

Mathematical Modelling

Lecture 6 – Optimisation

Phil Hasnip
phil.hasnip@york.ac.uk

Overview of Course

- Model construction → dimensional analysis
- Experimental input → fitting
- **Finding a 'best' answer → optimisation**
- Tools for constructing and manipulating models → networks, differential equations, integration
- Tools for constructing and simulating models → randomness
- Real world difficulties → chaos and fractals

A First Course in Mathematical Modeling by Giordano, Weir & Fox, pub. Brooks/Cole. Today we're in **chapters 7 and 12.**

Aim

- **Optimisation**: given a model, what is the ‘best’ possible output?

'Best?'

What do we mean by 'best'? Depends on the situation! E.g.

- **Electrons in a crystal**

Find the lowest energy state

- **Performance of shares**

Show me the money! Find the shares that give maximum profit

- **Population**

Find the equilibrium population (stationary point)

It's up to us!

Optimisation

Most optimisation problems can be converted into a minimisation problem

E.g. $g(x) = -f(x)$ turns a maximisation problem into a minimisation one.

The function we wish to optimise is called the **objective function**.

There might be more than one objective function...

Today

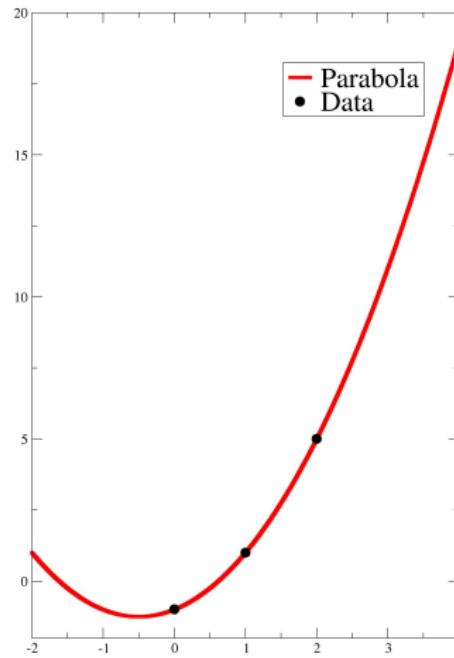
- One variable
- Many variables
- Many minima

Models with one variable

If we have a simple (differentiable!) model of only one variable, then we can use ordinary calculus:

- $f = f(x)$
- Differentiate to get $\frac{df}{dx}$
- Find the stationary points $\frac{df}{dx} = 0$
- Classify stationary points (min, max, inflection)

Example



Models with many variables

If we have a (differentiable!) model of more than one variable:

- $f = f(x, y, z, \dots)$
- Multivariate calculus: derivative is now a vector
$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \dots \right)$$
- Find the stationary points $\nabla f = (0, 0, \dots)$
- Classify stationary points (min, max, inflection, saddle point)

But solving $\nabla f = (0, 0, \dots)$ can be extremely difficult!

Constraints

Sometimes our solution might have to obey some constraints, for example:

- Number of particles is constant
- Money available to invest is constant
- No two electrons are in the same state
- Must stay on the road

Optimisation summary

Optimise the set of objective functions

$$f_i(x_1, x_2, \dots, x_N)$$

subject to the set of constraints

$$g_j(x_1, x_2, \dots, x_N) = b_j$$

where b_j are constants, to find the optimal inputs

$$\vec{X} = (x_1, x_2, \dots, x_N)$$

Optimisation summary

There are two particular special cases

- f and g are linear in \vec{X} —> linear programming
- x_i are integers —> integer programming

Examples

Models with many variables

In practice we can't usually solve for the stationary points exactly.

Suppose we want to find the minimum of the function $f(x)$.
First we pick a starting point (guess!), then:

- ① Differentiate to get vector $\nabla f = \left(\frac{df}{dx}, \frac{df}{dy}, \dots \right)$ at that point
- ② Move from point along $-\nabla f$ to find minimum
line minimisation
- ③ Repeat step 1

Steepest descent

This method always moves in the negative gradient direction, so is called the method of **steepest descent**.

Beyond steepest descents

There are lots of methods that aim to do better than steepest descents. One of the simplest such methods is called **conjugate gradients**.

Most of these methods will get to the minimum of a quadratic function in one step.

All functions are approximately quadratic near the minimum!
Taylor expansion:

$$f(x_0 + \delta x) \approx f(x_0) + \frac{\partial f}{\partial x} \bigg|_{x_0} \delta x + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \bigg|_{x_0} \delta x^2$$

Non-differentiable models

If we can't differentiate our function then we can't use these gradient methods. Guess some points, try to bracket minimum, then try to search in that region.

- Binary searches
- Golden section searches

Multiple minima

If there is more than one minimum, how do we know the one we've found is the lowest?

We don't!

- Monte-carlo
- Simulated annealing
- Genetic algorithms

Summary

When trying to use your model to determine the ‘best’ inputs:

- Decide objective function and what you mean by ‘best’ value
- Function of one variable – can often solve directly
- Function of many variables – usually need to solve iteratively (steepest descent, conjugate gradients)
- Many local minima – need a global optimisation method (simulated annealing, Monte Carlo, genetic algorithms)