
Cross-Paradigm Modelling: A Study of Puzznic
Joan Espasa

School of Computer Science
University of St Andrews, UK

https://orcid.org/0000-0002-9021-3047

Ian P. Gent
School of Computer Science

University of St Andrews, UK
https://orcid.org/0000-0002-5604-7006

Ian Miguel
School of Computer Science

University of St Andrews, UK
https://orcid.org/0000-0002-6930-2686

Peter Nightingale
Department of Computer Science

University of York, UK
https://orcid.org/0000-0002-5052-8634

András Z. Salamon
School of Computer Science

University of St Andrews, UK
https://orcid.org/0000-0002-1415-9712

Mateu Villaret
Department of CS, Mathematics and Statistics

University of Girona, Spain
https://orcid.org/0000-0002-8066-3458

Index Terms—Planning, Modelling, Constraint Programming
Abstract—Puzznic is a tile-matching video game published

by Taito in 1989 and ported to many platforms. The player
manipulates blocks in a given grid until they match when two or
more blocks of the same pattern are adjacent and are removed
from play. The goal is to match all patterned blocks in the grid.
Puzznic is rich in structure: levels have internal platforms and the
blocks are affected by gravity, leading to complex state changes
and the possibility of a cascaded series of matches following
each move by the player. The puzzle is therefore a significant
challenge to model, motivating our study. We study Puzznic
from both constraint modelling and AI Planning perspectives,
identifying their complementary strengths and weaknesses for
this problem. We further exploit our constraint model to produce
an automated tool for instance generation, parameterised on the
grid, the combination of patterned blocks, and the steps required.

I. INTRODUCTION

In Puzznic (Taito, 1989, Figure 1) the player manipulates
blocks in a grid until they match: two or more blocks of
the same pattern are adjacent orthogonally, and are removed
from play. The goal is to remove all patterned blocks in the
grid. Unlike many other puzzle games [6], [19], instances of
Puzznic, crafted to challenge human players, are not trivial to
solve for automated approaches. Puzznic is rich in structure:
levels may have internal platforms and blocks are affected by
gravity, leading to complex state changes and the possibility
of cascaded matches. It is therefore a significant challenge to
model, motivating our study. Puzznic is naturally characterised
as an AI Planning problem [13]. Given a model of the
environment (here the grid, blocks, and their behaviour), a
planning problem is to find a valid sequence of actions (block
moves) from an initial to a goal state of the environment
(all blocks matched). Constraint Programming has been used
to solve planning and scheduling problems [1]–[3] and has
proven successful for Plotting [9], [10], a puzzle game which
also has complex changes of state.

The player has full information about the game state and ac-
tions have deterministic effects. This is similar to other single-
player games such as Plotting [9], [10], peg solitaire [15] and
Black Hole [12]. Instances consist of a grid of cells, which

Fig. 1: Detail from Puzznic (Taito, 1989).

may be empty, a wall, or contain a patterned block. The player
selects a single patterned block using the red cursor. The block
can be moved horizontally if the next cell in that direction is
empty. Patterned blocks are affected by gravity, and fall until
coming to rest above another non-empty block or wall. If the
player moves a block over an empty cell, they immediately
lose control of the block as it falls. If two or more blocks
with the same pattern are at rest (not falling) and adjacent
orthogonally, they match and are removed.

Building upon [7], we present models of Puzznic in the
constraints and planning paradigms. Our primary contribu-
tions are: (i) A challenging new benchmark, which we
establish for the first time to be in NP, (ii) Models for
both AI Planning and constraint modelling paradigms, (iii)
An instance generation tool based on our constraint model,
(iv) An empirical comparison between our two models,
establishing their complementary strengths and weaknesses
across several sub-families of Puzznic instances. Full models
for this paper are available at https://github.com/blind-anon/
CP-2024-Submission-Additional-Material.

II. MEMBERSHIP IN NP

Some Puzznic levels allow moving wall blocks, which can
carry patterned blocks. Herein we only consider a version of
the game without moving wall blocks, which is also known as
Cubic. The solvability of this static variant has been claimed to

https://orcid.org/0000-0002-9021-3047
https://orcid.org/0000-0002-5604-7006
https://orcid.org/0000-0002-6930-2686
https://orcid.org/0000-0002-5052-8634
https://orcid.org/0000-0002-1415-9712
https://orcid.org/0000-0002-8066-3458
https://github.com/blind-anon/CP-2024-Submission-Additional-Material
https://github.com/blind-anon/CP-2024-Submission-Additional-Material

be NP-hard [11]. Deciding solvability of the related but more
complicated Hanano puzzle is PSPACE-complete [5].

Puzznic is naturally represented as a planning problem, the
solvability of which is generally PSPACE-hard [4]. However,
the decision problem for the Static variant of Puzznic Solvabil-
ity is in the complexity class NP (a proof is provided in the
workshop version of this paper [8]). We could therefore expect
Puzznic to be amenable to constraint programming approaches
tailored to solve problems in NP.

III. PDDL MODEL

Considering Puzznic as a planning problem requires finding
a sequence of actions (a plan) whose application successively
transforms a given initial state into a goal state. A set of
finite-domain variables determines the state at each step. An
action is applicable at a certain state if the state satisfies its
preconditions. The state is then modified according to the
effects of the action. The standard Planning Domain Definition
Language (PDDL) [14] separates a planning problem into
two files: the domain, defining general characteristics of the
problem such as the representation of the state and how the
actions operate, and the problem, which defines the objects,
the initial state and the goal of a particular instance. In this
section we describe our PDDL Puzznic formulation.

PDDL does not support matrices, hence we use a graph-
based representation and the following types: location to
represent a grid cell location; the up, down, left and right
directions used both to relate locations and to specify move-
ments; and pattern to represent the different block patterns.
Blocks are represented as patterns assigned to locations.

To define the state we use several predicates. The
patterned predicate states whether a given location has a
given pattern. The next predicate indicates if two locations
are adjacent in a certain direction: we treat the next predicate
as a declarative specification of the game grid adjacency graph.
Since we can never move wall blocks, we exclude walls from
the grid, leading to a smaller state space. With the free pred-
icate we state whether a certain location is free. We also use
two “flag” predicates to capture the gravity and block matching
semantics of the game. The free, falling_flag and
matching_flag predicates are derived predicates, which
are automatically updated after the application of each action:
(:derived (free ?l) (; a free block has no pattern
forall (?p - pattern) (not (patterned ?l ?p))))
(:derived (falling_flag) (; blocks need to fall?
exists (?l1 ?l2 - location) (and
(next ?l1 ?l2 down) (not (free ?l1)) (free ?l2))))

(:derived (matching_flag) (; blocks need to match?
exists (?l1 ?l2 - location ?p - pattern ?d - direction) (
and (next ?l1 ?l2 ?d)(patterned ?l1 ?p)(patterned ?l2 ?p))))

Actions are defined by their parameters as well as their pre-
conditions and effects which usually constrain the parameters.
Preconditions define the requirements a state must satisfy
for the action to be applicable. Effects define how actions
change the state. Three actions are defined: move_block,
fall_block and match_blocks. The solving process
must follow the semantics of the game. Therefore, if there are
blocks remaining then we have to consider the flags to decide

which kind of action is allowed. If the falling_flag
is active we only allow the fall_block action, other-
wise if the matching_flag is active we only allow the
match_blocks action. Finally, if no flag is active we then
only allow the move_block action. To enforce the game
semantics, we check these flags in the actions’ preconditions.

For simplicity, we model the matching of an arbitrary set
of blocks as an atomic operation:
(:action match_blocks
:parameters ()
; first things fall, then they match
:precondition (and (not (falling_flag)) (matching_flag))
:effect (and (forall (?l1 - location ?p - pattern)
; if a patterned locations has some neighbor with same
(when pattern
(exists (?l2 - location ?d - direction)

(and (next ?l1 ?l2 ?d) (patterned ?l1 ?p)
(patterned ?l2 ?p)))

(not (patterned ?l1 ?p))))))) ; remove pattern

Finally, as the goal is to remove all patterned blocks from
the grid, we must reach a state where no location has a pattern,
additionally asking for the minimum number of moves.
(:goal (forall (?l - location) (
not (exists (?p - pattern) (patterned ?l ?p)))))
(:metric minimize (total-cost))

In contrast with matching, gravity is handled by moving
one block at a time. That is, the fall_block action moves
a single block one position down if it has nothing under it.
(:action fall_block
:parameters (?l1 ?l2 - location ?p - pattern)
:precondition (and
(falling_flag) ; something needs to fall
(next ?l1 ?l2 down) ; l1 is on top of l2
(patterned ?l1 ?p) ; l1 has some pattern, needs to fall
(free ?l2)) ; l2 is free as we’re falling on it

:effect (and ; assign patterns: l1 pattern goes to l2
(not (patterned ?l1 ?p)) (patterned ?l2 ?p)))

The PDDL model above produces plans interleaved with
long lists of trivial fall_block actions. We explored com-
pressing long lists of actions such as these, starting with
fall_block, where all the falling of a single block would be
dealt with in one action. Surprisingly, preliminary experiments
showed that compressing fall moves substantially degrades the
performance of the planners we considered, in particular for
tall instances (e.g. Giraffes and Eagles, see section VI). We
hypothesise that this is caused by the increase in the number of
generated ground actions, as the number of fall actions grows
quadratically with height (one step falls, two step falls. . .),
and the planner preprocessor cannot discard any of those.
Instead, fall actions for each individual step greatly reduce the
planner branching factor. We therefore omit the compressed
falls model from our experiments.

IV. A CONSTRAINT MODEL OF PUZZNIC

Our constraint model is formulated in ESSENCE PRIME
[17], [18], exploiting this richer language to feature a number
of abstractions that reduce the number of plan steps, and
so decision variables required. This includes how gravity is
captured, allowing it to be applied instantaneously after a move
or a match. Our model also supports partial parallelism via
compact row moves, where multiple blocks in the same row

may move several grid cells simultaneously in one time step.
We begin by describing the model parameters:
letting WALL be 0
letting EMPTY be 1
given initGrid :
matrix [int(1..gridHeight), int(1..gridWidth)]
of int(WALL, EMPTY)

letting GRIDCOLS be domain int(1..gridWidth)
letting INTERIORCOLS be domain int(2..gridWidth-1)
letting GRIDROWS be domain int(1..gridHeight)
letting INTERIORROWS be domain int(2..gridHeight-1)
$ Patterned block init positions, (row, col)
given initPatternedBlocks :
matrix [int(1..noPatternedBlocks), int(1..2)] of int(1..)

letting PATTERNEDBLOCKS be domain int(1..noPatternedBlocks)
given patternBands :
matrix [int(1..noPatterns), int(1..2)]
of PATTERNEDBLOCKS

given noSteps : int(1..)
letting STEPSFROM1 be domain int(1..noSteps)
letting STEPSFROM0 be domain int(0..noSteps)
letting STEPSEXCEPTLAST be domain int(0..noSteps-1)
letting INTERIORSTEPS be domain int(1..noSteps-1)

Parameter initGrid gives the locations of walls in the grid.
A perimeter of wall blocks is assumed. The coordinates of
each patterned block are given in initPatternedBlocks,
and patternBands provides the patterned block
types as intervals. For example, if patternBands is
[[1,3],[4,6]] then we have 6 patterned blocks in
total, with 3 blocks each of two patterns. The parameters
gridWidth, gridHeight, noPatternedBlocks,
and noPatterns are inferred automatically from the
dimensions of the given matrices. In common with many
constraint models of planning problems (e.g. Plotting [9],
[10]) we solve a sequence of decision problems of increasing
noSteps. The first such instance for which a solution is
found provides the optimal length plan.

Following a common pattern in constraint models of AI
planning problems [16], we employ a time-indexed set of
variables, interleaving the state of the puzzle with the action
taken to transform the previous state into that following
(Figure 2). Since much of the grid state (walls, empty cells) is
fixed we maintain only the coordinates of each patterned block.
Initial and goal states are stated simply on this viewpoint:
letting REMOVED be 0
find patternedBlocksRow :
matrix indexed by[STEPSFROM0, PATTERNEDBLOCKS]
of INTERIORROWS union int(REMOVED)

find patternedBlocksCol :
matrix indexed by[STEPSFROM0, PATTERNEDBLOCKS]
of INTERIORCOLS union int(REMOVED)

$ Initial state:
forAll b : PATTERNEDBLOCKS . patternedBlocksRow[0, b] =

initPatternedBlocks[b,1],
forAll b : PATTERNEDBLOCKS . patternedBlocksCol[0, b] =

initPatternedBlocks[b,2],
$ Goal state:
forAll b : PATTERNEDBLOCKS . patternedBlocksRow[noSteps, b]

= REMOVED,
forAll b : PATTERNEDBLOCKS . patternedBlocksCol[noSteps, b]

= REMOVED,

The model allocates steps to one of three disjoint modes:
Matching, Progressing and Row Compact.
find mode : matrix indexed by[STEPSFROM1] of $ 0,1,2
int(MATCHING_MODE, ROWCOMPACT_MODE, PROGRESSING_MODE)

A. Matching Mode

Matching mode is triggered by any pair of patterned blocks
being adjacent horizontally or vertically at the previous time
step. Auxiliary matchingGrid is used to detect this state.
Matching mode at time step t is then forced according to
the state of the matchingGrid at time step t-1, and the
matching blocks are removed.
find matchingGrid :
matrix [STEPSEXCEPTLAST, PATTERNEDBLOCKS] of bool
forAll step : STEPSEXCEPTLAST .
forAll p : PATTERNS .
forAll i : int(patternBands[p,1]..patternBands[p,2]) .
(exists j : int(patternBands[p,1]..patternBands[p,2]) .
((j != i) /\
(((patternedBlocksRow[step,i] =

patternedBlocksRow[step,j]) /\
(|patternedBlocksCol[step,i] -
patternedBlocksCol[step,j]| = 1)) \/

((patternedBlocksCol[step,i] =
patternedBlocksCol[step,j]) /\
(|patternedBlocksRow[step,i] -
patternedBlocksRow[step,j]| = 1)))))

<-> (matchingGrid[step,i]),

forAll step : STEPSFROM1 .
(mode[step] = MATCHING_MODE) <->
(sum(flatten(matchingGrid[step-1,..])) > 0),

forAll step : STEPSFROM1 .
(mode[step] = MATCHING_MODE) ->
(forAll b : PATTERNEDBLOCKS .

(matchingGrid[step-1,b]) ->
(patternedBlocksRow[step,b] = REMOVED) /\
(patternedBlocksCol[step,b] = REMOVED)),

As a consequence of these matches and removals, we must
capture the effects of gravity, as well as ensure that unaffected
blocks are unchanged. Rather than attempting to calculate the
precise positions of the blocks, we model gravity elegantly via
a declarative description of the blocks’ behaviour:
$ Unmatched, unremoved blocks stay in the same column
forAll step : STEPSFROM1 .
(mode[step] = MATCHING_MODE) ->
(forAll b : PATTERNEDBLOCKS .
(!(matchingGrid[step-1,b]) /\
(patternedBlocksRow[step-1,b] != REMOVED)) ->
((patternedBlocksRow[step,b] != REMOVED) /\
(patternedBlocksCol[step,b] =
patternedBlocksCol[step-1,b]))),

$ Unmatched blocks stay in col, above blocks they were above
forAll step : STEPSFROM1 .
(mode[step] = MATCHING_MODE) ->
(forAll b : PATTERNEDBLOCKS .
(!(matchingGrid[step-1,b])) ->
(forAll b2 : PATTERNEDBLOCKS .

((b2 != b) /\
(!(matchingGrid[step-1,b2])) /\
(patternedBlocksCol[step-1,b2] =
patternedBlocksCol[step-1,b]) /\
(patternedBlocksRow[step-1,b2] >
patternedBlocksRow[step-1,b])) ->

(patternedBlocksRow[step,b2] >
patternedBlocksRow[step,b]))),

$ Unmatched blocks stay above/below wall blocks
$ they were above/below before
forAll step : STEPSFROM1 .
(mode[step] = MATCHING_MODE) ->
(forAll b : PATTERNEDBLOCKS .
(!(matchingGrid[step-1,b])) ->
(forAll row : INTERIORROWS .
(initGrid[row, patternedBlocksCol[step-1,b]] = WALL) ->
((row < patternedBlocksRow[step-1,b]) ->
(row < patternedBlocksRow[step,b])) /\

((row > patternedBlocksRow[step-1,b]) ->
(row > patternedBlocksRow[step,b])))),

$ Common to all modes: No floating blocks
forAll step : STEPSFROM1 .

mode1

matching /
progressing /
compactRow move1

compactRow1

blockIndex -1/1

row

moveDir1
row col
row col
… …

…

Step1Step0 (Initial)

row col
row col
… …

Pattern
Band 1

…

Pattern
Band 2

…

OR

matching

Fig. 2: Constraint model structure: interleaved state, mode variables for flow of control, and action variables, annotated with
their domains. Auxiliary variables not depicted for clarity.

forAll b : PATTERNEDBLOCKS .
(patternedBlocksRow[step,b] != REMOVED) ->
((initGrid[patternedBlocksRow[step,b]-1,

patternedBlocksCol[step,b]] = WALL) \/
(exists b2 : PATTERNEDBLOCKS .
(b != b2) /\
(patternedBlocksRow[step,b2] =
patternedBlocksRow[step,b] - 1) /\
(patternedBlocksCol[step,b2] =
patternedBlocksCol[step,b]))),

The above sets of constraints simply require unmatched blocks
in a column to maintain their relative ordering, both with each
other and the wall cells in the grid, and disallows any block
from floating above an empty cell. Constraint propagation
then ensures that a column where blocks have been removed
‘settles’ according to the effects of gravity.

B. Progressing Mode

In progressing mode a committal player action is taken: a
block is selected and moved so as to cause it to fall or to cause
a match at the next time step.
find move :
matrix [STEPSFROM1] of PATTERNEDBLOCKS union int(0)

find moveDir : matrix [STEPSFROM1] of int(-1,1)

The domain of move is the indices of the patterned blocks plus
a dummy value 0 when in another mode. moveDir indicates
a left or a right move. The following constraints specify a valid
progressing move, transforming state at time t-1 to time t:
$ Select only valid blocks
forAll step : STEPSFROM1 .
(mode[step] = PROGRESSING_MODE) ->
(patternedBlocksRow[step-1,move[step]] != REMOVED),

$ destination column defined via moveDir
forAll step : STEPSFROM1 .
(mode[step] = PROGRESSING_MODE) ->
(patternedBlocksCol[step,move[step]] =
patternedBlocksCol[step-1,move[step]]+moveDir[step]),

$ destination row must be at or below moveRow
forAll step : STEPSFROM1 .
(mode[step] = PROGRESSING_MODE) ->
(patternedBlocksRow[step,move[step]] <=
patternedBlocksRow[step-1,move[step]]),

$ in destination column, everything from source row
$ to destination row must be empty.
forAll step : STEPSFROM1 .
(mode[step] = PROGRESSING_MODE) ->
(forAll row : INTERIORROWS .

((row <= patternedBlocksRow[step-1,move[step]]) /\
(row >= patternedBlocksRow[step,move[step]])) ->

((initGrid[row, patternedBlocksCol[step,move[step]]]
= EMPTY) /\
(forAll b : PATTERNEDBLOCKS .

((patternedBlocksRow[step-1, b] != row) \/
(patternedBlocksCol[step-1, b] !=
patternedBlocksCol[step,move[step]]))))),

Frame axioms fix unaffected blocks in place:

#
R #
R R
#

#
R R R R
#

Fig. 3: Illustration of inconsistencies of parallel moves.

$ Frame axiom: blocks not in source col stay in place.
forAll step : STEPSFROM1 .
(mode[step] = PROGRESSING_MODE) ->
(forAll b : PATTERNEDBLOCKS .

(patternedBlocksCol[step-1, b] !=
patternedBlocksCol[step-1, move[step]]) ->
((patternedBlocksCol[step-1, b] =

patternedBlocksCol[step, b]) /\
(patternedBlocksRow[step-1, b] =
patternedBlocksRow[step, b]))),

$ Frame axiom: blocks in source col under selected stay put.
$ Simplified to all blocks whose row is less than selected.
forAll step : STEPSFROM1 .
(mode[step] = PROGRESSING_MODE) ->
(forAll b : PATTERNEDBLOCKS .

(patternedBlocksRow[step-1, b] <
patternedBlocksRow[step-1, move[step]]) ->
((patternedBlocksCol[step-1, b] =

patternedBlocksCol[step, b]) /\
(patternedBlocksRow[step-1, b] =
patternedBlocksRow[step, b]))),

Gravity is handled similarly to matching mode — see
repository for full details.

C. Row Compact Mode

In row compact mode, the blocks of a selected row are
moved horizontally, while remaining in the same row and not
triggering a match at the next step. We introduce variables to
capture the row selection (again, a dummy value of 0 is added
for when in another mode):
find compactRow :
matrix [STEPSFROM1] of INTERIORROWS union int(0)

This last mode allows significant parallelism in the plan, but
note that it is necessary (rather than a choice) to disallow it
from creating either falling blocks or trigger matches. In the
former case, it would then be possible to create blocks falling
in parallel in a way that is not possible for a human player
(see Figure 3, left). In the latter, it would be possible to create
parallel matches (e.g. at two ends of a row) that are again not
possible in the game itself (Figure 3, right). In both cases, the
result could be the generation of invalid solutions.

Modelling row compact moves resembles our approach to
gravity: a declarative description of the rules that the blocks in

a selected row must respect, leaving search and propagation to
decide the details. First we maintain the relative order among
patterned and wall blocks:
$ Stay on the same side of all wall blocks on the same row.
forAll step : STEPSFROM1 .
(mode[step] = ROWCOMPACT_MODE) ->
(forAll col : INTERIORCOLS .

(initGrid[compactRow[step], col] = WALL) ->
(forAll block : PATTERNEDBLOCKS .

(patternedBlocksRow[step-1, block] =
compactRow[step]) ->

(((patternedBlocksCol[step-1, block] < col) ->
(patternedBlocksCol[step, block] < col)) /\
((patternedBlocksCol[step-1, block] > col) ->
(patternedBlocksCol[step, block] > col))))),

$ Maintain order on the blocks in the chosen row.
forAll step : STEPSFROM1 .
(mode[step] = ROWCOMPACT_MODE) ->
(forAll block : PATTERNEDBLOCKS .
(patternedBlocksRow[step-1, block] = compactRow[step]) ->
(forAll block2 : int(block + 1 .. noPatternedBlocks) .

(patternedBlocksRow[step-1, block2] =
compactRow[step]) ->

(((patternedBlocksCol[step-1, block] <
patternedBlocksCol[step-1, block2]) ->
(patternedBlocksCol[step, block] <
patternedBlocksCol[step, block2])) /\

((patternedBlocksCol[step-1, block] >
patternedBlocksCol[step-1, block2]) ->
(patternedBlocksCol[step, block] >
patternedBlocksCol[step, block2]))))),

We disallow movement over a block of the same pattern, which
would trigger a match, and we must avoid initiating falls — see
repository for details. Finally, we disallow row compact mode
from initiating a match on the same row, and break symmetry
by ensuring that even single-block moves that could have been
captured by the progressing mode infrastructure are labelled
as row compact if they do not lead to a match:
$ A move that does not lead to a match is row compact
forAll step : INTERIORSTEPS .
(mode[step] = ROWCOMPACT_MODE) ->
(mode[step+1] != MATCHING_MODE),

$ A move leading to a match should be labelled progressing
forAll step : INTERIORSTEPS .
(mode[step] = PROGRESSING_MODE) ->
((mode[step+1] = MATCHING_MODE) \/
(exists b : PATTERNEDBLOCKS.
patternedBlocksRow[step,b] <
patternedBlocksRow[step-1,b])),

D. Symmetry and Dominance Breaking, Implied Constraints

To complete our model, we add symmetry, dominance-
breaking, and implied constraints. A simple dominance condi-
tion that we can exploit is to disallow the solver from returning
to exactly the same state as at a previous time step, since a
plan with only the first occurrence of that state must be at least
as short. Given our compact representation of state in terms of
the patterned block coordinates, this can be achieved simply
by requiring the coordinate of at least one patterned block to
be different between all pairs of states in the plan.
forAll step : STEPSFROM0 .
forAll step2 : int(step+1..noSteps) .
exists block : PATTERNEDBLOCKS .

((patternedBlocksRow[step, block] !=
patternedBlocksRow[step2, block]) \/
(patternedBlocksCol[step, block] !=
patternedBlocksCol[step2, block])),

In addition to the symmetry in the modes described in
the previous subsection, there is the potential for conditional

symmetry among the values of the action variables when they
are inactive. We fix them to their dummy values to avoid this:
$ Pin rowCompact and movement variables to break symmetry
forAll step : STEPSFROM1 .
(mode[step] = MATCHING_MODE) ->
((move[step] = 0) /\ (moveDir[step] = -1) /\
(compactRow[step] = 0)),

$ Pin rowCompact variable to break symmetry
forAll step : STEPSFROM1 .
(mode[step] = PROGRESSING_MODE) -> (compactRow[step] = 0),

$ Pin movement variables to break symmetry
forAll step : STEPSFROM1 .
(mode[step] = ROWCOMPACT_MODE) -> ((move[step] = 0) /\
(moveDir[step] = -1)),

There is no mechanism by which a block can move upwards,
which can be added as an implied constraint by insisting
that the row coordinate of each patterned block decreases
monotonically. The final step of the plan returned must be in
matching mode, leading to the removal of the final remaining
blocks. This is captured with a simple unary constraint.
forAll step : STEPSFROM1 .
forAll block : PATTERNEDBLOCKS .
(patternedBlocksRow[step, block] <=
patternedBlocksRow[step-1, block]),

mode[noSteps] = MATCHING_MODE,$ last step must be a matching

V. A CONSTRAINT MODEL FOR INSTANCE GENERATION

We modify our constraint model to produce a tool to
generate Puzznic instances, to aid in level design to challenge
human players, for benchmarking or to train an algorithm
selection approach in future. Rather than giving an initial grid
as a parameter, the model is modified to find an initial state
such that a plan of a specified length exists. The parameters are
the grid dimensions and the number of patterns and patterned
blocks. The initial grid then becomes a set of decision vari-
ables, along with the pattern bands. Additional variables are
not needed for the initial coordinates of the patterned blocks,
since the model already has these for time step 0. One use case
is to increase noSteps iteratively to search for an instance
of the specified grid dimensions and patterned blocks with a
proven minimum solution length. Alternatively, we can search
for a configuration that admits a k-step plan, with the caveat
that a solution shorter than k steps may be possible.
given gridWidth, gridHeight : int(1..)
given noPatterns : int (1..)
letting PATTERNS be domain int(1..noPatterns)
$ At least a pair of blocks per pattern
given noPatternedBlocks : int(2*noPatterns..)
letting PATTERNEDBLOCKS be int (1..noPatternedBlocks)
given noSteps : int(1..)

find initGrid :
matrix [int(1..gridHeight), int(1..gridWidth)]
of int(WALL, EMPTY)

find patternBands :
matrix indexed by [PATTERNS, int(1..2)] of PATTERNEDBLOCKS

Constraints are added over the initial state in order to find
valid instances. First, we must ensure that the initial positions
of the patterned blocks are on empty cells:
$ Connect initGrid to patternedBlocks at step 0
forAll block:PATTERNEDBLOCKS .
initGrid[patternedBlocksRow[0,block],

patternedBlocksCol[0,block]] = EMPTY,

We insist on a perimeter wall around the grid, and that the
pattern bands are valid:
$ perimeter wall$
forAll row : GRIDROWS .
(initGrid[row, 1] = WALL) /\
(initGrid[row, gridWidth] = WALL),

forAll col : GRIDCOLS .
(initGrid[1, col] = WALL) /\
(initGrid[gridHeight, col] = WALL),

$ Start and end of pattern bancds are fixed
patternBands[1,1] = 1,
patternBands[noPatterns,2] = noPatternedBlocks,
$ Pattern band entries are ordered
forAll p : PATTERNS . patternBands[p,1] < patternBands[p,2],
$ Pattern bands must have at least two blocks
forAll p : int(1..noPatterns-1) .
patternBands[p,2] = patternBands[p+1,1] - 1,

We require that the initial state does not trigger matching
mode at the first step, to avoid trivial instances. Although not
required, we disallow interior rows and columns from being
entirely wall blocks to promote the use of the whole grid:
mode[1] != MATCHING_MODE,
forAll row : INTERIORROWS . sum(initGrid[row,..]) > 0,
forAll col : INTERIORCOLS . sum(initGrid[..,col]) > 0,

We remove trivially equivalent instances by disallowing
“walled in” empty spaces, and breaking symmetry among the
patterns and in the list of initial coordinates for each pattern:
$ No walled in empty spaces.
forAll row : INTERIORROWS .
forAll col : INTERIORCOLS .
(initGrid[row,col] >= EMPTY) ->
((initGrid[row+1,col] != WALL) \/
(initGrid[row-1,col] != WALL) \/
(initGrid[row,col+1] != WALL) \/
(initGrid[row,col-1] != WALL)),

$ Symmetry Breaking: lex order within pattern bands.
forAll p : PATTERNS .
forAll b1 : PATTERNEDBLOCKS .
forAll b2 : int(b1+1..noPatternedBlocks) .
((b1 >= patternBands[p,1]) /\
(b2 <= patternBands[p,2])) ->
([patternedBlocksRow[0,b1],patternedBlocksCol[0,b1]]
<=lex
[patternedBlocksRow[0,b2],patternedBlocksCol[0,b2]]),

$ Symmetry Breaking: order 1st element of each pattern band
forAll p1 : PATTERNS .
forAll p2 : int(p1+1..noPatterns) .
forAll b1 : PATTERNEDBLOCKS .
forAll b2 : int(b1+1..noPatternedBlocks) .
((b1 = patternBands[p1,1]) /\
(b2 = patternBands[p2,2])) ->
([patternedBlocksRow[0,b1],patternedBlocksCol[0,b1]]
<=lex
[patternedBlocksRow[0,b2],patternedBlocksCol[0,b2]]),

Figure 4 presents illustrative instances produced by our
generation tool. These are found efficiently with our model
encoded into SAT via SAVILE ROW. The largest takes just
over 7 minutes to be found on a 2021 MacBook Pro.

#
R G R
G R G
R G
#

#
R R G
G B
B G B #
B G
#

#
R B R G R G R #
B R G R G R G #
R B # R G R
R
#

Fig. 4: Instances produced by our instance generation tool.

Although the initial grid is almost completely full, the first
has a solution of 6 steps (3 player moves, 3 matching steps).
The second is a more intricate design with three patterns that
admits a simple solution: move the right red block left to
initiate two cascaded matches. For the third we added the
constraint that there must be a wall block on the interior of
each row, demonstrating the flexibility of the constraint-based
instance generation method. The 20-block instance produced
has an 8-step solution (4 progressing moves, one compact row
move, and three matching steps). Our instance generator could
straightforwardly be adapted for further flexibility, for instance
to generate patterned block positions only in a given grid.

VI. EMPIRICAL EVALUATION

The plans produced by the two models are not directly
comparable in terms of length. As discussed above, the Plan-
ning model is fine-grained whereas the constraint model im-
plements gravity instantaneously and also permits parallelism
(leading to plans with fewer steps). We can, however, observe
the time taken by each approach to produce the optimal
plan from its own perspective. Table I presents the results of
our evaluation across five families of Puzznic instances. Full
details of our experimental setup are provided in [8].

We see that the planning and constraint-based approaches
have complementary strengths, with neither dominant. Per-
formance varies according to both the instance family and
the instance size. General instances are from versions of
the game and are intended for human players. The planning
approach performs well on these, and some of the more
difficult instances are challenging for our CP approach. On
some of the most difficult such instances both approaches
time out (not shown in Table I). However, consider now the
Caterpillar instances (see Figure 5c for reference). Each has
many possible moves, but requires reasoning about a complex
chain of matches to see a one-move solution triggering a
cascade of falls and matches. Caterpillars also show that
arbitrarily many blocks can match at any one time. Segments
can be added to the body of the caterpillar by duplicating
the two middle rows of the instance; more segments lead
to more possible moves for a solver to consider. For the
caterpillar instances we see the reverse: the planning approach
performs well on small instances, but the constraint model
scales significantly better.

#
B P
#
#
P B
R R
#

(a) 5x7

#
R O Y G B
#
#
#
R O Y G B
#

(b) Snake

#
B R R B
Y G G Y
B Y Y B
G G
#
R
#

(c) Caterpillar

Fig. 5: Sample instances from different families.

Family Instance FD SAT Family Instance FD SAT Family Instance FD SAT
general 9x5-ps1-b22 0.75 4.05 snake 9x7-cubic-2 1.01 1.52 caterp. colinsmall 0.98 2.49
general 10x5-ps1-b11 0.87 22.00 snake 73x7-cubic-2 23.35 3.28 caterp. colinmirrorsm 1.15 5.93
general 5x7-ps1-a13 0.95 3.70 snake 9x7-cubic-4 1.00 6.43 caterp. colin 236.54 14.69
general 10x7-bcl-014-2 1.06 6.95 snake 73x7-cubic-4 3571.98 27.60 caterp. colinmirror TO 57.87
general 9x7-ps1-b12 1.10 141.83 snake 9x7-cubic-6 1.87 37.85 snake 9x7-cubic-8 3.73 457.37
general 8x12-ps1-e22 2.03 1238.86 snake 28x7-cubic-6 TO 113.41 snake 11x7-cubic-8 1880.42 665.32
giraffe 5x24-test 1.93 6.19 snake 73x7-cubic-6 TO 281.35 snake 12x7-cubic-8 TO 765.32
giraffe 5x49-test 6.07 10.75 snake 9x7-cubic-10 9.82 TO snake 18x7-cubic-8 TO 852.54
giraffe 5x99-test 23.66 20.51 eagle 5x50-test 5.61 5.95 snake 28x7-cubic-8 TO 1279.29
giraffe 5x200-test 100.42 43.06 eagle 5x100-test 21.57 9.22 snake 43x7-cubic-8 TO 2001.48

TABLE I: Results for 5 instance families. Times in seconds, 1-hour timeout indicated as TO. FD: Fast Downward, SAT: Kissat
via SAVILE ROW. Instance names like × show their dimensions. Snake instances: last part of name is # of patterned blocks.

Eagle and Giraffe instances are formed respectively by
adding empty rows above, and interpolating empty rows in
the middle of, an existing instance (here we have used fig. 5a
as the base instance). We see that the CP approach continues
scaling roughly linearly, while the planning approach degrades
to approximately quadratic scaling. The Snake instances are
versions of fig. 5b (taken from [11]) with the horizontal
ledges stretched. Instance difficulty can also be varied by
changing the number of blocks at the head and tail of the
snake. The original instance (with 10 blocks) is challenging,
and although the planning approach does produce a solution
reasonably quickly, our CP approach does not complete within
the timeout. Increasing width does not change the essential
nature of solutions (although plans will require more player
moves), and also does not change the difficulty for humans.
Our CP approach takes advantage of compact row moves to
traverse long horizontal distances, and scales roughly linearly
with the width. In contrast, the planning approach scales
poorly, timing out when the original width of 9 is increased to
12 or more on the 8-block version, and times out on 6-block
snakes with width 28 or more.

VII. CONCLUSION

In this work we have presented the static variant of Puzznic
as a challenging new benchmark, and established its member-
ship in NP. We have presented models for both AI planning
and constraint programming, together with a constraint-based
instance generation tool. Our empirical results demonstrate
that these two approaches are complementary: primacy of one
over the other depends on the sub-family of Puzznic instances
considered, and we have established several such families.
In future work, we will develop both of our approaches
further. A static reachability analysis, for example, would
yield information that both the constraint and planning models
could exploit. In the context of the constraint model, we could
recognise when the grid is in a symmetric state and exploit that
situation to reduce search. Similarly, we could develop more
dominance-breaking constraints to improve performance.

ACKNOWLEDGEMENTS

Ian Miguel is funded by EPSRC grant EP/V027182/1, Ma-
teu Villaret is funded by MCIN/AEI/10.13039/501100011033

grant PID2021-122274OB-I00, and Peter Nightingale is
funded by EPSRC grant EP/W001977/1.

REFERENCES

[1] R. Barták, M. A. Salido, and F. Rossi, “Constraint satisfaction techniques
in planning and scheduling,” Journal of Intelligent Manufacturing,
vol. 21, pp. 5–15, 2010. https://doi.org/10.1007/s10845-008-0203-4

[2] R. Barták and D. Toropila, “Reformulating constraint models for clas-
sical planning,” in FLAIRS. AAAI Press, 2008, pp. 525–530.

[3] M. Bofill, J. Coll, J. Suy, and M. Villaret, “Solving the multi-mode
resource-constrained project scheduling problem with SMT,” in ICTAI.
IEEE, 2016, pp. 239–246. https://doi.org/10.1109/ICTAI.2016.0045

[4] T. Bylander, “The computational complexity of propositional STRIPS
planning,” Artificial Intelligence, vol. 69, no. 1, pp. 165–204, 1994.

[5] M. C. Chavrimootoo, “Defying gravity and gadget numerosity: The
complexity of the Hanano puzzle,” in DCFS, ser. LNCS, vol. 13918,
2023, pp. 36–50. https://doi.org/10.1007/978-3-031-34326-1 3

[6] J. Espasa, I. P. Gent, R. Hoffmann, C. Jefferson, A. M. Lynch,
A. Salamon, and M. J. McIlree, “Using small MUSes to explain how
to solve pen and paper puzzles,” 2023. https://doi.org/10.48550/arXiv.
2104.15040

[7] J. Espasa, I. P. Gent, I. Miguel, P. Nightingale, A. Z. Salamon,
and M. Villaret, “Towards a Model of Puzznic,” in ModRef, 2023.
https://doi.org/10.48550/arXiv.2310.01503

[8] ——, “Cross-paradigm modelling: A case study of Puzznic,”
in ModRef, 2024. https://modref.github.io/papers/ModRef2024
CrossParadigmModelling.pdf

[9] J. Espasa, I. Miguel, P. Nightingale, A. Z. Salamon, and M. Villaret,
“Plotting: a case study in lifted planning with constraints,” Constraints,
vol. 29, 2024. https://doi.org/10.1007/s10601-024-09370-x

[10] J. Espasa, I. Miguel, and M. Villaret, “Plotting: a planning
problem with complex transitions,” in CP, 2022, pp. 22:1–22:17.
https://doi.org/10.4230/LIPIcs.CP.2022.22

[11] E. Friedman, “The game of Cubic is NP-complete,” 34th Florida MAA
Section Meeting, 2001. https://erich-friedman.github.io/papers/cubic.pdf

[12] I. P. Gent, C. Jefferson, T. Kelsey, I. Lynce, I. Miguel, P. Nightingale,
B. M. Smith, and S. A. Tarim, “Search in the patience game ‘black
hole’,” AI Communications, vol. 20, no. 3, pp. 211–226, 2007.

[13] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting.
Cambridge University Press, 2016.

[14] P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise, An Introduction
to the Planning Domain Definition Language. Springer, 2019.

[15] C. Jefferson, A. Miguel, I. Miguel, and A. Tarim, “Modelling and
solving English Peg Solitaire,” Comput. Oper. Res., vol. 33, no. 10, pp.
2935–2959, 2006. https://doi.org/10.1016/j.cor.2005.01.018

[16] H. Kautz and B. Selman, “Planning as Satisfiability,” in Proceedings of
ECAI, 1992, pp. 359–363.

[17] P. Nightingale, “Savile Row manual,” 2021. https://doi.org/10.48550/
arXiv.2201.03472

[18] P. Nightingale, Ö. Akgün, I. P. Gent, C. Jefferson, I. Miguel, and
P. Spracklen, “Automatically improving constraint models in Savile
Row,” Artificial Intelligence, vol. 251, pp. 35–61, 2017.

[19] H. Simonis, “Sudoku as a constraint problem,” in Workshop on Modeling
and Reformulating Constraint Satisfaction Problems, 2005.

https://doi.org/10.1007/s10845-008-0203-4
https://doi.org/10.1109/ICTAI.2016.0045
https://doi.org/10.1007/978-3-031-34326-1_3
https://doi.org/10.48550/arXiv.2104.15040
https://doi.org/10.48550/arXiv.2104.15040
https://doi.org/10.48550/arXiv.2310.01503
https://modref.github.io/papers/ModRef2024_CrossParadigmModelling.pdf
https://modref.github.io/papers/ModRef2024_CrossParadigmModelling.pdf
https://doi.org/10.1007/s10601-024-09370-x
https://doi.org/10.4230/LIPIcs.CP.2022.22
https://erich-friedman.github.io/papers/cubic.pdf
https://doi.org/10.1016/j.cor.2005.01.018
https://doi.org/10.48550/arXiv.2201.03472
https://doi.org/10.48550/arXiv.2201.03472

	Introduction
	Membership in NP
	PDDL Model
	A Constraint Model of Puzznic
	Matching Mode
	Progressing Mode
	Row Compact Mode
	Symmetry and Dominance Breaking, Implied Constraints

	A Constraint Model for Instance Generation
	Empirical Evaluation
	Conclusion
	References

