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A course of lectures given to second year physics
students as part of the Maths II module.

Lecturer: Professor Peter Main

This course builds upon the short introduction to matrix algebra you were
given in the first year. This is a very powerful branch of mathematics much used by
physicists. The notes start by describing the matrix algebra you should already know
and so can be used for revision. They include the essentials of matrix algebra such as
addition, multiplication and algebraic manipulation of matrices and matrix inversion.

Matrices are then used to represent a set of linear simultaneous equations and
their solution. This is a powerful piece of mathematics as huge sets of equations can
be represented by very few symbols. We also find out how to deal with the situation
where there is insufficient information in the equations to give a unique solution.

The matrix is also used as an operator to scale, rotate and reflect two-
dimensional objects. Combinations of operations are also considered. This forms the
basis of computer graphics and, in other courses, you will find more uses of the
matrix as an operator.

Next, we consider the eigenvectors and eigenvalues of symmetric and
Hermitian matrices. This is the most powerful of all the mathematical techniques in
the course, which allows you to analyse complicated systems in terms of much
simpler components. A mathematical example of this is presented as a case study.

Finally, there is a brief introduction to tensors. Examples of their use in
physics are presented and some of their mathematical properties are described.

http://www-users.york.ac.uk/~pm1/PMweb/teaching.htm
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Matrices
A matrix is a rectangular array of elements, which are typically
numbers (they may be complex) or algebraic expressions. The
whole array is enclosed in brackets.

A matrix which has m rows and n columns is of order m×n.

Notation

A matrix can be represented by a single symbol, e.g.


















42

10

13

A or

 ija

aa

aa

aa




















3231

2221

1211

A where a symbol is given to each element.

The element a37 is the element in row 3 and column 7.

The fact that a large array of data can be represented by a single symbol makes it very
convenient for the algebraic manipulation of vast amounts of information.

Matrix equality
Two matrices A and B are equal only if they are of the same order and corresponding
elements are equal, i.e. aij = bij for all i and j.

Addition and subtraction
Matrices can be added or subtracted only if they have the same order:


















































465

221

224223

113112

242

131

223

112

The sums (or differences) of corresponding elements are performed.

Multiplication by a scalar










































39

66

123

13

22

41

3 also written as    ijij akak 

i.e. multiply every element by the scalar.

The transpose of a matrix

If


















34

23

12

A then the transpose is 











321

432TA , i.e. rows become

columns and columns become rows. An m×n matrix becomes n×m by transposing it.














641

232

A 2×3 matrix
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Special matrices
There are many matrices with special names. Here are some you may meet in this
course:

Square matrix – this has the same number of columns as rows. 








 31

21

Symmetric matrix – this is equal to its own transpose, i.e. AT = A






















324

221

411

Diagonal matrix – only the diagonal elements are non-zero
















100

020

003

Identity matrix – a diagonal matrix with all diagonal elements = 1


















100

010

001

I

Hermitian matrix – the transpose is the complex conjugate 












221212

121211

abia

biaa

Matrix multiplication
Two matrices can be multiplied together only if the number of columns in the first is
equal to the number of rows in the second.

If A is of order m×n then B must be n×p to form the product AB.

Look at the pattern in the result of the following multiplication:









































323222121

313212111

3

2

1

232221

131211

bababa

bababa

b

b

b

aaa

aaa
BABA

Each element in the result is the dot product of a row in A with a column of B. The
same process is carried out in the more general case:








 












































935

545

063140229

061040023

012

321

103

123

021

It can be seen that
pmpnnm 





CBA

and cij is the scalar product of the ith row of A with the jth column of B:





n

k
kjikij bac

1
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It should also be clear that even if AB exists, BA may not (unless m = p). Even if BA
does exist, it is in general not equal to AB.





















nnnmmn

mmmnnm

DAB

CBA

AB and BA are of different orders.

See also: 






































70

85

34

81

21

31

31

12
ABBABA

The order of the matrices in a product is clearly important – matrices do not commute.

In the product AB, A premultiplies B and B postmultiplies A.

Multiplication by the identity matrix


























































202

121

103

100

010

001

202

121

103

i.e. AI = A also IA = A

Another matrix product








































00

00

42

64

91

936

312
which is the null matrix.

Note that AB = 0 does not imply either A = 0 or B = 0.

Similarly, AB = AC does not imply that B = C.

Matrix representation of linear simultaneous equations
Consider the equations: 3x1 + 2x2 = 1

2x1 – x2 = -4

In matrix notation: 



























 4

1

12

23

2

1

x

x
– multiply out the lhs to get the same

as above.

Using fewer symbols, this is: A x = b

This is the most concise representation of the equations. It is extremely powerful
since the symbols can represent matrices and vectors of any order – millions of
equations in millions of unknowns is not unheard of.

The inverse matrix
The solution of the equations can also be represented using symbols as follows:

lhs matrix vector of unknowns rhs vector
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If we write a simple equation in terms of scalars: ax = b

then its solution is: ba
a

b
x 1

On the rhs, we have multiplied b by the reciprocal of a to get the solution. Since
matrix division is not defined, we must do something similar to solve the matrix
equation, i.e. define an inverse matrix A-1 such that AA-1 = A-1A = I. This allows
us to perform the following manipulation:

Let A x = b

Premultiply by A-1: A-1 A x = A-1 b

Therefore I x = A-1 b

Therefore x = A-1 b

So the solution is formally obtained by premultiplying the rhs vector by the inverse of
the lhs matrix.

Useful results without proof
There is little point in proving the following, but you may find the results useful:

Associative rule: A(BC) = (AB)C and A(B+C) = AB + AC

Combination of determinants: det(AB) = det(A).det(B)

Transpose of a product: (AB)T = BTAT

Inverse of a product: (AB)-1 = B-1A-1

Calculation of the inverse matrix

Let us calculate the inverse of
























211

012

101

A such that AA-1 = I

Let


















321

321

321

1

zzz

yyy

xxx

A then























































100

010

001

211

012

101

321

321

321

zzz

yyy

xxx

Now multiply out the lhs matrices and equate elements with the rhs matrix. This gives
a system of 9 equations in 9 unknowns which can be written as:











































12

02

0

02

12

0

02

02

1

333

33

33

222

22

22

111

11

11

zyx

yx

zx

zyx

yx

zx

zyx

yx

zx

Note that the lhs matrix is the same in all 3 cases. This means the 3 systems of
equations can be written in the following compact form, where only the elements of
lhs matrix and the right-hand-sides are recorded:
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





















100211

010012

001101

The matrix represents a system of linear simultaneous equations with three right-
hand-sides. They may be solved by any suitable method, but Gauss elimination is
recommended. (Gauss elimination uses combinations of rows.) You are expected to
know this method, so little explanation will be given.
















































111100

012210

001101

101310

012210

001101

)3()2()1()3(

)1(2)2(

Now eliminate variables above the diagonal.





















111100

234010

112001

)3(2)2(

)3()1(

This gives the result


















111

234

112
1A which can be checked by calculating AA-1.

The recipe is:

1 Write down the matrix A

2 To the right of A write down the identity matrix of the same order.

3 Use Gauss elimination to reduce A to the identity matrix.

4 The original identity matrix has been replaced by the inverse of A.

We can now use the inverse matrix to solve the following equations:

102

12

5







zyx

yx

zx

let




























































10

1

5

211

012

101

bxA

z

y

x

then the equations are A x = b and the solution is x = A-1 b

i.e.





















































4

3

1

10

1

5

111

234

112

x – check by substitution into the equations.

It is clear there is more work in calculating the inverse than in solving the equations
directly. You do not calculate an inverse matrix merely to solve equations!

A formula for the inverse matrix
It is sometimes convenient to express the inverse matrix as a formula. Consider the
square matrix A = (aij).

Columns 1, 2, 3, 4 will give x1, y1, z1

Columns 1, 2, 3, 5 will give x2, y2, z2

Columns 1, 2, 3, 6 will give x3, y3, z3
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For each element aij there corresponds a cofactor cij obtained by evaluating the
determinant resulting from the elimination of the ith row and jth column together with
its ‘place sign’ = (-1)i+j.

e.g. for
















333231

232221

131211

aaa

aaa

aaa

some cofactors cij are
3331

2321

12

3332

2322

11
aa

aa
c

aa

aa
c 

3331

1311

22

3332

1312

21
aa

aa
c

aa

aa
c 

Let the matrix of cofactors be C = (cij) then the adjoint matrix is adj(A) = CT

and the inverse matrix is:

Let us use this formula to confirm the inverse matrix obtained previously:

1122)det(

121

131

142

211

012

101









































 AA C



















111

234

112

)det(

)(adj1

A

A
A

Note that if det(A) = 0 there is no inverse and the matrix is said to be singular.

Rank of a matrix
The rank of a matrix is a measure of the information it contains. It is the number of
independent rows or columns of the matrix. It is most efficiently determined by
Gauss elimination:



























































 





0000

6220

2011

9330

6220

2011

1314

2202

2011

2/)2(3)3()1(4)3(

)1(2)2(

The 3rd row can be expressed as a linear combination of the first two, so the rank is 2.

Note that row (3) =
2

3
× (2) +(1) – it is a linear combination of the other rows and

so does not contain any new information.

Underdetermined sets of equations
Sometimes there is insufficient information to provide a unique solution to the
equations. Solve the following equations by Gauss elimination:

)det(

)(adj

tdeterminan

adjoint1

A

A
A 
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434

232

12







zyx

zyx

zyx





























































0000

0550

1121

0550

0550

1121

4134

2312

1121

)2()3()1(4)3(

)1(2)2(

The last equation becomes 0 = 0, which is true but not very useful. We therefore
have 3 unknowns but only 2 useful equations. This allows us to express 2 of the
variables in terms of the 3rd:

Let z = z then back substitution gives: y = -z, x = 1 + z.

We thus have an infinite number of solutions in terms of a single variable. This is
because the equations are linearly dependent: (3) = 2 × (1) + (2)

Note that the determinant of the left-hand-side coefficients is zero: 0

134

312

121







Inconsistent equations

Making a small alteration to the rhs of one equation gives:

034

232

12







zyx

zyx

zyx

and solving them gives:









































4000

0550

1121

4550

0550

1121

)2()3()1(4)3(

)1(2)2(

The last equation is now 0 = 4 which is false. The equations are therefore
inconsistent and there is no solution. Note that the determinant is zero as before.
The equations are inconsistent when the rank of the augmented matrix is greater than
the rank of the lhs matrix.

Summary
det(A)  0 gives a unique solution.
det(A) = 0 gives either an infinite number of solutions (consistent equations).

or no solution (inconsistent equations).

Homogeneous equations
Homogeneous equations are A x = 0

giving the trivial solution x = 0

However, an infinite number of solutions becomes possible when det(A) = 0.
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Linear transformations in a plane
We consider the linear transformation which
moves the point (x, y) to (X, Y) and has the form

X = a11 x + a12 y

Y = a21 x + a22 y

or 

















y

x

Y

X
A

We can regard the matrix A as an operator which transforms (x, y) into (X, Y).

We could also think of 








y

x
as the components of a vector and the operation changes

both the magnitude and direction of the vector.

The operation performed by A-1 undoes the operation performed by A:



















y

x

Y

X1A

Dilation
Dilation changes the scales along the x and y axes:




































y

x

y

x

Y

X

3

2

30

02

Let the dilation matrix be 









b

a
ba

0

0
,D

Then the inverse matrix is















b

a
ba 10

01
1
,D

The product of two dilations is also a dilation and dilation matrices commute.

Reflection
A reflection in the x-axis is given by:








































y

x

y

x

Y

X

10

01

Let the reflection matrix be Q and it is clear
that Q-1 = Q so that Q2 = I

Rotation

Consider the rotation of the unit vectors 








0

1
and 









1

0
by an angle  about the origin.

· (X, Y)

· (x, y)

x

y

(x, y)

(X, Y)

x

y

(x, y)

x

(X, Y)

y
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It can be seen from the diagram that if
the rotation is performed by a 2×2 matrix
R then























sin

cos

0

1
R and 






















cos

sin

1

0
R

Let 









dc

ba
R then
































sin

cos

0

1

c

a
R and 































cos

sin

1

0

d

b
R

so the rotation matrix is

and this performs a positive rotation of an object about the origin.

The inverse is a rotation of – giving 
















cossin

sincos1R

Clearly, R-1 = RT i.e. IRR 
T

A matrix with this property is said to be orthonormal – the dot product of any pair of
columns is zero (they are orthogonal) and regarding a column as elements of a vector,
they all have a magnitude of unity.

Combination of operations – two rotations

A rotation of , given by R, followed by a rotation of , R, is represented by






















































'

'

'

'
then

Y

X

y

x

Y

X

Y

X

Y

X

y

x
 RRRR

and the complete rotation is given by RR – note the order of the matrices.












































 sinsincoscossincoscossin

sincoscossinsinsincoscos

cossin

sincos

cossin

sincos
RR

Geometrically, the composite rotation is through an angle of + and the matrix is















)cos()sin(

)sin()cos(




R

Equating elements of these matrices gives the familiar trigonometric identities:

cos() = cos cos – sin sin and sin() = sin cos + cos sin

It is also clear that: R R = R R = R

However, be careful – rotations only commute if they are about the same axis.

Combination of operations – reflection through any line

Let us derive the matrix representing a reflection in the line making an angle  with
the x-axis:








 







cossin

sincos
R

x (1,0)

(cos, sin)

(-sin, cos)




(0,1)
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The combination of operations required is:

1. Rotate the line to the x-axis.

2. Reflect in the x-axis.

3. Rotate the line back to its original
position.

If Q is the desired matrix, it is obtained by:


























 
 










cossin

sincos

10

01

cossin

sincos
0 RQRQ
















































22

22

cossincossin2

cossin2sincos

cossin

sincos

cossin

sincos


















2cos2sin

2sin2cos
Q

Combination of operations – two reflections
Let us now derive the composite of two reflections and interpret the result:































2cos2sin

2sin2cos

2cos2sin

2sin2cos
QQ



















2cos2cos2sin2sin2sin2cos2cos2sin

2cos2sin2sin2cos2sin2sin2cos2cos















)22cos()22sin(

)22sin()22cos(




 QQ

This is a rotation matrix corresponding to a positive rotation of 2(-), so that

Q Q = R2() also Q Q = R2()

If the order of the reflections is reversed, it represents a rotation in the opposite
direction, i.e. reflections do not commute.

(X,Y)

(x,y)

x



y
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Eigenvectors and eigenvalues
A general linear transformation in the plane is expected to
change the magnitude and direction of any vector on
which it operates. However, if we try several
transformations and plot them, a pattern emerges:

































1

3

0

1

21

23
similarly 


















1

3

0

1

also 





























2

2

1

0

21

23
and 




















 2

2

1

0

Rotations occur in opposite senses. There must therefore be boundaries between
opposite rotations where the sense of rotation is reversed and a vector on the boundary
is not rotated.

Consider these special cases:








































1

2
4

4

8

1

2

21

23
and 






























1

1

1

1

21

23

Notice that the vectors are not rotated. These special cases are of the form:

The vectors and scalars which satisfy this
relationship are the eigenvectors and eigenvalues of
the matrix.

Determination of eigenvalues

Let us determine the values of  which satisfy the above relationship:

0)(

0)(




































ydcx

byxa

ydycx

xbyax

y

x

y

x

dc

ba










These equations are most conveniently expressed in matrix notation as:

(A –  I) x = 0 which is a system of linear simultaneous equations.

Since the right-hand-side of the equations is zero, the equations have the trivial
solution that x = 0. This is clearly not the required result.

Instead of seeking a unique solution, an infinite number of solutions may be obtained
if det(A-I) = 0, thus avoiding the trivial solution.

For the matrix above, we have 02)2()3(0
21

23











This gives 4or10)4()1(0452  

Clearly, the determinant represents a polynomial in  of degree equal to the order of
the matrix. Such a polynomial will have n roots so that an order n matrix has n
eigenvalues and n corresponding eigenvectors.

The polynomial is known as the characteristic equation of the matrix.

A x =  x

Square Vector Vector
matrix Scalar
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Note that the eigenvalues we have obtained are precisely the values in the previous
numerical example.

Determination of eigenvectors

Given values for , let us now determine the corresponding eigenvectors. These are
obtained by solving the equations (A – I) x = 0 for x.

For  = 1: 


















































0

0

11

22

121

213

y

x

y

x

The equations are:
0

022





yx

yx
Note that the second equation is merely a repeat

of the first. This is to be expected – the equations must be linearly dependent because
the determinant is zero.

We can therefore determine y in terms of x, giving the solution x = x, x = y where x

is arbitrary. So, with x = 1, the eigenvector is .
1

1









This determines the direction of the eigenvector, but not its magnitude.

For  = 4: yxxx
yx

yx

y

x
2,

02

02

0

0

21

21




































So, with y = 1, the eigenvector is 








1

2
.

Note that these are the eigenvectors in the numerical example.

Since the relationship Ax = x does not define the magnitude of x, it is conventional
to normalise the vectors to a magnitude of unity. The two eigenvectors we have just

determined should therefore be given as 
















1

2

5

1
and

1

1

2

1
.

In general, the elements of the vector are scaled such that 1
1

2 


n

i
ix or, in matrix

notation, xT x = 1.

The eigenvalues of a Hermitian (or symmetric) matrix are real
The eigenvalues of a matrix are the roots of a polynomial and therefore may be
complex even if all the elements in the matrix are real. However, for symmetric and
Hermitian matrices, the eigenvalues are real, as shown here.

The Hermitian transpose of a matrix is obtained as the transpose of its complex

conjugate. So, if AH = A then the matrix is Hermitian, i.e. *
jiij aa 

Start with the definition of eigenvectors and eigenvalues: A xi = i xi

Take the Hermitian transpose of both sides:   H
ii

HH
i

H

i xAxxA *

Postmultiply by xi and use AH = A: i
H
iii

H
i xxxAx *
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Now premultiply the first equation by H
ix : i

H
iii

H
i xxxAx 

A comparison of the last two equations shows that *
ii   so i must be real.

The eigenvectors of a Hermitian (or symmetric) matrix are orthogonal

If xi and xj are two vectors, the condition for orthogonality is jij
H
i  for0xx .

Let A xi = ixi then i
H
jii

H
j xxxAx 

But   AxxA H
j

H

j
H    i

H
jii

H

j
H xxxxA  . . . . . . . . . . . . (1)

Because AH = A (Hermitian matrix) and *
jj   (eigenvalues are real) we have

AH xj = j
* xj

Take the Hermitian transpose of both sides:   H
jj

H

j
H xxA 

and postmultiply by xi: ൫ۯுܠ�௝൯
ு
௜�ൌܠ� ௝ܠ�௝ߣ��

ுܠ�௜ . . . . . . . (2)

From (1) and (2) i
H
jii

H
jj xxxx  

  0 i
H
jij xx

So if ij   we have 0i
H
j xx and the eigenvectors are orthogonal.

Modal matrix

Since A xi = i xi, we can write the complete set of eigenvectors and eigenvalues as

A X = X 

where the xi are the columns of X and  is a diagonal matrix containing the i.

X is known as the modal matrix of A.

When A is symmetric (or Hermitian), the columns of X are orthogonal and, in
standard form, will be normalised to unit length. This makes X an orthonormal
matrix so that X-1 = XT.

Matrix diagonalisation

When A X = X  then XT A X =  and this has diagonalised the matrix A.

The matrix X which performs this operation must have eigenvectors of the symmetric
matrix A as columns and the diagonal matrix  contains the corresponding
eigenvalues.

Conversely, a matrix which has a given set of eigenvalues and eigenvectors may be
constructed from A = X  XT.

This is known as a similarity transform. Matrices with the same set of eigenvalues
are said to be similar and the eigenvalues of A and  are the same.
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Properties of eigenvalues

1. Starting with the similarity transform XT A X = we evaluate the determinant
of both sides. For the left-hand-side, we have:

det(XT A X) = det(XT)×det(A)×det(X) = det(XT X)×det(A) = det(A)

and the right-hand-side gives: 



n

i
i

1

)det( Λ

So the product of the eigenvalues is equal to the value of the
determinant.

2. The trace of a matrix is the sum of its diagonal elements: 



n

i
iia

1

)trace(A

Using the similarity transform again: )(trace)(trace
1

XAXΛ T
n

i
i  





so let us determine trace(XTAX):

Let AX = B then 
k

kjikij xab

Let XTB = XTAX = C then   
k l

ljklki
k

kj
T
ikij xaxbxc

The diagonal element is 
l

klliki
k

ii axxc

so the trace is  
l

klliki
kii

ii axxc

But lkxx
i

liki  0 orthogonal eigenvectors

= 1 k = l vectors of unit length

i.e. kl
i

liki xx  which is the Kronecker delta.

)(trace)(trace AXAX   
l k

kkklkl
k

T

i
ii aac 

We therefore have:

the sum of the eigenvalues = the trace of the matrix

Case study
Whenever the properties of a physical system are expressed in terms of a

matrix, the mathematical description of the system is nearly always simplified by
diagonalising the matrix. A diagonal matrix clearly has fewer non-zero elements than
one which is fully populated and so leads to a simpler mathematical model. This
requires calculating the eigenvectors and eigenvalues of the matrix. Typically, the
eigenvectors will define the directions of new (rotated) axes used to describe the
system and the eigenvalues will give the values of essential parameters of the





n

i
i

1

)det( A
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simplified model. This should become clearer by considering the following
mathematical example.

The matrix: ቀ
6 2
2 3

ቁ The matrix is symmetrical (typical of a physical system with

real eigenvalues and orthogonal eigenvectors) and is of order 2×2, so we are in two-
dimensional space.

Quadratic form: Use the matrix to give the coefficients in an algebraic expression.

ݔ) �ቀ(ݕ
6 2
2 3

ቁ�ቀ
ݔ
ቁ�ൌݕ ��(͸ݔ൅ ʹ ݕ ʹ ൅ݔ ͵ �ቀ(ݕ

ݔ
ቁ�ൌݕ ��͸ݔଶ ൅ Ͷݕݔ൅ ͵ ଶݕ

Ellipse: Equate the expression to a constant (= 1) and plot
the curve. This gives an ellipse. Clearly, the equation we
have used to describe the ellipse is not in standard form and
you can see that the axes of the ellipse are not aligned with
the coordinate axes. Let us seek a simpler description of the
ellipse.

Eigenvalues: Solve det(A - I) = 0 for .

ቚ
͸െ ߣ ʹ
ʹ ͵ െ ߣ

ቚ�ൌ ��ͳͅ െ ͻߣ൅ ଶെߣ Ͷ�ൌ ଶߣ�� െ ͻߣ൅ ͳͶ�

= െߣ) ʹ െߣ)( ͹) = 0
The characteristic equation factorises and gives two roots:  = 2 or 7.

Eigenvectors: Substitute the eigenvalues into (A - I) x = 0 and solve for x.
For  = 2: (6 - 2)x + 2y = 0 ⇒ y = -2x

Only one equation is considered – underdetermined equations.

Let x = 1 then y = -2 so the normalised eigenvector is
ଵ

√ହ
ቀ

1
−2

ቁ

For  = 7: (6 – 7)x + 2y = 0 ⇒ x = 2y

Let y = 1 then x = 2 so the normalised eigenvector is
ଵ

√ହ
ቀ

2
1
ቁ

Plot the eigenvectors on the ellipse: To find the
relationship between the eigenvectors and the ellipse, plot
them on the graph. It is seen that the eigenvectors give the
directions of the axes of the ellipse. If we rotate the
coordinate axes to coincide with the directions of the
eigenvectors, the ellipse will be in the standard orientation.

Rotate the axes: Set up the modal matrix (its columns are
the eigenvectors) and note that it has the form of a rotation
matrix. The new coordinates are then given by:

൬
Ԣݔ
Ԣݕ
൰�ൌ �

1

√5
�ቀ

1 2
−2 1

ቁ�ቀ
ݔ
ቁݕ

Diagonalise the matrix: The above step is not normally necessary as the easy way to
describe the ellipse on the rotated axes is to apply the rotation to the matrix itself, i.e.
to diagonalise the matrix using a similarity transform, XTAX = . Note that the
diagonal elements are the eigenvalues.

1

5
ቀ
1 −2
2 1

ቁቀ
6 2
2 3

ቁ�ቀ
1 2
−2 1

ቁ�ൌ ��ቀ
2 0
0 7

ቁ
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Quadratic form on the new axes:

ݔ) �ቀ(ݕ
2 0
0 7

ቁ�ቀ
ݔ
ቁ�ൌݕ ��(ʹ ݔ ͹ݕ)�ቀ

ݔ
ቁ�ൌݕ ଶݔʹ�� ൅ �͹ݕଶ

Plot the ellipse on the new axes: Equate the above
expression to a constant (= 1) and plot the graph. The axes of
the ellipse now coincide with the coordinate axes and it has a
simpler equation: ʹ ଶݔ ൅ �͹ݕଶ = 1

The standard equation of an ellipse is
௫మ

௔మ
+

௬మ

௕మ
= 1

We therefore have
ଵ

௔మ
�ൌ ��ʹ�����������ܽ�ൌ ��

ଵ

√ଶ
�ൌ ��ͲǤ͹ͳ�������ܾ�ൌ ��

ଵ

√଻
= 0.38

The graph confirms that these are the lengths of the semi-axes of the ellipse, so we

have ݈݁ ݐ݄݃݊ ݂݋� ݏ݁� ݉ ݅െ ݔ݅ܽ �ൌݏ ��
ଵ

√ఒ
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Cartesian tensors

Tensors come after vectors in the progression: scalar – vector – tensor.
Scalars and vectors can also be called tensors. They are tensors of different rank. In
3-dimensional space, a scalar has 30 = 1 components, a vector has 31 = 3 components
and a second rank tensor has 32 = 9 components, which are written as a 3×3 array like
a matrix. In general, a tensor of rank n has 3n components, so a scalar is a tensor of
rank 0 and a vector is a tensor of rank 1. We will consider mainly 2nd rank tensors
referred to Cartesian axes and just call them tensors.

A useful application of tensors is to relate two vector quantities where the
vectors are not necessarily parallel. Here are some examples in physics where this is
the case:

Electrical conductivity
The microscopic version of Ohm’s law is J =  E where the vector J is current
density, E is electric field and  is the conductivity. Taking the first components of
each vector, we have J1 =  E1 which is correct for an isotropic material (one whose
properties are the same in all directions). However, if the conductivity is different in
different directions (anisotropic material), J will depend upon components of the
electric field in the x, y and z directions, i.e. J1 = 11 E1 + 12 E2 + 13 E3.
Similarly J2 = 1 E1 + 22 E2 + 23 E3

and J3 = 31 E1 + 32 E2 + 33 E3

Therefore, in general, we have ௜ܬ = ∑ ௜௞ߪ�
ଷ
௞ୀଵ ௞ܧ� or J =  E where  is a 3×3

array, i.e. a second rank tensor.

Moment of inertia
Angular momentum, L, is related to the angular velocity, , by L = I , where I is
moment of inertia. However, in the case of a tumbling object, the direction of  will
constantly change, whereas angular momentum is constant. Therefore, L and  need
not be parallel so the moment of inertia, I, must be a tensor quantity.

Electric permittivity
The electric flux density, D, is related to the electric field strength, E, by D =  E,
where  is the electric permittivity. In an anisotropic medium, the polarisation need
not be parallel to the field, so D and E need not be parallel. This requires  to be a
tensor. The dielectric constant contributes to the permittivity, so the dielectric
constant is also a tensor quantity.

Stress
In the case of a wire supporting a weight, the stress (force per unit area) and the strain
(fractional increase in length) are proportional to each other (Hooke’s law). The force
at a point in the wire can then be written as force = stress × area, i.e. dF = T dS.
However, for a 3-dimensional problem, there are not only normal forces (tensile stress)
but also tangential forces (shear stress) which can twist or bend the body as well as
stretch or compress it. This means that the force dF need not be parallel to the vector
area, dS, so the stress, T, must be a tensor. Similarly, strain is also a tensor quantity.

We now need to look at some of the mathematical properties of tensors.
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Addition and subtraction
Tensors can be added or subtracted like matrices, but in order to do so they must be of
the same rank:

A + B = C aij + bij = cij

Multiplication
Tensors do not multiply like matrices. The most common multiplication is called a
direct product – also known as an outer product.

If U and V are first rank tensors, then their direct product to obtain the tensor W can
be written as: ui vj = wij i.e. the direct product of two first rank tensors gives a
second rank tensor.

If U is (u1, u2, u3) and V is (v1, v2, v3) then W is ൭

ଵݒଵݑ ଶݒଵݑ ଷݒଵݑ
ଵݒଶݑ ଶݒଶݑ ଷݒଶݑ
ଵݒଷݑ ଶݒଷݑ ଷݒଷݑ

൱.

More generally, we may have uij vk = wijk so the direct product of a second rank
tensor and a first rank tensor produces a third rank tensor. The rank of the resulting
tensor is always the sum of the ranks of the original two tensors.

Transformation of vectors
Let i, j, k define the directions of the x, y, z axes and i', j', k' define the directions of
the rotated system x', y', z'. The vector r can be written in terms of either set of
components and basis vectors as

r = x i + y j + z k = x' i' + y' j' + z' k'

The transformation between the two systems of axes is obtained as follows. Take the
dot product of r with i':

r . i' = x i . i' + y j . i' + z k . i' = x'

Now i . i', j . i' and k . i' are the cosines of the angles between the axes x and x', y and
x' and z and x' respectively. Call these l1, m1 and n1 so we have

x' = l1 x + m1 y + n1 z
Similarly, y' = l2 x + m2 y + n2 z
and z' = l3 x + m3 y + n3 z

These are the transformation equations between the coordinate system (x, y, z) and (x',
y', z')

In the same way, dotting r with i, j, k in turn gives

x = l1 x' + l2 y' + l3 z'
y = m1 x' + m2 y' + m3 z'
z = n1 x' + n2 y' + n3 z'

These are more concisely expressed using matrix notation: r' = A r and r = AT r'

where A is the rotation matrix ൭
ଵ݈ ݉ ଵ ଵ݊

ଶ݈ ݉ ଶ ଶ݊

ଷ݈ ݉ ଷ ଷ݊

൱which is orthonormal so that A-1 = AT

These equations give the official mathematical definition of a vector. That is, a vector
is a quantity that has components which transform according to these equations upon
rotation of the axes.
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Transformation of tensors
In the direct product of U and V above, these first rank tensors (vectors) transform as

u௞
ᇱ�ൌ ��෍ ௞ܽ௜

ଷ

௜ୀଵ

௜ݑ� and v௞
ᇱ�ൌ ��෍ ௞ܽ௜

ଷ

௜ୀଵ

௜ݒ�

so the components of the second rank tensor UV (= W) transform as

௞௟ݓ
ᇱ �ൌ ௞ݑ�

ᇱݒ௟
ᇱ�ൌ �෍ ௞ܽ௜

ଷ

௜ୀଵ

௜�෍ݑ� ௟ܽ௝

ଷ

௝ୀଵ

௝ݒ� ൌ �෍ ෍ ௞ܽ௜

ଷ

௝ୀଵ

ଷ

௜ୀଵ

�ܽ ௟௝ݑ�௜ݒ�௝ ൌ �෍ ෍ ௞ܽ௜

ଷ

௝ୀଵ

ଷ

௜ୀଵ

�ܽ ௟௝ݓ�௜௝

This relationship is easily generalised so, for example, a third rank tensor transforms
as:

௣௤௥ݓ
ᇱ ��ൌ ��෍ ෍ ෍ ௣ܽ௜

ଷ

௞ୀଵ

ଷ

௝ୀଵ

ଷ

௜ୀଵ

�ܽ ௤௝�ܽ௥௞ݓ�௜௝௞

Note that the components of a third rank tensor have three indices. These
relationships give the formal mathematical definition of a tensor. That is, a tensor is a
quantity that has components which transform according to these relationships upon
rotation of the axes.

Summation convention
It should be clear by now that tensor equations make use of a lot of summation signs.
It would be a simplification if we could survive without them. There is therefore a
convention that the summation signs can be omitted so long as it is understood that a
summation occurs over any index which appears exactly twice in one term.

The relationship u௞
ᇱ = ∑ ௞ܽ௜

ଷ
௜ୀଵ ௜ݑ� can therefore be abbreviated to ௞ݑ

ᇱ�ൌ ��ܽ ௞௜ݑ�௜

Thus ajj means a11 + a22 + a33

xi xi means ଵݔ
ଶ ൅ ଶݔ�

ଶ ൅ ଷݔ�
ଶ

aij bjk means ai1 b1k + ai2 b2k + ai3 b3k

Quotient rule
The quotient rule is used to determine whether some given quantities are the
components of a tensor. To demonstrate it, we will prove that the electric permittivity
of an anisotropic material is a tensor. It was previously stated that the electric flux
density, D, was related to the electric field, E, in the presence of a dielectric material
by Di = ij Ej

where  is the permittivity. In a rotated coordinate system, we must have equations of

the same form: ௜ܦ
ᇱ�ൌ ௜௝ߝ��

ᇱܧ�௝
ᇱ

but ௜ܦ
ᇱ is a vector, so that ௜ܦ

ᇱ�ൌ ��ܽ ௜௞ܦ�௞ giving ௜ܽ௞ܦ�௞�ൌ ௜௝ߝ��
ᇱܧ�௝

ᇱ

and ௞�ൌܦ ௟ܧ�௞௟ߝ�� ܽ��׵ ௜௞ߝ�௞௟ܧ�௟�ൌ ௜௝ߝ��
ᇱܧ�௝

ᇱ

Similarly, El is a vector ௟�ൌܧ ��ܽ ௝௟ܧ�௝
ᇱ giving ௜ܽ௞ߝ�௞௟�ܽ௝௟ܧ�௝

ᇱ�ൌ ௜௝ߝ��
ᇱܧ�௝

ᇱ

A rearrangement gives ൫ܽ ௜௞�ܽ௝௟ߝ�௞௟�െ ௜௝ߝ�
ᇱ൯ܧ�௝

ᇱ = 0
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Since ௝ܧ
ᇱ is arbitrary, this implies ௜௝ߝ

ᇱ �ൌ ��ܽ௜௞�ܽ௝௟ߝ�௞௟

and the permittivity kl transforms as a tensor.

Contraction
Contraction of a tensor consists of setting two unlike indices equal to each other and
then summing as implied by the summation convention. An example is afforded by
the direct product of the two first rank tensors U and V. The general element of the
product is ui vj. Making the indices the same gives ui vi, which, by the summation
convention, gives the dot product, which is a scalar. It is more formally known as a
scalar invariant as it does not change value upon rotation of axes. (The dot product
is also known as a scalar product or an inner product.) The second rank tensor UV
has therefore been contracted to a scalar, which is a tensor of zero rank. In general,
contraction of a tensor reduces the rank by two.

A more general example of contraction is given by the transformation equations of a
third rank tensor:

௣௤௥ݓ
ᇱ �ൌ ��ܽ ௣௜�ܽ௤௝�ܽ௥௞ݓ�௜௝௞

Put r = q which introduces an extra summation over q. We then have:

௣௤௤ݓ
ᇱ �ൌ ��ܽ ௣௜�ܽ௤௝�ܽ௤௞ݓ�௜௝௞

Now aqj aqk is the dot product of columns j and k of the rotation matrix A. Because
the matrix is orthonormal, this dot product is 1 if j = k and is 0 otherwise, i.e. aqj aqk =
jk (the Kronecker delta). Then jk wijk becomes wijj since jk = 0 when j ≠ k.
This reduces the previous equation to:

௣௤௤ݓ
ᇱ �ൌ ��ܽ ௣௜ݓ�௜௝௝

which is the transformation equation for a first rank tensor. Note that wijj has only
one free index, i, since j is the dummy index of summation. The rank of the third rank
tensor wijk has therefore been reduced by two.

This is the end of the course – I hope you have enjoyed it.


