Mathematical Modelling Lecture 8 – Networks

> Phil Hasnip phil.hasnip@york.ac.uk

イロト 不得 とくほ とくほとう

3

Overview of Course

- Model construction —> dimensional analysis
- Experimental input —> fitting
- Finding a 'best' answer → optimisation
- Tools for constructing and manipulating models → networks, differential equations, integration
- \bullet Tools for constructing and simulating models \longrightarrow randomness
- Real world difficulties chaos and fractals

The material in these two lectures is not in the course textbook.

ヘロン 人間 とくほ とくほ とう

What is a network?

- A network is any system of interconnected locations
- Locations usually less important than the connections
- Not restricted to computer networks!

Using networks we can answer questions like

- What is the shortest route between two points?
- What is the cheapest route between two points?
- Are there any bottlenecks?

What's in a name?

- Locations are called nodes or vertices
- Links are called connections or edges

ヘロト ヘアト ヘビト ヘビト

3

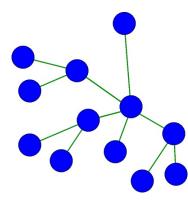
Types of network

Classified according to the nature of the connections:

- May contain cycles
- May contain directed (one-way) or undirected edges
- May be complete (every node directly connected to every other) or incomplete

ヘロト 人間 ト くほ ト くほ トー

Types of network: Trees

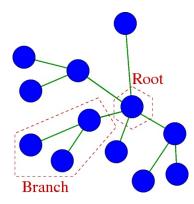


A tree is a special type of network.

- Unique path from any one node to any other
 - Not cyclic
 - Incomplete
- May have directed and/or undirected edges

< □ > < 同 > < 三 > <

Types of network: Trees

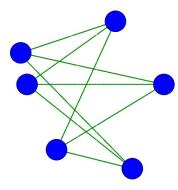


A tree is a special type of network.

- Unique path from any one node to any other
 - Not cyclic
 - Incomplete
- May have directed and/or undirected edges

ヘロト ヘヨト ヘヨト

Types of network: Bipartite



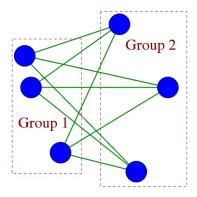
A bipartite network has two distinct groups of nodes

- Paths only exist between nodes in different groups
- No paths between nodes in same group
- May have directed and/or undirected edges

ヘロト ヘアト ヘヨト

.⊒...>

Types of network: Bipartite

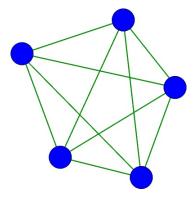


A bipartite network has two distinct groups of nodes

- Paths only exist between nodes in different groups
- No paths between nodes in same group
- May have directed and/or undirected edges

< ロ > < 同 > < 三 >

Types of network: Complete



A complete network has:

 Paths from each node to all other nodes

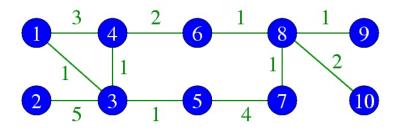
ヘロト 人間 ト くほ ト くほ トー

ъ

Lots of cycles

Cheapest path analysis

We are interested in the cheapest path from a particular node, called the root node, to another node.



Cheapest path analysis

Our method is to build up a linked list. We need to define three things:

- *P_j* is the previous node in the cheapest path found so far from the root node to node *j*
- *K_j* is the cost of the cheapest path found so far from the root node to node *j*
- *C_{ij}* is the cost of the connection from neighbouring node *i* to node *j*

・ロト ・回ト ・ヨト ・ヨト

Cheapest path analysis

We start by initialising P and K for all the nodes:

- $[P_{root}, K_{root}] = 0$
- $[P_i, K_i] = [0, \infty]$ for non-root nodes
- Label the root node with a 'slash'

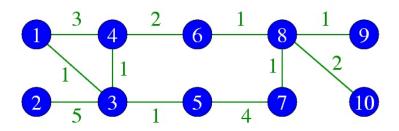
ヘロト 人間 ト くほ ト くほ トー

Cheapest path analysis

- From the slashed node *i*, look at each non-slashed neighbour *j*
- 2 Calculate $K_i + C_{ij}$
- If this is less than the current K_i :
 - $K_j = K_i + C_{ij}$ and $P_j = i$
 - Sketch the new $[P_j, K_j]$ by the node
- Find the neighbour with the lowest K_i
- Label this node with a 'slash' and repeat from step 1 until all nodes are 'slashed'

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Example 1

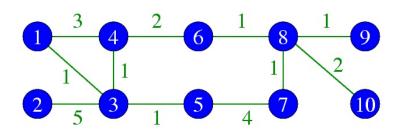


Let's look at the cheapest path from node 1 to nodes 9 and 10.

・ロト ・ 同ト ・ ヨト ・ ヨト

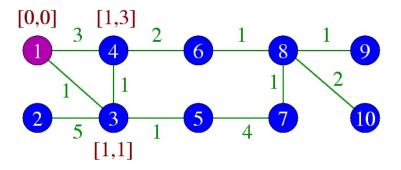
э

Example 1

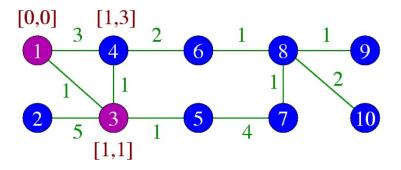


Phil Hasnip Mathematical Modelling

ヘロト 人間 とくほとくほとう

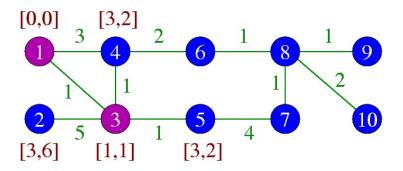


<ロト <回 > < 注 > < 注 > 、



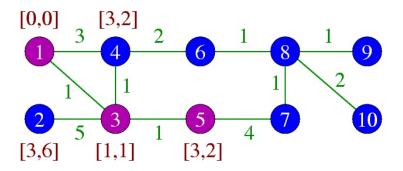
<ロト <回 > < 注 > < 注 > 、

Example 1



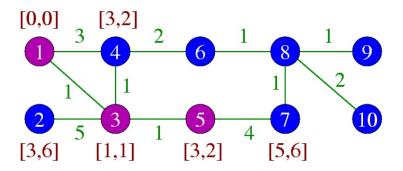
<ロト <回 > < 注 > < 注 > 、

Example 1



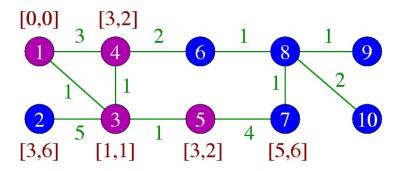
<ロト <回 > < 注 > < 注 > 、

Example 1



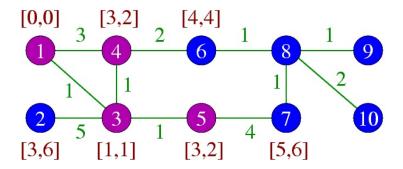
<ロト <回 > < 注 > < 注 > 、

Example 1



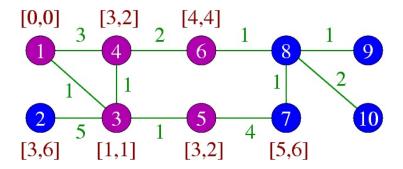
<ロト <回 > < 注 > < 注 > 、

Example 1



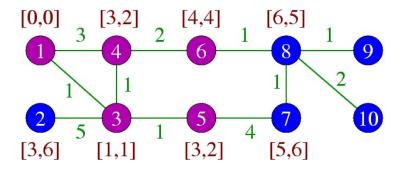
<ロト <回 > < 注 > < 注 > 、

Example 1



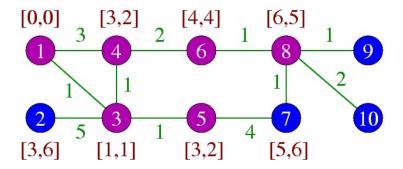
<ロト <回 > < 注 > < 注 > 、

Example 1



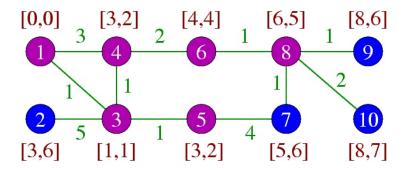
・ロト ・四ト ・ヨト ・ヨト

Example 1



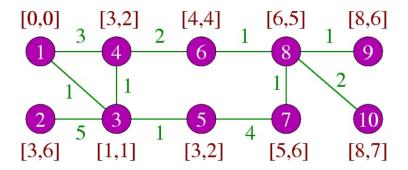
◆□ > ◆□ > ◆豆 > ◆豆 > →

Example 1



・ロト ・回 ト ・ヨト ・ヨト

Example 1



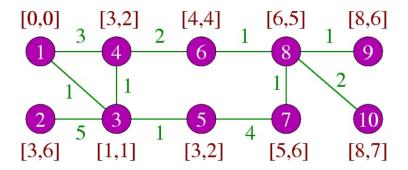
・ロト ・回 ト ・ヨト ・ヨト

Cheapest path analysis

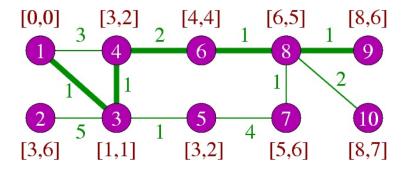
- At the end, *K_{target}* is the cost of the cheapest path to the target node
- We can find the cheapest path by working back along the links of previous nodes P_j: from node j move to node P_j and repeat until we reach the root node.

ヘロト ヘ戸ト ヘヨト ヘヨト

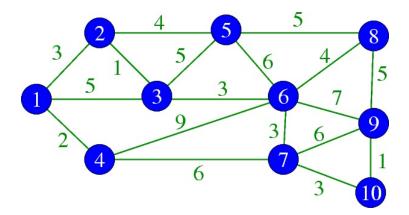
Example 1



・ロト ・回 ト ・ヨト ・ヨト



・ロト ・回 ト ・ヨト ・ヨト



ヘロト 人間 とくほとく ほとう

Example 3 - Transportation network

Using the network from the first example, but $1 \rightarrow 3$ and $3 \rightarrow 4$ are directional (one-way). There is a further restriction on $3 \rightarrow 4$, that the flow must not exceed 50 units a day.



イロト イポト イヨト イヨト

Example 3 - Transportation network

Using the cheapest routes:

	Flo						
Edge	Α	В	С	D	Total flow		
1 ightarrow 3	35	20			55		
1 ightarrow 4							
$\textbf{2} \rightarrow \textbf{3}$			15	30	45		
$3 \to 4$	35	20	15	30	100		
$3 \to 5$							
$4 \to 6$	35	20	15	30	100		
$5 \to 7$							
$6 \to 8$	35	20	15	30	100		
$7 \to 8$							
$8 \to 9$	35		15		50		
$8 \to 10$		20		30	< □50 < □ ► < ≡	K ≣ K ≡	
Phil Hasnip Mathematical Modelling							

Example 3 - Transportation network

Route	Cost	Flow
$\fbox{1} \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 9$	6	<i>x</i> ₁
$1 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 8 \rightarrow 9$	8	<i>x</i> 2
$1 \to 4 \to 6 \to 8 \to 9$	7	<i>x</i> 3
$1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 10$	8	<i>Y</i> 1
$1 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 8 \rightarrow 10$	10	<i>y</i> 2
$1 \to 4 \to 6 \to 8 \to 10$	9	<i>y</i> 3
$\textbf{2} \rightarrow \textbf{3} \rightarrow \textbf{4} \rightarrow \textbf{6} \rightarrow \textbf{8} \rightarrow \textbf{9}$	10	<i>Z</i> 1
$2 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 8 \rightarrow 9$	12	<i>Z</i> 2
$2 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 10$	11	<i>W</i> ₁
$2 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 8 \rightarrow 10$	13	<i>W</i> ₂

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Example 3 - Transportation network

Total cost K:

 $K = 6x_1 + 8x_2 + 7x_3 + 8y_1 + 10y_2 + 9y_3 + 10z_1 + 12z_2 + 11w_1 + 13w_2$ Subject to:

$$\begin{array}{rcrcrcrc} x_1 + x_2 + x_3 &=& 35\\ y_1 + y_2 + y_3 &=& 20\\ z_1 + z_2 &=& 15\\ w_1 + w_2 &=& 30\\ x_1 + y_1 + w_1 + z_1 &\leq& 50 \end{array}$$

i.e. minimise *K* subject to constraints – a linear programming problem!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Summary

- Networks consist of nodes joined by connections
- Examples include trees, bipartite networks, complete networks
- May have cycles, be directed/undirected, complete/incomplete
- Dijkstra's algorithm computes the cheapest path from a particular node to all other nodes

ヘロト 人間 ト ヘヨト ヘヨト