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Overview of Course

Model construction −→ dimensional analysis
Experimental input −→ fitting
Finding a ‘best’ answer −→ optimisation
Tools for constructing and manipulating models −→
networks, differential equations, integration
Tools for constructing and simulating models −→
randomness
Real world difficulties −→ chaos and fractals

A First Course in Mathematical Modeling by Giordano, Weir &
Fox, pub. Brooks/Cole. Today we’re in chapter 7.
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Aim

Last lecture we looked at optimising general functions
subject to general constraints
Today we’re concentrating on the special case of linear
functions
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What is a linear function?

A linear function is any function that depends linearly on its
inputs.

E.g.

f (x) = mx + c
f (x0, x1) = a0x0 + a1x1 + c

Such functions often appear in relation to economic and
industrial applications.

Phil Hasnip Mathematical Modelling



Introduction
Optimisation

Linear programming

Today we’ll be optimising linear functions with linear constraints
using a technique called linear programming.

NB this is not computer programming!
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Example – Painting the town red

Suppose a decorating shop has:

20,000 litres of red paint, sells for £2.45 per litre
10,000 litres of green paint, sells for £2.00 per litre

and it also sells

brown paint (half red, half green) for £2.40 a litre

How can the shop maximise its income?
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Example – Painting the town red

We now have three constraints:

Amount of red paint⇒ 20000− x ≥ 0
Amount of green paint⇒ 10000− x ≥ 0
Amount of brown paint⇒ 2x ≥ 0

How can the shop maximise its income?

We can see this on a graph...
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Example – Painting the town red
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Painting the town red

With this example we only had one variable, x , so could plot
income on the graph easily.

With more variables plotting becomes trickier. Let’s look at a
slightly more complicated example...
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Example – Painting the town navy and brown

Suppose a smaller decorating shop has:

300 litres of red paint, sells for £2.00 per litre
200 litres of blue paint, sells for £2.00 per litre
200 litres of green paint, sells for £2.00 per litre

and it also sells:

Brown paint (half red, quarter blue, quarter green) for
£4.00 a litre.
Navy blue paint (half blue, quarter red, quarter green) for
£5.00 a litre.

How can the shop maximise its income?
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Example – Painting the town navy and brown

Now have 5 constraints

Amount of red⇒ 0.5x1 + 0.25x2 ≤ 300
Amount of blue⇒ 0.25x1 + 0.5x2 ≤ 200
Amount of green⇒ 0.25x1 + 0.25x2 ≤ 200
Amount of brown x1 ≥ 0
Amount of navy blue x2 ≥ 0

Income is 1400 + 2x1 + 3x2

How can the shop maximise its income?
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Example – Painting the town navy and brown
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Example – Painting the town navy and brown

Income is 1400 + 2x1 + 3x2. Optimum is at point B, where red
and blue constraints meet.

2x1 + x2 = 1200
x1 + 2x2 = 800

Maximum income I is:

I = 1400 + 2
(

1600
3

)
+ 3

(
400

3

)
i.e. I =£2866.66.
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Corners

Because the function is linear, the function at any point in the
allowed region can be expressed in terms of the function value
at the corners.

−→ we only need to look at the corners!
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Slicing and dicing

We had 2 variables
⇒ 2-D parameter space
Each constraint sliced space up −→ allowed and
disallowed regions
Final allowed region was a 2-D shape (a polygon)
Only the corners matter
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Slicing and dicing

In general:

N variables
⇒ N-D parameter space
m constraints −→ allowed and disallowed regions
Final allowed region is an N-D shape called a simplex
Only the vertices matter
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Example - Chebyshev fitting

Recall problem of fitting a model to some data. Rather than
minimising the total error (S2 or χ2) we could minimise the
worst error - this is the Chebyshev fitting criterion.

Residual at each point Ri = (yi − f (xi))

Biggest residual is max(Ri)

⇒ want to minimise max(Ri)

⇒ max(Ri)− Ri ≥ 0 and max(Ri) + Ri ≥ 0
Can write as a linear program!
NB N data points gives 2N constraints
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Simplex method

1 Start at a point in allowed region
(i.e. satisfies all constraints)
Often this will be the origin

2 Move along an edge of the simplex to find a vertex
Good idea to try all the edges and find the one giving
biggest objective function

3 Evaluate objective function at vertex
4 Repeat steps 2 and 3 until all vertices have been evaluated
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Summary

Can use linear programming whenever the objective
function and constraints are linear in the N variables
Constraints create an N-D allowed region called a simplex
Maxima and minima must be at the vertices of the simplex
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