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Abstract
The European Southern Observatory (ESO) provides state-of-the-art large telescope facilities at
three sites in Chile, supported by 16 European member states. Astronomers submit proposals for
sets of observations which are reviewed and ranked based on scientific merit, then a schedule is
constructed respecting the ranking and aiming to make the fullest use of the various telescopes and
numerous instruments. Currently a schedule covers six months, but in the near future ESO will
switch to annual schedules.

Here we examine the most challenging scheduling problem encountered by ESO: scheduling
the operations of the Very Large Telescope Interferometer (VLTI) on Paranal, Chile. Tasks to be
scheduled include observations performed by ESO staff, ‘visitor mode’ periods where astronomers
visit the site to use the telescopes, various maintenance tasks, and reconfiguration tasks taking
multiple days. Typically a VLTI six-month schedule would contain approximately 450 activities.
We explore global constraint models and a SAT encoding of the problem.
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1 Introduction

The European Southern Observatory (ESO) provides a state-of-the-art facility at its site on
Paranal, Chile, hosting a variety of instruments (see Figure 1). Astronomers submit proposals
for sets of observations on instruments – these proposals are then ranked based on their
scientific merit. A schedule is constructed to accommodate the observations from as many
proposals as possible, respecting the ranking. This scheduling task is particularly challenging
for the Very Large Telescope Interferometer (VLTI). The VLTI combines light from four
8.2 metre Unit Telescopes (UTs) and four movable 1.8 metre Auxiliary Telescopes (ATs)
to create a virtual telescope equivalent to the distance between the individual telescopes
(called the baseline distance). When scheduling observations on the VLTI, the time taken to
reconfigure the baseline must be considered, as well as the need to run various maintenance
tasks on individual telescopes making up the array.
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35:2 Scheduling Telescope Observations for the ESO

Figure 1 The instruments on Paranal, Chile. The four larger structures are the Unit Telescopes
(UTs) housing various instruments. The four smaller structures are the movable Auxiliary Telescopes
(ATs). The image shows light from each AT being directed through tunnels to the central VLTI
laboratory, which is housed underneath the central building. Light may also be directed from the
UTs to the central VLTI equipment. Credit: ESO/L. Calçada (eso.org).

ESO uses Savile Row [8] and several of its backends to create a prototype schedule
for half a year of observing time using a ranked list of science proposals as input. For each
proposal, we try to allocate time on the used telescope taking into account the observability of
the targets and any time constraints from the astronomer and also trying to take into account
probabilistic observing conditions (e.g. weather) and deterministic conditions, e.g. moon
illumination. Only proposals which can fit into the schedule will get observing time. From
around 900 proposals per half-year semester, roughly a quarter are accepted and scheduled.

2 Observation Scheduling Problems

ESO has two sites in Chile hosting various optical telescopes, and jointly operates a radio
telescope array at a third site. Of the optical telescope sites, the older site is La Silla (in
operation since the late sixties) with the 3.6m telescope and the NTT. The newer site is
Paranal with the Very Large Telescope (VLT) consisting of four 8.2m Unit Telescopes (UTs)
and four 1.8m Auxiliary Telescopes (ATs). The UTs can work either independently or work
together to form an interferometric array (VLTI). When the UTs operate independently, the
ATs can be used as VLTI, too. A telescope has several instruments. Each instrument has
specific, unique capabilities and cannot easily be moved to another telescope.

Science Proposals ESO has two Calls for Proposals per year where astronomers are invited
to submit papers describing their science case and detailing the observations they wish to
make. For each instrument, they list the targets they want to observe and the necessary
observing conditions in observing runs. Observing time is allocated to individual observing
runs. The proposals are reviewed for their scientific quality. Each run is assigned a grade
and the grades are then normalised over the different instruments. The graded runs are the
input for our scheduling activities. A run has the following attributes:

A mode: Visitor Mode (VM), designated Visitor Mode (dVM), Service Mode (SM).
Instrument and instrument setup
Deterministic observing constraints: moon illumination (0. . . 100%), airmass (how much
atmosphere the light passes through before reaching the telescope)

https://www.eso.org/public/teles-instr/
https://www.eso.org/public/teles-instr/paranal-observatory/
https://www.eso.org/public/teles-instr/paranal-observatory/vlt/
https://www.eso.org/public/teles-instr/paranal-observatory/vlt/auxiliarytelescopes/
https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlti/
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Probabilistic observing constraints: sky transparency (cloudiness: photometric, clear,
thin clouds, thick clouds), turbulence category (tolerable disturbance through the air; 7
different percentages), precipitable water vapour (PWV; 0. . . 30mm)
Optionally some time constraints, and a run grouping tag

The observing mode defines who makes the observations: in VM the astronomer travels
to the observatory and operates the instrument herself; in dVM the remote astronomer
communicates with a support astronomer at the observatory while the observations are made;
and in SM, the observer prepares detailed observations in advance (before the observing period)
and operators at the observatory carry out the observations based on current conditions.
VM/dVM is scheduled on the calendar with a granularity of one tenth of a night, but SM is
allocated if sufficient time under the requested observing conditions is available.

The specified airmass limits the observing window of the target. Moon illumination can
be computed for each night. Sky transparency, turbulence category, and PWV have known
statistical distributions. The astronomers can additionally specify time constraints such as:
between(2025-06-01, 2025-06-16); or 1n:0.3en (5..10) 1n:1n (one night, followed by
0.3 nights towards the dawn, then 5 to 10 nights pause then two consecutive nights).

All runs are passed through some astronomical pre-processing that deals with all observ-
ability questions. It computes bins for the observing constraints, computes sidereal time
ranges for observations, combines VM observations into compact sets of blocks for each
possible start date and assigns an initial run grouping tag.

Technical Time Runs Technical Time Runs (TTRs) are used for maintenance of the
telescopes or instruments (mirror re-coating, repairs, etc) or commissioning of new instruments.
TTRs have a grade like science runs and may require some telescope or instruments. They
can happen simultaneously if they do not need the same facilities. The time of TTRs cannot
be used for science and TTRs are usually scheduled on the calendar like VM runs.

2.1 General Approach
Currently, we try to produce a schedule for each telescope plus the VLTI using different
recipes involving one or more Essence Prime [7] models. The key requirement is to schedule
runs according to their ranking. It is impractical to include all runs in one optimization
problem: the resulting concrete model would be too large. Instead, we solve a sequence of
satisfaction problems, adding runs one by one in rank order. When an instance is unsatisfiable,
we discard the most recently added run and continue with the next one in rank order.

The La Silla telescopes (3P6 and NTT) are offered only in visitor mode. Time resolution
is a 1/10 of a night (a “deci night”). There can be at most 2 visitors per night. Runs with the
same grouping tag must be in a few sets of contiguous nights (e.g. if an instrument needs to
be mounted which is a time consuming procedure; observations should happen in appropriate
blocks; these blocks are an output of the model). Once all the runs that fit are known, we
enable a few more constraints and try to optimise groups and runs for compactness.

On the UTs on Paranal, we have both VM and SM runs. The VM runs are scheduled
similarly to the La Silla runs with one model. The SM runs are handled differently: all their
observations take time from the resource pool bin of each requested observing constraint.
The run is “in” only if sufficient time in the requested bin or bins with “better” conditions of
all observing constraints is available for all observations in the run. This requires computing
the available times in all resource bins based on which VM runs/TTRs are already scheduled
(since they also use time from the bins). VM and SM runs use different models, so we need

CP 2025
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Figure 2 Illustration of VLTI scheduling showing the types of tasks and how they may overlap in
time. Nights vary in length throughout the year, we have shown the nights lengthening.

to re-run the SM model (with updated resource budgets) after a new VM run is found to fit.
The VM run is considered scheduled only if the SM model is still satisfiable.

2.2 Related Work
Handley et al. [4] use Integer Linear Programming (ILP) to obtain an “optimal ordering of a
set of targets over a night subject to timing constraints and time-dependent slew overheads”.
The problem is solved over 10 minute intervals with up to 100 targets. Naghib et al. [6]
use a Markovian approach to automate schedule generation for observations lasting around
30 seconds and lens changes around 2 minutes. In a problem closer to ours, Lampoudi et
al. also implement a solution based on ILP for Las Cumbres Observatory Global Telescope
(LCOGT) [5] where requests have different priorities, durations, and time windows and can
be fulfilled by one of a number of instruments. They report being able to select 2055 of 3864
submissions over a half-year semester. The time granularity is a hyperparameter and the
exact time unit is unclear. Spohn [12] uses OR-Tools’ CP-SAT solver to schedule observations
of desired targets; the Optional Interval Variable type is used for the no-overlap constraints.

The context for our work is described in [11], detailing the entire long-term scheduling
challenge for ESO at La Silla and Paranal. Our work here specifically addresses scheduling
the VLTI which presents its own unique challenges. The VLT and VLTI have a broad mix
of service mode and visitor mode observations, where other observatories are mostly either
all service mode or all visitor mode. In addition, there are many dependencies between
observations on the VLT and VLTI that must be taken into account making the problem
harder than having fewer telescopes without such dependencies.

3 VLTI Scheduling Problem

VLTI scheduling is the most difficult case (illustrated in Figure 2). Here, all observations
carry a grouping tag, specifying the size of the baseline: small, medium, large, extended (all
of these use only the ATs; VLTI-AT) or UTs (only the UTs; VLTI-UT). The baseline is the
set of physical locations of the ATs. Changing the baseline takes 1 or 2 nights (depending on
the two baselines) so observations are grouped accordingly and there must be sufficient time
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between them. The VLTI schedule must also take all the TTRs into account that need one
of the UTs, because during these times one cannot have VLTI-UT observations.

Once the VLTI has been set up with a baseline, it remains in that configuration for a set
of nights (named a stretch). Stretches have a minimum length because it is not practical to
spend one or two nights setting up a new baseline then using it for a single night. Stretches
also have an upper limit designed to avoid making the UTs unavailable for long periods of
time and thus blocking other observations (that are not in the VLTI schedule) on the UTs.

There are two periods called imaging slots (given as input) when no VLTI-UT observations
occur, and which contain at least one set of nights of each of the VLTI-AT baselines. To find
the baseline stretches, we attempt to put all observations somewhere on the calendar.

4 Modelling the VLTI Scheduling Problem

In this section we describe the most important aspects of each of the constraint models. Full
models and all benchmark instances are provided in the experimental repository [10].

4.1 Basic Constraint Model
The decision variables are as follows:

The night sni, start time ssi (sidereal time in minutes), and end time sei of each SM
task i (where a task is part of a run).
Equivalent variables for VM and TTR tasks: vni, vsi, vei, tni, tsi, tei.
The first and last nights of each TTR r: twhenr and tlastr.
The first and last nights of each VM run r: whenr and nlastr.
The first and last days of each daytime TTR r: dwhenr and dlastr.
The first night of each stretch: gbegg,s, and the first night after the stretch ends: gendg,s

for a group g and stretch s.
The domain of the variables representing sidereal time in minutes (e.g. vsi) is an interval
from the earliest starting time to the latest end time of a night in the schedule. For VM and
TTR tasks, the value 0 is added as a dummy value to allow for optional tasks: some runs do
not have a fixed number of tasks, and any excess ones are given a start and end time of 0.

Baseline Stretch Constraints Each group g represents a baseline (described in Section 3),
and a stretch s of g is a set of nights when the telescopes are in the baseline of g. Stretches
have a minimum and maximum length (constant for each baseline) which constrain the
difference between gendg,s and gbegg,s. Within one group, any two stretches are separated
by at least 4 nights to allow another stretch in between. Stretches cannot overlap, and are
separated by relocation nights (illustrated in Figure 2) when ATs are moved:

(gendg1,i + rg1,g2 ≤ gbegg2,j) ∨ (gendg2,j + rg2,g1 ≤ gbegg1,i)

for each pair of distinct groups g1, g2 and stretches i, j, with r being the number of relocation
nights. Within a group, stretches are constrained to be in order. Finally, a set of predefined
stretches (specified by group, first night, and last night) may be given as input. These may be
assigned to any gbeg and gend pair in the group as needed to satisfy the ordering constraints.

Tasks For each VM run (encompassing a set of VM tasks), a set of options is precomputed
and passed in as a parameter. Each option specifies the exact night, start time and end time
of all the tasks in the run. A table constraint is used to ensure the relevant task variables
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(vni, vsi, and vei for all i in the run, and nlastr for run r) take values corresponding to one
of the options. VM runs are associated with a group g, and vni for each task in the run is
constrained to be within a stretch of g (i.e. there exists a stretch that contains vni). TTRs
are handled similarly but with a different stretch constraint: TTRs are excluded from the
night before each stretch begins. Daytime TTRs are handled similarly to TTRs but only the
start and end dates are needed in this case and the relevant variables are dwhenr and dlastr.

SM runs are handled differently. For each run r, the parameters are the number of tasks
in the run, the task duration, a time interval in sidereal time within which the tasks must be
scheduled (on any suitable night), and a group. For each task i within the SM run r, the
start time ssi is constrained such that the task will start and finish within the given time
interval; sei is simply ssi plus the given duration; and sni must be within any stretch of the
given group (with the same constraint as for VMs).

Each task must fit within the night on which it is scheduled. The times of the start and
end of each night are given as parameters nstart and nend, and for an SM task we have the
constraints nstart[sni] ≤ ssi ∧ sei ≤ nend[sni]. The options for times of VM runs and TTRs
are precalculated so their times will be within the relevant night.

Non-Overlap Constraints A key constraint is the non-overlap of tasks. For a pair of SM
tasks i, j, the constraint is as follows:

sni ̸= snj ∨ sei ≤ ssj ∨ sej ≤ ssi

For each pair of (SM or VM) tasks i, j, non-overlap constraints are posted if: i is an SM task
and j is a VM task; i and j are SM tasks; or i and j belong to different VM runs. Within an
SM run, some observations may be repeated. Tasks corresponding to repeated observations
are also constrained to be in order. Within a VM run, the precalculated options for nights
and times are non-overlapping so no constraint is required. Non-overlap constraints are also
posted between TTRs when they are using the same telescope setup (any UT, all UTs, or
all ATs) or the same instrument. UT TTRs are not allowed to overlap with any VLTI UT
observations (because VLTI uses all four UTs), and the same is true for ATs. Other overlaps
of TTRs with SM or VM observations are allowed.

A few instances have reserved time intervals on a specific night where no SM or VM tasks
may run. For example, at the beginning of a 6-month scheduling period, some time may
be reserved for installing software updates on one of the UTs. Non-overlap constraints are
posted to exclude VM and SM tasks from reserved times.

Further Constraints There are a number of other constraints arising from operational policy
or astronomical reasons. At most two VM observations are allowed on one night (with the
exception of some VM observations that are exempted from this rule). The reason is that the
control room on Paranal would become too busy with more than two visiting astronomers.
The rule is implemented with an atmost constraint on the vn variables.

Another group of constraints concern imaging slots (described in Section 3; a fixed sequence
of nights typically 3-5 weeks long). No VM tasks are allowed within imaging slots (a policy of
the observatory); implemented as a unary constraint on each vn variable. For each imaging
slot i, and for each AT baseline group g, there must exist a stretch of the baseline somewhere
within the imaging slot; the constraint is written ∃j : istarti ≤ gbegg,j ∧ gendg,j ≤ iendi

where istarti and iendi are the bounds of the imaging slot. Also, AT stretches must be
completely outside or completely within an imaging slot, implemented as a logical combination
of unary constraints on gbeg and gend variables.
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There are some restrictions on the nights that activities can happen, implemented with
unary constraints: the night before each stretch cannot have reserved time intervals; and
VLTI UT stretches cannot be within imaging slots (because imaging slots exclusively use
the ATs). Relocation nights before AT stretches must not contain TTR tasks on the ATs
(implemented with ̸= constraints between a constant shifted gbeg variable and a tn variable).

Finally, a pair of (VM, TTR, or daytime TTR) runs a, b may have an interrun constraint
that places them in a fixed order (e.g. a goes before b) and specifies a minimum and maximum
separation (in nights) between the runs. Interrun constraints are implemented with ≤ or <

constraints between vn, tn, or dwhen variables (with some shifted by a constant).

4.2 Global Constraint Models
The VLTI problem has a set of tasks (observations, TTRs, etc) that either cannot overlap or
can only overlap in restricted ways. In addition there are complex constraints on the order
and timing of tasks. While we cannot capture the whole problem in a single global constraint,
it is possible to capture many of the non-overlap constraints in one global constraint, reducing
the size (in terms of number of constraints) and complexity of the model.

One approach would be to represent the start time of each task with a single variable (as
opposed to two variables for the night and the sidereal time in minutes) and use a Disjunctive
scheduling constraint [1] to capture non-overlap of VLTI observations. This would allow
many of the pairwise non-overlap constraints to be removed but would create variables with
very large domains (time in minutes, spanning the nights of half a year or a full year).

We decided to use a 2D packing constraint as an alternative to standard scheduling
constraints. DiffN [2] prevents overlap of rectangles on a plane. Each rectangle is described
by four integer variables: the x and y coordinates of one corner, and dimensions dx and dy.
DiffN seems particularly appropriate here because it directly captures the fact that tasks
cannot be split over two nights, and it avoids the need for variables with very large domains.

DiffN Model 1 is adapted from the basic constraint model with the following changes.
Duration variables have been added for VM tasks, and connected to the night, start time
and end time variables with a table constraint (recall that the possible nights and times of
VM tasks are pre-calculated and provided in a table). A single DiffN constraint has been
added, with the x dimension representing the night and the y dimension representing the
sidereal time in minutes. All SM and VM tasks are represented as a rectangle of size (1, dy)
where dy is the SM or VM duration variable as appropriate. No other tasks are included in
the DiffN. Finally, non-overlap constraints between VM and SM tasks are deleted, removing
a quadratic number of primitive constraints.

In the first DiffN model the global constraint is quite loose because it does not include any
maintenance or relocation tasks. DiffN Model 2 is an attempt to strengthen propagation
by adding more tasks to the DiffN constraint. Recall that for each relocation, the last night
(or only night) of the relocation period cannot overlap with any VM or SM tasks. We use
the existing variables representing the first night of each stretch (shifted by −1) to define
rectangles of size (1, dy) (where dy is the duration of the longest night in the schedule) and
these are added to the DiffN constraint. Otherwise the model is identical to DiffN model 1.

4.3 SAT Encoding
The basic model is used when solving with SAT, and it is encoded as described in the
Savile Row manual [7]. The order or direct encoding (or both) is chosen for each integer
variable according to the constraints posted on the variable; constraints are encoded with the
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default encodings described in the manual; and some variables (notably all sei) are removed
automatically because they are a linear mapping of another variable.

5 Experimental Evaluation

We carry out experiments to compare performance across different combinations of the models
presented and backend solvers. The models are written in the Essence Prime language [7]
which are read by the modelling assistant tool Savile Row [8]. Savile Row is able to
tailor models to a variety of back-end solvers, including OR-Tools and SAT. We chose
OR-Tools CP-SAT [9] 9.11.4210 as it has been the best all-rounder in recent constraint
solving competitions [13] and it implements the DiffN global constraint. We also solve the
problem with Savile Row’s SAT output, using Kissat [3] 3.1.1, because in preliminary
experiments this approach was usually the fastest in a single-threaded context. We provide
the models, instances and software in an online repository [10].

As described in Section 2.1, each solver call is independent, solving the entire instance (i.e.
scheduling a concrete set of runs, or finding that no such schedule exists). The approach may
seem inefficient but it has two advantages: we do not need to represent all the proposed runs
in one constraint optimisation problem (which would be very large and difficult to handle);
and each instance can be optimised prior to solving by Savile Row (with a concrete set of
runs, i.e. without complications such as optional tasks or reification of constraints between
tasks that might hinder pre-solving). Throughout this section we use instance to mean one
CSP instance, corresponding to one solver call and one point on the plots below (Figure 3).
The instances in the repository represent the progression towards the final schedule, with
instances containing incrementally more requested runs to schedule.

The experiments are run on a server with Dual AMD EPYC 7501 2.6GHz processors with
2 × 64 threads and 2TB RAM, running Ubuntu Linux 22.04.5. To account for randomness
in the solvers, each instance is solved 5 times with different random seeds and the median
total runtime recorded. We run 231 real half-year instances from ESO with these setups:

DiffN Model 1 as described in Section 4.2, solved with OR-Tools CP-SAT single-threaded
with free search;
DiffN Model 2 as described in Section 4.2, solved with OR-Tools (as above);
The basic constraint model, solved with OR-Tools (as above); and
The basic constraint model encoded by Savile Row into SAT, solved with Kissat.

We also solve 110 synthetic full-year instances (including real science runs and TTRs
from two successive half-years, preprocessed as a full year), using the best performing model
and solver combinations for the half-year experiment, namely DiffN 1 and SAT. With the
full-year instances we found that the relative performance of OR-Tools (single-threaded, free
search) was poor for the most challenging instances so we also ran OR-Tools with 16 threads
and without free search (because the free search flag causes it to ignore the specified number
of threads). In this case we report the total CPU time across all threads.

The experimental results are plotted in Figure 3. We observe that the DiffN 1 model is
slightly faster than DiffN 2 on the majority of instances, with an overall geometric mean
speedup of 1.38. DiffN 1 also does marginally better than SAT, with an overall speed-up
of 1.08; the advantage is more marked in the harder instances, whereas SAT is solving the
easy and medium difficulty instances more quickly. The third plot shows that the global
constraint model does outperform the one with decomposed non-overlap constraints, being
over twice as fast on average. In terms of the full-year instances, single-threaded OR-Tools is
struggling to solve the harder instances, with SAT being 1.52 times faster on average. When
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Figure 3 Experimental results. We compare total solving time (Savile Row and backend solver)
in seconds for pairs of setups. Each plot displays the geometric mean speed-up s of the x-axis setup
compared to the setup on the y-axis. Top: half-year schedules. Bottom: full year schedules.

running OR-Tools with 16 threads, the trend with the most challenging instances is curving
away from the x = y line, so it appears that SAT is scaling better overall.

There is a larger proportion of unsatisfiable instances in the half-year schedule; this
is explained in part by the fact that some requested targets are barely visible during the
half-year period, but there must be a set of nights when they are visible during the full year.

6 Conclusions

ESO provides state-of-the-art large telescope facilities which astronomers bid to use. They
are significantly over-subscribed, leading to scheduling problems where the goal is to make
the fullest possible use of the facilities while respecting priority order (based on scientific
merit) on the bids. The most challenging scheduling problems arise with the VLTI facility
on Paranal, Chile, where there are complex constraints between observation tasks and other
tasks, and hundreds of tasks to schedule per half-year. We have presented CP models of the
VLTI problem and evaluated their performance with a CP solver and a SAT solver.

The new scheduling approach replaces a laborious and partially manual process with a
largely automated one, saving significant time and potentially also allowing more observations
to be packed into the schedule. The new system has been in production use since the end
of 2023, during which time the CP models have evolved to their current state. Future
work includes refining the CP models and SAT encoding, moving to full-year scheduling,
and a feasibility study of scheduling more types of observations in one model (for example,
individual UT observations combined with VLTI).
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