Matrix Algebra

A course of lectures given to second year physics
students as part of the Maths |1 module.

Lecturer: Professor Peter Main

This course builds upon the short introduction to matrix algebra you were
given in the first year. Thisis avery powerful branch of mathematics much used by
physicists. The notes start by describing the matrix algebra you should already know
and so can be used for revision. They include the essentials of matrix algebra such as
addition, multiplication and algebraic manipulation of matrices and matrix inversion.

Matrices are then used to represent a set of linear simultaneous equations and
their solution. Thisis a powerful piece of mathematics as huge sets of equations can
be represented by very few symbols. We also find out how to dea with the situation
where there isinsufficient information in the equations to give a unique solution.

The matrix is also used as an operator to scale, rotate and reflect two-
dimensional objects. Combinations of operations are also considered. This forms the
basis of computer graphics and, in other courses, you will find more uses of the
matrix as an operator.

Next, we consider the eigenvectors and eigenvalues of symmetric and
Hermitian matrices. This is the most powerful of all the mathematical techniquesin
the course, which allows you to analyse complicated systems in terms of much
simpler components. A mathematical example of thisis presented as a case study.

Finally, there is a brief introduction to tensors. Examples of their use in
physics are presented and some of their mathematical properties are described.

http://www-users.york.ac.uk/~pm1/PMweb/teaching.htm




Matrices

A matrix is a rectangular array of elements, which are typicaly 2 3 -2
numbers (they may be complex) or algebraic expressions. The 14 6
whole array is enclosed in brackets.

A matrix which has mrows and n columnsis of order mxn. A 2x3 matrix
Notation
3 1
A matrix can be represented by a single symbol, eg. A=|0 -1| or
2 4
a; ap
A=la, a, =(a1].) where a symbol is given to each element.
83 8y

The element as; isthe element in row 3 and column 7.

The fact that alarge array of data can be represented by a single symbol makes it very
convenient for the algebraic manipulation of vast amounts of information.

Matrix equality

Two matrices A and B are equal only if they are of the same order and corresponding
elements are equal, i.e. a; = byj for al i and j.

Addition and subtraction
Matrices can be added or subtracted only if they have the same order:

2—11+—13 1) (2-1 -1+43 1+1) (1 2 2
3 2 -2/ 12 4 -2) (3+2 2+4 -2-2) |5 6 -4

The sums (or differences) of corresponding elements are performed.

Multiplication by a scalar
-1 4 -3 12
3 2 -2|=| 6 -6| dsowrittenas k(a, )= (ka,)
3 1 9 3

i.e. multiply every element by the scalar.

The transpose of a matrix
2 1
. (2 3 4
If A=|3 -2| then the transpose is A" = 1 2 3] i.e. rows become
4 3 -

columns and columns become rows. An mxn matrix becomes nxm by transposing it.




Special matrices

There are many matrices with special names. Here are some you may meet in this
Ccourse:

1 2
Square matrix — this has the same number of columns as rows. ( 1 3]
1 -1 4
Symmetric matrix —thisisequal toitsown transpose, i.e. AT=A |-1 2 -2
4 -2 3
-3 00
Diagonal matrix —only the diagonal elements are non-zero 0 20
0 01
1 00
Identity matrix —adiagona matrix with al diagonal elements=1 | ={0 1 O
0 01
. . . . a, a12+|b12
Her mitian matrix — the transpose is the complex conjugate ib,
M2

Matrix multiplication

Two matrices can be multiplied together only if the number of columns in the first is
equal to the number of rowsin the second.

If A isof order mxn then B must be nxp to form the product AB.
Look at the pattern in the result of the following multiplication:

b,
A:(au a, aisj 8- |b, AB:(ai1b1+aizb2+a13b3j
a21 a22 a23 b aZlbl + a'22102 + a23b3
3

Each element in the result is the dot product of arow in A with a column of B. The
same process is carried out in the more general case:

3 0

1

1 -2 0 12 3= 3+42+0 0-4+0 1-6+0 B 5 -4 -5

3 2 - l9-2-2 0+4-1 3+6+0/ |5 3 9
2 10

A B = C
mxn Nxp mxp

It can be seen that

and ¢;; isthe scalar product of the ith row of A with the jth column of B:

n

= zaik bkj
k=1



It should also be clear that even if AB exists, BA may not (unlessm=p). Evenif BA
doesexigt, it isin general not equal to AB.

A B = C
m;n n;m ~ rm AB and BA are of different orders.
nxm mxn nxn
2 1 -1 3 -1 8 -5 8
Seealso: A= B= AB = BA =
-1 3 1 2 4 3 0 7

The order of the matrices in aproduct is clearly important — matrices do not commute.
In the product AB, A premultiplies B and B postmultiplies A.

Multiplication by the identity matrix

3 0 -1yy1 0 O 3 0 -1

1 2 1101 0=]1 2 1 iee Al=A dso IA=A
-2 0 2J)lo 0 1) (-2 0 2

Another matrix product

1 9
2 1 - 00 . .
4 -6|= which isthe null matrix.
6 3 -9 00

Notethat AB =0 doesnot imply either A=0 or B=0.
Similarly, AB = AC doesnot imply that B =C.

Matrix representation of linear simultaneous equations
Consider the equations: M +t2% =1

2X1— Xo = -4

3 2 1
In matrix notation: (2 j(;(lj = [ 4) —multiply out the Ihs to get the same
_ , _

as above.

I
(o

Using fewer symboals, thisis:. A X

Ihs matrix vector of unknowns rhs vector

This is the most concise representation of the equations. It is extremely powerful
since the symbols can represent matrices and vectors of any order — millions of
equationsin millions of unknowns is not unheard of.

The inverse matrix
The solution of the equations can also be represented using symbols as follows:




If wewriteasimpleequationintermsof scaars:. ax = b

then its solution is: X:E: a'b
a
On the rhs, we have multiplied b by the reciprocal of a to get the solution. Since

matrix division is not defined, we must do something similar to solve the matrix

equation, i.e. define an inverse matrix A such that AA™ = A™A = |. Thisadlows
us to perform the following manipulation:

Let Ax =D

Premultiply by A™: AtAx = Alb

Therefore Ix = A'b

Therefore x = A'b

So the solution is formally obtained by premultiplying the rhs vector by the inverse of
the Ihs matrix.

Useful results without proof
Thereislittle point in proving the following, but you may find the results useful :

Associativerule: A(BC) = (AB)C and A(B+C) = AB+AC
Combination of deter minants: det(AB) = det(A).det(B)

Transpose of a product: (AB)T = B'AT

Inverse of a product: (AB)! = B'A™

Calculation of the inverse matrix

1 0 -1
Let uscalculatetheinverseof A=|-2 1 0 | suchthat AA™ = |
1 -1 2
X X X 1 0 -1)Xx X X 1 00
Let A™ = Y Y. Ys|then|-2 1 O0ly vy, y;|=|{0 10
zZ, 7, Z, 1 -1 2)\z z, z 001

Now multiply out the Ihs matrices and equate el ements with the rhs matrix. This gives
asystem of 9 equationsin 9 unknowns which can be written as:

X -z =1 X -z =0 X3 -z =0
-2% +Yy, =0 -2X, +Y, =1 —-2X; +Y, =0
X -y, +2zz = 0 X, -y, +2z, = 0 X Y, +2z 1
Note that the |hs matrix is the same in all 3 cases. This means the 3 systems of

equations can be written in the following compact form, where only the elements of
Ihs matrix and the right-hand-sides are recorded:



1 0-1100 Columns 1, 2, 3, 4 will givexy, Y1, 21
-2 1 0 010 Columns 1, 2, 3, 5will give xy, y»,
1 -1 2 00 1 Columns 1, 2, 3, 6 will give xs, s, Z3

The matrix represents a system of linear simultaneous equations with three right-
hand-sides. They may be solved by any suitable method, but Gauss elimination is
recommended. (Gauss elimination uses combinations of rows.) You are expected to
know this method, so little explanation will be given.

1 0 -1 1 0O 1 0 -1100
@+20 |0 1 -2 2 1 0] = 01 -2 210
@®-@ (0 -1 3 -10 1 @+@3 0 0 1 1 1 1

Now eliminate variables above the diagonal.
m+® (1 00 2 11
2+23 |0 1 0 4 3 2
001111

Thisgivestheresult A™ = which can be checked by calculating AA™.

P AN
P oW R
S ST

Therecipeis:
1 Write down the matrix A
2 Totheright of A write down the identity matrix of the same order.
3 Use Gauss elimination to reduce A to the identity matrix.
4 Theorigina identity matrix has been replaced by the inverse of A.
We can now use the inverse matrix to solve the following equations:

X -z =5 1 0 -1 X 5
-2X +Yy =1 let A=|-2 1 O X=|Yy b=| 1
X -y +2z =-10 1 -1 2 z -10

then the equationsare A x = b and thesolutionis x = Ab

2 1 1) 5 1
i.ee x=[4 3 2|| 1 |=| 3 | —check by substitution into the equations.
1 1 1){-10 -4

It is clear there is more work in calculating the inverse than in solving the equations
directly. You do not calculate an inver se matrix merely to solve equations!

A formula for the inverse matrix

It is sometimes convenient to express the inverse matrix as a formula. Consider the
square matrix A = (&;).




For each element g; there corresponds a cofactor c; obtained by evaluating the
determinant resulting from the elimination of the ith row and jth column together with
its‘place sign’ = (-1)'.

ay ap &
e _ e s _ Jan as
eg.for|a, a,, a, |somecofactorscjare c, =+ C, =-—
Ap Ay 85 A5
85 8y Ay
Cp = — Q, a3 C, =+ Ay A
8y g 8 8y

Let the matrix of cofactorsbe C = (c;j) then the adjoint matrix is adj(A) = c’

and the inverse matrix is: AL odoint _ adi(A)
determinant  det(A)

Let us use thisformulato confirm the inverse matrix obtained previously:

1 0 -1 2 4 1
A=|-2 1 0 C=[131 det(A) =2-2+1=1
1 -1 2 121
_ 2 11
L_adA) |, 5,
det(A) |, | |

Notethat if det(A) = O thereisno inverse and the matrix is said to be singular.

Rank of a matrix
The rank of a matrix is a measure of the information it contains. It is the number of
independent rows or columns of the matrix. It is most efficiently determined by
Gauss dimination:
110 -2 1 1 0 -2 1 1 0 -2
202 2 |=@-20|/0 -2 2 6 |=> 0 -2 2 6
4 1 3 1 @®-4m0\0 -3 3 9 3-327/2\0 0 0 O

The 3rd row can be expressed as alinear combination of the first two, so therank is 2.
Note that row (3) = g x (2) +(1) —itisalinear combination of the other rows and
so does not contain any new information.

Underdetermined sets of equations

Sometimes there is insufficient information to provide a unique solution to the
equations. Solve the following equations by Gauss €limination:




X +2y +z =1
2Xx -y -3z =2
4k +3y -z =4
1 2 1 1 1 2 1 1 1 2 1 1
2 -1 -3 2|=@-20|0 -5 -5 0|= 0 -5 -50
4 3 -1 4 ®-4y\0 -5 -5 0 ®-0 0 0 O
The last equation becomes 0 = 0, which istrue but not very useful. We therefore

have 3 unknowns but only 2 useful equations. This alows us to express 2 of the
variablesin terms of the 3'*:

Let z=z then back substitution gives. y=-z, x=1+z

We thus have an infinite number of solutions in terms of a single variable. Thisis
because the equations are linearly dependent: (3) = 2 x (1) + (2)

1 2 1
Note that the determinant of the |eft-hand-side coefficientsiszero: 2 -1 -3 =0
4 3 -

Inconsistent equations

X +2y +z =1
Making asmall ateration to therhs of oneequationgives:. 2x -y -3z =2

4x +3y -z =
1 2 1 1 1 2 1 1
and solving them gives.  (2-2()|0 -5 -5 0|= 0O -5 -50

@-40l0 -5 -5 4/ (3-@\0 0 0 4

The last equation is now 0 = 4 which is fase. The equations are therefore
inconsistent and there is no solution. Note that the determinant is zero as before.
The equations are inconsistent when the rank of the augmented matrix is greater than
the rank of the lhs matrix.

Summary

det(A) = O gives aunique solution.
det(A) = 0 gives either aninfinite number of solutions (consistent equations).
or no solution (inconsistent equations).

Homogeneous equations
Homogeneous equations are Ax =0

giving the trivial solution x =0
However, an infinite number of solutions becomes possible when det(A) = 0.



Linear transformations in a plane

We consider the linear transformation which y - (X
moves the point (X, y) to (X, Y) and has the form (XY

X = i Xtapy

Y = axX+any (X y)

()4 X

We can regard the matrix A as an operator which transforms (x, y) into (X, Y).

We could also think of (XJ as the components of a vector and the operation changes
y

both the magnitude and direction of the vector.
The operation performed by A™ undoes the operation performed by A:

__ {2}

Dilation changes the scales along the x and y axes: y X, Y)

o sl

a 0 xy)
Let the dilation matrix be D., = (O b]
X
0
Then the inverse matrix is D}, = (%‘ }
o X

The product of two dilations is also adilation and dilation matrices commute.

Reflection
A reflection in the x-axisis given by: (xy)

(6 -

Let the reflection matrix be Q and it is clear X
that Q*=Q sothat Q>=1 X Y)

Rotation

1 0
Consider the rotation of the unit vectors (Oj and [J by an angle 6 about the origin.



It can be seen from the diagram that if  (-Sin6, 60SH) 4 ©.1)

the rotation is performed by a 2x2 matrix

R then (cosp, sinb)
1 cosh 0 —-singd
R = . and R = 0
0 sno 1 cos@ 5
b >
Let R = (a ] then x (10
c d
1 a cosé 0 b —-siné
R = =| and R = =
0 C sing 1 d cosé
so the rotation matrix is R - cosfd -sind
0 sn® cosoO

and this performs a positive rotation of an object about the origin.

cos@ snf
Theinverseisarotation of —0 giving Rgl = )
—sin@ coso

Clearly, R* = R" i.e R, R, =1

A matrix with this property is said to be orthonor mal — the dot product of any pair of
columns s zero (they are orthogonal) and regarding a column as elements of a vector,
they all have a magnitude of unity.

Combination of operations — two rotations
A rotation of 6, given by Ry, followed by arotation of ¢, Ry, is represented by

() e ) = e

and the compl ete rotation is given by RyRq — note the order of the matrices.

R.R cos¢y —sing \(cosfd —-snb cosf cosg —sinfsing —sinf cos¢ — cosO sin ¢
¢ 60~ -

B sing cos¢ )\ snf cosf sin@ cos¢ + cosfsing  cosf cosg —sindsing

Geometrically, the composite rotation is through an angle of 6+¢ and the matrix is
~ (cos(@ +¢) —sin(@ + ¢)]
7 sn@+¢) cos(d+¢)
Equating el ements of these matrices gives the familiar trigonometric identities:
cos(0+¢9) = cosO cosp —sindsing and  siN(0+¢d) = SiNO cosp + cosO Sing
It isalso clear that: Ro Ry = Ry Re = Rog
However, be careful — rotations only commute if they are about the same axis.

Combination of operations — reflection through any line

Let us derive the matrix representing a reflection in the line making an angle 6 with
the x-axis:

10



The combination of operations required is: y
1. Rotatethelineto the x-axis. (X)Y)
2. Reflect in the x-axis. )

3. Rotate the line back to its origina (\)\(‘y)

position. 0
If Qg isthe desired matrix, it is obtained by: X
cosf -sinf\(1 O\ cos® sné
Qo =Ry QR = (sin@ cosf J(O ~ ](—sin@ COSQJ

_(cos® sng \( cos® sind) cos’fd —sin’0  2sinf cosO
“\sn® -cos )\ -sin® cos®) | 2sinfcos®  sin?6—cos? O

sin20 —cos29

_(COSZQ sin26 ]
, =

Combination of operations — two reflections
Let us now derive the composite of two reflections and interpret the result:

C0S2¢ Sin2¢ \(cos20 sin260
Sin2¢ -—cos2¢ )\ sin20 —cos20

Q¢Q9 =

C0S2¢ C0S20 +SiN2$Sin20  cos2¢$sin 260 — sin 2¢ cos20
Sin2¢ cos20 —cos2¢Sin20  sin2¢ sin 20 + cos2¢ cos 260

~Q,Q, - (cos(Zq) -20) —sin(2¢— 20)}

sSin(2¢ —20)  cos(2¢ — 20)
Thisisarotation matrix corresponding to a positive rotation of 2(¢-0), so that

Qy Qo = Rop-0) aso Qo Qp = Ry

If the order of the reflections is reversed, it represents a rotation in the opposite
direction, i.e. reflections do not commute.

11



Eigenvectors and eigenvalues

A genera linear transformation in the plane is expected to

change the magnitude and direction of any vector on N
which it operates. However, if we try severa
transformations and plot them, a pattern emerges: (

(‘31 _ZZJ(;]:(—BJ similarly (—OlJ%(_lgj J J
= (502 = (G)-15

Rotations occur in opposite senses. There must therefore be boundaries between
opposite rotations where the sense of rotation is reversed and a vector on the boundary
is not rotated.

Consider these special cases:

SIS B DY P B SR M

Notice that the vectors are not rotated. These special cases are of the form:

AX = L X The vectors and scalars which satisfy this
/v K >\ relationship are the eigenvector s and eigenvalues of
Square Vector T Vector the matrix.

matrix Scalar

Determination of eigenvalues
Let us determine the values of A which satisfy the above relationship:

a b)(x X ax+hby = Ax (a—A)x+by =0
=A = =
c d)\y y cx+dy = Ay cx+(d-A)y=0

These equations are most conveniently expressed in matrix notation as:

(A=A1)x = 0 whichisasystem of linear simultaneous equations.

Since the right-hand-side of the equations is zero, the equations have the trivia
solution that x = 0. Thisisclearly not the required result.

Instead of seeking a unique solution, an infinite number of solutions may be obtained
if det(A-Al) =0, thus avoiding the trivial solution.

3-4 =2

For the matrix above, we have
-1 2-2

=0 = (3-1)(2-1)-2=0

Thisgives A*°-51+4=0 = (A-)(2-4)=0 = A1=1 or 4

Clearly, the determinant represents a polynomia in A of degree equal to the order of
the matrix. Such a polynomia will have n roots so that an order n matrix has n
eigenvalues and n corresponding eigenvectors.

The polynomial is known as the char acteristic equation of the matrix.

12



Note that the eigenvalues we have obtained are precisely the values in the previous
numerical example.

Determination of eigenvectors

Given values for A, let us now determine the corresponding eigenvectors. These are
obtained by solving the equations (A —Al) x = 0 for x.

3-1 -2)\(x 2 —-2\(x 0
For A = 1. = =
( -1 2—1](31] (—1 1 ](y] (OJ
. 2x-2y=0 .
The equations are: 0 Note that the second equation is merely a repeat
—X+y=
of thefirst. Thisisto be expected — the equations must be linearly dependent because
the determinant is zero.

We can therefore determine y in terms of x, giving the solution x =X, X =y where x

1
isarbitrary. So, with x = 1, the eigenvector is (1]

This determines the direction of the eigenvector, but not its magnitude.
-1 -2)\(X 0 -Xx-2y=0

For A = 4. = = = X=X X=-2Y
-1 -2)\y 0 -Xx-2y=0

-2
So, with y =1, the eigenvector is [ 1 j

Note that these are the eigenvectorsin the numerical example.

Since therelationship Ax = Ax does not define the magnitude of X, it is conventional
to normalise the vectors to a magnitude of unity. The two elgenvectors we have just

1 -2
determined should therefore be given as L(J and i( )
Y21 J5( 1

n

In general, the elements of the vector are scaled such that ZXf =1 or, in matrix
i=1

notation, x' x = 1.

The eigenvalues of a Hermitian (or symmetric) matrix are real

The eigenvalues of a matrix are the roots of a polynomia and therefore may be
complex even if al the elements in the matrix are real. However, for symmetric and
Hermitian matrices, the eigenvalues are real, as shown here.

The Hermitian transpose of a matrix is obtained as the transpose of its complex
conjugate. So,if A" = A then the matrix is Hermitian, i.e. a; = a}

Start with the definition of eigenvectorsand eigenvalues. A Xi = A; X;
Take the Hermitian transpose of both sides: (Ax )" =x" A" =24 x!

Postmultiply by x; and use A™ = A: xPAx, =4 xM x,

13



Now premultiply the first equation by x : XM AX, = A XX,

A comparison of the last two equations showsthat A, = A, so A; must bereal.

The eigenvectors of a Hermitian (or symmetric) matrix are orthogonal
If x; and x; are two vectors, the condition for orthogonality is x;' x ;=0fori=j.

Let Ax; = 4 X; then x5 AX =4 XX

But (AHXJ-)H =x!' A - (Ar xj)H Xi = A XX D
Because A" = A (Hermitian matrix) and A, = /l*j (eigenvalues arereal) we have
A x =47

Take the Hermitian transpose of both sides: (A" x, )" = 4, x"
and postmultiply by x;: (A x]-)H X, = 4xTx; ..., (2)
From (1) and (2) A x =4 xT X

Soif A4, # 4, wehave x'j4 X; = 0 and the eigenvectors are orthogonal.

Modal matrix
Since A Xj = 4 Xj, we can write the complete set of eigenvectors and eigenvalues as

AX = XA

where the x; are the columns of X and A isadiagona matrix containing the A;.
X isknown as the modal matrix of A.

When A is symmetric (or Hermitian), the columns of X are orthogona and, in
standard form, will be normalised to unit length. This makes X an orthonormal
matrix so that X* = X".

Matrix diagonalisation
When AX = X A then X" AX = A and thishas diagonalised the matrix A.
The matrix X which performs this operation must have eigenvectors of the symmetric

matrix A as columns and the diagonal matrix A contains the corresponding
eigenvalues.

Conversely, a matrix which has a given set of eigenvalues and eigenvectors may be
constructed from A = X A X".

Thisis known as a similarity transform. Matrices with the same set of eigenvalues
are said to be similar and the eigenvalues of A and A are the same.

14



Properties of eigenvalues

1. Starting with the similarity transform X' A X = A we evaluate the determinant
of both sides. For the left-hand-side, we have:

det(XT A X) = det(X")xdet(A)xdet(X) = det(X' X)xdet(A) = det(A)

and the right-hand-side gives: det(A) =[] 4
i=1

So the product of the eigenvalues is equal to the value of the n
determinant. det(A) = Hli

2. Thetrace of amatrix isthe sum of its diagona elements. trace(A) = Z a;

i=1
Using the similarity transform again: trace(A) = iﬂ,i = trace(X" AX)
i=1

so let us determine trace(XTAX):
Let AX =B then by =D ay Xy

k
Let X'B=X'AX=C then c¢; =Y X by =D X > a, X

k k |

The diagonal element is Ci =D D% X 8y
k |

so thetraceis D=0 > D X % Ay
i i k |
But z X % =0 k=l orthogonal eigenvectors
=1 k=l vectors of unit length
i.e z Xg X = Oy which is the Kronecker delta

Zcii = trace(XTAX) =Y > 5,a, =D a, = trace(A)

We therefore have:

the sum of the eigenvalues = the trace of the matrix

Case study

Whenever the properties of a physical system are expressed in terms of a
matrix, the mathematical description of the system is nearly always simplified by
diagonalising the matrix. A diagonal matrix clearly has fewer non-zero elements than
one which is fully populated and so leads to a simpler mathematical model. This
requires calculating the eigenvectors and eigenvaues of the matrix. Typically, the
eigenvectors will define the directions of new (rotated) axes used to describe the
system and the eigenvalues will give the values of essentia parameters of the

15



simplified model. This should become clearer by considering the following
mathematical example.

The matrix: (g g) The matrix is symmetrical (typical of a physical system with

real eigenvalues and orthogona eigenvectors) and is of order 2x2, so we are in two-
dimensional space.

Quadratic form: Usethe matrix to give the coefficients in an algebraic expression.

(x ) (g g) (;) = (6x+2y 2x+3y) (;) = 6x%+ 4xy + 3y?

Ellipse: Equate the expression to a constant (= 1) and plot
the curve. This gives an dlipse. Clearly, the equation we
have used to describe the ellipse is not in standard form and
you can see that the axes of the ellipse are not aligned with
the coordinate axes. Let us seek a simpler description of the
elipse.

Eigenvalues: Solve det(A - A1) =0 for A.

O R L EL PR e R TR

= 1-2)1-7) =0
The characteristic equation factorises and givestworoots: 4 = 2or 7.

Eigenvectors: Substitute the eigenvaluesinto (A - Al) x =0 and solve for x.
For A=2. (6-2x+2y=0 = y=-2X
Only one equation is considered — underdetermined equations.

Let x=1 then y=-2 sothe normalised eigenvector is %(_12)
For A=T: 6-7x+2y=0 = x=2
_ _ . . o 1 2
Lety=1 then x=2 sothe normalised eigenvector is ﬁ(l)

Plot the eigenvectors on the dlipsee To find the
relationship between the eigenvectors and the ellipse, plot
them on the graph. It is seen that the eigenvectors give the
directions of the axes of the dlipse. If we rotate the
coordinate axes to coincide with the directions of the
eigenvectors, the ellipse will bein the standard orientation.

Rotate the axes: Set up the moda matrix (its columns are
the eigenvectors) and note that it has the form of a rotation
matrix. The new coordinates are then given by:

X\ _ 1 1 2y %
<y’) 5 (—2 1) (y)
Diagonalise the matrix: The above step is not normally necessary as the easy way to
describe the ellipse on the rotated axes is to apply the rotation to the matrix itself, i.e.

to diagonalise the matrix using a similarity transform, X'AX = A. Note that the
diagonal elements are the eigenvalues.

o T N G I
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Quadratic form on the new axes.
x ) ((2) ‘;) (;) = @2x 7y) (;) = 2024 7y2

Plot the elipse on the new axes. Equate the above
expression to a constant (= 1) and plot the graph. The axes of
the ellipse now coincide with the coordinate axes and it has a

simpler equation: 2x%+ 7y = 1
2 2
The standard equation of an dlipseis z_z + % =1
We therefore have % = 2 sothat a = % = 0.71 and b = % = 0.38
The graph confirms that these are the lengths of the semi-axes of the ellipse, so we
have length of semi — axis = —

Vi
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Cartesian tensors

Tensors come after vectors in the progression: scalar — vector — tensor.
Scalars and vectors can also be called tensors. They are tensors of different rank. In
3-dimensional space, a scalar has 3° = 1 components, a vector has 3' = 3 components
and a second rank tensor has 3° = 9 components, which are written as a 3x3 array like
amatrix. In general, atensor of rank n has 3" components, so a scalar is a tensor of
rank 0 and a vector is a tensor of rank 1. We will consider mainly 2™ rank tensors
referred to Cartesian axes and just call them tensors.

A useful application of tensors is to relate two vector quantities where the
vectors are not necessarily paralel. Here are some examples in physics where thisis
the case:

Electrical conductivity

The microscopic version of Ohm’s law is J = ¢ E where the vector J is current
density, E is electric field and o is the conductivity. Taking the first components of
each vector, we have J; = ¢ E; which is correct for an isotropic material (one whose
properties are the same in al directions). However, if the conductivity is different in
different directions (anisotropic material), J will depend upon components of the
electric fieldinthe x, y and zdirections, i.e. J; = 611 E1 + 612 E> + 613 Es.

Similarly b=ocnEi+onEx+oxsEs

and J3=031E1+onEx+oxEs

Therefore, in general, we have J; = Yi_, oy Ex or J =0 E wherec isa3x3
array, i.e. asecond rank tensor.

Moment of inertia

Angular momentum, L, is related to the angular velocity, o, by L =1 @, wherel is
moment of inertia. However, in the case of atumbling object, the direction of « will
constantly change, whereas angular momentum is constant. Therefore, L and o need
not be parallel so the moment of inertia, 1, must be atensor quantity.

Electric per mittivity

The electric flux density, D, is related to the electric field strength, E, by D = ¢ E,
where ¢ is the electric permittivity. In an anisotropic medium, the polarisation need
not be parald to the field, so D and E need not be parallel. This requires € to be a
tensor. The dielectric constant contributes to the permittivity, so the dielectric
constant is also atensor quantity.

Stress

In the case of a wire supporting aweight, the stress (force per unit area) and the strain

(fractional increase in length) are proportional to each other (Hooke's law). The force
at a point in the wire can then be written as force = stress x area, i.e. dF =T dS.

However, for a 3-dimensional problem, there are not only normal forces (tensile stress)
but also tangential forces (shear stress) which can twist or bend the body as well as
stretch or compress it. This means that the force dF need not be parallel to the vector

area, dS, so the stress, T, must be atensor. Similarly, strain is aso atensor quantity.

We now need to ook at some of the mathematical properties of tensors.
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Addition and subtraction

Tensors can be added or subtracted like matrices, but in order to do so they must be of
the same rank:

A+B=C aj+bij:Cij

Multiplication

Tensors do not multiply like matrices. The most common multiplication is caled a
direct product —aso known as an outer product.

If U and V arefirst rank tensors, then their direct product to obtain the tensor W can
be written as:  u; v; = w; i.e. the direct product of two first rank tensors gives a
second rank tensor.

U1 WV UiV3
If Uis(ug, Uz, U3) and V is(vi, Vo, V3) then W is (uzv1 UV uz”s).
UzV1 U3V U3V3
More generally, we may have u;j vk = Wik SO the direct product of a second rank

tensor and a first rank tensor produces a third rank tensor. The rank of the resulting
tensor is aways the sum of the ranks of the original two tensors.

Transformation of vectors

Leti, j, k define the directions of the x, y, zaxesand i', |', k' define the directions of
the rotated system X, y', Z. The vector r can be written in terms of either set of
components and basis vectors as

r=xi+tyj+zk =xi'+yj'+zk'

The transformation between the two systems of axesis obtained as follows. Take the
dot product of r withi":
r.i' =xi.i'+yj.i'+zk.i' = x

Nowi .i',j .i"andk . i" arethe cosines of the angles between the axes x and X', y and
X' and zand X respectively. Call thesel;, m; and n; so we have

X = |1x+m1y+nlz
Similarly, Yy = hx+mpy+nz
and Z = lzx+mgy+nsz

These are the transformation equations between the coordinate system (X, y, z) and (X,
Y. 2)

In the same way, dotting r withi, j, k inturn gives

X = |1X'+|2y'+|3Z'
y=mx+my+mZz
Z=mxX+ny+nyz

These are more concisely expressed using matrix notation: r' = Ar and r = A'r'
L my ny

where A is the rotation matrix <l2 m, nz) which is orthonormal sothat A1 = AT
l; m3 ny

These equations give the official mathematical definition of avector. That is, avector
is a quantity that has components which transform according to these egquations upon
rotation of the axes.
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Transformation of tensors

In the direct product of U and V above, these first rank tensors (vectors) transform as
3 3

u, = Zaki u; and v = Zaki v;

i=1 i=1
so the components of the second rank tensor UV (= W) transform as

3 3 3 3 3 3
o 1o _ —
Wi = UV = Zaki U; Zalj vp = Zzaki a; u; v; = Zzaki apj Wij
i=1 j=1 i=1 j=1 i=1j=1

This relationship is easily generalised so, for example, a third rank tensor transforms

as.
3

3 3
! —

i=1 j=1k=1

Note that the components of a third rank tensor have three indices. These
relationships give the formal mathematical definition of atensor. That is, atensor isa
quantity that has components which transform according to these relationships upon
rotation of the axes.

Summation convention

It should be clear by now that tensor equations make use of alot of summation signs.
It would be a ssimplification if we could survive without them. There is therefore a
convention that the summation signs can be omitted so long as it is understood that a
summation occurs over any index which appears exactly twice in one term.

Therelationship u}, = Y3_, ay; u; cantherefore be abbreviatedto uj, = ay; y;

Thus &j means a; +axp t+ass
X X means x?+ xZ+ x3
aij bk means  aj1 by + a2 bk + a3 bak

Quotient rule

The quotient rule is used to determine whether some given quantities are the
components of atensor. To demonstrate it, we will prove that the electric permittivity
of an anisotropic material is a tensor. It was previoudy stated that the electric flux
density, D, was related to the electric field, E, in the presence of a dielectric materia
by D; = ij Ej

where ¢ is the permittivity. In arotated coordinate system, we must have equations of

the same form: D = glfj E]’

but D; isavector,sothat D; = ay D, giving aie Dy = & Ef
and D, = g, E; s g By = g E]
Similarly, E isavector  E; = ay Ej giving ay &g a Ef = € Ef
A rearrangement gives (ai aj e — &) Ef = 0
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Since E; isarbitrary, thisimplies & = Qik At &k

and the permittivity &q transforms as atensor.

Contraction

Contraction of atensor consists of setting two unlike indices equal to each other and
then summing as implied by the summation convention. An example is afforded by
the direct product of the two first rank tensors U and V. The genera element of the
product is u; v;. Making the indices the same gives u; v;, which, by the summation
convention, gives the dot product, which is a scalar. It is more formally known as a
scalar invariant as it does not change value upon rotation of axes. (The dot product
is aso known as a scalar product or an inner product.) The second rank tensor UV
has therefore been contracted to a scalar, which is a tensor of zero rank. In generd,
contraction of atensor reduces the rank by two.

A more general example of contraction is given by the transformation equations of a
third rank tensor:

Wpqr = Qpi Qqj Qri Wijk
Put r = g which introduces an extra summation over . We then have:

Wpqq = Gpi Aqj Gqi Wijk
Now ag aqg isthe dot product of columnsj and k of the rotation matrix A. Because
the matrix is orthonormal, this dot product is 1 if j = k and is O otherwise, i.e. ag ag =
Sjk (the Kronecker delta). Then &y wijx becomes wi; since &k =0 when j # k.
This reduces the previous equation to:

Wpeq = Qpi Wijj

which is the transformation equation for afirst rank tensor. Note that w;; has only

onefreeindex, i, sincej isthe dummy index of summation. The rank of the third rank
tensor w;jx has therefore been reduced by two.

This is the end of the course — | hope you have enjoyed it.
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