Dimensional Analysis Buckingham's П-Theorem Buckingham's П-Theorem Example Summary of Methodology

Mathematical Modelling Lecture 2 – Dimensional Analysis

Phil Hasnip phil.hasnip@york.ac.uk

Overview of Course

- Model construction → dimensional analysis
- Experimental input fitting
- Finding a 'best' answer → optimisation
- Tools for constructing and manipulating models networks, differential equations, integration
- Tools for constructing and simulating models randomness
- Real world difficulties chaos and fractals

A First Course in Mathematical Modeling by Giordano, Weir & Fox, pub. Brooks/Cole. Today we're in chapter 8.

Aim

 To identify the relevant parameters and relationships for real-world problems and hence guide experimental design

Suppose we have a function of x, y and z and we know that it is linear in x, y and z - i.e. if we fix y and z, and plot f against x we get a straight line; and the same if we fix x and z and vary y etc. How many different terms are there?

$$f(x) = mx + c$$

A straight line has 2 parameters (slope and intercept), and we have 3 variables (x,y,z). Does this means we have $2 \times 3 = 6$ parameters in total?

Suppose we have a function of x, y and z and we know that it is linear in x, y and z - i.e. if we fix y and z, and plot f against x we get a straight line; and the same if we fix x and z and vary y etc. How many different terms are there?

$$f(x) = mx + c$$

A straight line has 2 parameters (slope and intercept), and we have 3 variables (x,y,z). Does this means we have $2 \times 3 = 6$ parameters in total?

$$f(x, y, z) = a_1 + a_2x + a_3y + a_4z + a_5xy + a_6xz + a_7yz + a_8xyz$$

We have $2^3 = 8$.

This gets worse very quickly if it isn't linear, but quadratic $(3^3 = 27)$, cubic $(4^3 = 64)$ or even higher order.

To get these parameters from experiment, we need at least one experimental measurement per parameter.

$$f(x, y, z) = a_1 + a_2x + a_3y + a_4z + a_5xy + a_6xz + a_7yz + a_8xyz$$

We have $2^3 = 8$.

This gets worse very quickly if it isn't linear, but quadratic $(3^3 = 27)$, cubic $(4^3 = 64)$ or even higher order.

To get these parameters from experiment, we need at least one experimental measurement per parameter.

You are feeling very sleepy...

What affects the period τ of the pendulum?

You are feeling very sleepy...

Perhaps $\tau = f(I, m, g, \theta)$. What is f?

Pendula

$$\tau = f(I, m, g, \theta)$$

Could use experiments to determine *f*. How many measurements do we need?

- Quadratic ⇒ 3 parameters
- 4 independent variables
- ⇒ 3⁴ = 81 total parameters
- ⇒ 81 expt measurements!

Dimensional analysis

P parameters per variable, *V* variables $\Rightarrow P^V$ total parameters.

But what if we can reduce the number of variables that need to be studied? Then we have a big saving!

Dimensional analysis does this by considering *dimensionless products*.

NB Dimensions are not the same as units!

Dimensional analysis

```
Dimensions M, L, T (and K, C, etc)

Product (includes quotients) e.g. [area]=L^2,

[energy]=ML^2T^{-2}, etc.

Dimensionless product = combination s.t. dimensions are

M^0I^0T^0
```

Dimensional compatibility

When adding terms in an equation they must all have the same dimension.

$$s = ut + \frac{1}{2}at^2$$

- u is a velocity, LT^{-1} , t is a time T $\Rightarrow ut$ is LT^{-1} . T = L, i.e. a length
- a is acceleration, LT^{-2} $\Rightarrow at^2$ is also a length

You cannot add apples and oranges! Terms must be dimensionally compatible.

Dimensional homogeneity

The equation should be true regardless of units. This is achieved if the left- and right-hand sides have the same dimensions.

- $s = \frac{1}{2}gt^2$ g is an acceleration LT^{-2} , so $\frac{1}{2}gt^2$ is L \rightarrow dimensionally homogeneous
- s = 4.6t²
 Dimensionally inhomogeneous → different answer if measure time in seconds, minutes, hours...

Dimensionless products

Products of variables which are dimensionless are always dimensionally homogeneous.

If a real world problem can be modelled by a dimensionally homogeneous equation (and no logarithms) then we can find the form of that equation using dimensional analysis.

Variable	Dimension
m	М
g	LT ⁻²
τ	Т
I	L
θ	$M^0L^0T^0$

What are the dimensions of a general product $m^{\alpha}g^{\beta}\tau^{\gamma}l^{\delta}\theta^{\epsilon}$?

$$M^{\alpha}L^{\beta+\delta}T^{\gamma-2\beta}$$

 $M^{\alpha}L^{\beta+\delta}T^{\gamma-2\beta}$ is dimensionless iff

$$\begin{array}{lll} \textit{M}: & \alpha & = 0 \\ \textit{L}: & \beta + \delta & = 0 \\ \textit{T}: & \gamma - 2\beta & = 0 \end{array}$$

which gives an infinite set of solutions - not enough equations!

- $\alpha = 0 \Longrightarrow m$ cannot appear in the model
- θ has no units \Longrightarrow value is arbitrary

Dimensionless products

There are three basic rules when forming dimensionless products:

- Choose the dependent variable to appear once
- Choose any variable that always appears in each dimensional equation
- **3** Choose any variable that always has zero exponent (e.g. θ)

Pendulum – dimensionless product 1

- Our dependent variable is τ , so choose $\gamma = 1$
- But $\gamma 2\beta \Longrightarrow \beta = \frac{1}{2}$
- $\delta = -\beta = -\frac{1}{2}$
- ϵ is arbitrary, so choose $\epsilon = 0$

Thus our first dimensionless product is

$$\Pi_1 = m^0 g^{\frac{1}{2}} \tau I^{-\frac{1}{2}} \theta^0 = \tau \sqrt{\frac{g}{I}}$$

Pendulum – dimensionless product 2

- Already have τ in first product
- For second product choose $\gamma = 0$
- $\bullet \implies \beta = 0$
- $\bullet \implies \delta = 0$
- ϵ arbitrary choose $\epsilon = 1$ (already used $\epsilon = 0$)

Thus our second dimensionless product is

$$\Pi_2 = m^0 g^0 \tau^0 I^0 \theta^1 = \theta$$

Our dimensionless pendulum equation will relate the dps in some way

$$\Pi_{1} = f(\Pi_{2})$$

$$\Rightarrow \tau \sqrt{\frac{g}{I}} = f(\theta)$$

$$\tau = \sqrt{\frac{I}{g}}f(\theta)$$

Quick check:

- LHS has dimension T
- RHS has dimension $\sqrt{\frac{L}{LT^{-2}}} = T$
- Equation is dimensionally homogeneous

$$\tau = \sqrt{\frac{I}{g}} f(\theta)$$

What have we learned?

- τ does not depend on $m \Rightarrow$ 'only' $5^3 = 125$ experiments
- changing units of time cannot change the actual period τ − there's a corresponding change in 'g' ⇒ equation is dimensionally homogeneous.

We shall make this a bit more rigorous in a moment.

But for now...

$$au = \sqrt{rac{I}{g}}.h(heta)$$

If we keep $\theta = \theta_0 = constant$ and vary / then

$$\frac{\tau_1}{\tau_2} = \sqrt{\frac{I_1}{I_2}}$$

i.e.

- $\tau \propto \sqrt{I}$ regardless of h.
- \Rightarrow graph of τ against \sqrt{I} should be linear
- ⇒ simple test requiring only 5 points!

If test fails, we go back and check our assumptions...

What about $h(\theta)$? Fix $I = I_0$ and vary θ :

$$\frac{\tau_1}{\tau_2} = \frac{h(\theta_1)}{h(\theta_2)}$$

- \Rightarrow plot a graph of τ vs. θ (or better, $\tau\sqrt{\frac{g}{I}}$ vs. θ)
- Can get $h(\theta)$ directly! Another insight gained ...

NB Whilst can do SHO analytically, cannot do the general case for arbitrary θ as it is non-linear ...

A pendulum

Dimensional analysis

- Original problem had 1 dependent and 4 independent variables
- We had 3 dimensional constraints
- Hence need 5 3 = 2 dimensionless products
- Result was an equation determined up to an unknown function of 1 dimensionless product

Buckingham's Π-Theorem

• A problem with n variables and m independent dimensional constraints can be written in dimensionally homogeneous form using (n-m) dimensionless products (dps) as

$$f(\Pi_1,\Pi_2,\ldots\Pi_{n-m})=0$$

Example 1

$$n = 4, m = 3$$

- ⇒ need 1 product including the dependent variable
- $\Rightarrow f(\Pi_1) = 0$ so can solve to get $\Pi_1 = constant$
- ⇒ can get dependent variable = (unknown constant) × (other variables)

Example 2

$$n = 5, m = 3$$

- ⇒ need 2 products
- $\bullet \Rightarrow f(\Pi_1, \Pi_2) = 0$
- can solve to get $\Pi_1 = h(\Pi_2)$
- ⇒ can get equation up to an unknown function of a single dimensionless product, as with the pendulum

Example 3

$$n = 6, m = 3$$

- ⇒ need 3 products
- $\bullet \Rightarrow f(\Pi_1, \Pi_2, \Pi_3) = 0$
- so can solve to get $\Pi_1 = h(\Pi_2, \Pi_3)$
- ⇒ can get equation up to an unknown function of two dimensionless products, etc.

We always need to construct (n-m) independent dps, with the dependent variable only appearing once, e.g. in Π_1 .

NB Good to put the most sensitive variables into the dp with the independent variable (e.g. Π_1) to minimise the amount of unknown behaviour and simplify experiments.

 Predict the period of 2 masses (m₁ & m₂) orbiting each other at a distance R apart, in vacuum

	Variable	Dimensions
	au	Т
	m_1	M
•	m_2	M
	R	L
	G	$L^3M^{-1}T^{-2}$

Identify variables:

So we have 5 variables and 3 dimensions \Rightarrow need 2 dps

General form of dp:

$$\Pi = \tau^{\alpha} m_{1}^{\beta} m_{2}^{\gamma} R^{\delta} G^{\epsilon}
= T^{\alpha} M^{\beta} M^{\gamma} L^{\delta} L^{3\epsilon} M^{-\epsilon} T^{-2\epsilon}
= M^{\beta+\gamma-\epsilon} L^{3\epsilon+\delta} T^{\alpha-2\epsilon}$$

i.e. coefficients:

$$\begin{array}{lll} T: & \alpha-2\epsilon & = 0 \\ M: & \beta+\gamma-\epsilon & = 0 \\ L: & \delta+3\epsilon & = 0 \\ \end{array}$$

$$T: \quad \alpha - 2\epsilon = 0$$
 $M: \quad \beta + \gamma - \epsilon = 0$
 $L: \quad \delta + 3\epsilon = 0$

 Π_1 : include τ once $\Rightarrow \alpha = 1 \Rightarrow \epsilon = \frac{1}{2} \Rightarrow \delta = -\frac{3}{2} \Rightarrow \beta + \gamma = \frac{1}{2}$ so free choice, e.g. $\beta = 1/2$ and $\gamma = 0$

$$\Rightarrow \Pi_1 = \tau m_1^{1/2} R^{-3/2} G^{1/2} = \tau \sqrt{\frac{m_1 G}{R^3}}$$

$$T: \quad \alpha - 2\epsilon = 0$$
 $M: \quad \beta + \gamma - \epsilon = 0$
 $L: \quad \delta + 3\epsilon = 0$

 Π_2 : set $\alpha=0\Rightarrow \epsilon=0\Rightarrow \delta=0\Rightarrow \beta+\gamma=0$ so free choice except must not choose same as before, e.g. $\beta=1$ and $\gamma=-1$

$$\Rightarrow \Pi_2 = \frac{m_1}{m_2}$$

Hence $f(\Pi_1, \Pi_2) = 0$

$$\Rightarrow \tau = \sqrt{\frac{R^3}{m_1 G}}.h\left(\frac{m_1}{m_2}\right)$$

Exact analytic answer: $au=2\pi\sqrt{\frac{R^3}{G(m_1+m_2)}}$

$$\Rightarrow h\left(\frac{m_1}{m_2}\right) = \frac{1}{\sqrt{1 + m_1/m_2}}$$

Summary of Methodology

- Decide your n variables, hence m dimensional constraints
- **②** Form complete set of (n m) dimensionless products (dps):
 - dependent variable only appears once (e.g. in Π_1)
 - put most sensitive variables into same dp
 - check each dp found has no dimensions!
- Apply Buckingham's Π-Theorem and hence solve for dependent variable
- **1** Test assumptions made (e.g. $\tau \propto \sqrt{I}$ for pendulum)
- Conduct further experiments necessary to find any unknown functions, or further computations based upon the dps found.

