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Introduction

Overview of Course

@ Model construction — dimensional analysis
@ Experimental input — fitting

@ Finding a ‘best’ answer — optimisation

o

Tools for constructing and manipulating models —
networks, differential equations, integration

A First Course in Mathematical Modeling by Giordano, Weir &
Fox, pub. Brooks/Cole. Today we're in chapter 1.
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Introduction

We often have to model dynamic systems.

@ Discrete — difference equations
@ Continuous — differential equations
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Introduction

We often have to model dynamic systems.

@ Discrete — difference equations
@ Continuous — differential equations

Today we're looking at difference equations.
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Discrete systems

Discrete systems

Some systems are genuinely discrete.

@ E.g. savings account, 1% interest/month
@ Invest £1000 initially
@ What is balance after a year?
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Discrete systems

Savings account

Define initial amount a; = 1000. Then the next value in the
sequence is a; = ag + Aag, where Aagg is the amount due to
the monthly interest.

i.e. in this case we have Aay = 0.014g, and:

a; = ap+0.01a
a = ai+0.01a
a2 = a1 +0.01ay,
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Discrete systems

Discrete systems

@ The savings account example led to a simple series
@ We may have other actions — e.g. regular withdrawals

@ In general we don’t have a precise formula
— have to fit change to data
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Discrete systems

Approximating change

@ In practice continuous systems are often modelled as
discrete processes

@ Experimental data is usually discrete

@ Often need to guess an approximate form for model and fit
to data
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Population analysis

Population analysis

Remember this from the first lecture? We had:

@ Data on population every 10 years
— discrete changes
@ Had to deduce functional form
e Simplest was Malthus

apny1 = an + kan

e Verhulst model saturates — finite carrying capacity

a
ant1 _an+k<1—a">an

o0
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Population analysis

Extensions to model

@ Competition — species a and b compete for resources

an+1 - an + k1 an - k3anbn
bpi1 = bn + kobn — ksanbn

@ Predator-prey — species b eats species a

an+1 = an + k1 an — k3anbn
bn+1 - bn - k2bn + k4anbn

@ Warl

Anii = @n — kabn
bni1 = bn — ksan
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Population analysis

Population analysis

There are lots of questions we might want to ask about how
these models behave, e.g.:

@ What is the long-time behaviour?
@ How sensitive are the solutions to the initial conditions?
@ Can we have sustainable hunting/farming?
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Population analysis

Long-time behaviour
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Population analysis

Malthus

Recall the simplest model we looked at, the Malthus model:

@ a1 =ant+kan=1+k)ap=rap

@ How does its behaviour depend on r?
r=0—ap1=0
r=1-an1=ap

r < 0 — oscillatory

|r| <1 — decay

|r| > 1 — growth
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Population analysis

Malthus

What is the equilibrium value? At equilibrium:
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Population analysis

Savings account

Back to our savings account.

@ Same as Malthus!
@ Include regular withdrawls: a,.1 = rap+ b

@ Equilibrium:
any1 = éan

=a, = ——

Phil Hasnip Mathematical Modelling



Population analysis

Savings account

@ Equilibrium:

4= 2
1—r

@ r =1 = no equilibrium

@ Otherwise an equilibrium a,, exists

@ Are the equilibria all the same?
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Population analysis

Savings account

@ |rl<1
e stable equilibrium
e different ag converge to a..
@ |r|>1
e unstable equilibrium
e different ay diverge
e only get equilibrium if ay = a-
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Population analysis

Non-linear case

The logistic equation and Verhulst equations are non-linear,
e.g.:
an+1 - r(1 - an)an

Their behaviour is interesting:

@ 0 < r < 3 stable equilibrium
@ r = 3 oscillation between 2 different values

@ r = 3.6 oscillation between 4 different values — period
doubling

@ r = 3.7 chaos! No pattern or long-term prediction possible
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Population analysis

Summary

@ We can use difference equations to

e model discrete processes
@ approximate continuous processes

@ Long-time behaviour is often of interest

e Does the model decay or grow?
@ Does the model tend to a limit?
@ Does the model oscillate?

@ Non-linearity — chaos!
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