi_j(\mathbf{r})$ and $\rho(\mathbf{r})$ in a single unit cell
- No longer have 10²³ wavefunctions, more like 10²
- Now computing energy per unit cell

In fact because we've exploited the periodicity, in some ways we're now calculating for an *infinite* number of electrons!

(日) (日) (日) (日) (日) (日) (日)

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

How can we make quantum mechanics easier for ourselves?

- Only use QM for the electrons√
- Concentrate on the groundstate√
- Exploit periodicity of crystals√
- Get a computer to do it

Basis sets

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem Summary

CASTEP

We need to choose a suitable basis set to represent our wavefunctions, but what should we choose...

- Points on a grid?
- Polynomials?
- Gaussians?
- Atomic orbitals?

None of these reflect the periodicity of our problem.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Plane-waves

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem Summary CASTEP Since $\psi(\mathbf{r})$ is periodic, we express it as a 3D Fourier series $\psi(\mathbf{r}) = \sum_{G} c_{G} e^{i\mathbf{G}\cdot\mathbf{r}}$

where c_G are complex Fourier coefficients, and the sum is over all wavevectors (spatial frequencies) with the right periodicity.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Each ψ is now a vector of coefficients c_G .

Cut-off Energy

Introduction

- DFT
- Bloch's Theorem
- Plane-waves
- An eigenvalue problem Summary
- CASTEP

- e^{iG.r} is a plane-wave travelling perpendicular to **G**
- There are an infinite number of allowed G
- As $|\mathbf{G}| \to \infty$, $|c_G| \to 0$
 - \Rightarrow can truncate the Fourier expansion safely

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

In your param file:

```
cut_off_energy : 420 eV
```


Cut-off Energy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

An Eigenvalue Problem

Introductior

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

 $\left\{-\frac{\hbar^{2}}{2m}\nabla^{2}+V\left[\rho\right]\left(\mathbf{r}\right)\right\}\psi_{j}\left(\mathbf{r}\right)=\epsilon_{j}\psi_{j}\left(\mathbf{r}\right)$

- ψ_j is a vector of num_pw Fourier coefficients
- The {...} is a num_pw×num_pw matrix
- — just an eigenvalue problem!

$$\mathbf{H}\psi_j = \epsilon_j \psi_j$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A Large Eigenvalue Problem

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

Solve using the variational principle:

• The groundstate energy *E*₀ is the lowest possible energy

- Any wavefunction has energy $E \ge E_0$
 - \longrightarrow guess a wavefunction ψ (*c*_{*G*})
 - \longrightarrow compute $E = \psi^{\dagger} H \psi$
 - \longrightarrow tweak c_G to lower E
- When we can't lower *E* any more, ψ is the groundstate!

Steepest Descent Diagonalisation

- Introduction
- DFT
- Bloch's Theorem
- Plane-waves
- An eigenvalue problem
- Summary

- Starting with ψ_j , compute ϵ_j
- Compute the gradient $\frac{\delta \epsilon_j}{\delta \psi^{\dagger}}$
- This is the change to c_G that increases ϵ_j quickest
- We want to *decrease* ϵ_j , so use $-\frac{\delta \epsilon_j}{\delta \psi_i^{\dagger}}$.
- Make a new guess eigenstate, $\psi_j^{new} = \psi_j \lambda \frac{\delta \epsilon_j}{\delta \psi_j^{\dagger}}$
- Vary λ until we've found the lowest ε_j in this direction.
 This procedure is often called a *line search*.

There are better methods than steepest descent, e.g. conjugate gradients.

Finding the Groundstate

Sample CASTEP output

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

Core electrons do not affect material's properties.

- Compute core electronic states for isolated atom
- Treat nucleus and core electrons as single 'ion' —> replace nuclear potential with ionic pseudopotential.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

In your cell file: %block species_pot Co Co_00.usp Mn Mn_00.usp Si Si_00.usp %endblock species_pot

Fame and fortune

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

- Now have all the tools we need
- Can find solve DFT eq. for lowest N eigenstates
 - \longrightarrow get energy and electron density
- Can now predict:
 - Crystal and molecular structure
 - Bond breaking and formation
 - IR spectra
 - Reactivities
 - Colour, X-ray absorption, NMR spectra

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

... and much more!

Introductio

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary CASTEP

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

- Predictive materials simulations need QM calculations
 - DFT reduces QM to a large, simple eigenvalue problem
- Use periodicity and pseudopotentials to improve speed
- Need to converge wrt k-points and cut-off energy

With these tools we can predict a vast range of properties for all kinds of materials and chemicals.

cell file

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

Your simulation system; important keywords are:

Lattice

%block lattice abc 2.4 2.4 3.5 90 90 120 %endblock lattice abc or specify fully (as row vectors) %block lattice cart 1.2000000 - 2.0784610 0.00000001.2000000 2.0784610 0.0000000 0.0000000 0.0000000 3.0000000 %endblock lattice cart

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

Atomic positions

%block positions_frac

- C 0.000000 0.00000 0.5
- C 0.333333 0.66667 0.5

%endblock positions_frac

(or %block positions_abs for absolute Cartesian coordinates; length units specified on 1st line)

Pseudopotentials

%block species_pot
C C_00.recpot
%endblock species_pot

cell file

Introduction

DFT

Bloch's

Plane-wave

An eigenvalue problem

Summary

CASTEP

• k-points

kpoint_mp_grid nkx nky nkz
or

kpoint_mp_spacing k-dist unit

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

or

%block kpoint_mp_list
kx ky kz weight
%endblock kpoint_mp_list

cell file

Introduction

- DFT
- Bloch's Theorem
- Plane-waves
- An eigenvalue problem
- Summary
- CASTEP

• Symmetry

symmetry_generate
snap_to_symmetry

Geometry optimisation

fix_all_ions : false
Do not fix the ionic positions.
fix_all_cell : false
Do not fix the cell lattice parameters.

param file

Introduction

DFT

Bloch's Theorem

Plane-waves

An eigenvalue problem

Summary

CASTEP

What you want to do. Important keywords are:

Task

- task: energy
- task: geometryoptimisation
- task: elnes

Calculation

spin_polarized : true
nextra_bands : 25

Approximations

xc_functional : lda
cut_off_energy : 500 eV

(日)

More information

Introduction

- DFT
- Bloch's Theorem
- Plane-waves
- An eigenvalue problem
- Summary
- CASTEP

- http://www.castep.org
 - Lots of information including talks, tutorials and documentation.
- http://www.jiscmail.ac.uk/lists/CASTEP.html The CASTEP email list (website includes archives).
- castep -help <castep keyword>
 Returns information about that particular CASTEP keyword (if it exists).
- castep -help search <any word> Searches the CASTEP keyword descriptions for all occurrences of the word.