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Nine lectures for the Maths II course given to
first year physics students in the Spring Term.

Lecturer: Professor Peter Main

About the course

This course shows you how to differentiate and integrate functions of several
variables. It is presented as an extension of the calculus you already know which
deals with a single variable. It is vital mathematics for physicists since we live in a 3-
dimensional world, giving us at least three variables — x, y and z — to describe it. You
will make good use of this maths in the mathematical physics courses in the second
year.

The great book of nature is written
in the language of mathematics.
Galileo Galilei

http://www-users.york.ac.uk/~pm1/PMweb/teaching.htm




Partial differentiation

So far, you can differentiate functions of one variable. For functions of
several variables, we may proceed as follows:

For a cylinder of radius 7 and height %, the volume is ¥ = m*h
dv

If A is constant, the rate of change of V wrt r is rn =2nrh
r
. . dr )
If 7 is constant, the rate of change of V' wrt 4 is i =nr

If both 4 and r are variables, we can still use these results and designate the
derivatives as partial derivatives.

These are written as:

If V=mh where rand h are variables, then (a—Vj =2nrh and (Z—ZJ =qr’
h r

or

The operation we have carried out is that of partial differentiation. The recipe is easy
— to differentiate partially wrt one variable, regard all other variables as constants.

Notation
Functions: z=£x,y) z(x, y)
Partial derivatives: [gj (gj [%j (gj
ox y oy N ox y oy N
A more shorthand notation is often adopted:
A S
ox Oy ! ox Oy Y
Definition
For a function of one variable: .
li — 207
if y=fix) then & = ™ SHI)=/() z
dx ox—0 o0x 175
.. . f()C) ] Sy
Similarly, we can write for f(x, y): )
[QJ _ lim f(x+8x, ) - f(x,9)
ox), x>0 ox mfa"'k's”"z‘n”if‘é‘a‘"é'é"h‘n'“h‘s
o) _ lim fCny+8y)-f(x,y)
o). dy—0 dy

i.e. partial differentiation is achieved by differentiating wrt one variable while keeping
the others constant. The generalisation to functions of any number of variables should
be obvious.

Geometrical interpretation

z=f(x, y) gives a surface, i.e. the value of the function is plotted in the z-direction.
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gives the slope of the lines at constant y

gives the slope of the lines at constant x

Example If f(x,y) = x’e" cos(hy), find Zl and Zl
X y

Solution: Zi =2xe“’ cos(by)
X

%4

= x’ (a e’ cos(b y)—be® sin(b y)) = x” e (acos(b y)—bsin(b y))
Y

Caution!

If something can go wrong it will. Here’s an example of where you can easily make a
big mistake in partial differentiation.

The relationships between Cartesian (x, y) and polar coordinates (r, 0) will give us
some simple expressions to differentiate:

x =7 cos(0) F=qx>+y°
S - y
y =rsin(0) 0= arctan( 4 j

X _ cos(0) Y I
or ox 2 x2+y?
Lo _reos®) _ s
ox r
ox or
It appears, therefore, that — = — = cos(0) (!!)
or Ox

The paradox occurs because of slack notation.

Let us use the complete symbol for the partial derivatives:

ox) @ B X _
(EL — cos(®) (&Jy - eol)

and there is no reason to have any particular relationship between these two
derivatives since different variables are held constant and different functions have
been differentiated.

More correctly: from x =r cos(0) we obtain = x sec(0)

(@] = sec(0) and we find (ﬁj = (87/) as expected.
ox ), or ), 0x )y

?:1 Zr only if the same variables are held constant during the
r x
differentiation.



Higher order partial derivatives

Just as for functions of one variable, we may define higher order derivatives:
d (dyj _d’y

de\dx ) x>
The first order derivatives of f(x, y) are @ and @, so that
ox oy

2
i(gj = % which can also be written as fxx
ox \ Ox ox

2
ﬁ @ = 0 { which can also be written as fqy
ov\dy) Oy

Mixed derivatives are also possible because f, fy are both functions of x and y:

2
o1 = or which can also be written as fyy,
ox\ oy Ox Oy

2
i[gj = o7 which can also be written as fyx
oy \ Ox Oy Ox

o’'f _o'f
Oxody 0Oyox

Fortunately, we have the simplifying fact that , provided that all the

o . . . 0 0
derivatives exist and are continuous, i.e. the operators — and — commute.

ox ay
o’f)_ of
= = also = -
ax ay] 8x2 ay fxxy fxxy f‘ny fyxx

o . 0
Other derivatives exist, e.g. a—(
X

Example
Show that f,, = fix for flx, y) =x*e? cos(by)
Solution: from a previous example we have f, =2xe’ cos(by)
S S =2xae’ cos(by)—-2xe"” bsin(by)
=2xe" (acos(b y)—bsin(b y))
also f, = x> e” cos(by)—x* e"” bsin(b y)
S Sy =2xae” cos(by)—2xe" bsin(b y)

=2xe"’ (a cos(b y)—bsin(b y))
and we find that fi, = fix

Example
2 2

Show that f(x, y) = sin(ax) exp(-by) satisfies 0 ]; +g { =0 only for a*= b
X y

This is Laplace’s equation — a partial differential equation which is very important in
mathematical physics. You will meet it again in second year courses.



Solution: f(x,y) =sin(ax)exp(-by)

g = acos(ax)exp(—by) g = —bsin(ax)exp(-b y)
ox Oy
2 82
0 { = —a’sin(a x)exp(=b y) S b* sin(a x) exp(—b y)
0x oy’
2 2
.-.%+% = (b* —a*)sin(ax)exp(-by) =0 when a* = b
ox~ oy
Total differential

Given f(x, y), the amount by which the function changes when both variables change
simultaneously is called the total differential and is defined as:

df = f(x+dx,y+dy)=f(x,y)
Let us express this in terms of partial derivatives.

o _ fy+dy)-f(xy)

Since
oy dy
of
then f(x,y+dy)—f(x,y)=5dy (D
. of
Similarly f(x+dx,y+dy)— f(x,y+dy) =| =— dx
Ox (x, y+dy)
OX ) (1, yeay) X )y YNOX )
2
S f(xe+dx,y+dy)—-f(x,y+dy) = g+ﬂdy dx 2)
ox Oyox

2
Adding (1) and (2) gives f(x+dx,y+dy)—f(x,y) = gdx+gdy+ﬂdxdy
ox oy Ox Oy
Neglecting second order small quantities then gives

df = f(x+dx,y+dy)—f(x,y) = %dx+%dy

The first term in the final expression is made from the partial derivative o o which

gives the rate of change of f/ with x, multiplied by dx, the change in x. The product

o

—dx therefore gives the change in f due to the change dx in x. Likewise, the second

ox
term 2—fdy gives the change in f due to the change dy in y. It is seen that the total
y

change in f (the total differential) is the sum of the changes due to shifts in x and y
separately.



Example

Find the change in f{x, y) = x ¥ when the values of x and y are changed from 2 to
2.02 and 1 to 1.05 respectively.

Solution: of = ﬁSergSy
ox oy
= (e” —Hcye"y)éix-i-x2 e’ oy =¢e"’ [(l+xy)8x+x2 5y]
when (x, y) = (2, 1): §f=¢’ (3 8x+4 &)

when (8x, 8y) = (0.02, 0.05): 8f = ¢ (0.06 + 0.20) = 0.26 ¢* = 1.92

The actual change is: 8f=£(2.02, 1.05) —£(2,1) = 16.68 — 14.78 = 1.90

Implicit differentiation

If fix, y) = 0 this determines y as a function of x or vice versa, i.e. y is an
implicit function of x since it is not defined explicitly. There are two ways of
determining dy/dx in this situation, the first of which you may have seen before:

1. differentiate terms in x as normal: x> > 3x?

. : . d
differentiate terms in y as normal: ) y—y

dx

. . . . d
differentiate terms in xy using the product rule: xy — y +xd—y
X

example: 2x* y+cos(xy) =0
differentiating gives 4x y+2x° Yv_ sin(x y) (y +x ﬂj =0
dx dx

dy _ ysin(xy)—4xy
dx  2x*—xsin(xy)

and an algebraic rearrangement gives

2. since f(x, y) = 0 i.e. constant, then df = 0 so that

dfzgdxwtgdy:O giving Q:_Gf_/ax
ox oy dx of /oy
example: f(x,y)=2x> y+cos(xy) =0

L dy __Of/ox _ 4xy-ysin(xy)

Cdx of /oy 2x” —xsin(x y)
which is an easier calculation than the first one.

Function of a function

For functions of a single variable, we already know that for y(x) and x(¢) then

dy _dy dv
dt dx dt



This is sometimes called the chain rule. It can be extended to the case where we have
a function of several variables.

Let f{u) and u(x, y) then: [ = (@j - ﬂ(a_”j and [, = (@j _ i(a_“j

ox ) dul\ ox oy  du oy
Example If f(x,y) = arctan[lj find Zl and Zl
x X Y

Before solving the problem, let us make sure we can differentiate the arctan function.
. dx . .
If you remember the standard integral J-l - = arctan(x)+C, then differentiating
+x

2

both sides gives immediately i(arctan(x)) =
dx +x

Another way of doing it is to let y = arctan(x) then x = tan(y)

? =sec’(y) = 1+x’

dy d
S =— t =
dx dx (arc an(x)) 1+x

Solution: Use this result to solve the original problem:

Let u =y/x then we have f{u)= arctan(«) and fis a function of a single variable.

We also have a_u -2 and % = 1
ox x’ o X
Therefore (QJ =£(a—uj =i(arctan(u))(a—uj _ (—lJz— 24
ox), du\dx), du ox ), 1+u? x? x? 42
Also @ :i(arctan(u)) 6_u = 121: Zx 5
oy ). du o) l+u"x x'+y

Example Given fix’—ay), find Zi and %
X

Solution: We cannot differentiate the expression completely because the function f'is
not given. However, we can make some progress towards the derivatives as follows.

Let u=x"—ay then the function becomes f{u) and ou =2x, ou =-a
ox oy
Then @zﬂ%:zxﬂ and gzﬂa_u:_aﬂ
ox du oOx du oy du oy du

. .0 1 0
Example  Show that ¢(x,r) = f{x-vr) satisfies the equation 8_(2[) = _ZGTZP where f
X %
is an arbitrary differentiable function and v is a constant.
Solution: Using the same mathematical ideas as in the previous example, the power
of calculus is demonstrated when we show that the equation is satisfied by an



unknown function /. The equation, known as the wave equation, is an important one
in mathematical physics as it describes the behaviour of many kinds of wave.

Let y=x—vt then ¥ =1 and Y =—v also ¢(x, r) becomes f(y)

ox ot
G _dfov_df o _dfov__ df
ox dyox dy ot dy ot dy
%9 _ (dfjay a’f P _ (dfjay pdf
o’ dy dy ) ox dy2 o’ dy dy ) ot dy’
o’¢ 10°
o’ v ol

Chain rule

If we have f(x, y) given that x(¢) and y(¢), then f may be expressed as a function
of ¢ alone.

The complete derivative df/dt therefore exists and it can be expressed in terms
of partial derivatives as follows.

The total differential of f'is df = f dx +% dy

dar 8f dx 8f dy
dt  ox dt 8y dt
i.e. two terms of the form previously given for a function of a single variable.

It therefore follows that

Example
If f(x,y)=xe’ andx=2t,y=1- £, determine df/ds two different ways.

Solution: 1) Express fas a function of #, then

df d 1-¢ 1-¢2 1-¢2 1-¢2 2
2te 2 +2t (-2t =2 1-21¢
i dt( ) e (21)e e ( )

2) Use the chain rule
G _T & TH_ny e (—2£) = 2" (1-2¢7)
dt oOxdt Oy dt

Chain rule again

A more general expression of the chain rule becomes necessary when we have f(x, y)
where x(u, v) and y(u, v).

Usually written as: Using full symbols:

2 T RS

ou  ox ou 8y8u ou ), ox ), \ou), \dy) \ou),
w Lamrr (L)Y

ov  ox 8v 8y ov ov ), ox),\ov), \ay) \ov),



Differential operators

You have been using differential operators for some time even if you haven’t called

them by that name. For example, to differentiate f{x) you apply the operator di to

X
produce the result /A . This may be written as i( f ) - /A .
dx dx dx
If j d*f . . d’ d*f
Similarly, — —=. You can apply the operator twice as in—— - .
> [dx & PPy TREOp g
2
For f(x, y): i(f)%g and —[gj% o/
ox ox oy \ Ox Oy Ox

More complicated operators can arise for f{x, y) with x(u, v) and y(u, v).
o af ox 8f oy

ou  ox ou 8y ou

and this may be written in terms of differential operators as

0 ox O 0
ou Ou Ox Ou Oy
The left-hand operator is to be used when £ is in terms of u and v; the right-hand

operator is to be used when fis in terms of x and y. The operators perform the same
operation and are therefore equivalent. This may be written as

The chain rule gives

+
ou 8u ox Ou 8y

The right-hand operator tells you to differentiate partially wrt x and multiply by
Ox/0u then add this to the partial derivative wrt y multiplied by dy/ou .

Example

If fix,y)=xy+2y° where x=uv and y=u—v, find of /Ou using two
different operators.

Solution: 1. Substitute for x and y in f{x, y) and use the operator 6/0u :

f,v)=uv(u—v)+2(w—v) giving Zl =v(u—v)+uv+6(u—v)
u

2. Leave f'in terms of x and y and use the operator ﬁiJray °.
Ou Ox auay
. T ox oy
The partial derivatives in the operatorare — =v and — =1
ou ou
0 ox 0 0Oy 0 3 0 0 3
So —f=|——"+——|xy+2y' )= v—+— [lxy+2
ou (6u6x 8u6yj(y ) (8x ayj(y )

= vai(xy+2y3)+§(xy+2y3): v(y)+x+6y2 = v(u—v)+uv+6(u—v)2
X y



Example — determination of differential operators

2

Given that x = u* — v* and y = 2uv, express the operators 6/0x and 6/dy in

terms of u and v.

Solution: The chain rule gives 9 = ﬁiJra—yi an 9 = ﬁiJra—yi
Ou OuOx Ou Oy ov 0Ovox Ovoy
The partial derivatives are: a_x =2u; a_x =-2v; a_y =2v; a_y =2u
ou ov ou ov
9 = 2u 9 +2v 9 .
Ou Ox oy solve these equations
so the operators become: 5 5 5 for 9/dx and 0/dy
—=-2v—+2u—
ov ox oy

You can use any method you like to solve the equations, but the recommended
method is to use Cramer’s rule:

% _ w1

%u 2v_ 2u %u 2u  2v
a&v 2u|  |-2v %v —2v 2u

2u9/ —2v0
therefore i = é u év = ! [ui—vij
ox 4u* +4v? 2(u2+v2) ou Ov
P 2u%v+2v%u 1 ) P
and —= > 5 = | Vo tu—
oy 4u”+4v 2(u +v) ou  Ov

Cramer’s rule

If you haven’t seen Cramer’s rule before, here it is as applied above. It is
recommended as it needs less algebraic manipulation than other methods when
applied to a pair of simultaneous equations. For the equations:

anx+tapy = b

anx+any = b

the solution is expressed in terms of determinants as:

X B y 1

b, a,

b, a, a, b, ay Ay

The unknowns are x and y and the pattern of determinants is:

The last determinant, call it A, contains the array of left hand side coefficients.
The determinant for x (first unknown) is A with the first column replaced by the rhs.
The determinant for y (2nd unknown) is A with the 2" column replaced by the rhs.

10



Comment

Can we avoid having to solve equations by doing the calculation in a different way?
For example, for f{u, v) with u(x, y) and v(x, y), the chain rule gives

g g@_u g so the operators are 9 6_ui+@£

Ox OuoOx Ovox Ox Ox Ou Ox Ov

giving 0/ox directly with an equivalent expression for 6/dy. However, don’t be

fooled. The derivative Ou/0x above is not the reciprocal of Ox/0u in the previous

example. Here, u is a function of x and y so the full symbol for the derivative is

ou . ) ) . ... [ox
[a—j , Whereas in the example x is a function of « and v, i.e. the derivative is (—j .
X u
y v

To obtain (du/ 6x)y , the equations x = u* — v* and y = 2uv will have to be solved for u

and v to express them as functions of x and y. This is a considerably more difficult
task than solving the equations in the example, so you can’t win this way.

Change of variables — Cartesian to polar
2 2 2 2
of of_ oy 1of 10
o’ oyt or* ror r’oe’
the equivalent function of 7 and 0) and x = r cos(0), y = r sin(0), i.e. the expression is

changed from Cartesian to polar coordinates. The expression itself is part of
Laplace’s equation.

Show that

where fis a function of x and y (or

9 = gngga_y = cos(0) f+sm(9) o

or Ox Oor Oy or

S _TxX T 00y Lt rcos@)L
00 Ox 80 oy 00 X 0

From the chain rule:

Solve these equations for df /dx and df /dy to give:

T o)LLy &)L, O T
* 06 oy or r 00

These expressions also provide the operators needed to obtain the second order
derivatives:

(j;]: (afj (cos(@)i——sm(e)i)(cos(@)g—mzj
X ox\ 0 or r 00 or r 00

Expand the operator:

of sin(0) of | sin(9) o

= cos(f)— 0 [co (0)————)———[cos(0)@_wij
or r r

or r 00

Now differentiate, remembering to use the product rule where it applies:

2 : : 2
_ cos?(0) 0 ]2‘+ sm(@)c;os(@)z_sm(e)cos(e) o' f
or r 00 r or o0
N sin®(0) & sin(f)cos(9) &°f N sin(@) cos(0) 1+ sin”(0) 8° f
r or r 00 or r’ 00 r*  00?

11



Collect like terms and put them in a logical order:

o’ f ,, 07 f sin(20) 0°f sm ‘)0’ f sin®(0) of sin(260) of

—7 =c0s (0) 5~ 2 7t ~t— 1 5
X r or 80 r- 00 r  or r- 00

A similar analysis gives the expression for 0° f/dy” :
o f o f | 5in(20) o f . cos 2(0) 6* /., cos’(6) of sin(20) of
Oy

=sin’ (0
R S R Y A PR 7
Adding them together gives the required result:
8f o f 62f+lg+L82f
8x2 o> or* ror r* oo’

Taylor series for a function of two variables

For a function of a single variable, we have:
" " (n)
farh = f@+ f@hr D LD e Wy
or alternatively:

f(x) = f@)+f(@)(x—a)

M(x—a)z +M(x_a)3 +...+w(x_a)" +...
2! 3! n!

These two expressions are the same with x = a + A. Functions of several variables can

be treated in a similar way. For two variables, define the differential operator

D = ]’li-‘r ki . The Taylor expansion of f{x, y) about the point (a, b) is then:

ox Oy

fla+hb+k)= f(a,b)+Df(a,b)+%sz(a,b)+%D3f(a,b)+---+l'D”f(a,b)+---

where D"f(a, b) means apply the differential operator n times to f{x, y) and evaluate
the result at the point (a, b).

2 2 2 2
Let us look at D*: h3+k3 h3+k 0 =h = 0 +kh 0 +hk 0 Ty 0
ox Oy ox oy ox® oy Ox Ox Oy oy®

2 2 2

:h28—+2hk 0 +k*—— 0

o’ Ox Oy oy’

This is the same mathematical form as a binomial expansion.

Writing out all the terms in the Taylor expansion up to order 3 gives:

fla+hb+k) = f(a,b)+fx(a,b)h+fy(a,b)k+%[fxx(a,b)h2 +2.f, (a,b) bk + £, (a,b) k*]

+ V@D 43 1 @D R k3 £, @B K + £ (@B i

xxy xyy wy
The alternative form is obtained by putting x=a +h, y=5b +k:
FGer) = fl@b)+ foab)x—a)+ f(a,b)(y— m+ﬂ* D) (x—ay

+fy(ab)(x—a)(y~- b)+f”( )( ~b)* +

12



Example

Expand f(x, y) = exp(x sin(y)) as a power series about the point (1, 7/2) to
terms of the second degree. Hence obtain an approximate value for (1.1, n/3).

f=exp(x sin(y)) AL, n/2)=e
fx = sin(y) exp(x sin(y)) K, m/2)=e
Jfy = x cos(y) exp(x sin(y)) f(1,n/2)=0
frx = sin*(y) exp(x sin(y)) fu(1, T2)=¢
Jxy = cos(y) exp(x sin(y)) + x cos(y) sin(y) exp(x sin(y)) S, W/2) =0
foy = -x sin(y) exp(x sin(y)) + x* cos’(y) exp(x sin(y)) fi(1, 2) = -¢

The Taylor series about (1, 7/2) is:
F2) = L)+ £ (LAY (=1 f,(L7/) (y—%)%fﬁ (L7/) (x=1)?

F 1 AT =D =T+ £, (L) (v= )"

Putting in the values of the derivatives gives:

. B 1 2 1 2
exp(xsm(y))—e+(x—1)e+(y—%)0+§(x—l) e+(x—1)(y—%)0—§(y—%) e
= e[1+x—1+l(x—1)2 —l(y—y)z} = f[xz +1—(y—77)2]
2 2 2 2 2
2
For x = 1.1 and y = n/3, the approximate value of f{(1.1, /3) = 2{2.21—2—6} =2.63
The correct value of (1.1, n/3) = exp(l.lsin(%)) = 2.60

Useful property

For functions of a single variable:

If fix) can be written as P(x)Q(x) then
Taylor expansion of f(x) = [Taylor expansion of P(x)] [Taylor expansion of Q(x)]

For a function of two variables:

If fix,y) can be written as P(x)(Q(y) then
Taylor expansion of f(x,y) = [Taylor expansion of P(x)] [Taylor expansion of O()]

13



Integration

Recall that the area under a curve is given by f(x) 3
integration: ]
Element of area = f{x) dx 3

Total area fim i f(x)& E
= X X =
ax— 0= 1

b
In the limit as dx—0, total area = j f(x)dx

a & b

Double integrals

Let us extend this idea to give an expression for the
volume under a surface. The function z = f(x, y)
gives the surface and the volume between this and a
given region in the xy-plane is the volume to be
calculated. =~ The volume associated with each
element of area in the xy-plane, 0x dy, is f(x, y) dx Oy
and the sum of these gives the desired volume.
However, this is done in a very systematic manner.

Let the volume be bounded by:

Top z=flx, y)
Bottom xy-plane
Sides curve ABCD

Let the curve ABC be y = ¢;(x)
Let the curve ADC be y = ¢x(x)

Now take an elementary slice of constant x.
Element of volume = f{x, y) dx dy

Therefore, volume of elementary slice

li @, (x) #,(x)
T Y e Es ={ [ f(w)dy}éx

& =0, 6.(x)

lim 2. |%W b [ 2(x)
So total volume under surface = Z j f(x,y)dy;ox = I j f(x,y)dydx
ox = 02 (4o #()

x=a a

In this double integral, note that the first integration is over y where x is treated as a
constant. Double integrals are not normally written in this way, but are more
commonly expressed without brackets as:

b by (x) b ¢ (x)
[ [ fepydy or [ [ fxy)dyx
a $1(x) a ¢ (x)

In the above analysis, it is possible to interchange the roles of x and y to obtain a
second double integral, equal in value to the first. Taking elementary slices of
constant y leads to the double integral:

14



d Vi (y)

Volume under surface = I dy j f(x,y)dx d; b x=y2(y)

A ] X WM
253 H

where the volume is bounded on the left by x =

A4 A H
y1(y) and on the right by x =y, (p). r &x C
We can therefore equate the two double integrals: 612
.5
b (0 w2 () e B

Idx jf(x y)dy = Idy jf(x ) dx 0 ; r T .

a é (x) ¢ vi ()

and we have changed the order of integration.

On the left, we integrate over y first, holding x constant, then integrate over x.
On the right, integrate over x first, holding y constant, then integrate over y.

Note that the limits on the two double integrals are very different. However, they
both describe the same field of integration.

Changing the order of integration

You can only safely deduce the limits on a double integral by drawing the field of
integration. Take the following integral as an example.

% bx
Jx | fxpydy
0 ax?

The limits on the integration over y show that the field
of integration is bounded by the lines y = ax* and y =
bx. Therefore, the field of integration is as shown in
the diagram, with x going from 0 to b/a, as given by
the limits on the integration over x.

On integrating over x first, the diagram shows that x
goes from the line x=y/b to x=,y/a. These

therefore form the limits on the integral and the range |
of y is seen to be 0 <y < b*/a. We therefore have: h

b AR
jwjﬂxw@—j@jfuww

ax

b

In this second example, the double integral has to be
split into the sum of two integrals to accommodate the
different lower limits when integrating over x first.

X2ty 2=a"2

a (a2 -x? )% ]
j dx j f(x,y)dy when b<a ) 1
0 2 YA ]
b(l—a—zj i x™2/a"2+y"2/b"2=1

a2 —y2) )
dyJ-O( - f(x, y)dx+J- dyj

/f(xy)dx "‘”E""n's”"%'”‘w‘s‘”(‘aiz'o)

¥

o{-5]
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It is important that the field of integration should be the same before and after
changing the order of integration.

Examples — evaluating double integrals

1. Evaluate J. j (2x* +y)dxdy over the area bounded by ]

y=x and y =x”. Verify that the same result is obtained o
when the order of integration is reversed. 1
0.6
Solution: The limits on the integrals have to be ..
obtained from a diagram of the field of integration. ]
Integrating over y first:

0.2

jdxj(2x2+y)dy = j[2x2 y—i—%yz})c dx
0 & 0 x?

1
j[2x +—x?=2x" —lx jdx:[lx“rl)f—élxs} :l
0 2 5

Integrating over x first:

1 y% 1 2 y%
jdyj(2x2+y)dx=j[§x3+xy} dy
0 y y

0

1 1
2 % % 2 3 2) 52 / 1 4 1 3} 1
_([(3)’ y 3)/ Yo |ay 35)/ 6)’ 3y 6

2. Evaluate I dx I sm( 5 jdy

X

Solution: There is no easy way of performing the integration over y, so consider
changing the order of integration. This can only be done by plotting out the field of
integration first. The integral becomes
2 :
T ax : .
2 EIB;

1 y
J.dy .[ sin(
0 0

2

Note that sin(ﬂ; J is constant in the integration over x so 04 y=x

g

it can be taken out of that integral. The integration over x is
now trivial: NI RNCOM

jsm( ; jdyjdx_jsm( Zyzj[ dy = Iysm( 22jdy

0 0

and the integration over y now becomes possible because the integrand has changed.

72'_)/2

Use the substitution u =

then du = m ydy and the integral becomes:

16



7
[ L sin(uydu = L= cos@)]? =+
0 T T T

Separation of variables

In the special case where the limits of integration are constant (not functions of the
variables) and the integrand f(x, y) is of the form F(x)G(y), we have:

j: dx .[:2(:) f(x,y)dy = .[: dx L%(x) G(y)dy = j: F(x)dx LdG(y) dy

This is the product of two single integrals that can be evaluated independently of each
other.

Double integrals in polar coordinates

x=rcosf; y=rsind
Unit vectors f and 0 are defined to lie in the directions
of increasing  and 0 respectively.

Changing from Cartesians to polars in a double integral
is an example of substituting for both variables
simultaneously.

dx dy is an element of area in the xy-plane.

The equivalent element of area in the 76-plane is: 05

(rdO) dr = rdr do Z ‘
0.3 ’f

i.e. element of area = dx dy = rdr dO 0 dr
Note that dx dy is not replaced by dr dO — the dimensions " 5
are Wrong! GEI a1 02 03 0.4 0s 06 07

[[remavay = [[ro.0)rara0
A A

Change of order of integration 1 r=2a cos(0)
% 2acos0 2a +arccos(%a)

jd@ jf(r,e)dr = jdr jf(r,e)de &

7% 0 0 —arccos(%a)

The equation r = 2a cos(0) gives a circle of radius r
centred on (a, 0).

Curved line in circle: integrate over 6 at constant 7.
Straight line in circle: integrate over r at constant .

Example
Evaluate ” (1—1/ x?+y? jdx dy where R is the region bounded by x> +)* =1
R

17



Solution:  Converting to polar coordinates will
simplify both the integrand and the description of the
field of integration.

X = rcoso y = rsinf dxdy = rdrdd

oo 1, 15 =
Id@j(l—r)rdrzZn{—r ——rﬂ = —
0 0 2 34 3

Example

o0 00

Evaluate I j x" ddy

—o0 —oo(l +4x7+y? )S

Solution: Transform to polar coordinates to simplify the integrand:

x=rcos® y =rsin@ dxdy = rdrdd

0

j T x* dxdy jdgjr cos er—jos QdQI P dr

e _m(lJr [x2 +y )ﬁ 1+r 1+r)

There is separation of variables, so this is a product of two single integrals.

Use the identity cos20 =2 cos’0—1 and let 1+ r=u then dr=du

;1(1+cos20 d@j 2 j( —uisjdu

13 3 1| ( 3 1) p
=r|-——+ - + =r|l-—4+1-—|=—
u 2u® 3w’ 4ut | 2 4) 4

Triple integrals

The mathematical ideas that give us double integrals can easily be extended to triple

integrals:
Integrand = fix,y,2)
Field of integration = volume in 3D space

Element of volume dxdydz = dV

b $2(x)  @y(x,y)
Repeated integral: jdx jdy j f(x,y,z)dz

a H(x)  oi(xy)

In order to deal with triple integrals, we need to look at 3D coordinate systems.

Spherical polar coordinates

A point P at (x, y, z) in Cartesian coordinates is also
at (, 0, ¢) in spherical polars where

x =rsinBcosp y = rsinBsing z = rcosd ¥
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At P, unit vectors £, 0, ¢ are defined to lie in the directions of increasing 7, 0 and ¢

respectively. These vectors form a right-handed orthogonal coordinate system at that
point.

A surface of constant 7 is a sphere
A surface of constant 0 is a cone
A surface of constant ¢ is a semi-infinite plane

These surfaces intersect at the point (7, 0, ¢)

The element of volume is most easily obtained

geometrically:
do
The box in the diagram has sides of dr, »d®6 and r
$ind do %
. rd¢ H ; .
This makes the element of volume = dV i we % | oelee
= dx dy dz = dr (r dO) (r sin® do) = r* sinb dr d6 do &
dé &
¢
rsin@
rsinf d¢
Cylindrical polar coordinates : a
A point P at (x, y, z) in Cartesian coordinates is :: 0
also at (7, 0, z) in cylindrical polars where /
x = rcosf \f
z
y = rsinf AN\t d :
z =z
v

X
At P, unit vectors r, 0,z in the directions of
increasing r, 0, z form an orthogonal right-handed system
at P.

A surface of constant 7 is a cylinder
A surface of constant 0 is a semi-infinite plane
A surface of constant z is an infinite plane

These surfaces intersect at the point (7, 0, z).

The element of volume is obtained geometrically:

The box in the diagram has sides of dr, r d0 and
dz

This makes the element of volume = dV
=dxdydz = dr(rdd)dz = rdrdb dz

19



Solid angle

Now that we’re into 3D coordinate systems, let us look at the measurement of angles
in three-dimensional space. It will be best to start with angles you are familiar with in
two-dimensional space:

The diagram shows an arc of a circle of radius ». The 0
length of the arc is 70. The angle O is the ratio of the length \
of the arc to the radius, 0

,

_ length of arc _ ré radians.
radius r

ie. 6 arc of circle
If the arc is lengthened to complete the circle, the angle becomes

circumference of circle 2mr .
e f = = 27 radians.

radius r

In 3D, angles are called solid angles, but they are defined in

a similar way to angles in 2D. The diagram shows part of a

sphere of radius », which subtends a solid angle Q at its Q>
centre. r

area of spherical surface cap of sphere

The angle Q 1is defined as 5
(radius of sphere)

steradians.

If the surface is extended to a complete sphere, the solid angle at the centre becomes

surface area of the sphere  4rm r’

— = 47 steradians.

(radius of the sphere)’ r

Solid angles are used in physics, for example, to describe the 3D angle into which a
source of radiation may radiate.

Example of a triple integral

A simple illustration of the use of a triple integral is to calculate the volume of a
sphere of radius a.

Solution: Use spherical polar coordinates and integrate the element of volume over
the sphere.

V= [[far = jdr jd" Trzsinedcb = jrzdrjsinedezqus I B S
sphere r=0 6=0 ¢=0 0 0 0 3 3

Make sure you understand the assignment of the limits:
e The integration over r is along a line from the origin to the surface of the sphere.

e The integration over O rotates this line about the origin to sweep out the area of a
semicircle.

e The integration over ¢ rotates the semicircle about the z-axis to sweep out the
volume of the sphere.
The limits on the following triple integral also give the field of integration as a sphere:
a 2r T 1
jrz dr J'sinedej'dqs =-a’.0.71=0
0 0 3

0
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Can the volume of the sphere really be zero? In spherical polars, the element of
volume, dV, is * sin® drd0d¢. In the first integral, the range of 0 is from 0 to 7 so dV
is always positive. However, in the second integral, dV"is negative over half its range,
cancelling out the positive contribution to the integral and ending up with zero. If you
intend to have negative volume, then the second integral is perfectly correct, but you
need to be aware of what you are doing.

Dimensions in integrals — examples of applications in physics

If ” f(x,y)dxdy  represents the volume under a surface, what does

j” f(x,y,z)dxdydz represent? The double integral only represents a volume if

f(x,y), dx and dy all have the dimensions of length. The dimension of the integrand is
then (length)’, which is a volume. We have already used a triple integral to determine
the volume of a sphere — go back and check that the dimensions are correct.

Not everything is measured in metres and we need to consider the dimensions
of the quantities in the integral when applying it to physics. The thing to note is that
the symbols dx, dy etc. are not just labels reminding you of the variables over which
you perform the integration, but they are also physical quantities with dimensions.
Let us look at some examples of how to construct various integrals for applications in
physics.

1. A region of space contains an electric charge density of p(x, y, z) coulombs/m’.
What is the total charge in a particular volume }?
Charge in element of volume = p(x, y, z) dx dy dz

Therefore, total charge in volume V = .[U p(x,y,z)dxdydz coulombs.
14

2. Volume of field of integration = .[U dv m’.
vV

3. The speed of a particle changes with time as v(¢). Find the distance travelled in
time 7.
Distance travelled in time dt = v(¢) dt

T
Therefore total distance travelled in time 7' = J' v(t)dt metres.
0

4. The density of a thin sheet of material varies as p(x, y) kg/m*. Find its total mass.
Mass of element of area = p(x, y) dx dy

Therefore total mass of sheet = M = ” p(x,y)dxdy kg, where R defines the shape
R

of the sheet.
5. The mean density of the sheet in the previous example is obtained by dividing the

total mass by the area, i.e. mean density = %” p(x,y)dxdy kg/mz, where A4 is the
R

area of the sheet.

Similar integrals will determine the average value of a function in 1D or 3D space:

b
Average of f{x) between x =a and x = b is %J‘ f(x)dx
—da
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Average of f(x, y, z) within the volume V' = %j .[ j f(x,y,z)dxdydz
14

6. Another important use of integrals is to determine the centre of mass of an object.
Using the same thin sheet is in example 4, the mass at (x, y) is p(x, ¥) dx dy kg so its
moment about the y-axis is x p(x, y) dx dy kg m. The total moment about the y-axis is

therefore j j x p(x,y)dxdy and this must be equal to M x where M is the total mass
R

and X is the x-coordinate of the centre of mass. We therefore have for the
coordinates of the centre of mass:

Ezﬁgxp(x,y)dxdy and yzﬁgyp(x,y)dxdy

7. A slightly more adventurous use of a multiple integral is in the calculation of
moment of inertia.

The moment of inertia of a point mass m a distance 7 from the axis of rotation is mr”.
For a body of density p(x, y, z) kg/m’, the point mass at (x, y, z) is p(x, y, z) dx dy dz

If z is the rotation axis, the distance from the axis of the point mass is /x> + y*
The moment of inertia of the point mass is therefore (x* + y*)p(x, y, z) dx dy dz

Therefore, the moment of inertia of the complete body = J:U(xz +y? ) p(x,y,z)dxdydz
4

Example

Find the position of the centroid of a uniform solid cone of height /# and base radius R.

Solution:
The centroid is the centre of mass of a body of uniform density.
By symmetry, the centroid lies on the cone axis, so only the z-coordinate is required.

Using the integrals in the previous examples, the z-

coordinate of the centroid is given by: z
_ 1
z=5 j j j zdv
There is a choice of coordinate system, but cylindrical h
polars will be the easiest. y

Element of volume = dV = rdrd0 dz

X
The curved surface of the cone is given by » = %z SO
the triple integral is
R R
2z h ne h 52 h o152 R? h
Vz= Id@jzdz J-rdr = 27rJ-de lr2 = EIR—223dZ . > l24 =l7rR2 h?
0 0 0 0 2 0 0 h h 4 0 4
242
But the volume of the cone is given by V:lnth so that E:EER W3
3 4 R*h 4
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Volume of a cone

If you had forgotten (or never known) the formula for the volume of a cone used in
the previous example, we can derive it here. We have already deduced the limits on a
triple integral that describe a cone, so we can immediately use them here:

v =[[Jav = mrdrdedz—jd@jdzjrdr—znjmz _”hfzé[f]ﬁ:%mezh

cone cone

Example

a)  Determine the total mass and mean density of a body occupying the positive
octant (where x, y and z are all positive) bounded by x> + > + 2> = 4* and
whose density is p(x, v, z) = kxyz kg/m”.

b)  What are the physical dimensions of the constant £? Using this result, confirm
that the physical dimensions of your answers to part a) are correct.

Solution
a) Mass of element of volume = p(x, y, z) dV kg

k”.[xyde kg
V

Therefore, total mass

Use spherical polar coordinates:
x = r sinf cos¢; y = r sind sind; z = r cosO; dV = r* sind dr dO do
Y
.. total mass = k j j j r* sin? 0 cos0 sing cose 72 sin 0 dr d do
r=0 0=0 ¢=0

. 7
= I Ism 0cosbdo jsm(p cosQ do
0

let u=sinO then du = cosb dB also use the identity 2 sind cosd = sin(2¢)

6 1 % a® ’7 6
2 2
= ka—.[u3du1 J-sm(2(p)d(p g ! 1[ cos( (p)} = ka kg

6 7 29 6 42 2 0 48

6 3

Mean density = total mass _ ka 8 _ ka ke >
volume 48 4 5 87
En'a

b) The dimensions of x, y and z are all metres.
Since kxyz is a density, its dimensions must be kg m™, written as [kxyz] = kg m™
This makes [k] m® = kg m>, so that [k] = kg m®

6

The mass of the object is kg. From the above, we have [k a°] =kg m™® m® =kg

3

The mean density of the object is kg m™ and [k a’] =kg m® m’ =kg m”.
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