

Mathematical Modelling

Lecture 7 – Linear Programming

Phil Hasnip
phil.hasnip@york.ac.uk

Overview of Course

- Model construction → dimensional analysis
- Experimental input → fitting
- **Finding a 'best' answer → optimisation**
- Tools for constructing and manipulating models → networks, differential equations, integration
- Tools for constructing and simulating models → randomness
- Real world difficulties → chaos and fractals

A First Course in Mathematical Modeling by Giordano, Weir & Fox, pub. Brooks/Cole. Today we're in **chapter 7**.

Aim

- Last lecture we looked at optimising general functions subject to general constraints
- Today we're concentrating on the special case of **linear functions**

What is a linear function?

A linear function is any function that depends linearly on its inputs.

E.g.

$$f(x) = mx + c$$

$$f(x_0, x_1) = a_0 x_0 + a_1 x_1 + c$$

Such functions often appear in relation to economic and industrial applications.

Linear programming

Today we'll be optimising linear functions with linear constraints using a technique called **linear programming**.

NB this is not computer programming!

Example – Painting the town red

Suppose a decorating shop has:

- 20,000 litres of **red** paint, sells for £2.45 per litre
- 10,000 litres of **green** paint, sells for £2.00 per litre

and it also sells

- **brown** paint (half red, half green) for £2.40 a litre

How can the shop maximise its income?

Example – Painting the town red

We now have three constraints:

- Amount of red paint $\Rightarrow 20000 - x \geq 0$
- Amount of green paint $\Rightarrow 10000 - x \geq 0$
- Amount of brown paint $\Rightarrow 2x \geq 0$

How can the shop maximise its income?

We can see this on a graph...

Example – Painting the town red

Painting the town red

With this example we only had one variable, x , so could plot income on the graph easily.

With more variables plotting becomes trickier. Let's look at a slightly more complicated example...

Example – Painting the town navy and brown

Suppose a smaller decorating shop has:

- 300 litres of **red** paint, sells for £2.00 per litre
- 200 litres of **blue** paint, sells for £2.00 per litre
- 200 litres of **green** paint, sells for £2.00 per litre

and it also sells:

- **Brown** paint (half red, quarter blue, quarter green) for £4.00 a litre.
- **Navy blue** paint (half blue, quarter red, quarter green) for £5.00 a litre.

How can the shop maximise its income?

Example – Painting the town navy and brown

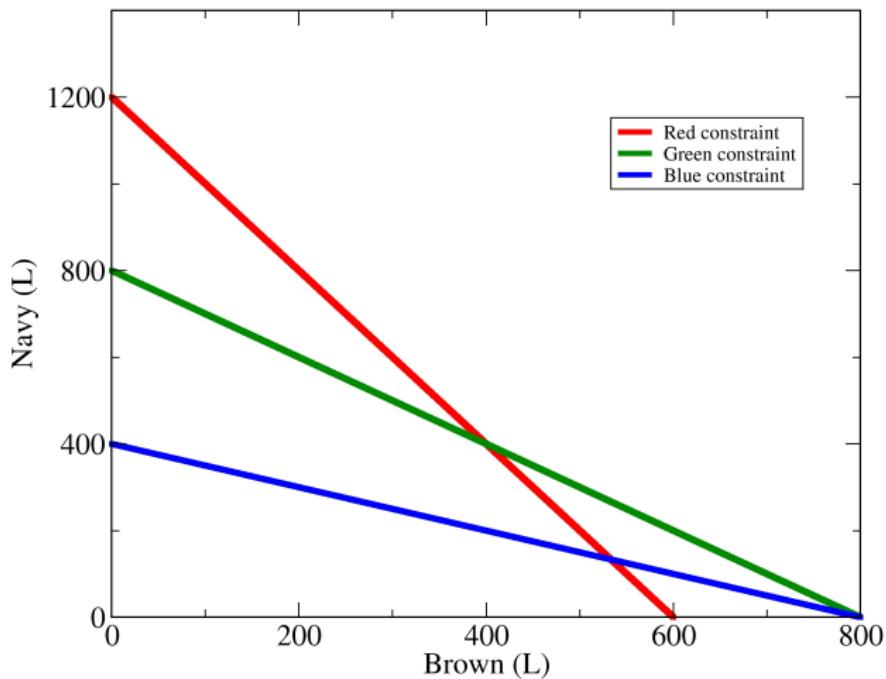
Now have 5 constraints

- Amount of red $\Rightarrow 0.5x_1 + 0.25x_2 \leq 300$
- Amount of blue $\Rightarrow 0.25x_1 + 0.5x_2 \leq 200$
- Amount of green $\Rightarrow 0.25x_1 + 0.25x_2 \leq 200$
- Amount of brown $x_1 \geq 0$
- Amount of navy blue $x_2 \geq 0$

Income is $1400 + 2x_1 + 3x_2$

How can the shop maximise its income?

Example – Painting the town navy and brown



Example – Painting the town navy and brown

Income is $1400 + 2x_1 + 3x_2$. Optimum is at point B, where red and blue constraints meet.

$$2x_1 + x_2 = 1200$$

$$x_1 + 2x_2 = 800$$

Maximum income I is:

$$I = 1400 + 2 \left(\frac{1600}{3} \right) + 3 \left(\frac{400}{3} \right)$$

i.e. $I = \text{£}2866.66$.

Corners

Because the function is linear, the function at any point in the allowed region can be expressed in terms of the function value at the corners.

→ we only need to look at the corners!

Slicing and dicing

- We had 2 variables
- \Rightarrow 2-D parameter space
- Each constraint sliced space up \longrightarrow allowed and disallowed regions
- Final allowed region was a 2-D shape (a polygon)
- Only the corners matter

Slicing and dicing

In general:

- N variables
- \Rightarrow N-D parameter space
- m constraints \longrightarrow allowed and disallowed regions
- Final allowed region is an N-D shape called a *simplex*
- Only the vertices matter

Example - Chebyshev fitting

Recall problem of fitting a model to some data. Rather than minimising the total error (S^2 or χ^2) we could minimise the worst error - this is the Chebyshev fitting criterion.

- Residual at each point $R_i = (y_i - f(x_i))$
- Biggest residual is $\max(R_i)$
- \Rightarrow want to minimise $\max(R_i)$
- $\Rightarrow \max(R_i) - R_i \geq 0$ and $\max(R_i) + R_i \geq 0$
- Can write as a linear program!
- NB **N** data points gives **2N** constraints

Simplex method

- 1 Start at a point in allowed region
(i.e. satisfies all constraints)
Often this will be the origin
- 2 Move along an edge of the simplex to find a vertex
Good idea to try all the edges and find the one giving
biggest objective function
- 3 Evaluate objective function at vertex
- 4 Repeat steps 2 and 3 until all vertices have been evaluated

Summary

- Can use linear programming whenever the objective function and constraints are linear in the N variables
- Constraints create an N -D allowed region called a simplex
- Maxima and minima must be at the vertices of the simplex