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Overview of Course

Model construction −→ dimensional analysis
Experimental input −→ fitting
Finding a ‘best’ answer −→ optimisation
Tools for constructing and manipulating models −→
networks, differential equations, integration
Tools for constructing and simulating models −→
randomness
Real world difficulties −→ chaos and fractals

A First Course in Mathematical Modeling by Giordano, Weir &
Fox, pub. Brooks/Cole. Today we’re in chapter 5.
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Integration

Experimental data −→ fit cubic splines
General model −→ discretise the independent variable
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Euler again

Last time we looked at integrals like

I =
∫ x

0
f (x ′)dx ′

−→ we needed to extrapolate
Today we’re looking at

I =
∫ b

a
f (x ′)dx ′

−→ we need to interpolate
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Euler again

The simplest method is to use Euler again:

Split integral into N intervals of width h
Approximate function over each interval by its value at start

∫ b

a
f (x)dx ′ ≈ h

N−1∑
n=0

f (xn) + O(h)

This is a first-order method since the error is ∼ h.
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Euler again

How well does Euler do? Consider

f (x) =
1

1 + x2

⇒ I =

∫ 1

0
f (x)dx

= tan−1(1)

=
π

4
≈ 0.785398
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Euler again

Using Euler:

h N I Error
0.1 10 0.859981 9.54%

0.01 100 0.792894 0.954%
0.001 1000 0.786148 0.095%
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Trapezium rule

Is Euler the best we can do? No!

Replace ‘square’ Euler approximation by trapezia
f (x) ≈ h

{1
2 f (x0) + f (x1) + . . .+ f (xN−1) +

1
2 f (xN)

}
+O(h2)

Now have a second-order expression
Only need one more evaluation: f (xN)
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Trapezium rule

h N I Error
0.1 10 0.784981 -0.053%

0.01 100 0.785394 -0.00053%
0.001 1000 0.785398 -0.0000053%
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Simpson’s rule

Of course we can still do better:

We could fit parabola in intervals −→ Simpson’s rule
f (x) ≈ h

3 {f (x0) + 4f (x1) + 2f (x2) + . . .+ 2f (xN−1) + f (xN)}
Some error’s cancel and get a fourth-order expression
Need even no. points, but same cost as trapezium rule!
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Beyond Simpson’s rule

We can improve the answer by:

Extend to yet higher-order
Reduce h (the interval width)

However we can be slightly cleverer than this.
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Romberg method

1 Choose an integration scheme
2 Compute integral I for a given h
3 Halve the width h← 1

2h
4 Repeat from step 2 for series of widths h, 1

2h,1
4h, . . .

5 Extrapolate to find limit of I as h→ 0

This is called the Romberg method.
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Gaussian quadrature

We could use a non-uniform grid of points:

Improved efficiency...
... but much more complex
Only really worth it when function is expensive to calculate
Gaussian quadrature – use special sampling points and
weights
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Higher dimensions

So far we’ve looked at functions of 1 variable. What happens
for 2D? 3D?

Suppose a given scheme and h leads to 30 sampling
points in 1D
For 2D we need 302 points
For 3D we need 303 points

For d dimensions we need 30d points!
This is rather bad news...
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Higher dimensions

The error in our schemes for N total sampling points is:

Euler is first-order, so error is ∼ N−
1
d

Trapezium is second-order, so error is ∼ N−
2
d

Simpson’s rule is fourth-order, so error is ∼ N−
4
d

The higher the dimensions, the more points we need to reduce
the error. Help!
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Welcome to Monte Carlo

We can get around the problem of dimensions with some
statistical trickery. Recall:

P(x ≤ x ′ < x + dx) = p(x)dx

and ∫ ∞
−∞

p(x)dx = 1∫ ∞
−∞

xp(x)dx = < x >∫ ∞
−∞

(x− < x >)2p(x)dx = σ2
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Welcome to Monte Carlo

The average value of any function f (x) is:

< f (x) >=
∫ ∞
−∞

f (x)p(x)dx
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Welcome to Monte Carlo

Using discrete variables and sampling at N random points:

< x > =
1
N

N∑
i=1

xi

S2 =
1
N

N∑
i=1

(xi− < x >)2

The estimates for the population are:

µ = < x >

σ2 =
N

N − 1
S2

The statistical error in this estimate of the mean is

∼ S√
N
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Monte Carlo integration

What has this got to do with integration? Mean-value theorem:

1
b − a

∫ b

a
f (x)dx = < f >

Thus if we:

choose our N points randomly
calculate f (x) at each point
compute the average of f
we get the integral!
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Monte Carlo integration

We do have some statistical error (σ) in this value

σ ∼ b − a√
N

√
< f 2 > − < f >2

= O(N−
1
2 )

but this is independent of dimensions.
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Monte Carlo integration

Pretty useless in 1D

Looks much better in higher dimensions

Monte carlo error ∼ N−
1
2

Recall Trapezium rule error ∼ N−
2
d

−→ Monte carlo better when d > 4
Monte carlo always wins for large enough d
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Monte Carlo integration

We need to ensure the sampling really is random:

Can get tables of random numbers – use one, cross it off,
move to next...
Use a computer – pseudo-random numbers
Both often give numbers between 0 and 1, so will often
need to rescale f (x):∫ b

a
f (x)dx =

∫ 1

0
f (x ′)dx ′
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Summary

In 1D we can use a variety of fixed-interval methods
Can extrapolate to zero-interval-width limit
In higher dimensions interval sampling methods are
expensive
Can use Monte carlo techniques to solve efficiently
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