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Overview of Course

Model construction −→ dimensional analysis
Experimental input −→ fitting
Finding a ‘best’ answer −→ optimisation
Tools for constructing and manipulating models −→
networks, differential equations, integration
Tools for constructing and simulating models −→
randomness
Real world difficulties −→ chaos and fractals

A First Course in Mathematical Modeling by Giordano, Weir &
Fox, pub. Brooks/Cole. Today we’re in chapters 7 and 12.
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Aim

Optimisation: given a model, what is the ‘best’ possible
output?
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‘Best?’

What do we mean by ‘best’? Depends on the situation! E.g.

Electrons in a crystal
Find the lowest energy state
Performance of shares
Show me the money! Find the shares that give maximum
profit
Population
Find the equilibrium population (stationary point)

It’s up to us!
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Optimisation

Most optimisation problems can be converted into a
minimisation problem

E.g. g(x) = −f (x) turns a maximisation problem into a
minimisation one.

The function we wish to optimise is called the objective function.

There might be more than one objective function...
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Today

One variable
Many variables
Many minima
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Models with one variable

If we have a simple (differentiable!) model of only one variable,
then we can use ordinary calculus:

f = f (x)

Differentiate to get df
dx

Find the stationary points df
dx = 0

Classify stationary points (min, max, inflexion)
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Example
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Models with many variables

If we have a (differentiable!) model of more than one variable:

f = f (x , y , z, . . .)

Multivariate calculus: derivative is now a vector
∇f =

(
∂f
∂x , ∂f

∂y , . . .
)

Find the stationary points ∇f = (0, 0, . . .)

Classify stationary points (min, max, inflexion, saddle
point)

But solving ∇f = (0, 0, . . .) can be extremely difficult!
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Constraints

Sometimes our solution might have to obey some constraints,
for example:

Number of particles is constant
Money available to invest is constant
No two electrons are in the same state
Must stay on the road
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Optimisation summary

Optimise the set of objective functions

fi (x1, x2, . . . , xN)

subject to the set of constraints

gj (x1, x2, . . . , xN) = bj

where bj are constants, to find the optimal inputs

~X = (x1, x2, . . . , xN)
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Optimisation summary

There are two particular special cases

f and g are linear in ~X −→ linear programming
xi are integers −→ integer programming
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Examples
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Models with many variables

In practice we can’t usually solve for the stationary points
exactly.

Suppose we want to find the minimum of the function f (x).
First we pick a starting point (guess!), then:

1 Differentiate to get vector ∇f =
(

df
dx , df

dy , . . .
)

at that point

2 Move from point along −∇f to find minimum
line minimisation

3 Repeat step 1
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Steepest descent

This method always moves in the negative gradient direction,
so is called the method of steepest descent.
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Beyond steepest descents

There are lots of methods that aim to do better than steepest
descents. One of the simplest such methods is called
conjugate gradients.

Most of these methods will get to the minimum of a quadratic
function in one step.

All functions are approximately quadratic near the minimum!
Taylor expansion:

f (x0 + δx) ≈ f (x0) +
∂f
∂x

∣∣∣∣
x0

δx +
1
2

∂2f
∂x2

∣∣∣∣
x0

δx2
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Non-differentiable models

If we can’t differentiate our function then we can’t use these
gradient methods. Guess some points, try to bracket minimum,
then try to search in that region.

Binary searches
Golden section searches
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Multiple minima

If there is more than one minimum, how do we know the one
we’ve found is the lowest?

We don’t!

Monte-carlo
Simulated annealing
Genetic algorithms
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Summary

When trying to use your model to determine the ‘best’ inputs:

Decide objective function and what you mean by ‘best’
value
Function of one variable – can often solve directly
Function of many variables – usually need to solve
iteratively (steepest descent, conjugate gradients)
Many local minima – need a global optimisation method
(simulated annealing, Monte Carlo, genetic algorithms)
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