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Overview of Course

Model construction −→ dimensional analysis
Experimental input −→ fitting
Finding a ‘best’ answer −→ optimisation
Tools for constructing and manipulating models −→
networks, differential equations, integration
Tools for constructing and simulating models −→
randomness
Real world difficulties −→ chaos and fractals

A First Course in Mathematical Modeling by Giordano, Weir &
Fox, pub. Brooks/Cole. Today we’re in chapter 1.
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Change?!

We often have to model dynamic systems.

Discrete −→ difference equations
Continuous −→ differential equations

Today we’re looking at difference equations.
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Discrete systems

Some systems are genuinely discrete.

E.g. savings account, 1% interest/month
Invest £1000 initially
What is balance after a year?
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Savings account

Define initial amount a0 = 1000. Then the next value in the
sequence is a1 = a0 + ∆a0, where ∆a0 is the amount due to
the monthly interest.

i.e. in this case we have ∆a0 = 0.01a0, and:

a1 = a0 + 0.01a0

a2 = a1 + 0.01a1
...

a12 = a11 + 0.01a11
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Discrete systems

The savings account example led to a simple series
We may have other actions – e.g. regular withdrawals
In general we don’t have a precise formula
−→ have to fit change to data
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Approximating change

In practice continuous systems are often modelled as
discrete processes
Experimental data is usually discrete
Often need to guess an approximate form for model and fit
to data
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Population analysis

Remember this from the first lecture? We had:

Data on population every 10 years
−→ discrete changes
Had to deduce functional form

Simplest was Malthus

an+1 = an + kan

Verhulst model saturates – finite carrying capacity

an+1 = an + k
(

1− an

a∞

)
an
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Extensions to model

Competition – species a and b compete for resources

an+1 = an + k1an − k3anbn

bn+1 = bn + k2bn − k4anbn

Predator-prey – species b eats species a

an+1 = an + k1an − k3anbn

bn+1 = bn − k2bn + k4anbn

War!

an+1 = an − k3bn

bn+1 = bn − k4an
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Population analysis

There are lots of questions we might want to ask about how
these models behave, e.g.:

What is the long-time behaviour?
How sensitive are the solutions to the initial conditions?
Can we have sustainable hunting/farming?
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Long-time behaviour

Phil Hasnip Mathematical Modelling



Introduction
Discrete systems

Population analysis

Malthus

Recall the simplest model we looked at, the Malthus model:

an+1 = an + kan = (1 + k)an = ran

How does its behaviour depend on r?
r = 0→ an+1 = 0
r = 1→ an+1 = an
r < 0→ oscillatory
|r | < 1→ decay
|r | > 1→ growth
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Malthus

What is the equilibrium value? At equilibrium:

an+1 = an

⇒ r = 1 or an = 0
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Savings account

Back to our savings account.

Same as Malthus!
Include regular withdrawls: an+1 = ran + b
Equilibrium:

an+1 = an

⇒ an =
b

1− r
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Savings account

Equilibrium:

an =
b

1− r
r = 1⇒ no equilibrium
Otherwise an equilibrium a∞ exists
Are the equilibria all the same?
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Savings account

|r | < 1
stable equilibrium
different a0 converge to a∞

|r | > 1
unstable equilibrium
different a0 diverge
only get equilibrium if a0 = a∞
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Non-linear case

The logistic equation and Verhulst equations are non-linear,
e.g.:

an+1 = r(1− an)an

Their behaviour is interesting:

0 < r < 3 stable equilibrium
r = 3 oscillation between 2 different values
r = 3.6 oscillation between 4 different values – period
doubling
r = 3.7 chaos! No pattern or long-term prediction possible
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Summary

We can use difference equations to
model discrete processes
approximate continuous processes

Long-time behaviour is often of interest
Does the model decay or grow?
Does the model tend to a limit?
Does the model oscillate?

Non-linearity −→ chaos!
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