
Exploiting Short Supports for Generalised Arc Consistency for Arbitrary
Constraints

Peter Nightingale, Ian P. Gent, Chris Jefferson, Ian Miguel
School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SX, UK

{pn,ipg,caj,ianm}@cs.st-andrews.ac.uk

Abstract

Special-purpose constraint propagation algorithms
(such as those for the element constraint) frequently
make implicit use of short supports — by exam-
ining a subset of the variables, they can infer sup-
port for all other variables and values and save sub-
stantial work. However, to date general purpose
propagation algorithms (such as GAC-Schema) rely
upon supports involving all variables. We demon-
strate how to employ short supports in a new general
purpose propagation algorithm called SHORTGAC.
This works when provided with either an explicit
list of allowed short tuples, or a function to cal-
culate the next supporting short tuple. Empirical
analyses demonstrate the efficiency of SHORTGAC
compared to other general-purpose propagation al-
gorithms. In some cases SHORTGAC even exhibits
similar performance to special-purpose propagators.

1 Introduction
Constraint solving of a given problem proceeds in two phases.
First, the problem is modelled as a set of decision variables and
a set of constraints on those variables that a solution must sat-
isfy. A decision variable represents a choice that must be made
in order to solve the problem, and its associated domain of
potential values corresponds to the options for that choice. In
the second phase, a constraint solver searches for a solution or
solutions automatically. Typically, constraint solvers employ a
systematic backtracking search, interleaving the choice of an
instantiation of a decision variable with the propagation of the
constraints to determine the consequences of the choice made.
In order to facilitate this process, each constraint supported by
the solver has an associated propagation algorithm.

Propagation algorithms can broadly be divided into two
types. The first are specialised to reason very efficiently about
constraint patterns that occur very frequently in models. Exam-
ples include the global cardinality constraint [Régin, 1996] and
the element constraint [Gent et al., 2006b]. It is not feasible to
support every possible constraint expression with a specialised
propagator in this way, in which case general-purpose con-
straint propagators, such as GAC-Schema [Bessière and Régin,
1997] or GAC2001 [Bessière et al., 2005], are used. These are

typically more expensive than specialised propagators but are
an important tool when no specialised propagator is available.

A support for a domain value of a variable is an explanation
as to why that value cannot yet be removed from consideration
in the search for a solution. It is usually given in terms of a
set of literals: variable-value pairs corresponding to possible
assignments to the other variables in the constraint. One of
the efficiencies typically found in specialised propagators is
the (typically implicit) use of short supports: by examining
a subset of the variables, they can infer support for all other
variables and values and save substantial work.

For example, consider the element([x0, x1, x2], y, z) con-
straint, with x0, x1, x2, y ∈ {0 . . . 2}, z ∈ {0 . . . 3}. The
constraint is satisfied iff xy = z (i.e. the element in posi-
tion y of vector X equals z). Consider the set of literals
S1 = {x0 7→ 1, y 7→ 0, z 7→ 1}. This set clearly satisfies the
definition of the constraint xy = z, but it does not contain a
literal for each variable. Any extension of S with valid literals
for variables x1 and x2 is a support. We call S a short support.
As a second example, the watched literal propagation algo-
rithm in SAT exploits short supports containing one variable,
requiring only two such supports for a constraint of any length.

To date, general-purpose propagation algorithms rely upon
supports involving all variables. In this paper, we demon-
strate how to employ short supports in a new general-purpose
propagation algorithm called SHORTGAC. As we will demon-
strate, the use of short supports significantly improves the
performance of SHORTGAC versus existing general-purpose
propagation algorithms. In some cases, SHORTGAC even
approaches the performance of special-purpose propagators.

2 Supports, Short Supports and GAC
A literal x 7→ v is valid if v is in the current domain of x.
The scope of a constraint c is the subset of variables that it
constrains. A valid tuple for constraint c is a set of literals that
contains a valid literal for each variable in the scope of c and
satisfies c. With respect to a constraint c, a support for a literal
l is a valid tuple for c that contains l.

Each short support is a set of literals that contains a valid
literal for each of some subset of variables in the scope of
c, and such that every superset of this containing one valid
literal for each variable in c is a support. For example, even
the empty set is a possible short support, if every remaining
tuple of valid literals satisfies c (in which case c is ‘entailed’.)



The property commonly established by constraint propaga-
tion algorithms is generalised arc consistency (GAC) [Mack-
worth, 1977]. A constraint c is GAC if and only if there exists
a support for every valid literal of every variable in the scope
of c. GAC is established by identifying all literals x 7→ v for
which no support exists and removing v from the domain of x.

A GAC propagation algorithm is usually situated in a sys-
tematic search. Hence, it must operate in three contexts: ini-
tialisation (at the root node), where support is established from
scratch; following the deletion of one or more domain values
(as a result of a branching decision and/or the propagation
of other constraints), where support must be re-established
selectively; and upon backtracking, where data structures must
be restored to the correct state for this point in search. Our pri-
mary focus will be on the second context, operation following
value deletion, although we will discuss the other two briefly.

A GAC propagation algorithm would typically be called for
each deleted domain value in turn. Once the algorithm has
been called for each such domain value, the constraint will
be GAC. However, the propagation algorithm proposed here
need not be called for every deleted domain value to establish
GAC. In this paper we say that propagators attach and remove
triggers on literals. When a domain value v for variable x is
deleted, the propagator is called if and only if it has a trigger
attached to the literal x 7→ v.

3 SHORTGAC: An Overview
This section summarises the key ideas of the SHORTGAC
propagation algorithm, along with an illustrative example.

SHORTGAC maintains a set of short supports sufficient to
support all valid literals of the variables in the scope of the
constraint it is propagating. We refer to these as the active
supports. The major contribution of the algorithm is the ef-
ficient storage and update of the set of active supports. This
efficiency rests on exploiting the observation that, using short
supports, support can be established for a literal in two ways.
First, as usual, a short support that contains a literal supports
that literal. Second, a literal x 7→ v is supported by a short
support that contains no literal of variable x. Hence, the only
short supports that do not support x 7→ v are those which
contain a literal x 7→ w for some other value w 6= v.

The following counters are central to the operation of the
SHORTGAC algorithm:

numSupports is the total number of active supports.
supportsPerVar[x] is an array indicating the number of sup-

ports containing each variable x.
supportsPerLit[x, v] is a 2-dimensional array indicating the

number of supports containing each literal x 7→ v.

If the number of supports containing some variable x is less
than the total number of supports then there exists a support
s that does not contain x. Therefore, as noted, s supports
all literals of x. The algorithm spends no time processing
variables all of whose literals are known to be supported in
this way. Only for variables involved in all supporting tuples
do we have to seek support for literals with no current supports.

To illustrate, we consider the element example. Suppose
in the current state SHORTGAC is storing just one support:

S1 = {x0 7→ 1, y 7→ 0, z 7→ 1}. The counters are as follows.
(X indicates that a literal is not valid.)

supportsPerLit: Variable
Value x0 x1 x2 y z

0 0 0 0 1 0
1 1 0 0 0 1
2 0 0 0 0 0
3 X X X X 0

supportsPerVar: 1 0 0 1 1
numSupports: 1

All values of x1 and x2 have support, since their support-
sPerVar counters are both less than numSupports. Therefore
the SHORTGAC algorithm can ignore x1 and x2 and only
look for new supports of x0, y and z. Consider finding a new
support for literals in z. SHORTGAC can ignore the literals
with at least one support – in this case z 7→ 1. The algorithm
looks for literals z 7→ a where supportsPerLit[z, a] = 0. Here,
z 7→ 0 is such a literal, so SHORTGAC seeks a new support for
it. A possible new support is S2 = {x1 7→ 0, y 7→ 1, z 7→ 0},
with which the counters are updated:

supportsPerLit: Variable
Value x0 x1 x2 y z

0 0 1 0 1 1
1 1 0 0 1 1
2 0 0 0 0 0
3 X X X X 0

supportsPerVar: 1 1 0 2 2
numSupports: 2

Now variable x0 is also fully supported, since
supportsPerVar[x0] < numSupports. However, we
retain the values of supportsPerLit for x0 in case num-
Supports falls back to 1 subsequently. There remain
three literals for which support has not been established:
y 7→ 2, z 7→ 2 and z 7→ 3. For the first two SHORTGAC
finds supports such as S3 = {x0 7→ 2, y 7→ 0, z 7→ 2},
S4 = {x2 7→ 0, y 7→ 2, z 7→ 0}. No support exists for z 7→ 3,
so this literal is invalid and 3 will be deleted, giving:

supportsPerLit: Variable
Value x0 x1 x2 y z

0 0 1 1 2 2
1 1 0 0 1 1
2 1 0 0 1 1
3 X X X X X

supportsPerVar: 2 1 1 4 4
numSupports: 4

All valid literals are now supported. Nothing further need be
done until a change in state, such as the removal of a value by
propagation, or a change in state following backtracking.

4 SHORTGAC: Details
The key tasks are: counter update; iteration over variables
where supportsPerVar equals numSupports; and iteration over
the unsupported values of a variable. The following data
structures allow us to do each of these tasks efficiently.

A short support is represented by a struct. It may be con-
tained in multiple doubly-linked lists simultaneously (one for
each literal x 7→ v in the support). Hence, it has multiple
previous and next pointers. The support struct contains:



prev[x] An array of previous pointers, indexed by variable.
next[x] An array of next pointers, indexed by variable.
literals An array of literals

The doubly-linked lists are accessed via supportListPer-
Lit[x, v], an array of pointers to supports. If an active support
S contains a literal x 7→ v, then S is contained in the doubly-
linked list supportListPerLit[x, v]. Hence, it is possible to
iterate through all supports containing any particular literal.

The algorithm iterates over all variables x where
supportsPerVar[x] equals numSupports. The following data
structure represents a partition of the variables by the num-
ber of supports. It allows constant time size checking and
linear-time iteration of each cell in the partition, and allows
any variable to be moved into an adjacent cell (ie if the number
of supports increases or decreases by 1) in constant time. It
is inspired by the indexed dependency array in [Schulte and
Tack, 2010].

varsPerSupport is an array containing a permutation of the
variables. Variables are ordered by their number of sup-
ports (supportsPerVar[x]) in ascending order.

varsPerSupInv is the inverse mapping of varsPerSupport.
supportNumPtrs is an array of integers such that

supportNumPtrs[i] is the smallest index in varsPer-
Support with i or more supports. Therefore
varsPerSupport[supportNumPtrs[i]..supportNumPtrs[i+
1]-1] contains exactly the set of variables with i supports.

Procedure swap(xi, xj) (used later) locates and swaps the
two variables in varsPerSupport, also updating varsPerSupInv.

For a variable x with supportsPerVar[x] = numSupports,
SHORTGAC iterates over the values with zero supports. To
avoid iterating over all values, we use a set data structure:
zeroVals[x] is a stack containing the zero values for x in no

particular order.
inZeroVals[x, v] is a Boolean indicating whether value v is

on the stack.
When supportsPerLit[x,v] is reduced to 0, if

inZeroVals[x,v] is false then v is pushed onto zeroVals[x].
As an optimisation, values are not eagerly removed from the
set; they are only removed when the set is iterated. Also, the
set is not backtracked. During iteration, a non-zero value is
removed by swapping it to the top of the stack, and popping.

4.1 Adding and Deleting Supports
When a support is added or deleted, all the data structures de-
scribed above are updated. This is done by the addSupport and
deleteSupport procedures. AddSupport is given in Algorithm
1. For each literal in the support sup, sup is added to the appro-
priate supportListPerLit, and the two counters supportsPerVar
and supportsPerLit are incremented. xi must also be moved to
the next cell in varsPerSupport. Line 6 finds the end of the cell
that xi is in. Line 7 swaps xi to the end of its cell, and line 8
moves a cell boundary such that xi is now in the higher cell.
Lines 9-10 add a trigger to xi 7→ a if sup is the only active
support to contain that literal (otherwise xi 7→ a will already
have a trigger).

The procedure deleteSupport is similar with the following
changes. On lines 3, 4 and 11, counters are decremented.

Algorithm 1 Add Support: addSupport(sup)
Require: sup: a support struct

1: for all (xi 7→ a) in sup.literals do
2: Add sup to supportListPerLit[xi, a]
3: supportsPerVar[xi]← supportsPerVar[xi]+1
4: supportsPerLit[xi,a]← supportsPerLit[xi,a]+1
5: sPV←supportsPerVar[xi]
6: cellend←supportNumPtrs[sPV]−1
7: swap(xi, varsPerSupport[cellend])
8: supportNumPtrs[sPV]←supportNumPtrs[sPV]−1
9: if supportsPerLit[xi,a]=1 then

10: attachTrigger(xi,a)
11: numSupports←numSupports+1

On line 2, sup is removed from the list (in constant time).
Lines 6-8 are altered to move xi into the lower adjacent cell in
varsPerSupport. Line 6 finds the start of the cell that xi is in
(supportNumPtrs[sPV+1]), line 7 remains the same and line 8
increments the lower boundary (supportNumPtrs[sPV+1]) so
that xi is now in the adjacent cell. Lines 9-10 call removeTrig-
ger if supportsPerLit[xi,a]=0. Between lines 8 and 9, a new
section is added: if supportsPerLit[xi,a]=0, then value a is
added to zeroVals[xi] if not already present.

All changes to data structures (except where noted above)
are stored on a stack; addSupport and deleteSupport are used
to revert changes upon backtracking.

4.2 The Propagation Algorithm
The SHORTGAC propagator (Algorithm 2) is only invoked
when a literal contained in one or more active supports is
pruned. It first calls deleteSupport for all active supports con-
taining the pruned literal. Then it iterates through all variables
xj where supportsPerVar[xj]=numSupports (lines 3-4). xj

may have unsupported values. SHORTGAC iterates through
zeroVals[xj], discarding values with support (lines 6-7), and
seeking a new support for those without (lines 10-16).

A new support is sought by calling findNewSupport(xj , a).
This returns a support for the literal if one exists. If there is
no support, the literal is pruned. If there exists a support (sup)
it is added on line 14. sup must support xj 7→ a, but it does
not have to contain xj 7→ a. a is removed from zeroVals[xj]
only if sup contains xj 7→ a. At this point, numSupports
and supportNumPtrs have changed, so the loop (lines 3-17)
is restarted (line 17) using a goto statement. The aim is to
process all variables where supportsPerVar[xj]=numSupports;
adding a new support changes this set of variables, therefore
the loop is restarted.

Complexity analysis of the algorithm is left for future work,
and we do not claim optimality. In particular the algorithm can
process variables where each value is supported. To initialise
the propagation process, lines 3-17 of Algorithm 2 are invoked.

4.3 Instantiation of findNewSupport
Similarly to GAC-Schema [Bessière and Régin, 1997],
SHORTGAC must be instantiated with a findNewSupport func-
tion. The function takes a valid literal, and returns a support if
one exists, otherwise returns null. A findNewSupport function



Algorithm 2 SHORTGAC-Propagate: propagate(var, val)
Require: var, val (where val has been pruned from var)

1: while supportListPerLit[var, val] 6= null do
2: deleteSupport(supportListPerLit[var, val])
3: for all i ∈ {supportNumPtrs[numSupports]. . .

supportNumPtrs[numSupports+1]-1} do
4: xj ← varsPerSupport[i]
5: for all a ∈ zeroVals[xj ] do
6: if supportsPerLit[xj , a] > 0 then
7: Remove a from zeroVals[xj]
8: else
9: if a ∈ Dom(xj) then

10: sup←findNewSupport(xj , a)
11: if sup=null then
12: prune(xj ,a)
13: else
14: addSupport(sup)
15: if supportsPerLit[xj , a] > 0 then
16: Remove a from zeroVals[xj]
17: Goto 3

may be written for a particular constraint. In the case studies
below we briefly summarise what this function does.

Alternatively, we provide a generic instantiation named
findNewSupport-List (Algorithm 3) that takes a list of short
supports for each literal (supportList). This is analogous to the
Positive instantiation of GAC-Schema [Bessière and Régin,
1997]. FindNewSupport-List has persistent state: listPos, an ar-
ray of integers indexed by variable and value, initially 0. This
indicates the current position in the supportList. ListPos is not
backtracked. The algorithm simply iterates through the list of
supports, seeking one where all literals are valid. Using listPos
stops the algorithm repeatedly iterating through the first sec-
tion of the list when called repeatedly. Note that a constraint-
specific findNewSupport can sometimes find shorter supports
than findNewSupport-list. This is because a specific findNew-
Support can take advantage of current domains whereas the
supportList may only contain supports given the initial do-
mains. For example, if the constraint becomes entailed, the
specific findNewSupport can return the empty support. We
exploit this fact in case study 3 below.

As an optimisation, we omit literals from sup for assigned
variables. This is applied to all findNewSupport functions
(except for SHORTGAC-longsupport, described below).

5 Experimental Setup
The Minion solver 0.10 [Gent et al., 2006a] was used for
experiments, with our own additions. We used an 8-core
machine with 2.27GHz Intel Xeon E5520 CPUs and 12GB
memory. All times are a median of 5 runs. We report complete
run times, i.e. we have not attempted to measure the time
attributable to the given propagator. This both simplifies our
experiments and has the advantage that we automatically take
account of all factors affecting runtime.

For each case study, we implemented a findNewSupport
method for SHORTGAC specific to the constraint. We also
used the generic list instantiation for comparison where possi-

ble. We compare SHORTGAC against the special-purpose
propagator (when available). We also compare against
SHORTGAC-longsupport (SHORTGAC with full length sup-
ports), and against GAC-Schema [Bessière and Régin, 1997]
as the closest equivalent algorithm without short supports.
Our implementation of GAC-Schema is very similar to
SHORTGAC, using the same data structures where possi-
ble. GAC-Schema and SHORTGAC-longsupport use the same
(constraint-specific) findNewSupport as SHORTGAC, and sub-
sequently extend the short support to full length using the mini-
mum value for each extra variable. In each case, the constraint
can be compactly represented as a disjunction. Therefore we
compare SHORTGAC against Constructive Disjunction. The
algorithm used is based upon [Lagerkvist and Schulte, 2009],
without entailment detection. We do not compare to table
constraints (eg [Gent et al., 2007]) because the constraints
are too large. For example, the smallest element constraints
reported below have 638 valid tuples, making it impossible
even to generate and store the list of allowed tuples.

6 Case Study 1: Element
We use the quasigroup existence problem QG3 [Colton and
Miguel, 2001] to evaluate SHORTGAC on the element con-
straint. The problem class has one parameter n, specifying
the size of an n × n table (qg) of variables with domains
{0 . . . n}. Rows, columns and one diagonal have GAC allD-
ifferent constraints, following Colton and Miguel’s model.
The element constraints represent the QG3 property that
(i ∗ j) ∗ (j ∗ i) = i. This translates as ∀i, j : element(qg,
aux[i, j], i), and aux[i, j]= n × qg[i, j] + qg[j, i], where
aux[i, j] has domain {0 . . . n× n− 1}.

For the constraint element(X, y, z), the findNewSupport
method for SHORTGAC returns tuples of the form 〈xi 7→
j, y 7→ i, z 7→ j〉, where i is an index into the vector X and
j is a common value of z and xi. SHORTGAC-list has all
supports of this form. For Constructive Or, we used (x0 =
z ∧ y = 0) ∨ · · · ∨ (xn = z ∧ y = n).

We searched for all solutions, with limits of 100,000 nodes,
1,800 seconds, and 12GB of virtual memory. Table 1 shows
our results on QG3. Of the general purpose methods, using
short supports in either functional or list form is dramatically
better than any alternative. For example at n = 10, even the

Algorithm 3 findNewSupport-list: findNewSupport(xi, a)
Require: xi, a, supportList

1: for all j ∈ {listPos[xi, a]. . .(supportList[xi, a].size-1)}
do

2: sup ←supportList[xi, a, j]
3: if all literals in sup are valid then
4: listPos[xi, a]← j
5: return sup
6: for all j ∈ {0 . . .listPos[xi, a]−1} do
7: sup ←supportList[xi, a, j]
8: if all literals in sup are valid then
9: listPos[xi, a]← j

10: return sup
11: return null



n WatchElt SG SG-L GAC-S SG-Ls Or
6 22260 4839 2100 25.2 11.0 68.1
7 22731 3736 2539 8.83 3.29 34.2
8 16287 2238 1388 3.78 1.26 13.1
9 16129 1961 1115 2.18 0.756 8.27

10 18939 2149 1088 mem 0.373 5.45

Table 1: Nodes searched per second for quasigroup existence
problems. ‘mem’ indicates running out of memory. Columns
are special purpose Watched Element propagator (WatchElt),
SHORTGAC (SG), SHORTGAC-list (SG-L), GAC-Schema
(GAC-S), SHORTGAC-longsupport (SG-Ls), and Construc-
tive Or (Or)

slower, list based method is 200 times faster than Constructive
Or, the best of the other methods. Functional SHORTGAC is
about twice as fast as SHORTGAC-list, but cannot compete
with the special purpose element propagator in Minion [Gent
et al., 2006b] which is about 5-9 times faster. It remains clear
that exploiting short supports is very beneficial compared to
other general purpose methods.

7 Case Study 2: Lex-ordering
We use BIBD problems to evaluate SHORTGAC on the lexi-
cographic ordering constraint. The lex constraint is placed on
both the rows and columns, to perform the “Double Lex” sym-
metry breaking method. We use the BIBD model and GACLex
propagator given by [Frisch et al., 2002]. We use BIBDs with
the parameter values (4n+ 3, 4n+ 3, 2n+ 1, 2n+ 1, n) and
we impose a 2GB limit on runs. All methods explore identical
search spaces. We searched for all solutions up to a node limit
of 1,000,000 or time limit of 1800s (whichever was first). This
limits all instances except n = 3 which required 41,982 nodes.

For the constraint lexleq(X , Y ), we define mxi =
min(Dom(xi)) and myi = max(Dom(yi)). The find-
NewSupport method for SHORTGAC finds the lowest index
i ∈ {0 . . . n} such that mxi < myi, or i = n. The case
i = n arises when X cannot be lex-less than Y , so a support is
sought for X = Y . If i < n, the support contains xi 7→ mxi,
yi 7→ myi. For each index j < i, if mxj = myj , then the
short support contains xj 7→ mxj , yj 7→ myj otherwise there
is no valid support and null is returned.

The lex constraint on two arrays of length n and domain size
d has more than dn short supports since all assignments where
the two arrays are equal satisfy the constraint and cannot be
reduced. SHORTGAC-list is not practical for any substantial
constraint. Constructive Or uses the following representation:
(x0 < y0) ∨ (x0 = y0 ∧ x1 < y1) ∨ · · · , including the case
where all pairs are equal.

Table 2 shows the results of our experiments on non-list
based methods with values of n from 3 to 24. It is clear that the
best method is the special purpose Lex propagator, up to twice
as fast as SHORTGAC. The speedup of Lex over SHORTGAC
increases only very slowly, from 1.47 at n = 3 to 2.02 at
n = 24. SHORTGAC is by far the best general purpose
method. At n = 3 SHORTGAC is 6.9 times better than
the best alternative general-purpose method, and by n = 24
SHORTGAC is 692 times faster.

n Lex SG GAC-S SG-Ls Or
3 104955 71156 3540 3103 10265
4 113379 88731 3555 2644 7243
5 97371 82645 3077 2297 6035
6 81301 70671 1766 1413 3276
7 71276 62617 1438 1015 2251
8 66756 48497 783 650 1197
9 62854 43764 510 383 504

10 56657 36232 315 304 281
12 48426 29070 143 130 145
14 37341 21409 78.1 69.9 97.0
16 31949 16795 57.5 47.7 mem
18 24564 13208 34.8 28.6 mem
20 19342 10453 17.7 12.3 mem
22 15354 8078 11.2 9.51 mem
24 12228 6046 8.74 7.06 mem

Table 2: Results for BIBDs. We report nodes searched per
second, with a limit of the first of either 1,000,000 nodes or
1,800s. Lex indicates GACLex, and other titles as in Table 1.

n-w-h SG SG-L GAC-S SG-Ls Or
18-31-69 5.00 23.96 35.58 119.44 121.01
19-47-53 1.77 20.72 33.52 74.30 109.86
20-34-85 6.72 41.98 50.31 209.59 206.22
21-38-88 8.45 43.63 56.54 222.84 208.17
22-39-98 9.32 58.85 66.91 276.69 284.70
23-64-68 1.93 46.80 57.52 121.38 145.22
24-56-88 8.20 76.83 74.51 232.56 352.77
25-43-129 16.98 mem 101.10 519.73 526.88
26-70-89 2.33 mem 84.95 231.02 197.51
27-47-148 25.41 mem 128.22 764.74 699.66

Table 3: Times (seconds) for rectangle packing. Column titles
as in Table 1.

8 Case Study 3: Rectangle Packing
The rectangle packing problem [Simonis and O’Sullivan,
2008] (with parameters n, width and height) consists of pack-
ing all squares from size 1× 1 to n× n into the rectangle of
size width × height . This is modelled as follows: we have
variables x1 . . . xn and y1 . . . yn, where (xi, yi) represents
the cartesian coordinates of the lower-left corner of the i× i
square. Domains of xi variables are {0 . . .width − i}, and for
yi variables are {0 . . . height − i}. Variables are branched in
decreasing order of i, with xi before yi, smallest value first.
The only type of constraint is non-overlap of squares i and j:
(xi+ i ≤ xj) ∨ (xj + j ≤ xi) ∨ (yi+ i ≤ yj) ∨ (yj + j ≤ yi)
Minion does not have the special-purpose non-overlap con-
straint [Simonis and O’Sullivan, 2008], so we only report a
comparison of general purpose methods.

The domains of xn and yn are reduced to break flip sym-
metries as described in [Simonis and O’Sullivan, 2008]. Our
focus is performance of the non-overlap constraint, and so we
did not implement the commonly-used implied constraints.

The findNewSupport function for SHORTGAC is as follows.
If any of the four disjuncts above are entailed given the current



domains, return the empty support (indicating entailment).
Otherwise, return a support with 2 literals to satisfy one of the
four disjuncts. SHORTGAC-list has all supports of size 2.

For the experiment we used the optimum rectangle sizes
reported by [Simonis and O’Sullivan, 2008]. Virtual memory
was limited to 12GB. Times are given for the first 50,000
nodes of search in Table 3. We can see that SHORTGAC is by
far the best technique. Of the other methods, GAC-Schema
is second-best, but is always at least 5 times slower and can
be almost 40 times slower. SHORTGAC-list is faster than
GAC-Schema until it reaches larger problems, when it is first
slightly slower and then runs out of memory. GAC-Schema in
turn is significantly faster than either using SHORTGAC with
full length tuples, or using Constructive Or. In summary, these
results very clearly show the benefits of using short supports.

9 Related Work
Our use of counters to count supports is inspired by AC4
[Mohr and Henderson, 1986], and is also related to the concept
of quantitative supports [Jain et al., 2010]. There has been
study of compressing the tuples of a constraint (eg using tries
[Gent et al., 2007]). Such techniques are orthogonal to this
paper because they only assist in finding full-length supports.

Katsirelos and Walsh [2007] proposed a different generali-
sation of support, called a c-tuple. A c-tuple is a set of literals,
such that every valid tuple contained in the c-tuple satisfies
the constraint. Katsirelos and Walsh give an outline of a mod-
ified version of GAC-Schema which directly stores c-tuples.
While c-tuples offer space savings when storing constraints,
Katsirelos and Walsh found using c-tuples provides almost no
performance improvement over GAC-Schema.

For Constructive Or, Lhomme observed that a support for
one disjunct A will support all values of any variable not
contained in A. The concept is similar to a short support albeit
less general, because the length of the supports is fixed to
the length of the disjuncts. He presents a non-incremental
constructive disjunction for two disjuncts [Lhomme, 2003].

10 Conclusions
We have introduced and described in detail SHORTGAC, a
general purpose propagation algorithm for short supports. Ei-
ther it can be given a specialised function to find new supports
for each constraint, or used with a method which accepts an
explicit list of short supports. In three case studies, SHORT-
GAC is far faster than general purpose methods. In the best
case it achieved speeds about 50% of that of a special purpose
propagator. We conclude that where short supports are avail-
able, SHORTGAC will provide much better performance than
existing general-purpose constraint propagation methods.

We identify two areas of interest for future work. First, we
observed that SHORTGAC with lists has memory problems.
Providing a practically effective version of the table constraint
with short supports would further increase the utility of our
work. Second, we see that SHORTGAC with full length sup-
ports was significantly slower than GAC-Schema. It would
be beneficial if a single propagation algorithm could be found
that was as fast as SHORTGAC on short supports and as fast
as GAC-Schema on long supports.

Acknowledgements
We would like to thank anonymous reviewers for their com-
ments, and EPSRC for funding this work through grants
EP/H004092/1 and EP/E030394/1.

References
[Bessière and Régin, 1997] C. Bessière and J.-C. Régin. Arc

consistency for general constraint networks: preliminary
results. In Proc. IJCAI 97, pages 398–404, 1997.

[Bessière et al., 2005] C. Bessière, J.-C. Régin, R. Yap, and
Y. Zhang. An optimal coarse-grained arc consistency algo-
rithm. Artificial Intelligence, 165:165–185, 2005.

[Colton and Miguel, 2001] S. Colton and I. Miguel. Con-
straint generation via automated theory formation. In Proc.
CP 2001, pages 575–579, 2001.

[Frisch et al., 2002] A.M. Frisch, B. Hnich, Z. Kiziltan,
I. Miguel, and T. Walsh. Global constraints for lexico-
graphic orderings. In Proc. CP 2002, pages 93–108, 2002.

[Gent et al., 2006a] I. Gent, C. Jefferson, and I. Miguel. Min-
ion: A fast, scalable, constraint solver. In Proc. ECAI 2006,
pages 98–102, 2006.

[Gent et al., 2006b] I. Gent, C. Jefferson, and I. Miguel.
Watched literals for constraint propagation in minion. In
Proc. CP 2006, 2006.

[Gent et al., 2007] I. Gent, C. Jefferson, I. Miguel, and
P. Nightingale. Data structures for generalised arc con-
sistency for extensional constraints. In Proc. AAAI-07,
pages 191–197, 2007.

[Jain et al., 2010] S. Jain, E. O’Mahony, and M. Sellmann. A
complete multi-valued sat solver. In Proc. CP 2010, pages
281–296, 2010.

[Katsirelos and Walsh, 2007] G. Katsirelos and T. Walsh. A
compression algorithm for large arity extensional con-
straints. In Proc. CP 2007, pages 379–393, 2007.

[Lagerkvist and Schulte, 2009] M. Lagerkvist and C. Schulte.
Propagator groups. In Proc. CP 2009, pages 524–538,
2009.

[Lhomme, 2003] O. Lhomme. An efficient filtering algorithm
for disjunction of constraints. In Proc. CP 2003, pages 904–
908, 2003.

[Mackworth, 1977] A. K. Mackworth. On reading sketch
maps. In Proc. IJCAI 77, pages 598–606, 1977.

[Mohr and Henderson, 1986] R. Mohr and T. C. Henderson.
Arc and path consistency revisited. Artificial Intelligence,
28(2):225–233, 1986.

[Régin, 1996] J.-C. Régin. Generalized arc consistency for
global cardinality constraint. In Proc. AAAI 96, pages 209–
215, 1996.

[Schulte and Tack, 2010] C. Schulte and G. Tack. Implement-
ing efficient propagation control. In Proc. TRICS 2010,
2010.

[Simonis and O’Sullivan, 2008] H. Simonis and
B. O’Sullivan. Search strategies for rectangle pack-
ing. In Proc. CP 2008, pages 52–66, 2008.


