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Abstract
Constraint propagation is one of the key techniques
in constraint programming, and a large body of
work has built up around it. Special-purpose con-
straint propagation algorithms frequently make im-
plicit use of short supports — by examining a sub-
set of the variables, they can infer support (a justifi-
cation that a variable-value pair still forms part of a
solution to the constraint) for all other variables and
values and save substantial work. Recently short
supports have been used in general purpose prop-
agators, and (when the constraint is amenable to
short supports) speed ups of more than three orders
of magnitude have been demonstrated.
In this paper we present SHORTSTR2, a develop-
ment of the Simple Tabular Reduction algorithm
STR2+. We show that SHORTSTR2 is comple-
mentary to the existing algorithms SHORTGAC
and HAGGISGAC that exploit short supports, while
being much simpler. When a constraint is amenable
to short supports, the short support set can be ex-
ponentially smaller than the full-length support set.
Therefore SHORTSTR2 can efficiently propagate
many constraints that STR2+ cannot even load into
memory. We also show that SHORTSTR2 can be
combined with a simple algorithm to identify short
supports from full-length supports, to provide a su-
perior drop-in replacement for STR2+.

1 Introduction
Constraint solvers typically employ a systematic backtrack-
ing search, interleaving the choice of an assignment of a de-
cision variable with the propagation of the constraints to de-
termine the consequences of the assignment made. Propaga-
tion algorithms can broadly be divided into two types. The
first are specialised to reason very efficiently about constraint
patterns that occur frequently in models, for example the el-
ement propagator [Gent et al., 2006b]. It is not feasible
to support every possible constraint expression with a spe-
cialised propagator in this way, in which case general-purpose
constraint propagators, such as GAC-Schema [Bessière and
Régin, 1997], GAC2001/3.1 [Bessière et al., 2005], STR2
[Lecoutre, 2011] or MDDC [Cheng and Yap, 2010] are used.

These are typically more expensive than specialised propaga-
tors but are an important tool nonetheless.

A support in a constraint for a domain value of a vari-
able is a justification that the value still forms part of an as-
signment that satisfies the constraint. It is usually given in
terms of a set of literals: variable-value pairs that are pos-
sible assignments to the variables in the constraint. One
efficiency measure often found in specialised propagators
is short supports: by examining a subset of the variables,
they can infer support for all other variables and values and
save substantial work. Short supports are typically implicit
in a specialised algorithm that does not examine all vari-
ables in all cases. Short support is an important concept
for general-purpose propagation [Nightingale et al., 2011;
2013].

Consider the element constraint xy = z, with variables
x0, x1, x2, y ∈ {0 . . . 2}, z ∈ {0 . . . 3}. This constraint is sat-
isfied iff the element in position y of vector [x0, x1, x2] equals
z. Consider the set of literals S = {x0 7→ 1, y 7→ 0, z 7→ 1}.
This set clearly satisfies the definition of the constraint xy =
z, but it does not contain a literal for each variable. Any ex-
tension of S with valid literals for variables x1 and x2 is a
valid support. S is an example of a short support.

The algorithms SHORTGAC [Nightingale et al., 2011],
HAGGISGAC and HAGGISGAC-STABLE [Nightingale et
al., 2013] are based on the classic general-purpose GAC algo-
rithm GAC-Schema [Bessière and Régin, 1997]. Compared
to GAC-Schema, these algorithms exhibited orders of mag-
nitude speed improvements when the constraint is amenable
to using short supports. The later algorithms HAGGISGAC
and HAGGISGAC-STABLE are also well-behaved with full-
length supports, performing better than GAC-Schema.

In this paper we take a different approach of building on the
Simple Tabular Reduction algorithm STR2+. Since STR2+
has different strengths and weaknesses to GAC-Schema, we
expect that the resulting SHORTSTR2 (i.e. STR2+ exploiting
short supports) will be entirely different and possibly comple-
mentary to SHORTGAC, HAGGISGAC and HAGGISGAC-
STABLE. Also, SHORTSTR2 will be a much simpler algo-
rithm and therefore more attractive to implement in solvers.

2 Preliminaries
A constraint satisfaction problem (CSP) is defined as a set of
variables X , a function that maps each variable to its domain,



D : X → 2Z where each domain is a finite set, and a set of
constraintsC. A constraint c ∈ C is a relation over a subset of
the variablesX . The scope of a constraint c, named scope(c),
is the set of variables that c constrains.

During a systematic search for a solution to a CSP, values
are progressively removed from the domains D. Therefore,
we distinguish between the initial domains and the current
domains. The function D refers to the current domains. A
literal is a variable-value pair (written x 7→ v). A literal x 7→
v is valid if v ∈ D(x). The size of the largest initial domain
is d. For a constraint c we use r for the size of scope(c).

A full-length support of constraint c is a set of literals con-
taining exactly one literal for each variable in scope(c), such
that c is satisfied by the assignment represented by these lit-
erals. Following [Nightingale et al., 2013] we define short
support as follows.

Definition 1. [Short support] A short support S for con-
straint c and domains Ds is a set of literals x 7→ v such that
x ∈ scope(c), x 7→ v is valid w.r.t Ds, x occurs only once in
S, and every superset of S that contains one valid (w.r.t Ds)
literal for each variable in scope(c) is a full-length support.

The set of short supports depends on the domains Ds. In
this paper we always use the initial domains for Ds. Else-
where, short supports are generated using the current domains
D but these sets are not necessarily short supports after back-
tracking [Nightingale et al., 2011; 2013]. A support of either
type is valid iff all literals in it are valid.

A constraint c is Generalised Arc Consistent (GAC) if and
only if there exists a full-length support containing every
valid literal of every variable in scope(c). GAC is established
by identifying all literals x 7→ v for which no full-length sup-
port exists and removing v from the domain of x. We consider
only algorithms for establishing GAC in this paper.

3 Compressing Tables
Arbitrary constraints are typically given to a constraint

solver as a list of satisfying tuples. To automatically ap-
ply one of the ‘short’ algorithms SHORTSTR2 or HAGGIS-
GAC, we need a procedure to compress the full-length tuples
into short supports. This is equivalent to minimising the size
of a DNF formula. This is an NP-complete problem with
no polynomial-time approximation scheme [Khot and Saket,
2008]. For practical reasons we designed a greedy approxi-
mation algorithm rather than doing optimal compression.

In this section we use full-length tuples to represent short
supports, with a special symbol ∗ indicating when a vari-
able is not contained in the short support. Suppose we had
a constraint c with scope {x1, x2, x3}, and a short support
S = {x1 7→ 1, x2 7→ 2}. S is represented as the full-length
tuple 〈1, 2, ∗〉. The ∗ indicates that x3 is not contained in S.

The basic step is to find a set X of tuples where all tuples
are equal except at one position i, and at position i we have
one tuple for each value in the corresponding domain D(xi).
Thus xi can take any value and the constraint will still be sat-
isfied, therefore we can create a new short support that does
not mention xi. X can be replaced by one tuple with ∗ at
position i, and identical to those in X at all other positions.

Algorithm 1 Greedy-Compress(InTuples)
Require: InTuples: Set of full-length tuples.

1: OutTuples← ∅
2: while |InTuples| > 0 do
3: UsedTuples← ∅
4: CompTuples← ∅
5: for all τ ∈ InTuples do
6: if τ /∈ UsedTuples then
7: for all xi ∈ scope(c) do
8: if τ [xi] = ∗ then
9: Continue to next variable (loop on line 7)

10: σ ← τ
11: found← true
12: for all v ∈ D(xi) do
13: σ[xi]← v
14: if σ /∈ InTuples or σ ∈ UsedTuples then
15: found← false
16: Break out of loop on line 12
17: if found then
18: for all v ∈ D(xi) do
19: σ[xi]← v
20: UsedTuples← UsedTuples ∪ {σ}
21: σ[xi]← ∗
22: CompTuples← CompTuples ∪ {σ}
23: Break out of loop on line 7
24: OutTuples← OutTuples ∪ (InTuples \ UsedTuples)
25: InTuples← CompTuples
26: return OutTuples

Suppose all variables of c are boolean (i.e.D(xi) = {0, 1})
and we have three tuples t1 = 〈0, 1, 0〉, t2 = 〈0, 1, 1〉 and
t3 = 〈1, 1, 0〉. Tuples t1 and t2 may be compressed, and also
t1 and t3.

The Greedy algorithm starts with full-length supports (i.e.
mentioning all r variables) and attempts to compress them to
short supports of size r − 1 using the basic step described
above. It then takes the r − 1 short supports and attempts
to compress them to size r − 2 using the same basic step.
This process is repeated until it is not possible to apply the
basic step. Pseudocode for Greedy is given in Algorithm 1.
The outer while loop iterates for decreasing size, starting with
size r. For each size, the algorithm iterates through the tuples
of that size (line 5). For each tuple, it iterates through the set
of variables that have a value in that tuple (i.e. are not ∗), and
for each variable it checks if the tuple can be compressed at
that point using other short supports of the same size (lines
10-16). If a set of tuples can be compressed, they are added
to UsedTuples (and therefore removed from consideration),
and the new (compressed) tuple is added to CompTuples.
Finally, Greedy collects up all tuples (of all sizes) that were
not consumed by a compression step.

Consider the example above with tuples t1, t2 and t3.
Greedy starts with t1 and considers each position in that tu-
ple starting with position 1. t1 and t3 may be compressed to
t4 = 〈∗, 1, 0〉, because t1 and t3 are equal except for position
1, and t1 and t3 contain all values in D(x1). The greedy al-
gorithm removes t1 and t3 from consideration, adds t4, and
moves on to t2. It would be possible to compress t2 with t1,



table
tuple # 〈x, y〉

1 〈1, 1〉
2 〈1, 2〉
3 〈1, 3〉
4 〈2, 2〉
5 〈2, 3〉

Node
A B BT-A

position 1 1 1
2 5 5
3 3 3
4 (4) 4
5 (2) 2

currentLimit 5 3 5

Table 1: Constraint x ≤ y with variable domains D(x) =
{1, 2} and D(y) = {1, 2, 3}. table contains all satisfying tu-
ples indexed by 1 . . . 5. At node A, all five tuples are in the
set. At node B, suppose y 7→ 2 is pruned. Tuple 2 needs to
be removed: the values of position[2] and position[5] are
swapped, and currentLimit is reduced to 4. Tuple 4 also
needs to be removed: there is no need to swap it, and cur-
rentLimit is reduced to 3. On backtracking to node A, cur-
rentLimit is restored to 5, so tuples 2 and 4 are in the set.

however t1 has already been used. Next the algorithm moves
on to the next size, and tuple t4. This cannot be compressed
so the end result is {t2, t4}.

The complexity of Algorithm 1 is O(logd(t)tr
2d). The

outer while loop iterates logd(t) times, and there are at most
dr tuples therefore logd(t) ≤ r. The loop on line 5 iterates t
times. The loop on line 7 iterates r times, and the two loops
inside it each iterate d times and contain set operations that
are O(r) when using tries for each set. Line 24 is O(tr) and
is dominated by the loop above.

4 STR2+
We will describe STR2+ [Lecoutre, 2011] as a propagator
embedded in search. As search moves forward, domains are
reduced by other propagators and/or the search algorithm, and
on backtracking the domains are restored. The key feature of
STR2+ is the set of active tuples. Initially this set contains all
satisfying tuples. It is reduced incrementally as search moves
forward, to remove tuples that are invalid.

table is an array indexed by 1 . . . t containing all satisfying
tuples of the constraint.

position is an array indexed by 1 . . . t of integers that index
into table.

currentLimit is an integer, the current size of the set. It is
initially t.

The table array is static and may be shared between con-
straints. The tuples in the range position[1..currentLimit] are
in the current set, and position[currentLimit+1..t] are out-
side the set. A tuple position[i] is removed from the current
set by swapping position[i] with position[currentLimit],
then decrementing currentLimit. On backtracking, only cur-
rentLimit is restored, thus the tuple reappears in the current
set but the order of position may have changed. This is illus-
trated in Table 1.

STR2+ does not directly compute domain deletions, but
instead constructs a set for each variable of values that are
known to be supported. This is done by iterating for all tuples
t from position[1] to position[currentLimit]. If t is not valid,

it is removed from the set. Otherwise, values in t are added to
gacValues because they are supported. Then domains D(x)
are updated by removing any values not in gacValues[x].

For efficiency STR2+ employs two other data structures:

Sval The set of variables whose domains have changed since
STR2+ was last called.

Ssup Initially the set of variables that have not been
assigned by search. As STR2+ progresses, if
gacValues[x] = D(x) then x is removed from Ssup.

Sval is used when checking validity of a tuple. Only the
literals of variables in Sval are checked, others are guaranteed
to be valid because the domain has not changed. Ssup is
used in two places. First, when updating gacValues for a
tuple t, there is no need to update gacValues[x] if x /∈ Ssup.
Second, the variables in Ssup are exactly the variables that
need to be pruned in the final stage of the algorithm.

Finally, STR2+ has an array named lastSize containing
the size of the domain of each variable at the last call. STR2+
updates and backtracks this, whereas STR2 resets the entries
to a null value when backtracking, thus STR2+ accurately
computes Sval from lastSize and STR2 approximates Sval.
The implementation of STR2+ for our experiments does not
have lastSize and is given an accurate Sval by the solver.

5 ShortSTR2
The key feature of short supports is that when a short support
does not contain some variable x, it supports all values of x.
We call this implicit support, as opposed to explicit support
of literals contained in the short support. Implicit support
combined with the fact that there can be many fewer short
supports than full-length supports can make our new algo-
rithm SHORTSTR2 much more efficient than STR2+ when
the constraint is amenable.

In SHORTSTR2 we use two representations of short
support. Suppose we had a constraint with scope
{x1, x2, x3, x4}, and a short support S = {x1 7→ 1, x2 7→ 2}.
The long form of S is an array 〈1, 2, ∗, ∗〉 where ∗ indicates
that a variable is not mentioned in S. This form allows us
to look up the value (or ∗) for a particular variable in O(1)
time. The short form is an array of pairs 〈(x1, 1), (x2, 2)〉.
This allows us to iterate efficiently through the short support.

SHORTSTR2 shares the table, currentLimit and position
data structures with STR2+. In SHORTSTR2, table contains
short supports in the long form (with ∗). SHORTSTR2 also
shares the Sval and Ssup data structures. It adds one new
data structure named shorttable which is an array indexed
by 1 . . . t containing the short supports in the short form.

SHORTSTR2 (Algorithm 2) first seeks one valid short sup-
port in order to initialise Ssup (lines 2-11). If there are no
valid tuples remaining, the constraint is unsatisfiable and the
algorithm returns False on line 11.

The main loop of the algorithm is on lines 12-28. It iterates
through the position array from 1 to currentLimit, removing
any short supports that are no longer valid (lines 15, 27-28).
The validity check is performed by Algorithm 3. For those
short supports that are valid, the algorithm updates gacVal-
ues and Ssup. Ssup is important for efficiency here. The



Algorithm 2 SHORTSTR2-Propagate(Sval)
Require: Sval, set of variables with reduced domains
1: Ssup← ∅
2: while currentLimit ≥ 1 do
3: posi ← position[1]
4: if SHORTSTR2-Valid(posi, Sval) then
5: Ssup← {x | (x 7→ a) ∈ shorttable[posi ]}
6: Break out of loop on line 2
7: else
8: Swap position[1] and position[currentLimit]
9: currentLimit← currentLimit− 1

10: if currentLimit < 1 then
11: return False
12: i← 1
13: while i ≤ currentLimit do
14: posi ← position[i]
15: if SHORTSTR2-Valid(posi, Sval) then
16: τ ← table[posi ]
17: for all xi ∈ Ssup do
18: if τ [xi] = ∗ then
19: Ssup← Ssup \ {xi}
20: else
21: if τ [xi] /∈ gacValues[xi] then
22: gacValues[xi]← gacValues[xi] ∪ τ [xi]
23: if |gacValues[xi]| = |D(xi)| then
24: Ssup← Ssup \ {xi}
25: i← i+ 1
26: else
27: Swap position[i] and position[currentLimit]
28: currentLimit← currentLimit− 1
29: for all xi ∈ Ssup do
30: for all v ∈ D(xi) do
31: if v /∈ gacValues[xi] then
32: D(xi)← D(xi) \ v

inner loop on line 17 iterates only for those variables in Ssup.
A variable is removed from Ssup whenever all its values are
supported, either implicitly (line 19) or explicitly (line 24).

Finally the algorithm prunes the domains of those variables
in Ssup, removing any values not in gacValues.

5.1 Complexity of SHORTSTR2
STR2+ and SHORTSTR2 follow a similar pattern. Firstly,
the validity of each tuple must be checked, then the supported
values of the variables are gathered from the valid tuples, and
finally the domains of the variables must be pruned. There
are some minor differences. STR2+ makes use of Past(P),
the list of variables that have been assigned by the search pro-
cedure. In some solvers it is not possible for a propagator to
obtain Past(P), so this step is not included in SHORTSTR2.
However, any variable x that is assigned has |D(x)| = 1, so
it will be filtered out of Ssup the first time a valid tuple is
found. Second, STR2+ searches through the variables that
are not in Past(P) to find those whose domain has changed
since the last call. STR2+ also updates and backtracks the
lastSize array (containing the domain size of variables on
last call). In SHORTSTR2 we assume we can obtain the list
of changed variables directly from the solver, therefore we do
not need lastSize.

The original complexity analysis of STR2+ contains a
small error. Given the set of unassigned (by search) variables

Algorithm 3 SHORTSTR2-Valid(posi, Sval)
Require: posi, index into table
Require: Sval, set of variables

1: τ ← table[posi ]
2: for all xi ∈ Sval do
3: if τ [xi] 6= ∗ ∧ τ [xi] /∈ D(xi) then
4: return False
5: return True

U , the domain size d and the number of tuples t, the com-
plexity is given as O(|U | × d+ |Sval| × t) [Lecoutre, 2011].
This misses the cost in lines 16− 20 of STR2+ of O(|Ssup|)
for constructing gacValues. Initially |Ssup| = |U |, giving a
total complexity of O(|U | × d+ (|Sval|+ |U |)× t).

As we described above, SHORTSTR2 does not have access
to Past(P). Variables assigned by search can be inserted into
Ssup, and they are removed immediately after entering the
main loop (lines 12-28) at a cost of r. Therefore we have
O(rd+ (|Sval|+ |U |)× t) for SHORTSTR2.

We can improve on this bound by introducing a, the max-
imum length of a short support. |Ssup| ≤ a because Ssup
is created on Line 5 from a short support. This gives us the
tighter bound of O(rd+ (|Sval|+min(|U |, a))× t).

6 Experimental Evaluation
The Minion solver 0.14 [Gent et al., 2006a] was used for
experiments, with our own additions. We used an 8-core
machine with 2.27GHz Intel Xeon E5520 CPUs and 12GB
memory for case studies 1-4, and a 32-core machine with
AMD Opteron 6272 CPUs at 2.1GHz and 256GB memory
for case study 5. In each of our experiments, all implemen-
tations produce an identical search tree, which means we can
compare them purely based on the node rate. We search for
all solutions for a maximum of ten minutes. Each experiment
is run five times, and we give the mean average nodes per sec-
ond searched. We have not attempted to separate out the time
attributable to the given propagator. This both simplifies our
experiments and has the advantage that we automatically take
account of all factors affecting runtime.

The effectiveness of short supports has already been shown
[Nightingale et al., 2011; 2013]. Therefore in this paper we
concentrate on two main contributions. We compare SHORT-
STR2 to HAGGISGAC, and find that SHORTSTR2 is com-
petitive while being much easier to understand and imple-
ment. Secondly, we compare STR2+ and SHORTSTR2 on
standard benchmarks using tuple compression.

Case studies 1-4 compare SHORTSTR2 and HAGGISGAC
on intensional constraints. In some cases there are special
purpose propagators that would almost certainly outperform
SHORTSTR2. Gent et al. [2010] automatically generated a
propagator for the Life constraint that is substantially faster
than SHORTSTR2, and for the Vector Not-Equal constraint
it is likely that Watched Or [Jefferson et al., 2010] is more
efficient than SHORTSTR2. These experiments are to com-
pare SHORTSTR2 and HAGGISGAC, and we save space by
omitting other propagators.



n WatchElt SHORTSTR2 HAGGISGAC
1D 2D 1D 2D 1D

7 7,519 4,433 2,652 5,058 2,971
8 6,347 2,309 1,449 2,927 2,079
9 4,918 1,849 1,142 2,199 1,504

10 4,110 1,324 894 1,703 1,415

Table 2: Nodes per second for QG3. The first column is the
Watched Element propagator (WatchElt).

Class SHORTSTR2 HAGGISGAC
Greedy Full-len Greedy Full-len

Life 4,970 3,960 3,030 2,280
Brian’s Brain 532 75.0 750 93.0
Immigration 4,930 3,590 1,460 361

Quadlife 483 - 59.7 -

Table 3: Nodes per second for solving the 6 × 6, 5 step, os-
cillator problem in four variants of Conway’s game of life. A
“-” denotes a memory usage of > 4GB

Case Study 1: Element
We use the quasigroup existence problem QG3 exactly as de-
scribed by Nightingale et al. [2013]. The problem requires in-
dexing a 2D matrix with two variables. We model the index-
ing in two ways. 1D is a model with an auxiliary index vari-
able y and a conventional element(X, y, z) constraint. The
short supports are of the form 〈xi 7→ j, y 7→ i, z 7→ j〉, where
i is an index into the vector X and j is a common value of
z and xi. The second model, named 2D, directly represents
2-dimensional indexing using short supports. The set of short
supports are of the form 〈xa,b 7→ j, y1 7→ a, y2 7→ b, z 7→ j〉,
where a and b index into the n× n matrix X , and j is a com-
mon value of z and xa,b. Our results are presented in Table 2.
SHORTSTR2 is slower than HAGGISGAC, but is quite close.
The 2D model is faster than 1D, for both algorithms. Both
SHORTSTR2 and HAGGISGAC are slower than the Watched
Element propagator in Minion [Gent et al., 2006b].

The node rates for HAGGISGAC and WatchElt on model
1D differ from those reported previously [Nightingale et al.,
2013], as we now enforce GAC on the constraints linking the
auxiliary index variable to the two indexing variables. GAC
ensures an identical search to the 2D model.

Case Study 2: Oscillating Life
Conway’s Game of Life was invented by John Horton Con-
way. We consider the problem of maximum density oscilla-
tors (repeating patterns). We consider Life and three variants
of it. Immigration has two alive states. When a cell becomes
alive, it takes the state of the majority of the 3 neighbour-
ing live cells that caused it to become alive. Otherwise the
rules of Immigration are the same as those of Life. Quadlife
has four alive states. When a cell becomes alive, it takes the
state of the majority of the 3 neighbouring live cells which
caused it to become alive, unless all 3 neighbours have dif-
ferent colours in which case it takes the colour which none of
its neighbours have. Apart from this the rules are the same as
Life. Finally Brian’s Brain has three states: dead, alive and
dying. If a cell is dead and has exactly two alive (not dying)

n− w − h SHORTSTR2 HAGGISGAC
18-31-69 1,740 7,272
19-47-53 2,114 4,025
20-34-85 1,011 4,416
21-38-88 797 4,917
22-39-98 675 3,636
23-64-68 856 1,889
24-56-88 631 2,421

Table 4: Nodes per second for rectangle packing.

p a SHORTSTR2 HAGGISGAC
30 5 92,500 44,100
30 10 142,000 70,700
30 20 111,000 67,000
30 50 87,200 55,000
30 100 67,600 45,200
30 200 53,700 46,100
5 100 592,000 1,790,000

10 100 250,000 653,600
20 100 119,000 158,800
30 100 67,600 45,200
40 100 43,700 18.000
50 100 31,900 10,900

Table 5: Nodes per second for Vector Not-Equal experiment.
First section fixes p and increases a. Second section fixes a
and increases p.

neighbours, it will become alive, otherwise it remains dead.
If a cell is alive, it becomes dying after one time step. If a cell
is dying, it becomes dead after one time step.

We use the problem and constraint model as described by
Gent et al. [2010]. For all four problems, we make one
change: we minimise the occurrences of the value 0 in all
layers. Furthermore, for Immigration, Quadlife and Brian’s
Brain we add extra domain values for each additional state.

In each experiment we use one instance, a 6× 6 grid, with
5 time steps. We applied Greedy-Compress to generate the
short support sets. Table 3 shows SHORTSTR2 is fastest
for Life, Immigration and Quadlife, while HAGGISGAC is
fastest on Brian’s Brain. SHORTSTR2 is always compet-
itive with and can greatly outperform HAGGISGAC. Short
supports are much better than full-length supports with both
SHORTSTR2 and HAGGISGAC for all four instances.

Case Study 3: Rectangle Packing
The rectangle packing problem [Simonis and O’Sullivan,
2008] (with parameters n, width and height) consists of pack-
ing all squares from size 1× 1 to n× n into the rectangle of
size width×height . We use the model (and short support set)
described by Nightingale et al. [2013]. Results are shown in
Table 4. We can see that in this case HAGGISGAC outper-
forms SHORTSTR2 by around five times.

Case Study 4: Vector Not-Equal
Disequality between two arrays of decision variables is a use-
ful constraint. For two arrays X and Y of length n, contain-
ing variables with domain {1 . . . d}, we can express this con-
straint with the set of short supports {〈X[i] 7→ j, Y [i] 7→ k〉},



Problem Class Full Length Compress Greedy+HAGGISGAC Greedy+SHORTSTR2 STR2+
Supports Ratio setup n/s setup n/s setup n/s

half 2,222,907 1.87 158.07 109.87 156.91 639.39 126.87 365.42
modifiedRenault 201,251 5.35 12.15 9,574.9 12.10 13,846. 10.92 14,055.
rand-8-20-5 1,406,195 1.01 115.88 40.29 112.63 3,376.6 90.42 3,207.4
wordsHerald 21,070 1.00 1.37 2,020.4 1.48 2,210.1 1.33 2,216.3
bddSmall 57,756 1.90 12.78 46.44 13.67 587.91 15.41 521.10
renault 194,524 6.31 11.93 211,491. 11.96 591,062. 10.88 555,206.
wordsVg 2,859 1.00 0.56 318.04 0.58 396.06 0.53 396.25
bddLarge 6,895 1.80 5.18 34.74 9.04 26.89 15.84 22.30
cril 7,350 1.19 0.37 2,832.2 0.34 3,080.9 0.31 2,777.4

Table 6: Comparison of Greedy-Compress+SHORTSTR2, Greedy-Compress+HAGGISGAC and STR2+ on classes of
CSPXML instances. Setup Time refers to the amount of time taken to load the problem, run Greedy-Compress and initialise
each constraint. Compress Ratio refers to the compression ratio of Greedy-Compress, and n/s is the nodes per second achieved
during search. Each value reported here is the geometric mean over the instances in the problem class.

for i ∈ {1 . . . n}, {j, k} ⊆ {1 . . . d}. We consider a generali-
sation of the pigeon-hole problem, where we have p arrays of
length a of boolean variables. Each pair of arrays is distinct.

We consider two different experiments. The first, in Ta-
ble 5, fixes p while increasing a. In this experiment we
see that SHORTSTR2 always outperforms HAGGISGAC by
a factor of at most two. The second experiment, in Table 5,
fixes a while increasing p. For low p, HAGGISGAC is more
efficient but as the number of constraints increases SHORT-
STR2 becomes more efficient. While neither HAGGISGAC
or SHORTSTR2 are even an order of magnitude faster than
the other, this experiment shows the potential benefit of a sim-
ple algorithm with only a small amount of backtracking state
to maintain.

Case Study 5: CSP Solver Competition
The STR2+ paper [Lecoutre, 2011] used a selection
of benchmarks from CSP Solver Competitions. These
benchmarks can be found at http://www.cril.fr/
˜lecoutre/. In this experiment we compare SHORTSTR2
and Greedy-Compress to STR2+. We selected classes of
problems which have extensional constraints of arity 4 or
above and at least 100 tuples per constraint. For each in-
stance of each problem class, we searched for all solutions
with a 600 second time limit. As each technique produces ex-
actly the same search tree, we report the setup time and search
rate (in nodes per second). The results in Table 6 show that
Greedy+SHORTSTR2 compares favourably to STR2+, both
in terms of setup time and node rate. The modifiedRenault
class is the only exception, it has a good compression ratio but
the node rate for SHORTSTR2 is slightly lower in this case.
SHORTSTR2 does not always outperform HAGGISGAC, but
SHORTSTR2 scales better to large sets of short supports.

The instances that compress poorly are in two categories.
The rand-8-20-5 class feature randomly generated constraints
that compress only slightly or not at all. The wordsVg and
wordsHerald classes contain constraints that represent words
in a natural language. This is a natural constraint to represent
as a list of tuples, but offers no compression.

This experiment shows that Greedy+SHORTSTR2 pro-
vides a valuable tool to users, and it can replace STR2+ with-
out requiring users to understand or provide short supports.

7 Related Work
Simple Tabular Reduction (STR) was first introduced by Ull-
mann [2007]. It was made more efficient by Lecoutre [2011]
who developed new algorithms STR2 and STR2+.

Katsirelos and Walsh [2007] proposed a different general-
isation of support, called a c-tuple. A c-tuple is a set of lit-
erals, such that every full-length valid tuple contained in the
c-tuple satisfies the constraint. They outline a modified ver-
sion of GAC-Schema that directly stores c-tuples, and discuss
compression approaches. While c-tuples offer space savings,
Katsirelos and Walsh found using c-tuples provides almost
no performance gain over GAC-Schema. Régin proposed an
even more expressive scheme called tuple sequences [2011].
Both c-tuples and tuple sequences will allow greater compres-
sion than short supports, and present an interesting avenue for
future work: whether an efficient STR2+-like algorithm can
be constructed with c-tuples or tuple sequences.

8 Conclusions
We have introduced SHORTSTR2, a new general-purpose
propagation algorithm that makes use of short supports. We
also presented a simple greedy algorithm Greedy-Compress
to convert a set of satisfying tuples to a set of short supports.

How does SHORTSTR2 compare to STR2+? In our exper-
iments, we found that SHORTSTR2 combined with Greedy-
Compress would make an effective replacement for STR2+,
in some cases yielding substantial efficiency gains.

How does SHORTSTR2 compare to HAGGISGAC? We
chose HAGGISGAC as the comparison because it is clearly
superior to SHORTGAC, and HAGGISGAC is simpler than
HAGGISGAC-STABLE while having very similar perfor-
mance. The comparison between SHORTSTR2 and HAGGIS-
GAC is mixed, with each algorithm having its own strengths
and weaknesses. They are complementary, and SHORTSTR2
is much simpler to implement.
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