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About the course

This course shows you how to differentiate and integrate functions of several
variables. It is presented as an extension of the calculus you already know which
deals with a single variable. It is vital mathematics for physicists since we live in a 3-
dimensional world, giving us at least three variables – x, y and z – to describe it. You
will make good use of this maths in the mathematical physics courses in the second
year.

http://www-users.york.ac.uk/~pm1/PMweb/teaching.htm

The great book of nature is written
in the language of mathematics.

Galileo Galilei

Nine lectures for the Maths II course given to
first year physics students in the Spring Term.

Lecturer: Professor Peter Main
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Partial differentiation

So far, you can differentiate functions of one variable. For functions of
several variables, we may proceed as follows:

For a cylinder of radius r and height h, the volume is V = r2h

If h is constant, the rate of change of V wrt r is hr
dr

dV
π2

If r is constant, the rate of change of V wrt h is 2π r
dh

dV


If both h and r are variables, we can still use these results and designate the
derivatives as partial derivatives.

These are written as:

If V = r2h where r and h are variables, then hr
r

V

h

π2











and 2π r

h

V

r














The operation we have carried out is that of partial differentiation. The recipe is easy
– to differentiate partially wrt one variable, regard all other variables as constants.

Notation

Functions: z = f(x, y) z(x, y)

Partial derivatives:
xy y

f

x

f

























xy y

z

x

z

























A more shorthand notation is often adopted:

yx ff
y

f

x

f








yx zz

y

z

x

z









Definition

For a function of one variable:

if y = f(x) then
x

xfxxf

xdx

dy

δ

)()δ(

0δ

lim 




Similarly, we can write for f(x, y):

x

yxfyxxf

xx

f

y δ

),(),δ(

0δ

lim 
















y

yxfyyxf

yy

f

x
δ

),()δ,(

0δ

lim 
















i.e. partial differentiation is achieved by differentiating wrt one variable while keeping
the others constant. The generalisation to functions of any number of variables should
be obvious.

Geometrical interpretation

z = f(x, y) gives a surface, i.e. the value of the function is plotted in the z-direction.

δy

δx

f(x)



3

x

f




gives the slope of the lines at constant y

y

f




gives the slope of the lines at constant x

Example If )cos(),( 2 ybexyxf ya , find
y

f

x

f








and

Solution: )cos(2 ybex
x

f ya




   )sin()cos()sin()cos( 22 ybbybaexybebybeax
y

f yayaya 




Caution!

If something can go wrong it will. Here’s an example of where you can easily make a
big mistake in partial differentiation.

The relationships between Cartesian (x, y) and polar coordinates (r, ) will give us
some simple expressions to differentiate:

x = r cos() 22 yxr 

y = r sin() 






x
yarctanθ  

)θcos(




r

x
22

2
1

22 )(2
2

1

yx

x
yxx

x

r






 

)θcos(
)θcos(







r

r

x

r

It appears, therefore, that )θcos(









x

r

r

x
(!!)

The paradox occurs because of slack notation.

Let us use the complete symbol for the partial derivatives:

)θcos()θcos(
22

θ






























yx

x

x

r

r

x

y

and there is no reason to have any particular relationship between these two
derivatives since different variables are held constant and different functions have
been differentiated.

More correctly: from x = r cos() we obtain r = x sec()

)θsec(
θ















x

r
and we find

θθ

1 

























x

r

r

x
as expected.

x

r

r

x









1 only if the same variables are held constant during the

differentiation.

x

y

z
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Higher order partial derivatives

Just as for functions of one variable, we may define higher order derivatives:

2

2

dx

yd

dx

dy

dx

d










The first order derivatives of f(x, y) are
y

f

x

f








and , so that

2

2

x

f

x

f

x 



















which can also be written as fxx

2

2

y

f

y

f

y 



















which can also be written as fyy

Mixed derivatives are also possible because fx, fy are both functions of x and y:

yx

f

y

f

x 


















 2

which can also be written as fxy

xy

f

x

f

y 


















 2

which can also be written as fyx

Fortunately, we have the simplifying fact that
xy

f

yx

f








 22

, provided that all the

derivatives exist and are continuous, i.e. the operators
yx 






and commute.

Other derivatives exist, e.g. xxyf
yx

f

yx

f

x






















2

32

also yxxxyxxxy fff 

Example

Show that fxy = fyx for f(x, y) = x2 eay cos(by)

Solution: from a previous example we have )cos(2 ybexf ya
x 

)sin(2)cos(2 ybbexybeaxf yaya
yx 

 )sin()cos(2 ybbybaex ya 

also )sin()cos( 22 ybbexybexf yaya
y 

)sin(2)cos(2 ybbexybeaxf yaya
xy 

 )sin()cos(2 ybbybaex ya 

and we find that fxy = fyx

Example

Show that f(x, y) = sin(ax) exp(-by) satisfies 0
2

2

2

2











y

f

x

f
only for a2 = b2.

This is Laplace’s equation – a partial differential equation which is very important in
mathematical physics. You will meet it again in second year courses.
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Solution: )exp()sin(),( ybxayxf 

)exp()cos( ybxaa
x

f





 )exp()sin( ybxab

y

f






)exp()sin(2

2

2

ybxaa
x

f





 )exp()sin(2

2

2

ybxab
y

f






0)exp()sin()( 22

2

2

2

2










 ybxaab

y

f

x

f
when a2 = b2

Total differential

Given f(x, y), the amount by which the function changes when both variables change
simultaneously is called the total differential and is defined as:

),(),( yxfdyydxxfdf 

Let us express this in terms of partial derivatives.

Since
dy

yxfdyyxf

y

f ),(),( 






then dy
y

f
yxfdyyxf




 ),(),( (1)

Similarly dx
x

f
dyyxfdyydxxf

dyyx ),(

),(),(
















but dy
x

f

yx

f

x

f

yxyxdyyx ),(),(),(














































dxdy
xy

f

x

f
dyyxfdyydxxf 



















2

),(),( (2)

Adding (1) and (2) gives dydx
yx

f
dy

y

f
dx

x

f
yxfdyydxxf
















2

),(),(

Neglecting second order small quantities then gives

dy
y

f
dx

x

f
yxfdyydxxfdf









 ),(),(

The first term in the final expression is made from the partial derivative
x

f


 , which

gives the rate of change of f with x, multiplied by dx, the change in x. The product

dx
x

f




therefore gives the change in f due to the change dx in x. Likewise, the second

term dy
y

f




gives the change in f due to the change dy in y. It is seen that the total

change in f (the total differential) is the sum of the changes due to shifts in x and y
separately.
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Example

Find the change in f(x, y) = x exy when the values of x and y are changed from 2 to
2.02 and 1 to 1.05 respectively.

Solution: y
y

f
x δδ

x

f
δf











    δyxxyxeyexxeyxe yxyxyxyx 22 δ1δδ 

when (x, y) = (2, 1): f = e2 (3 x + 4 y)

when (x, y) = (0.02, 0.05): f = e2 (0.06 + 0.20) = 0.26 e2 = 1.92

The actual change is: f = f(2.02, 1.05) – f(2,1) = 16.68 – 14.78 = 1.90

Implicit differentiation

If f(x, y) = 0 this determines y as a function of x or vice versa, i.e. y is an
implicit function of x since it is not defined explicitly. There are two ways of
determining dy/dx in this situation, the first of which you may have seen before:

1. differentiate terms in x as normal: 23 3 xx 

differentiate terms in y as normal:
dx

dy
yy 22 

differentiate terms in xy using the product rule:
dx

dy
xyxy 

example: 0)cos(2 2  yxyx

differentiating gives 0)sin(24 2 









dx

dy
xyyx

dx

dy
xyx

and an algebraic rearrangement gives
)sin(2

4)sin(
2 yxxx

yxyxy

dx

dy






2. since f(x, y) = 0 i.e. constant, then df = 0 so that

0








 dy

y

f
dx

x

f
df giving

yf

xf

dx

dy






example: 0)cos(2),( 2  yxyxyxf

)sin(2

)sin(4
2 yxxx

yxyyx

yf

xf

dx

dy











which is an easier calculation than the first one.

Function of a function

For functions of a single variable, we already know that for y(x) and x(t) then

dt

dx

dx

dy

dt

dy

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This is sometimes called the chain rule. It can be extended to the case where we have
a function of several variables.

Let f(u) and u(x, y) then:
xx

y

yy

x
y

u

du

df

y

f
f

x

u

du

df

x

f
f 



















































 and

Example If
y

f

x

f

x

y
yxf
















 andfindarctan),(

Before solving the problem, let us make sure we can differentiate the arctan function.

If you remember the standard integral  


Cx
x

dx
)arctan(

1 2
, then differentiating

both sides gives immediately  
21

1
)arctan(

x
x

dx

d




Another way of doing it is to let y = arctan(x) then x = tan(y)

22 1)(sec xy
dy

dx


 
21

1
)arctan(

x
x

dx

d

dx

dy




Solution: Use this result to solve the original problem:

Let u = y/x then we have f(u) = arctan(u) and f is a function of a single variable.

We also have
xy

u

x

y

x

u 1
and

2











Therefore  
22221

1
)arctan(

yx

y

x

y

ux

u
u

du

d

x

u

du

df

x

f

yyy 




















































Also  
222

1

1

1
)arctan(

yx

x

xuy

u
u

du

d

y

f

xx































Example Given f(x2 – ay), find
y

f

x

f








and

Solution: We cannot differentiate the expression completely because the function f is
not given. However, we can make some progress towards the derivatives as follows.

Let u = x2 – ay then the function becomes f(u) and a
y

u
x

x

u










,2

Then
du

df
a

y

u

du

df

y

f

du

df
x

x

u

du

df

x

f




















and2

Example Show that (x,t) = f(x-vt) satisfies the equation
2

2

22

2

t

φ1φ










vx
where f

is an arbitrary differentiable function and v is a constant.

Solution: Using the same mathematical ideas as in the previous example, the power
of calculus is demonstrated when we show that the equation is satisfied by an

x

1

21 x

y
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unknown function f. The equation, known as the wave equation, is an important one
in mathematical physics as it describes the behaviour of many kinds of wave.

Let y = x – vt then v
t

y

x

y










and1 also (x, t) becomes f(y)

dy

df

x

y

dy

df

x









φ

dy

df
v

t

y

dy

df

t









φ

2

2

2

2φ

dy

fd

x

y

dy

df

dy

d

x


















2

2
2

2

2φ

dy

fd
v

t

y

dy

df

dy

d
v

t



















2

2

22

2 φ1φ

tvx 









Chain rule

If we have f(x, y) given that x(t) and y(t), then f may be expressed as a function
of t alone.

The complete derivative df/dt therefore exists and it can be expressed in terms
of partial derivatives as follows.

The total differential of f is dy
y

f
dx

x

f
df











It therefore follows that
dt

dy

y

f

dt

dx

x

f

dt

df











i.e. two terms of the form previously given for a function of a single variable.

Example

If yexyxf ),( and x = 2t, y = 1 - t2, determine df/dt two different ways.

Solution: 1) Express f as a function of t, then

  )21(2)2(222 21111 2222

teetteet
dt

d

dt

df tttt  

2) Use the chain rule

)21(2)2(2 21 2

tetexe
dt

dy

y

f

dt

dx

x

f

dt

df tyy 








 

Chain rule again

A more general expression of the chain rule becomes necessary when we have f(x, y)
where x(u, v) and y(u, v).

Usually written as: Using full symbols:

u

y

y

f

u

x

x

f

u

f























vxvyv u

y

y

f

u

x

x

f

u

f































































and
v

y

y

f

v

x

x

f

v

f























uxuyu v

y

y

f

v

x

x

f

v

f






























































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Differential operators

You have been using differential operators for some time even if you haven’t called

them by that name. For example, to differentiate f(x) you apply the operator
dx

d
to

produce the result
dx

df
. This may be written as  

dx

df
f

dx

d
 .

Similarly,
2

2

dx

fd

dx

df

dx

d









. You can apply the operator twice as in  

2

2

2

2

dx

fd
f

dx

d
 .

For f(x, y):  
xy

f

x

f

yx

f
f

x 



























 2

and

More complicated operators can arise for f(x, y) with x(u, v) and y(u, v).

The chain rule gives
u

y

y

f

u

x

x

f

u

f























and this may be written in terms of differential operators as

f
yu

y

xu

x
f

u 






































The left-hand operator is to be used when f is in terms of u and v; the right-hand
operator is to be used when f is in terms of x and y. The operators perform the same
operation and are therefore equivalent. This may be written as

yu

y

xu

x

u 





















The right-hand operator tells you to differentiate partially wrt x and multiply by
ux  then add this to the partial derivative wrt y multiplied by uy  .

Example

If f(x, y) = xy + 2y3 where x = uv and y = u – v, find uf  using two

different operators.

Solution: 1. Substitute for x and y in f(x, y) and use the operator u :

       23
6giving2),( vuvuvuv

u

f
vuvuvuvuf 






2. Leave f in terms of x and y and use the operator
yu

y

xu

x

















:

The partial derivatives in the operator are 1and 









u

y
v

u

x

So    33 22 yyx
yx

vyyx
yu

y

xu

x
f

u


















































         2233 6622 vuvuvuvyxyvyyx
y

yyx
x

v 









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Example – determination of differential operators

Given that x = u2 – v2 and y = 2uv, express the operators x and y in

terms of u and v.

Solution: The chain rule gives
yu

y

xu

x

u 




















and

yv

y

xv

x

v 





















The partial derivatives are: u
v

y
v

u

y
v

v

x
u

u

x
2;2;2;2 




















so the operators become:

y
u

x
v

v

y
v

x
u

u





























22

22













You can use any method you like to solve the equations, but the recommended
method is to use Cramer’s rule:

therefore   

































v
v

u
u

vuvu
v

v
u

u

x 2222 2

1

44

22

and   

































v
u

u
v

vuvu
u

v
v

u

y 2222 2

1

44

22

Cramer’s rule

If you haven’t seen Cramer’s rule before, here it is as applied above. It is
recommended as it needs less algebraic manipulation than other methods when
applied to a pair of simultaneous equations. For the equations:

a11 x + a12 y = b1

a21 x + a22 y = b2

the solution is expressed in terms of determinants as:

2221

1211

221

111

222

121

1

aa

aa

ba

ba

y

ab

ab

x


The unknowns are x and y and the pattern of determinants is:

The last determinant, call it , contains the array of left hand side coefficients.
The determinant for x (first unknown) is  with the first column replaced by the rhs.
The determinant for y (2nd unknown) is  with the 2nd column replaced by the rhs.

solve these equations
for yx  and

uv

vu

v
v

u
u

y

u
v

v
u

x

22

22

1

2

2

2

2























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Comment

Can we avoid having to solve equations by doing the calculation in a different way?
For example, for f(u, v) with u(x, y) and v(x, y), the chain rule gives

x

v

v

f

x

u

u

f

x

f






















so the operators are

vx

v

ux

u

x 





















giving x directly with an equivalent expression for y . However, don’t be

fooled. The derivative xu  above is not the reciprocal of ux  in the previous

example. Here, u is a function of x and y so the full symbol for the derivative is

yx

u












, whereas in the example x is a function of u and v, i.e. the derivative is

vu

x












.

To obtain  yxu  , the equations x = u2 – v2 and y = 2uv will have to be solved for u

and v to express them as functions of x and y. This is a considerably more difficult
task than solving the equations in the example, so you can’t win this way.

Change of variables – Cartesian to polar

Show that
2

2

22

2

2

2

2

2 11























 f

rr

f

rr

f

y

f

x

f
where f is a function of x and y (or

the equivalent function of r and ) and x = r cos(), y = r sin(), i.e. the expression is
changed from Cartesian to polar coordinates. The expression itself is part of
Laplace’s equation.

From the chain rule:

y

f
r

x

f
r

y

y

fx

x

ff

y

f

x

f

r

y

y

f

r

x

x

f

r

f

































































)cos()sin(

)sin()cos(


















Solve these equations for yfxf  and to give:





































 f

rr

f

y

ff

rr

f

x

f )cos(
)sin(and

)sin(
)cos(

These expressions also provide the operators needed to obtain the second order
derivatives:


































































f

rr

f

rrx

f

xdx

f )sin(
)cos(

)sin(
)cos(

2

2

Expand the operator:



























































f

rr

f

r

f

rr

f

r

)sin(
)cos(

)sin()sin(
)cos()cos(

Now differentiate, remembering to use the product rule where it applies:

2

2

2

2

2

22

2

22

2
2

)(sin)cos()sin()cos()sin()(sin

)cos()sin()cos()sin(
)(cos

























































f

r

f

rr

f

rr

f

r

r

f

r

f

rr

f
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Collect like terms and put them in a logical order:









































 f

rr

f

r

f

rr

f

rr

f

x

f
2

2

2

2

2

22

2

2
2

2

2 )2sin()(sin)(sin)2sin(
)(cos

A similar analysis gives the expression for 22 yf  :

θ

f

r

θ

r

f

r

f

rr

f

rr

f

y

f





























2

2

2

2

2

22

2

2
2

2

2 )2sin()(cos)(cos)2sin(
)(sin












Adding them together gives the required result:

2

2

22

2

2

2

2

2 11























 f

rr

f

rr

f

y

f

x

f

Taylor series for a function of two variables

For a function of a single variable, we have:

  n
n

h
n

af
h

af
h

af
hafafhaf

!

)(

!3

)('''

!2

)(''
)(')()(

)(
32

or alternatively:

  n
n

ax
n

af
ax

af
ax

af
axafafxf )(

!

)(
)(

!3

)('''
)(

!2

)(''
)()(')()(

)(
32

These two expressions are the same with x = a + h. Functions of several variables can
be treated in a similar way. For two variables, define the differential operator

y
k

x
hD









 . The Taylor expansion of f(x, y) about the point (a, b) is then:

  ),(
!

1
),(

!3

1
),(

!2

1
),(),(),( 32 bafD

n
bafDbafDbaDfbafkbhaf n

where Dnf(a, b) means apply the differential operator n times to f(x, y) and evaluate
the result at the point (a, b).

Let us look at D2:
2

2
2

22

2

2
2

y
k

yx
kh

xy
hk

x
h

y
k

x
h

y
k

x
h























































2

2
2

2

2

2
2 2

y
k

yx
kh

x
h
















This is the same mathematical form as a binomial expansion.

Writing out all the terms in the Taylor expansion up to order 3 gives:

 22 ),(),(2),(
!2

1
),(),(),(),( kbafhkbafhbafkbafhbafbafkbhaf yyxyxxyx 

   3223 ),(),(3),(3),(
!3

1
kbafkhbafkhbafhbaf yyyxyyxxyxxx

The alternative form is obtained by putting x = a + h, y = b + k:

2)(
!2

),(
)(),()(),(),(),( ax

baf
bybafaxbafbafyxf xx

yx 

 2)(
!2

),(
)()(),( by

baf
byaxbaf

yy

xy
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Example

Expand f(x, y) = exp(x sin(y)) as a power series about the point (1, /2) to
terms of the second degree. Hence obtain an approximate value for f(1.1, /3).

f = exp(x sin(y)) f(1, /2) = e
fx = sin(y) exp(x sin(y)) fx(1, /2) = e
fy = x cos(y) exp(x sin(y)) fy(1, /2) = 0
fxx = sin2(y) exp(x sin(y)) fxx(1, /2) = e
fxy = cos(y) exp(x sin(y)) + x cos(y) sin(y) exp(x sin(y)) fxy(1, /2) = 0
fyy = -x sin(y) exp(x sin(y)) + x2 cos2(y) exp(x sin(y)) fyy(1, /2) = -e

The Taylor series about (1, /2) is:

2

2

)
2

()
2

,1(
2

1
)

2
()1()

2
,1(

)1()
2

,1(
2

1
)

2
()

2
,1()1()

2
,1()

2
,1(),(









yfyxf

xfyfxffyxf

yyxy

xxyx

Putting in the values of the derivatives gives:

  eyyxexyexeyx 22 )
2

(
2

1
0)

2
()1()1(

2

1
0)

2
()1()sin(exp  

 2222 )
2

(1
2

)
2

(
2

1
)1(

2

1
11  








 yx

e
yxxe

For x = 1.1 and y = /3, the approximate value of f(1.1, /3) 63.2
36

21.2
2

2










e

The correct value of f(1.1, /3)   60.2)
3

sin(1.1exp  

Useful property

For functions of a single variable:

If f(x) can be written as P(x)Q(x) then
Taylor expansion of f(x) = [Taylor expansion of P(x)] [Taylor expansion of Q(x)]

For a function of two variables:
If f(x,y) can be written as P(x)Q(y) then
Taylor expansion of f(x,y) = [Taylor expansion of P(x)] [Taylor expansion of Q(y)]
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Integration
Recall that the area under a curve is given by
integration:

Element of area = f(x) x

Total area 



b

ax

xxf
x




)(
0

lim

In the limit as x→0, total area 
b

a

dxxf )(

Double integrals

Let us extend this idea to give an expression for the
volume under a surface. The function z = f(x, y)
gives the surface and the volume between this and a
given region in the xy-plane is the volume to be
calculated. The volume associated with each
element of area in the xy-plane, x y, is f(x, y) x y
and the sum of these gives the desired volume.
However, this is done in a very systematic manner.

Let the volume be bounded by:
Top z = f(x, y)
Bottom xy-plane
Sides curve ABCD

Let the curve ABC be y = 1(x)
Let the curve ADC be y = 2(x)

Now take an elementary slice of constant x.

Element of volume = f(x, y) x y

Therefore, volume of elementary slice





)(

)(

2

1

),(
0

lim x

xy

yxyxf
y








xdyyxf
x

x




 











 
)(

)(

2

1

),(

So total volume under surface  
 














b

ax

x

x

xdyyxf
x








)(

)(

2

1

),(
0

lim
dxdyyxf

b

a

x

x
 














)(

)(

2

1

),(




In this double integral, note that the first integration is over y where x is treated as a
constant. Double integrals are not normally written in this way, but are more
commonly expressed without brackets as:

  
)(

)(

)(

)(

2

1

2

1

),(or),(
x

x

b

a

x

x

b

a

dxdyyxfdyyxfdx








In the above analysis, it is possible to interchange the roles of x and y to obtain a
second double integral, equal in value to the first. Taking elementary slices of
constant y leads to the double integral:

y = φ1(x)

a b

y = φ2(x)

δy

δx

A

B

C

D
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Volume under surface = 
)(

)(

2

1

),(
y

y

d

c

dxyxfdy




where the volume is bounded on the left by x =
ψ1(y) and on the right by x = ψ2(y).

We can therefore equate the two double integrals:

 
)(

)(

)(

)(

2

1

2

1

),(),(
y

y

d

c

x

x

b

a

dxyxfdydyyxfdx








and we have changed the order of integration.

On the left, we integrate over y first, holding x constant, then integrate over x.
On the right, integrate over x first, holding y constant, then integrate over y.

Note that the limits on the two double integrals are very different. However, they
both describe the same field of integration.

Changing the order of integration

You can only safely deduce the limits on a double integral by drawing the field of
integration. Take the following integral as an example.


xb

xa

a
b

dyyxfdx
2

),(
0

The limits on the integration over y show that the field
of integration is bounded by the lines y = ax2 and y =
bx. Therefore, the field of integration is as shown in
the diagram, with x going from 0 to b/a, as given by
the limits on the integration over x.

On integrating over x first, the diagram shows that x

goes from the line ayxbyx  to . These

therefore form the limits on the integral and the range
of y is seen to be 0 < y < b2/a. We therefore have:

 
a

y

b
y

a
b

xb

xa

a
b

dxyxfdydyyxfdx ),(),(

2

2 00

In this second example, the double integral has to be
split into the sum of two integrals to accommodate the
different lower limits when integrating over x first.



















2
1

22

2
1

2

2

)(

1

0

),(
xa

a

x
b

a

dyyxfdx when b < a

  




















b ya

b

y
a

a

b

ya

dxyxfdydxyxfdy
0

)(

1

)(

0

2
1

22

2
1

2

2

2
1

22

),(),(

A
y
C

D

B

x

x = ψ2(y)
x = ψ1(y)

d

c

y = bx

y = ax2










a

b

a

b 2

,
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It is important that the field of integration should be the same before and after
changing the order of integration.

Examples – evaluating double integrals

1. Evaluate   dydxyx )2( 2 over the area bounded by

y = x and y = x2. Verify that the same result is obtained
when the order of integration is reversed.

Solution: The limits on the integrals have to be
obtained from a diagram of the field of integration.
Integrating over y first:

   







1

0

222
1

0
22 2

1
22 dxyyxdyyxdx

x

x

x

x

6

1

5

1

2

5

6

1

2

1

2

1
2

2

1
2

1

0

534
1

0

4423 














  xxxdxxxxx

Integrating over x first:

  







2
1

2
1

1

0

32
1

0
3

2
)2(

y

y

y

y

dyyxxdxyxdy

 
















1

0

1

0

342
5

232
3

2
3

6

1

3

1

6

1

5

2

3

5

3

2

3

2
yyydyyyyy

2. Evaluate  






1 21

0
2

sin
x

dy
y

dx


Solution: There is no easy way of performing the integration over y, so consider
changing the order of integration. This can only be done by plotting out the field of
integration first. The integral becomes

 






y

dx
y

dy
0

21

0
2

sin


Note that 










2
sin

2y
is constant in the integration over x so

it can be taken out of that integral. The integration over x is
now trivial:

   
























 1

0

2

0

1

0

2

0

1

0

2

2
sin

2
sin

2
sin dy

y
ydyx

y
dxdy

y y
y



and the integration over y now becomes possible because the integrand has changed.

Use the substitution dyydu
y

u 


 then
2

2

and the integral becomes:
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 





1
)cos(

1
)sin(

1
2

0

2

0

 uduu

Separation of variables

In the special case where the limits of integration are constant (not functions of the
variables) and the integrand f(x, y) is of the form F(x)G(y), we have:

    
b

a

d

c

b

a

d

c

b

a

x

x
dyyGdxxFdyyGxFdxdyyxfdx )()()()(),(

)(

)(

2

1





This is the product of two single integrals that can be evaluated independently of each
other.

Double integrals in polar coordinates

x = r cos; y = r sin

Unit vectors θr ˆandˆ are defined to lie in the directions

of increasing r and  respectively.

Changing from Cartesians to polars in a double integral
is an example of substituting for both variables
simultaneously.

dx dy is an element of area in the xy-plane.

The equivalent element of area in the r-plane is:

(r d) dr = r dr d

i.e. element of area = dx dy = r dr d

Note that dx dy is not replaced by dr d – the dimensions
are wrong!

 
AA

ddrrrfdydxyxf  ),(),(

Change of order of integration

 

 







a

r

a
r

aa

drfdrdrrfd
2

arccos

2
arccos

2

0

cos2

0

2

2

),(),( 






The equation r = 2a cos() gives a circle of radius r
centred on (a, 0).

Curved line in circle: integrate over  at constant r.
Straight line in circle: integrate over r at constant .

Example

Evaluate  




 

R

dydxyx 221 where R is the region bounded by x2 + y2 = 1

r̂

θ̂

r



rdr
dr



r = 2a cos()
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Solution: Converting to polar coordinates will
simplify both the integrand and the description of the
field of integration.

x = r cos y = r sin dx dy = r dr d

33

1

2

1
2)1(

1

0

32
1

0

2

0












 rrdrrrd

Example

Evaluate
 







 
5

22

2

1 yx

dydxx

Solution: Transform to polar coordinates to simplify the integrand:

x = r cos y = r sin dx dy = r dr d

       




 

 





 0 0

5

32

0

2

5

232

0

5
22

2

1
cos

1

cos

1 r

drr
d

r

drr
d

yx

dydxx







There is separation of variables, so this is a product of two single integrals.

Use the identity cos2 = 2 cos2 – 1 and let 1 + r = u then dr = du

   
 
 














1 1

54325

32

0

1331
2

2

11
2cos1

2

1
du

uuuu
du

u

u
d 



44

1
1

2

3
1

4

1

3

3

2

31

1

432


 





















uuuu

Triple integrals

The mathematical ideas that give us double integrals can easily be extended to triple
integrals:
Integrand = f(x, y, z)
Field of integration = volume in 3D space
Element of volume = dx dy dz = dV

Repeated integral: 
),(

),(

)(

)(

2

1

2

1

),,(
yx

yx

x

x

b

a

dzzyxfdydx








In order to deal with triple integrals, we need to look at 3D coordinate systems.

Spherical polar coordinates

A point P at (x, y, z) in Cartesian coordinates is also
at (r, , ) in spherical polars where

x = r sin cos y = r sin sinz = r cos

x2+y2 = 1

r = 1

r̂

θ̂

φ̂
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At P, unit vectors φθr ˆ,ˆ,ˆ are defined to lie in the directions of increasing r,  and 

respectively. These vectors form a right-handed orthogonal coordinate system at that
point.

A surface of constant r is a sphere
A surface of constant  is a cone
A surface of constant  is a semi-infinite plane

These surfaces intersect at the point (r, , )

The element of volume is most easily obtained
geometrically:

The box in the diagram has sides of dr, r dand r
sin d

This makes the element of volume = dV
= dx dy dz = dr (r d) (r sin d) = r2 sin dr d d





Cylindrical polar coordinates

A point P at (x, y, z) in Cartesian coordinates is
also at (r, , z) in cylindrical polars where

x = r cos

y = r sin

z = z

At P, unit vectors zθr ˆ,ˆ,ˆ in the directions of

increasing r, , z form an orthogonal right-handed system
at P.

A surface of constant r is a cylinder
A surface of constant  is a semi-infinite plane
A surface of constant z is an infinite plane

These surfaces intersect at the point (r, , z).

The element of volume is obtained geometrically:

The box in the diagram has sides of dr, r dand
dz

This makes the element of volume = dV
= dx dy dz = dr (r d) dz = r dr d dz

r̂

θ̂
ẑ
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Solid angle

Now that we’re into 3D coordinate systems, let us look at the measurement of angles
in three-dimensional space. It will be best to start with angles you are familiar with in
two-dimensional space:

The diagram shows an arc of a circle of radius r. The
length of the arc is r. The angle  is the ratio of the length
of the arc to the radius,

i.e.
r

r

radius

arcoflength 
  radians.

If the arc is lengthened to complete the circle, the angle becomes




2
2


r

r

radius

circleofncecircumfere
radians.

In 3D, angles are called solid angles, but they are defined in
a similar way to angles in 2D. The diagram shows part of a
sphere of radius r, which subtends a solid angle  at its
centre.

The angle  is defined as
2)( sphereofradius

surfacesphericalofarea

steradians.

If the surface is extended to a complete sphere, the solid angle at the centre becomes




4
4

)( 2

2

2


r

r

spheretheofradius

spheretheofareasurface
steradians.

Solid angles are used in physics, for example, to describe the 3D angle into which a
source of radiation may radiate.

Example of a triple integral

A simple illustration of the use of a triple integral is to calculate the volume of a
sphere of radius a.

Solution: Use spherical polar coordinates and integrate the element of volume over
the sphere.

33
2

000

2
2

0

2

00
3

4
2.2.

3

1
θθsinθsinθ aadddrrdrddrdVV

aa

rsphere










 


Make sure you understand the assignment of the limits:
 The integration over r is along a line from the origin to the surface of the sphere.
 The integration over  rotates this line about the origin to sweep out the area of a

semicircle.
 The integration over  rotates the semicircle about the z-axis to sweep out the

volume of the sphere.

The limits on the following triple integral also give the field of integration as a sphere:

0.0.
3

1
θθsin 3

0

2

00

2  


adddrr
a

r

r



arc of circle



r

cap of sphere
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Can the volume of the sphere really be zero? In spherical polars, the element of
volume, dV, is r2 sin drddIn the first integral, the range of  is from 0 to  so dV
is always positive. However, in the second integral, dV is negative over half its range,
cancelling out the positive contribution to the integral and ending up with zero. If you
intend to have negative volume, then the second integral is perfectly correct, but you
need to be aware of what you are doing.

Dimensions in integrals – examples of applications in physics

If  dydxyxf ),( represents the volume under a surface, what does

 dzdydxzyxf ),,( represent? The double integral only represents a volume if

f(x,y), dx and dy all have the dimensions of length. The dimension of the integrand is
then (length)3, which is a volume. We have already used a triple integral to determine
the volume of a sphere – go back and check that the dimensions are correct.

Not everything is measured in metres and we need to consider the dimensions
of the quantities in the integral when applying it to physics. The thing to note is that
the symbols dx, dy etc. are not just labels reminding you of the variables over which
you perform the integration, but they are also physical quantities with dimensions.
Let us look at some examples of how to construct various integrals for applications in
physics.

1. A region of space contains an electric charge density of (x, y, z) coulombs/m3.
What is the total charge in a particular volume V?

Charge in element of volume = (x, y, z) dx dy dz

Therefore, total charge in volume V = 
V

dzdydxzyx ),,(ρ coulombs.

2. Volume of field of integration = 
V

dV m3.

3. The speed of a particle changes with time as v(t). Find the distance travelled in
time T.
Distance travelled in time dt = v(t) dt

Therefore total distance travelled in time T = 
T

dttv
0

)( metres.

4. The density of a thin sheet of material varies as (x, y) kg/m2. Find its total mass.
Mass of element of area = (x, y) dx dy

Therefore total mass of sheet = M = 
R

dydxyx ),( kg, where R defines the shape

of the sheet.
5. The mean density of the sheet in the previous example is obtained by dividing the

total mass by the area, i.e. mean density = 
R

dydxyx
A

),(
1

 kg/m2, where A is the

area of the sheet.

Similar integrals will determine the average value of a function in 1D or 3D space:

Average of f(x) between x = a and x = b is 

b

a

dxxf
ab

)(
1
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Average of f(x, y, z) within the volume V = 
V

dzdydxzyxf
V

),,(
1

6. Another important use of integrals is to determine the centre of mass of an object.
Using the same thin sheet is in example 4, the mass at (x, y) is (x, y) dx dy kg so its
moment about the y-axis is x (x, y) dx dy kg m. The total moment about the y-axis is

therefore 
R

dydxyxx ),( and this must be equal to xM where M is the total mass

and x is the x-coordinate of the centre of mass. We therefore have for the
coordinates of the centre of mass:


R

dydxyxx
M

x ),(
1

 and 
R

dydxyxy
M

y ),(
1



7. A slightly more adventurous use of a multiple integral is in the calculation of
moment of inertia.
The moment of inertia of a point mass m a distance r from the axis of rotation is mr2.
For a body of density (x, y, z) kg/m3, the point mass at (x, y, z) is (x, y, z) dx dy dz

If z is the rotation axis, the distance from the axis of the point mass is 22 yx 

The moment of inertia of the point mass is therefore ( 22 yx  )(x, y, z) dx dy dz

Therefore, the moment of inertia of the complete body =   
V

dzdydxzyxyx ),,(22 

Example

Find the position of the centroid of a uniform solid cone of height h and base radius R.

Solution:
The centroid is the centre of mass of a body of uniform density.
By symmetry, the centroid lies on the cone axis, so only the z-coordinate is required.

Using the integrals in the previous examples, the z-
coordinate of the centroid is given by:


cone

dVz
V

z
1

There is a choice of coordinate system, but cylindrical
polars will be the easiest.

Element of volume = dV = r dr d dz

The curved surface of the cone is given by z
h

R
r  so

the triple integral is

22

0

4

2

2

0

3

2

2

00

2

00

2

0
4

1

4

1

2

1
2 hRz

h

R
dzz

h

R
rdzzdrrdzzdzV

hhz
h

R
h

z
h

R

h



















 

But the volume of the cone is given by hRV 2

3

1
 so that h

hR

hR
z

4

3

4

3
2

22






x

y

z
R

h



23

Volume of a cone

If you had forgotten (or never known) the formula for the volume of a cone used in
the previous example, we can derive it here. We have already deduced the limits on a
triple integral that describe a cone, so we can immediately use them here:

  hRz
h

R
dz

h

zR
drrdzddzddrrdVV

h
hh

zR

h

conecone

2
0

3

2

2

0

2

22

00

2

0
3

1

3

1

2

1
2 






 

Example

a) Determine the total mass and mean density of a body occupying the positive
octant (where x, y and z are all positive) bounded by x2 + y2 + z2 = a2 and
whose density is (x, y, z) = kxyz kg/m3.

b) What are the physical dimensions of the constant k? Using this result, confirm
that the physical dimensions of your answers to part a) are correct.

Solution
a) Mass of element of volume = (x, y, z) dV kg

Therefore, total mass = 
V

dVzyxk kg

Use spherical polar coordinates:
x = r sin cos; y = r sin sin; z = r cosdV = r2 sin dr d d





2

0

223
2

00

φθθsincosφsinφcosθθsinmasstotal









dddrrrk
a

r

 
2

0

2

0

3

0

5 φcosφsinφθθcosθsin

 

dddrrk
a

let u = sin then du = cos d also use the identity 2 sin cos = sin(2)

kg
482

)φ2cos(

2

1

4

1

6
φ)φ2sin(

2

1

6

62

0

62

0

1

0

3
6 aka

kdduu
a

k 







 



Mean density =



8

3

4

8

48volume

masstotal 3

3

6 ak

a

ak
 kg m-3

b) The dimensions of x, y and z are all metres.

Since kxyz is a density, its dimensions must be kg m-3, written as [kxyz] = kg m-3

This makes [k] m3 = kg m-3, so that [k] = kg m-6

The mass of the object is
48

6ak
kg. From the above, we have [k a6] = kg m-6 m6 = kg

The mean density of the object is
8

3ak
kg m-3 and [k a3] = kg m-6 m3 = kg m-3.
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