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Abstract

In this article, we present a novel approximation approach for abstract argu-
mentation using a customized Graph Convolutional Network (GCN) architec-
ture and a tailored training method. Our approach demonstrates promising
results in approximating abstract argumentation tasks across various seman-
tics, setting a new state of the art for performance on certain tasks. We
provide a detailed analysis of approximation and runtime performance and
propose a new scheme for evaluation. By advancing the state of the art for
approximating the acceptability status of abstract arguments, we make theo-
retical and empirical advances in understanding the limits and opportunities
for approximation in this field. Our approach shows potential for creating
both general purpose and task-specific approximators and offers insights into
the performance differences across benchmarks and semantics.

Keywords:

1. Introduction

The field of argumentation encompasses the study of how arguments are
constructed, analyzed, evaluated, and used in communication to persuade or
convince others of a particular viewpoint or claim [1]. Abstract argumenta-
tion is a specific area within the broader field of argumentation that focuses
on the formal representation and analysis of arguments in a structured man-
ner. It deals with the abstract structure of arguments, independent of specific
content or context, and aims to provide a framework for reasoning about the
acceptability and relationships between arguments [2]. It has been used in
numerous fields to reason about the acceptability of argumentative structures
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and holds great promise as a formal approach to certain reasoning tasks in
Artificial Intelligence (AI). Examples include legal argumentation [3], where
abstract argumentation can help model reasoning under disagreement, the
structure of argument systems, and aid the development of dispute tactics.
Applications have also been found in Intelligence Analysis [4] to determine
which items of intelligence are internally consistent, in multi-agent systems
as a part of communication protocols [5], in misinformation detection in
tweets [6], and even in maritime safety [7] to determine consistency of sensor
readings.

Acceptability in abstract argumentation concerns whether a given argu-
ment belongs to specific positions within an argumentation framework. An
admissible position represents a subset of arguments that are internally con-
sistent and defend themselves against all attacking arguments. For example,
when investigating an academic misconduct case, one possible position could
involve a subset of evidence supporting the case of collusion, while another
position might involve a subset of evidence for the case of false authorship.
When evaluating arguments, the goal is typically to find a position that in-
cludes as much available evidence as possible. This position is known as the
preferred extension and is one of the most crucial solutions in abstract argu-
mentation systems. When an argumentation system has multiple preferred
extensions, one obvious means to determine the strength of an argument is to
count how many preferred extensions it appears in; the more it appears, the
stronger it is [8]. Various notions of acceptability have been developed based
on preferred extensions. For example, an argument is sceptically accepted if
it is a member of every preferred extension, and credulously accepted if it is
a member of at least one preferred extension [2].

The decision problems associated with acceptability are theoretically diffi-
cult (e.g. NP-hard or ΠP

2 -complete), except for acceptance under the grounded
semantics, another notion of acceptance which represents the most sceptical
stance possible and can be computed polynomially [9]. The lack of a general
polynomial time solution has led to an interest in approximate approaches
for runtime critical applications.

There have been several previous works that have adopted approximate
approaches to abstract argumentation [10, 11]. While they have had some
success, neither of these approaches has considered a large and varied set of
argumentation frameworks across different semantics. Scalability, however,
is important for applications with large argumentation frameworks (AFs),
such as social media.

2



In this article, we develop a new approximation approach based on a
customised version of the Graph Convolutional Network (GCN) architec-
ture developed by Kipf and Welling [12], AFGCN, combined with a training
approach tailored to abstract argumentation. We then conduct a substan-
tial number of experiments to test the capabilities and limitations of this
approach. This solver approach was tested at the 2021 International Com-
petition on Computational Models of Argument (ICCMA), where it won 4
out of 6 categories in the approximate track. AFGCN has been successfully
applied to a large AF extracted from Twitter, which comprised 392 posts
and 9088 comments, for fake news detection [13]. It was shown that the
combined use of language sources i.e., tweets together with the (labelled)
graph significantly outperforms using language sources alone [14].

In this article, we make the following contributions:

• We present systematic results for approximating abstract argumenta-
tion tasks across all the current ICCMA semantics.

• We set a new state of the art for performance on two previously stud-
ied abstract argumentation tasks: credulous and sceptical acceptability
under the preferred semantics (referred to as DC-PR and DS-PR re-
spectively) [10, 11].

• We propose an improved Graph Convolutional Network architecture
and runtime implementation for this purpose.

• We demonstrate two different ways for grounded reasoning to be com-
bined with a neural network model with the aim of improving the
accuracy of approximation.

• We provide a detailed analysis of approximation performance across
the 11 benchmark sets that formed part of ICCMA 2019.

• We provide a detailed analysis of runtime performance of our GCN
approximation approach.

• We present a new scheme for evaluation for the approximation of ab-
stract argumentation tasks that better reflect performance when clas-
sifying different types of argumentation frameworks.

By making these contributions, we advance the state-of-art for approximating
the acceptability of abstract arguments and make theoretical and empirical
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advances in understanding the limits and opportunities for approximation
in this field. Because of the large number of experiments and evaluations
conducted in the course of this research, only the most important results are
covered in the main text. The appendix covers the remainder.

2. Abstract Argumentation

Abstract argumentation is a way of formalising the representation of con-
flicting claims [15] using an intentionally minimalist approach. In abstract ar-
gumentation, (abstract) arguments are composed into argumentation frame-
works that contain only the arguments themselves and the relationships of
conflict between them.

The origin of abstract argumentation is in a seminal paper by Dung [2]
that presented the general theory of argumentation frameworks and related
them to a number of other logical formalisms. We will go through some of the
key definitions from this paper in order to cover the necessary background for
the subsequent discussions of the rules of interpretation that can be applied
to argumentation frameworks and the approaches one can take to solving
them. Definitions here are given using an extension based approach, but an
equivalent labelling based approach is equally common in the literature [16].

2.1. Definitions

Definition 2.1 (Argumentation framework) An argumentation frame-
work is a tuple, F = ⟨args , atts⟩ in which args is a finite set of arguments
and atts ⊆ args × args defines a relation of attack.

To say that a attacks b is hence the same as saying that (a, b) ∈ atts. If
S ⊆ args and a ∈ args we can extend this nomenclature by saying that a
attacks S iff there exists b ∈ S such that (a, b) ∈ atts. In a parallel manner
we can say that S attacks a iff there exists b ∈ S such that (b, a) ∈ atts.

We can also define a similar notion of defence.

Definition 2.2 (Defence) Given an argumentation framework F = ⟨args , atts⟩,
an argument a ∈ args is defended by a set S ⊆ args if, for each b ∈ args such
that (b, a) ∈ atts, there exists a c ∈ S such that (c, b) ∈ atts.

Definition 2.3 (Attacking and attacked) Given an argumentation frame-
work F = ⟨args , atts⟩, the set of all attacking arguments of a subset of the ar-
guments S ⊆ args can be written as S− = {b | ∃a ∈ S : (b, a) ∈ atts}. The set
of all attacked arguments can be written as S+ = {b | ∃a ∈ S : (a, b) ∈ atts}.
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This notation is convenient in that it also lets us define notions of range
and negative range.

Definition 2.4 (Range and negative range) Given an argumentation frame-
work F = ⟨args , atts⟩ and set S ⊆ args, the range of S can be defined as
S ∪ S+. The negative range of S can be defined as S ∪ S−.

The range is thus the union of a set of arguments S and those arguments
attacked by S, whereas the negative range is a set S and all arguments that
attack S.

Definition 2.5 (Characteristic function) Given an argumentation frame-
work F = ⟨args , atts⟩, the characteristic function χ : 2args → 2args of F is
defined as χF (S) = {a ∈ args | a is defended by S} for each S ⊆ args.

The characteristic function returns the set of arguments defended by a
given subset of the arguments of an argumentation framework. The last
basic concepts required before we can move on from this section are those of
conflict-freeness, admissibility, and acceptability.

Extensions are subsets of arguments that are considered to be collectively
acceptable. Extensions are evaluated based on semantics that define rules for
which sets of arguments can be accepted together. We provide the relevant
definitions of semantics in Section 2.2 below.

Definition 2.6 (Conflict-freeness) Given an argumentation framework F =
⟨args , atts⟩, a given subset S ⊆ args is said to be conflict-free iff there does
not exist (A,B) ∈ atts with A, B ∈ S.

The notion of conflict-freeness implies that there are no internal conflicts
within an extension and is a building block of all semantics used in this paper.

Definition 2.7 (Admissibility) A subset S ⊆ args of an argumentation
framework F = ⟨args , atts⟩ is admissible iff it is conflict-free and S ⊆ χF (S).

The definition above states that an admissible set is a set that is conflict-
free and defends itself from all attacks as in Definition 2.2. Finally we define
acceptability of individual arguments with respect to a given semantics.

Definition 2.8 (Credulous and Sceptical Acceptability) Given an ar-
gumentation framework F = ⟨args , atts⟩, an argument A ∈ args is cred-
ulously acceptable with respect to a given semantics iff there exists a set
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ext ⊆ args where A ∈ ext and ext is an extension under the given semantics.
A is sceptically acceptable iff A ∈ ext for all sets ext ⊆ args where ext is
an extension under the given semantics.

2.2. Argumentation Semantics

The semantics of an argumentation framework define the rules under
which a set of arguments can be accepted. That is to say which sets of
arguments contained in an argumentation framework can be said to consti-
tute acceptable solutions under the given semantics. The original paper by
Dung defined the four “classic” semantics: grounded, complete, preferred,
and stable [2].

However, a number of additional semantics have been proposed. In the
following, we will cover the four “classic” semantics and three additional
semantics: ideal [17], stage [18], and semi-stable [19] that all feature promi-
nently in the literature. This will be done based on the definitions covered
above, but we will also attempt to give a more “qualitative” account of what
each semantics encapsulates and how they differ in the kinds of solutions they
allow. The derivations of each semantics is kept to a minimal, but complete
level. More elaborate derivations exist in the papers cited above.

2.2.1. Complete Semantics

The most basic semantics for most purposes are complete semantics.
Many other common semantics are special cases of complete semantics. Com-
plete semantics can be defined as a fix point of a conflict-free subset of the
arguments of an argumentation framework. That is to say for a subset S
of an argumentation framework, F , the subset forms a complete extension
iff χF (S) = S and S is conflict-free. That means in practical terms that a
complete extension is an extension that defends itself and also contains all
the elements defended by the extension. Qualitatively, one can think of a
complete extension as a reasonable or at least defensible position given the
evidence.

Definition 2.9 (Complete Semantics) An extension S ⊆ args is a com-
plete extension of an argumentation framework F = ⟨args , atts⟩ iff S is ad-
missible and S contains all the arguments it defends, i.e., ∀a ∈ args, if
∀b ∈ args such that (b, a) ∈ atts ,∃c ∈ S such that (c, b) ∈ atts, then a ∈ S.
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2.2.2. Grounded Semantics

The grounded extension is the subset-minimal complete extension. That
is to say that if S is a complete extension then it is also grounded iff there
does not exist another complete extension, C | C ⊂ S. Qualitatively, one
can think of the grounded extension as the most sceptical position one can
take vis-à-vis the evidence.

Definition 2.10 (Grounded Semantics) An extension S ⊆ args is the
grounded extension of an argumentation framework F = ⟨args , atts⟩ iff S is
the minimal (with respect to set inclusion) complete extension of F .

2.2.3. Preferred Semantics

A preferred extension in contrast is a subset-maximal complete extension.
That is to say that if S is a complete extension then it is also preferred iff
there does not exist another complete extension, C | S ⊂ C. A preferred
extension can be thought of as a position that tries to incorporate as much
as possible of the available evidence in formulating a defensible position.

Definition 2.11 (Preferred Semantics) An extension S ⊆ args is a pre-
ferred extension of an argumentation framework F = ⟨args , atts⟩ iff S is a
maximal (with respect to set inclusion) complete extension of F .

Consider Figure 1. This framework has a grounded extension {a, e}, three
complete extensions {{a, e}, {a, e, b}, {a, e, d}}, and two preferred extensions
{{a, e, b}, {a, e, d}}.

2.2.4. Ideal Semantics

In many cases, the scepticism of the grounded extension proves too severe
for practical applications and a slightly less severe form of scepticism is called
for. This is provided by the ideal semantics, which can be defined as the
largest admissible subset of the arguments of an argumentation framework
in which all the elements are members of every preferred extension. This is
still a sceptical position, but can vary from the grounded extension.

Definition 2.12 (Ideal Semantics) An extension S ⊆ args is the ideal
extension of an argumentation framework F = ⟨args , atts⟩ iff S is the max-
imal (with respect to set inclusion) admissible set that is contained in every
preferred extension of F .
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Figure 1: Example to distinguish grounded, complete, and preferred semantics.

Ideal semantics can be less sceptical than grounded sematics. Consider
the argumentation framework in Figure 2. This framework has an ideal
extension {a} and an empty grounded extension.

2.2.5. Stable Semantics

While the stable extension can also be shown to be a complete extension
it is not usually defined as such. Instead, a stable extension, which may or
may not exist for a given argumentation framework, is defined as a conflict-
free extension whose range is equal to the total set of arguments in the
argumentation framework. That is to say, the stable extension takes the
“if you’re not with us you’re against us” approach by ensuring that every
argument is either a member of the extension or attacked by the extension.

Definition 2.13 (Stable Semantics) An extension S ⊆ args is a stable
extension of an argumentation framework F = ⟨args , atts⟩ iff S is conflict-
free and S attacks all arguments not in S, i.e., ∀a ∈ args \ S,∃b ∈ S such

a b

Figure 2: Example of ideal semantics
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that (b, a) ∈ atts.

2.2.6. Semi-Stable and Stage Semantics

The completeness of the stable extension’s binary division of the argu-
mentation framework is a desirable feature in some applications, where un-
decidability is an issue. However, the stable extension does not exist in all
argumentation frameworks. Therefore, two alternatives have been proposed
that try to maximise the range of extensions, but can be shown to exist for
all argumentation frameworks.

The first of these, stage semantics, can be defined formally as the conflict-
free set that maximises range. That is to say S is a stage extension [20] iff S
is conflict-free and there does not exist a conflict-free extension C such that
S+ ⊂ C+. The semi-stable semantics is defined similarly only it starts from
an admissible set rather than a conflict-free one [19].

Definition 2.14 (Semi-Stable Semantics) An extension S ⊆ args is a
semi-stable extension of an argumentation framework F = ⟨args , atts⟩ iff S
is a complete extension of F and S ∪ S+ is maximal (with respect to set
inclusion) among all complete extensions of F , where S+ = {a ∈ args | ∃b ∈
S such that (b, a) ∈ atts}.

Definition 2.15 (Stage Semantics) An extension S ⊆ args is a stage ex-
tension of an argumentation framework F = ⟨args , atts⟩ iff S is a conflict-
free set of F and S ∪ S+ is maximal (with respect to set inclusion) among
all conflict-free sets of AF , where S+ = {a ∈ args | ∃b ∈ S such that (b, a) ∈
atts}.

Consider the argumentation framework in Figure 3. This framework has
one semi-stable extensions {b, d}, which is also a stage extension. It does not
have a stable extension.

The difference between the evaluation rules leads to significant differences
in the computational approaches that are taken towards them. While many
solvers deploy a similar starting point for generating solutions across seman-
tics, there are substantial differences in how they are computed leading to
high variability in performance. The complexity of reasoning tasks equally
vary substantially by semantics [21, 22] and it is not always the case that sim-
ilar semantics have similar computational complexity, which we will discuss
later in this article.
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c d

Figure 3: Example of stage and stable semantics.

2.2.7. Summary of Semantics

These seven semantics can be summarized as per Table 1 [16]. Some more
examples are shown in Figure 4. These are all the semantics we shall concern
ourselves with in this article and are also the ones used for recent ICCMA
competitions (2017, 2019, 2021). Note that the abbreviations shown in Table
2 are used extensively in this article.

Table 1: Definitions of abstract argumentation semantics, adapted from [16]

.

Semantics Definition

Complete An extension S is complete iff it is admissible and it
includes all arguments that it defends.

Grounded An extension S is grounded iff it is complete and subset
minimal.

Preferred An extension S is preferred iff it is complete and subset
maximal.

Stable An extension S is stable iff it is conflict-free and S ∪S+

contains all arguments in the argumentation framework.
Semi-Stable An extension S is semi-stable if it is complete and S∪S+

is subset maximal.
Stage An extension S is stage iff it is conflict-free and S ∪ S+

is subset maximal.
Ideal An extension S is ideal iff it is an admissible subset of

all preferred extensions and is subset maximal.
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Figure 4: This framework has the following extensions by semantics. Grounded
and ideal={{a}}, complete={{a}, {a, c}, {a, d}}, stable and semi-stable={{a, d}},
preferred={{a, c}, {a, d}}.

Table 2: Abbreviations of problems and semantics used extensively in this article.

Abbreviation Description

DC-CO The credulous acceptability problem under complete semantics.
DC-PR The credulous acceptability problem under preferred semantics.
DC-ST The credulous acceptability problem under stable semantics.
DC-SST The credulous acceptability problem under semi-stable semantics.
DC-STG The credulous acceptability problem under stage semantics.
DS-CO The sceptical acceptability problem under grounded semantics.
DS-PR The sceptical acceptability problem under preferred semantics.
DS-ST The sceptical acceptability problem under stable semantics.
DS-SST The sceptical acceptability problem under semi-stable semantics.
DS-STG The sceptical acceptability problem under stage semantics.
DS-ID The sceptical acceptability problem under ideal semantics.

2.3. Basic Deep Neural Network (DNN) Concepts

There are a variety of DNN specific terms that relate to the architecture
and training of DNNs, which are relevant to the understanding of the material
development in this article. Below we define these key terms.

ReLU. The Rectified Linear Unit (ReLU) is a nonlinear function that is used
in neural networks to introduce nonlinearity into the network. It is defined
as f(x) = max(0, x). ReLU has been shown to improve the convergence of
neural networks and can help prevent overfitting [23].

Dropout. Dropout is a method to prevent overfitting of neural network mod-
els. Nonoutput units in the network are dropped (i.e. the unit and all its in-
coming and outgoing connections are temporarily removed) at random during
training [23]. The practical implementation is via dropout layers that may
be added after any nonoutput layer of a DNN.

Repeating Blocks. A repeating block is a sequence of layers that is repeated
as a block multiple times in the DNN architecture. For example, a repeating
block could be a computation layer followed by a dropout layer [23].
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Residual Connection. A residual connection is a type of skip connection in
which the input to a layer is directly connected to the output of that layer,
without passing through any intermediate computation. This type of con-
nection can be useful in preventing the vanishing gradient problem and can
improve the training speed of deep neural networks [23].

Loss Function. A loss function quantifies the error between predicted values
and actual values of training examples. It is minimised during training [23].

Learning Rate. The learning rate is a parameter of the DNN training process
that controls how much the weights of the network are updated in response
to the error gradient [23].

ADAM. ADAM (Adaptive Moment Estimation) is a method for training
neural networks that is based on gradient descent. The main difference be-
tween ADAM and other methods is that it uses a different learning rate for
each parameter, which is adapted based on the parameter’s gradient. This al-
lows the learning rate to be automatically adjusted as the training progresses,
which can lead to faster and more efficient training [23].

Graph Embeddings. A graph (or node) embedding is a mathematical map-
ping of the vertices of a graph into a Euclidean space, such that the distances
between the vertices in the graph correspond in some way to the distances
between the points in the Euclidean space. It can be thought of as a repre-
sentation of the graph structure that is amenable to mathematical analysis.

Graph embeddings are used in a range of graph analysis applications
including node classification, link prediction, clustering, and visualisation
either directly or as additional input features to machine learning algorithms.
There are several approaches to generating graph embeddings that are suited
to different use cases. Goyal and Ferrara define three main approaches [24].

Feature Vector. A feature vector is a numerical representation of an object’s
characteristics. In the context of graph neural networks, a feature vector is
associated with each node in the graph and contains information about the
node’s properties or features. The feature vector serves as input to the neural
network, allowing it to learn and exploit patterns in the node features for
tasks such as node classification or graph representation learning.
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2.4. Convolutional Graph Neural Networks

Convolutional graph neural networks (CGNNs) draw on the popularity
and success of traditional Convolutional Neural Networks (CNNs), in partic-
ular in computer vision. Convolution is a mathematical operation that com-
bines two functions to produce a third function expressing how the shape of
one is modified by the other. In the context of CNNs, convolution is typically
applied to two-dimensional grid-structured data, such as images, where it in-
volves sliding a learnable filter over the input to extract local features and
create a feature map. A filter in this context is a linear function followed by
an activation function (such as ReLU), where the input of the linear function
is a contiguous part (often a sub-square) of the grid-structured data.

In graph neural networks, convolution is adapted to operate on graph-
structured data. The goal is to learn a function that aggregates data from a
node’s neighbourhood to compute a new representation for the node. This
is achieved by defining a learnable filter that is applied to the node features
and the features of its neighbours, weighted by the edges connecting them.

There are multiple definitions of convolution on graphs. One method,
used in models like GCN [12] and ChebNet [25], is to define convolution
based on the graph Laplacian matrix, which encodes the graph structure and
node connectivity. These models learn a filter that is applied to the graph
Laplacian to aggregate information from a node’s local neighbourhood.

Another approach, used in models like GraphSAGE [26] and GAT [27],
stays closer to the conventional CNN by defining convolution based on a
node’s spatial relationships. In these models, the convolution operation in-
volves aggregating information from a node’s immediate neighbours, similar
to how a filter slides over a local patch in a grid-structured CNN.

The conventional CNN definition refers to the application of learnable
filters to grid-structured data, such as images, where the filters are con-
volved with local patches of the input to extract features. The spatial-based
graph convolution approaches, like GraphSAGE and GAT, adapt this idea
to graph-structured data by defining convolution based on a node’s local
neighbourhood, analogous to the local patches in a grid-structured CNN.

The most relevant model for our work is the Graph Convolutional Net-
work (GCN) by Kipf and Welling [12]. This model learns a function on a
graph given a set of node features and a representation of graph structure.

In several areas, particularly computer vision, transformer based archi-
tectures [28] have become dominant in recent years. There has also been
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research into graph transformers [29] that has achieved a level of success.
Why then have we not considered this architecture in our work?

First, the success of the transformer architecture is much less marked in
graph applications than it is for some other areas (e.g. computer vision).
Second, the flexibility of the basic GCN architecture means that it is easily
adaptable to special cases such as ours. This easy adaptability is no doubt
why it is still commonly used in practical applications, despite the availabil-
ity of other architectures. Also, the basic GCN model works well in cases
where graph structure rather than node features is the predominant carrier
of information, which is why we prefer it to other models within the same
family such as Graph Attention Networks (GAT) [27] or GraphSage [30].

2.4.1. Definition of Graph Convolutional Networks

We cover the key definitions of the GCN architecture [12] in this section.

Definition 2.16 (Adjacency Matrix) An adjacency matrix is a square
matrix used to represent a finite graph. The matrix has a row and column
for every vertex in the graph, and the entry in row i and column j is 1 iff
there is an edge from vertex i to vertex j, and 0 otherwise.

Consider an undirected graph with 3 nodes and 2 edges:

1 2 3

The adjacency matrix A for this graph would be:

A =

0 1 0
1 0 1
0 1 0


Definition 2.17 (Graph Convolutional Network) A model that learns
a function f on a graph G(V,E), using inputs X, a matrix representation of
node features, and A, the adjacency matrix of G.

Each layer in a GCN can be configured to produce an arbitrary number of
output features, which are learned representations of the input graph. These
output features are vectors associated with each node in the graph, and they
encode information about the node’s local neighbourhood and its role within
the overall graph structure.
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Definition 2.18 (Layer-wise propagation) Each layer in a GCN can be
written as a non-linear function H(l+1) = f(H(l), A), where H(0) = X and
the output of the final layer is the output of the GCN [12].

Each layer of the GCN follows a propagation rule that maps an input
representation to an output representation following a given rule. The prop-
agation rule used by GCN makes use of the following elements:

• Diagonal node degree matrix (D): A diagonal matrix where each
entry on the main diagonal corresponds to the degree of a node in the
graph. The degree of a node is the number of edges incident to it.

• Weight matrix (W): A learnable matrix of weights that determines
the importance of each feature in the input feature vector during the
transformation. Individual weight wij corresponds to the j-th feature
of node i.

• Activation function (σ): A non-linear function (e.g. ReLU or sig-
moid) applied element-wise to the output of the linear transformation.

Definition 2.19 (GCN propagation rule)

f(H(l),A) = σ(D̂− 1
2 ÂD̂− 1

2H(l)W(l))

• Â = A+ I, where I is the identity matrix

• D̂ = Diagonal node degree matrix of Â

• W(l) = The weight matrix for layer l

• σ = A non-linear activation function applied element-wise [12]

This propagation rule uses two key tricks to improve on a näıve update
rule that would simply multiply the adjacency matrix with the weights and
layer-wise representations. First, self-loops are created by adding the identity
matrix to the adjacency matrix. This ensures that a node’s own information
can propagate to itself. Without this, the node would receive only infor-
mation from its neighbours. Second, the adjacency matrix is normalized to
avoid changing the scale of the feature vectors. This helps ensure numeri-
cal stability. Overall, the GCN model provides a remarkably simple, flexible
model that has proven effective in many practical applications.
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As an example, suppose each node in the graph from the previous example
has a 2-dimensional feature vector:

X =

1 0
0 1
1 1


A single GCN layer with a 2× 2 weight matrix W and ReLU activation

function would transform these features as follows, producing output H(1)

comprising a new set of node features learned by the GCN layer:

H(1) = ReLU(D̂− 1
2 ÂD̂− 1

2XW (0))

GCN methods have been applied to abstract argumentation with some
success [10, 31], however neither of these approaches have considered a large
and varied set of argumentation frameworks across different semantics. We
shall consider these approaches below. Graph Neural Networks have also
been used more successfully in the related fields of Automated Theorem
Proving [32] and the Graph Colouring Problem [33].

3. Related Work

Computing the acceptability of arguments in an abstract argumentation
framework (under various semantics) has been studied extensively, however
almost all work in this area has been on exact solution methods. The 2015
survey of Charwat et al. [34] includes reductions to boolean satisfiability
(SAT), constraint programming (CSP), answer-set programming (ASP) and
other formalisms, as well as methods that operate directly on the abstract ar-
gumentation framework. All methods surveyed by Charwat et al. are exact.
To our knowledge, only two approximation methods have been proposed. The
first uses the grounded extension as an approximation for other semantics.
The second involves training a graph neural network to predict acceptabil-
ity. In this section we relate both these prior approaches to our proposed
approach.

Cerutti et al. [35] found that the grounded extension (which is unique
and can be computed in polynomial time) is a close approximation of ac-
ceptability for common benchmark argumentation frameworks, with several
semantics and with both credulous and sceptical acceptability tasks. The
idea of using the grounded extension as an approximation of other semantics
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is implemented in the solver HARPER++ [36], an entrant in the ICCMA
2021 competition. We have extensively compared the accuracy of grounded
reasoning to that of our GCN models (in Section 5). Also, we have exper-
imented with two ways of combining the grounded extension with a GCN
model, both described in Section 4.2.2. Grounded reasoning is perfectly
accurate for one task (DS-CO), and the Grounded benchmark set, but for
other tasks/benchmarks we typically find that our GCN-based models are
more accurate.

Kuhlmann and Thimm [10] trained a GCN to approximate the set of ac-
ceptable arguments with the preferred semantics, and with credulous accept-
ability. They demonstrated that the GCN can be far faster than a SAT-based
sound and complete solver, with the SAT-based solver taking on average
17,000 times longer per argument to classify all arguments in a set of bench-
mark argumentation frameworks. However, accuracy of the GCN model was
somewhat limited, with overall accuracy of approximately 63% when tested
on benchmark graphs from the ICCMA competition. Kuhlmann and Thimm
identified the balance between acceptable and non-acceptable arguments in
the training data (where the majority are non-acceptable) as a particular
problem in training a GCN. We have compared Kuhlmann and Thimm’s
results (with and without balancing of the training data) to our results in
Section 5.3, and found that we are able to substantially improve accuracy.

Craandijk and Bex [31] developed the argumentation graph neural net-
work (AGNN), a deep learning architecture based on message passing. The
model is trained with 32 message passing steps, but may be executed with
any number of steps since the same function is applied at each step. The
training process minimises the loss at every step (as opposed to only the
final step) with the goal of learning a convergent message passing process.
Experimental results show that a high degree of accuracy can be achieved
on random argumentation frameworks with 25, 50, 100, or 200 arguments.
However, convergence slows for the larger frameworks, and for frameworks of
size 100 or 200 the model has not fully converged after 1,000 message pass-
ing steps. Our goal is approximate solving of argumentation frameworks at
scale, hence we train and evaluate our models using a set of frameworks from
the ICCMA competition with up to 10,000 arguments. We have compared
the AGNN model (trained exactly as described by Craandijk and Bex) to
our models experimentally in Section 5.3, and we found that our models are
substantially more accurate on our test set of competition benchmarks.

Approximation methods based on graph neural networks have also been
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applied to other problems in abstract argumentation. Craandijk and Bex [37]
studied the problem of enforcement : determining a set of attack relations to
add or delete to enforce the acceptability of a set of arguments while minimis-
ing the number of changes to the argumentation framework. They developed
the enforcement graph neural network (EGNN), a deep learning architecture
similar to the AGNN. The enforcement problem is cast as a Markov deci-
sion process (where actions modify the argumentation framework), and the
EGNN is trained using reinforcement learning to predict the reward of each
potential action. The method could provide inspiration for future work on
reinforcement learning for acceptability problems.

Klein et al. [38] addressed an algorithm selection task in abstract argu-
mentation using graph neural networks. Given an argumentation framework
and a query argument, the task was to predict the most efficient one of
three exact argumentation solvers for sceptical acceptance under the pre-
ferred semantics. They applied 4 classical machine learning methods and
3 types of graph neural network in a supervised setting. They found that
GraphSage [26] provided the highest accuracy of 0.71 while the Graph Iso-
morphism Network (GIN) [39] was slightly better in terms of total solver
runtime. However, the results do not seem conclusive, with 6 of the 7 models
performing similarly.

Finally, Kuhlmann et al. [40] studied the impact of training and test
dataset selection on graph neural networks for predicting acceptability of ar-
guments (sceptical acceptance under the preferred semantics in this case).
They studied the AGNN [31] and FM2 [10] models and found that AGNN in
particular is capable of predicting acceptability on challenging (even adver-
sarial) instances with a degree of accuracy if a suitable training set is used.
The training set used with AGNN by Craandijk and Bex [31] (consisting of
random frameworks with 5 − 25 arguments) was found to be insufficiently
diverse to produce good performance on ICCMA competition frameworks, a
finding that is consistent with our evaluation of AGNN in Section 5.3. In
general, Kuhlmann et al’s findings support our use of a diverse training set
sampled from the ICCMA competition frameworks.

4. AFGCN: A GCN-based Approximate Solver for Abstract Ar-
gumentation

In this section we present our new approximate solver architecture, AFGCN.
The solver architecture can be trained for each of the seven semantics de-
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scribed above, and for credulous or sceptical acceptability. Given an argu-
mentation framework, the trained solver predicts whether each argument in
the framework is acceptable under the chosen semantics.

4.1. Neural Network Architecture

The architecture used in this article, which we refer to by the moniker
AFGCN, builds on the seminal approach introduced by Kipf and Welling [12],
but extends it in a number of areas. In the original formulation, the GCN
consisted of an input layer, two hidden layers with ReLU (Rectified Linear
Unit, i.e. f(x) = max(0, x)) nonlinearities inserted in between, and ending
with an output layer. Node embeddings were generated using a propagation
rule following a first-order approximation of spectral graph convolutions. We
follow the same basic pattern, but add a number of features to allow for
greater depth and to tailor the approach to abstract argumentation graphs
that do not intrinsically have node-level features.

The core GCN architecture has been extended using several techniques
to improve its performance and generalization ability. One such extension is
a randomized training regime that involves two main components: (1) ran-
domly shuffling the order of the argumentation frameworks used for training
at each epoch, and (2) randomly selecting a subset of arguments within each
argumentation framework to be used for training. This randomized selection
of arguments is performed continuously throughout the training process. By
introducing this randomness in the training data, the model is encouraged
to learn more robust and generalisable representations of the argumentation
frameworks, rather than overfitting to specific frameworks or arguments.

The core components of AFGCN architecture are:

1. Randomly generated input features combined with input features gen-
erated from the grounded extension of the argumentation framework.

2. An input layer receiving these inputs along with the normalized adja-
cency matrix.

3. 4 repeating blocks of a GCN layer [12] and a Dropout layer [41].

4. Residual connections feeding the original features and the normalised
adjacency matrix as additional input to each block [42].

5. A Sigmoid output layer generating an estimate for the acceptability of
each argument on a continuous [0..1] scale.
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The model was trained using Adam [43] with Binary Cross-Entropy as the
loss function. The learning rate was set to 1e−3 for two hours and then
dropped to 1e−6 for an additional six hours of training. These rates were
identified by manual inspection of the training process. Details on the train-
ing regime are described in subsequent sections. All hyperparameters were
manually tuned.

4.1.1. Deep Residual Connections

The original formulation of Graph Convolutional Networks suffers from
major performance degradation with an increase of depth beyond a certain
limit. Kipf and Wellings’ [12] original GCN, for instance, used only two layers
in the model. In practice, as the depth of the GCN increases beyond this
limit the model stops responding to training data and instead converges to
a fix-point. This problem is known as the suspended animation problem [42]
and the limit as the suspended animation limit.

Several approaches have been applied to overcome this limit and allow
greater depth in GCN architectures. Among the most fruitful approaches
have been those that adapt the notion of residual connections to the GCN
context [42] by feeding in the graph structure and node features across layers
in a variety of ways.

In this article, we follow a similar approach by adapting the graph-raw
residual defined by Zhang and Meng [42]. They define the residual term
as the multiplication of the normalised adjacency matrix and the raw input
features. This residual term is fed as input to each layer in the model, which
achieves the aim of extending the suspended animation limit.

The only difference in our approach is that the normalised adjacency
matrix and raw input features are fed to each layer separately rather than
as a unit, largely for reasons related to the implementation approach.

Definition 4.1 (Deep residuals) By deep residuals, we mean layer-wise
terms, R, that are added to the hidden state at each layer according to the
following equation.

R(H(l−1), X;G) = ÂX

4.2. Input Features

The input features can be divided into standard input features and the
extended features generated by grounded reasoning.
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4.2.1. Standard Input Features

The first important input feature is the adjacency matrix of the argu-
mentation graph. This is generated dynamically from the input file and
preprocessed in accordance with the normalization in Definition 2.19. That
is to say the identity matrix is added to the adjacency matrix.

To preserve the directionality of the attack relationships, only incoming
links are included in the adjacency matrix. These are normalised using the
function ÂD̂−1. The normalisation is done dynamically on initialization of
the training function.

In addition there are 64 random features initialized using Xavier initial-
ization [44], which help provide numerical stability in the initial training.
Xavier initialization, proposed by Glorot and Bengio, is a widely used ini-
tialization scheme for neural networks that aims to keep the scale of the
gradients roughly the same across all layers. This is achieved by setting the
initial weights of the network to random values drawn from a specific distri-
bution, which helps prevent the gradients from vanishing or exploding during
training.

4.2.2. Grounded Reasoning as an Input Feature

We incorporate grounded reasoning into AFGCN using input features
that correspond to the binary status of whether an argument is included in
the grounded extension or not. The grounded extension is a unique, univer-
sally accepted set of arguments that can be computed in polynomial time
using a grounded solver. A grounded solver is an algorithm that iteratively
identifies and labels the arguments in an argumentation framework that are
not attacked by any other argument, and then removes those arguments and
their associated attacks from the framework. This process continues until no
more arguments can be labeled, and the resulting set of labeled arguments
constitutes the grounded extension.

While the grounded extension is a specific type of extension, it can pro-
vide valuable information for approximating other semantics as well. This
is because the grounded extension represents a set of uncontroversial argu-
ments that are likely to be included in many other extensions. By using the
grounded extension as an input feature, the GCN can learn to prioritize these
arguments and potentially improve its accuracy in predicting extensions un-
der different semantics.

To incorporate grounded reasoning, we use a binary vector representation
of the grounded extension, where each element corresponds to an argument
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in the argumentation framework. An element is set to 1 if the corresponding
argument is included in the grounded extension, and 0 otherwise. This binary
vector is then used as an additional input feature alongside the adjacency
matrix and other input features in the GCN.

We explore two ways of incorporating grounded reasoning into the AFGCN
model:

1. Using the grounded extension as an input feature during both training
and inference.

2. Using the grounded extension only during inference, where the grounded
solver’s output is directly used for arguments that are part of the
grounded extension, and the GCN is used to predict the status of the
remaining arguments.

These approaches allow us to investigate the effectiveness of incorporating
grounded reasoning into the GCN model and its impact on approximating
different semantics.

4.3. Training Regime

The overall process for generating data and training the model for use in
the solver can be seen in Figure 5. In the following sections, we will cover
the relevant details.

4.3.1. Randomised Training Batches

Real-world abstract argumentation frameworks tend to have a skewed dis-
tribution between acceptable and non-acceptable arguments both for credu-
lous and sceptical acceptance. In particular, there tends to be a large pre-
ponderance of non-acceptable arguments. In the argumentation frameworks
used for the experiments in this article, the percentage of non-acceptable ar-
guments ranges from 69.5% to 99.95% across semantics and reasoning tasks
with the main differentiator being credulous vs. sceptical acceptability.

Figure 5: Overall process for data processing and training of the AFGCN solver
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Unbalanced training data affects GCN training as the neural net will by
default learn to predict a negative outcome even in cases where it is incorrect.
This problem was also noted by Kuhlmann and Thimm [10], who generated
balanced training data to attempt to address it, but this approach does not
seem to have generalised well.

To overcome these limitations, we have devised a randomised training
scheme that generates random training batches at the start of each training
iteration. These are generated by sampling the total dataset and selecting n
argumentation frameworks at random with uniform probability. See Figure
6 for an overview of batch generation.

The overall training scheme feeds multiple argumentation frameworks to
the neural network as a single graph that forms the union of the vertices and
edges of all the component graphs. That enables effective batch processing
of multiple argumentation frameworks that can be treated as a single graph
for learning purposes. This processing happens dynamically in the training
function.

When performing inference, the output layer of AFGCN produces a pre-
diction of the acceptability of every argument represented in the input graph.
For training, we generate a mask for each training iteration, essentially ask-
ing the neural net to fill in the blanks. This mask is a binary vector with a
length equal to the node count of all the graphs in the training batch com-
bined. The value in the binary vector indicates whether the prediction in the
given spot is included in the loss calculation used for network learning.

Randomised masking is performed to encourage the network to learn to
generalise based on structural properties of the graphs. By continuously
randomising both the set of AFs and the set of arguments in the mask, the
ability of the neural network to generalise to unseen graphs improves.

4.3.2. Dynamic Balancing and Outlier Exclusion

Two additional measures were taken to address the problems related to
imbalanced training data and poor generalisation performance. First, the
training mask was developed to have the option of dynamically balancing
the training mask to adjust the balance acceptable and non-acceptable ar-
guments.

That is accomplished by programmatically adjusting the mask during
training so the target vector contains similar amounts of acceptable and
non-acceptable arguments. The algorithm to implement this simply replaces
a given number of arguments of one class with arguments of another class in
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Figure 6: Overview of the process for generating random training batches.

order to achieve the balance.
This has the intention to avoid the skew caused by unbalanced training

data, but also has the unfortunate side effect of reducing the amount of
data used for training. This mode is therefore not used in all experiments
described in the results section.

A second enhancement was added to handle extremely skewed argumen-
tation frameworks. Some frameworks have no or almost no acceptable ar-
guments and when included tend to skew the training disproportionately.
These frameworks have been excluded from the training set using a z-score
test with a threshold of 3.5 [45].

4.4. Runtime Implementation

The model chosen for the final solver runtime is a 4-layer model, not
including the input and output layers, with 128 hidden features per GCN
layer. The solver has been built using the Python programming language,
utilising the Pytorch framework for training and modelling [46], the Deep
Graph Library for graph representation [47], and Numpy [48] for numerical
computation.

At runtime the solver is called using a shell script wrapper that conforms
to the specifications of ICCMA 2021. This shell script calls a Python script
that loads the relevant parameters into the GCN model based on the se-
mantics in question. It then pre-computes the grounded extension using a
Numpy-based grounded solver and passes this information along with ran-
dom input features to the GCN model for inference.

The output of the inference step is then passed to a threshold function,
which applies a threshold for acceptance that is adapted to the size of the
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argumentation framework and the semantics under consideration. The solver
approximates the acceptability status of all arguments in the argumentation
framework in parallel during the inference step, using a single step of the
GCN, but to conform with the ICCMA 2021 solver specification it only out-
puts the predicted status for the particular argument under consideration.

5. Experimental Results

5.1. AFGCN Results

We will start by presenting the experimental setup for the article and
then review the results first by semantics and then in a cross-cutting way.
An overview of the AFGCN network architecture can be found in Figure 7.

Figure 7: Network architecture for the solver used in the results section for AFGCN.
Overall training is done using the ADAM optimizer with Binary Cross-Entropy loss as
the loss function. Training was done using a set of 792 argumentation frameworks from
past ICCMA competitions, using cross-validation and a holdout set of 99 frameworks for
testing. One model was trained for each problem in the ICCMA competition.

5.1.1. Dataset and Experimental Setup

We train our models on a dataset of 792 graphs taken from past ICCMA
competitions. The ICCMA competitions provide a comprehensive set of
benchmark problems that provide good comparability to historical results
and therefore provides a good source for dataset creation. The graphs range
in size from 2 to 100,000 arguments. The test set consists of 99 graphs
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constructed to contain a fairly even split of graphs between the benchmarks
present at the ICCMA 19 competition. Table 3 contains a description of the
benchmarks under consideration.

Table 3: Description of benchmarks used for the AFGCN solver evaluation

Benchmark Description

ABA2AF Assumption-Based Argumentation translated to ab-
stract argumentation frameworks

AFGen Based on a general model for producing random di-
graphs with differing properties

Barabasi-Albert Barabasi-Albert graphs, randomly generated

Erdős–Rényi Erdős-Rényi graphs, randomly generated

Grounded Randomly generated argumentation frameworks con-
taining only a large grounded extension

Logic Based Argu-
mentation

Argumentation graphs based on knowledge bases

Planning2AF Planning problems transformed to abstract argumen-
tation problems

Stable Graphs generated to have a high number of stable
extensions

Traffic Traffic networks converted to abstract argumentation
frameworks

Watts-Strogatz Watts-Strogatz graphs, randomly generated

admbuster admbuster graphs, based on Caminada and Pod-
laszewski [49], designed to foil certain types of solvers

Table 4 contains the characteristics of the test set relative to the bench-
marks defined above. Max, mean, and min refers to the number of arguments.

This division into benchmarks allows us to evaluate the relative perfor-
mance of the solver on different graph structures. The proportion of argu-
ments within the grounded extension exhibits substantial variation across
benchmarks, ranging from 0% for AFGen, Erdős–Rényi, and Watts-Strogatz
to 57.71% for Barabasi-Albert. This heterogeneity provides valuable insight
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Table 4: Characteristics of the test set used for AFGCN evaluation

Benchmark Number Max Mean Min % Grounded

ABA2AF 10 848.0 611.7 443.0 1.44%
AFGen 10 320.0 189.6 100.0 0.00%
Barabasi-Albert 10 201.0 111.0 21.0 57.71%
Erdős–Rényi 3 102.0 101.7 101.0 0.00%
Grounded 10 8020.0 3942.7 1697.0 11.32%
LBA 10 103.0 58.0 6.0 0.90%
Planning2AF 10 1992.0 627.4 86.0 18.44%
Stable 10 767.0 562.7 265.0 1.73%
Traffic 10 35.0 21.1 7.0 8.06%
Watts-Strogatz 6 300.0 266.7 200.0 0.00%
admbuster 10 10000.0 7000.0 4000.0 50.00%

into the potential efficacy of grounded reasoning across diverse graph struc-
tures. For each benchmark, we computed the percentage of arguments in the
grounded extension, providing insight into the potential impact of grounded
reasoning on different graph types.

We trained three different models for comparison using a variety of fea-
tures described in the previous sections. In addition, we also used a deter-
ministic grounded solver as a fourth option. For convenience, we also refer
to this as a model in our results presentation, although strictly speaking it
does not rely on any machine learning components.

The four models are characterised below, the abbreviation after each
model denotes how it is referred to in the results tables:

• GR-ONLY (GR). This model uses only the deterministic grounded
solver.

• GCN-NO-GR (NO-GR). This model uses a 4-layer GCN model us-
ing the randomised training regime, input feature initialisation, thresh-
olding, and residual connections, but no grounded features.

• GCN-WITH-GR (W/GR). This model uses everything discussed
under the GCN-NO-GR model, but also takes the grounded extension
as an input feature both during training and inference.

• HYBRID-GCN-GR (HYBR). This model uses everything included
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in the GCN-WITH-GR model. However, it does not train on elements
of the grounded extension. Instead, it incorporates a grounded solver
during the inference stage and always trusts a positive answer from that
solver. For negative cases, it applies the neural network for inference
as in the previously discussed model.

We evaluate our models in four different ways for all semantics under con-
sideration. This allows us to see whether there are any systematic differences
in approximation performance across semantics. Due to space considerations
only evaluations for the preferred, complete, and stable semantics are in-
cluded in the main text, excepting cross-cutting analyses. Detailed results
for other semantics can be found in the appendix.

The evaluation settings are summarised in the following list:

• Equally weighted. The equally weighted setting weighs each argu-
mentation framework equally regardless of its size. This is equivalent
to the score one would expect when picking a single argument to clas-
sify from each of a number of different argumentation frameworks as
for instance in the ICCMA competitions.

• Complete balanced. This setting classifies all arguments across all
argumentation frameworks and gives weight according to the size of the
framework. So performance on a 1,000 argument framework is weighted
10 times as highly as on a 100 argument one. This setting is included
as it is the one which has been used in previous work on approximating
argumentation frameworks [11, 10].

• Reduced balanced. This setting is equivalent to complete balanced,
but excludes the benchmarks Grounded and admbuster. As can be seen
from Table 4, these two benchmarks dominate in terms of size and also
share the characteristic of being fully solvable using only grounded rea-
soning. Therefore, including these on an equal basis makes the results
hard to interpret. The reduced balanced setting corrects for this prob-
lem.

• By benchmark. This setting compares performance across the bench-
marks targeted for evaluation.

In the appendix, we report a number of different evaluation metrics for
the sake of completeness. But in the evaluation, we rely mostly on accuracy,
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which has been the key metric in past research, and Matthews Correlation
Coefficient (MCC), which gives the best view of an estimator’s overall perfor-
mance taking into consideration all classes and class imbalances. Note that in
this context, “positive” refers to an argument being predicted as acceptable,
while “negative” refers to an argument being predicted as not acceptable.

The metrics are defined as follows:
TP = True Positive

FP = False Positive

TN = True Negative

FN = False Negative

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 = 2×Precision×Recall
Precision+Recall

= 2×TP
2×TP+FP+FN

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

The models were tuned using the hyperparameters for the original AFGCN
model submitted to ICCMA 21. As the purpose here has been to evaluate
systematically, we have not sought to wring out every last little bit of per-
formance from the various models. We tuned the configurable thresholds on
the complete training set, assigning an optimal set of thresholds based on
this data.

In the following sections, we will note considerable variability across the
different semantics that will be evaluated as part of this article. In the
following sections, we will systematically go through the results for each
of the included semantics before proceeding to the additional cross-cutting
analyses.
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5.1.2. Results for Credulous Acceptance

Preferred Semantics.
We will first consider the results of running the experiment on credulous
acceptability. We refer readers to results tables that can be found in the
appendix for detailed presentation of the metrics. We provide an overview
by including summary diagrams that show the headline results and facilitates
digesting the main data points.

Figure 8 shows the results of running our model against the test set for
DC-PR. Overall the best performing model under equal weighting is the
one combining GCN and grounded reasoning in a hybrid mode, although
the difference in performance to the GCN-WITH-GR model, incorporating
grounded reasoning only through input features is minimal. For positive
accuracy and precision the grounded reasoner achieves a perfect score, which
is unsurprising considering that all preferred extensions are also complete
extensions and the grounded extension is a subset of any complete extension.

It is perhaps surprising that the HYBRID-GCN-GR model does not
achieve a higher boost in positive accuracy by applying grounded reason-
ing. While the configurable threshold helps performance here, it may not be
sufficient to compensate for the tendency towards false positives exhibited
by all the neural network models. However, all of the performance boost
seen relative to the GCN-WITHOUT-GR model that does not incorporate
grounded reasoning does come from an increase in positive accuracy as the
simplified GCN model actually performs slightly better on negative accuracy.

The F1 and MCC scores both indicate that all the GCN models are strong
positive predictors for credulous acceptability under the preferred semantics.
The GR-ONLY model exhibits only a moderate positive relationship as a
predictor in comparison.

Moving on to the results for the complete balanced setting, we can see
that all models have very strong performance, which is attributable to the
dominance of grounded reasoning in this evaluation setting. Unsurprisingly,
the best performing model both in terms of accuracy and MCC is HYBRID-
GCN-GR.

On the other hand in the reduced balanced setting, excluding the two
large grounded-focused benchmarks, we see marginally better performance
from the GC-WITH-GR model, largely attributable to this model having
slightly better performing thresholds for targeting benchmarks that do not
rely exclusively on grounded reasoning. It is also worth noting that there is
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(a) Equal Weighting

(b) Complete Balanced

(c) Reduced Balanced

Figure 8: AFGCN Results for the DC-PR decision problem
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poor recall performance of the GCN-NO-GR model in this evaluation setting,
which indicates that the threshold configuration has not been enough on its
own to achieve a low rate of false negatives.

If we turn to the benchmark results in Table 5, there is a marked difference
in performance between benchmark types. All models achieve comparable
results on the ABA2AF framework, but the model without grounded features
achieved a much lower MCC indicating a weaker balance in the results. For
the AFGen benchmark, no model is strong enough to have real predictive
power according to MCC, although the grounded GCN variants perform
slightly better. This is, however, unlikely to be genuinely significant given
the fact that AFGen graphs have an empty grounded extension.

The three GCN models have equivalent correlation scores for Barabasi-
Albert (BA) graphs, but the GCN-NO-GR model has highest accuracy. The
substantial proportion (57.71%) of arguments within the grounded extension
for Barabasi-Albert graphs complicates the minimal performance improve-
ment observed when incorporating grounded reasoning. This suggests that
the GCN architecture may already be implicitly capturing much of the in-
formation provided by the grounded extension.

ER graphs exhibit identical accuracy for all three models that apply
grounded reasoning, outperforming the GCN-NO-GR model. This is an in-
teresting phenomenon worthy of a separate analysis, but outside the scope of
the current article. As expected the GR-ONLY model performs best on the
Grounded benchmark with the GCN-NO-GR model performing the worst.
This also shows the hybrid approach to work better as a way of incorporat-
ing grounded reasoning than just features on tasks that are slanted heavily
towards this mode.

All the GCN models achieve perfect scores on the Logic Based Argu-
mentation benchmark, outperforming the grounded reasoner.The fairly well-
structured information derived from knowledge base information would seem
to be a good fit for approximation with GCNs.

On the Planning2AF benchmark, the hybrid model achieves slightly higher
accuracy than and equal MCC to the GCN-WITH-GR model, outperforming
the other two, again showing the value of combining GCNs with grounded
reasoning. The hybrid model also outperforms slightly on the stable bench-
mark, although none of the models do particularly well.

Traffic network data is another area, where grounded reasoning does not
seem to play a part and in fact seems harmful, given the much stronger per-
formance of the GCN-NO-GR model. The relatively low proportion (8.06%)
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of arguments in the grounded extension for Traffic benchmarks may account
for the limited impact of grounded reasoning on model performance in this
domain. Watts-Strogatz graphs as with AFGen previously seems basically
unapproximable using either a GCN or grounded reasoning approach. Fi-
nally, we can note that none of the models are fooled by the admbuster
benchmark.

Table 5: Overview of AFGCN approximation results for DC-PR ordered by benchmark.
Abbreviations refer to models defined above (GR:Grounded-Only, HYBR:Hybrid-GCN-
GR, NO-GR:GCN-NO-GR, W/GR:GCN-WITH-GR). Accuracy to 2 decimal places, MCC
to 2 significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 98.53% 99.07% 98.97% 98.96% 0.53 0.73 0.71 0.70
AFGen 58.23% 55.36% 54.60% 58.16% 0.094 0.13 -0.10 0.11
Barabasi-Albert 91.55% 86.52% 49.93% 90.70% 0.72 0.71 0.31 0.73
Erdős–Rényi 63.03% 96.04% 96.04% 96.04% 0.32 0.67 0.67 0.67
Grounded 97.94% 98.48% 100.00% 98.98% 0.69 0.77 1.0 0.94
LBA 100.00% 100.00% 0.79% 100.00% 1.0 1.0 -0.40 1.0
Planning2AF 65.18% 74.91% 59.66% 76.45% 0.34 0.52 0.40 0.52
Stable 65.59% 67.24% 62.53% 68.03% 0.27 0.30 0.20 0.32
Traffic 81.40% 75.67% 32.95% 73.19% 0.51 0.31 0.029 0.27
Watts-Strogatz 75.97% 75.92% 75.25% 75.25% 0.10 0.16 0.0 0.0
admbuster 99.75% 99.57% 100.00% 100.00% 0.99 0.99 1.0 1.0

Complete Semantics.
The results for the complete semantics have many similarities with those for
the preferred semantics, which is unsurprising as all preferred extensions are
also complete extensions. There are, however, a number of salient differences
that we shall point out as we go through.

Starting with the equally weighted results in Figure 9, we see the GCN-
WITH-GR model edge ahead of the HYBRID-GCN-GR model on accu-
racy, while maintaining equal MCC. As expected for credulous reasoning
the grounded reasoner does relatively poorly.

This changes, however, when we get to the complete balanced setting,
dominated by the large Grounded benchmarks. As DS-CO is equal to the
grounded extension, we would expect the GR-ONLY model to have near
perfect performance in this case. Here it is matched by the HYBRID-GCN-
GR model that even slightly outperforms it by having a better class balance
between positive and negative cases.
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(a) Equal Weighting

(b) Complete Balanced

(c) Reduced Balanced

Figure 9: AFGCN Results for the DC-CO decision problem
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Removing these large grounded-focused frameworks, the overall pattern
seen in the equally weighted setting reasserts itself.

From Table 6 we can see that ABA2AF, AFGen, Grounded, Planning2AF,
Stable and admbuster benchmarks have effectively the same behaviour seen
in the preferred case albeit with some variation in performance. However,
the other five benchmarks do not follow the same pattern.

Barabasi-Albert (57.71% grounded), ER (0% grounded), and Traffic (8.06%
grounded) benchmarks show improved performance with grounded reasoning
under complete semantics, despite their varying grounded extension propor-
tions. This suggests that the impact of grounded reasoning differs across
semantics, even for the same graph structures.

The LBA benchmark that was perfectly predictable by the GCN models
under preferred semantics is only partially predictable under complete se-
mantics and interestingly has a perfect negative correlation with grounded
reasoning, which is explained by the grounded extension being empty and
all arguments being credulously accepted under complete semantics.1 Watts-
Strogatz graphs are slightly more predictable by a GCN under complete than
preferred semantics, although still only weakly so.

Stable Semantics.
The results for stable semantics have much in common with the ones we have
just seen for complete semantics, more so than it shares with preferred se-
mantics, which is somewhat strange, considering that every stable extension
is a preferred extension.

In the equally weighted setting, shown in Figure 10.(a) again the GCN-
WITH-GR model is the overall best performing model. Interestingly, the
HYBRID-GCN-GR model and the GCN-NO-GR model have near identical
performance, which might indicate that there is less space for improving
performance with grounded reasoning under stable semantics.

In the complete balanced setting, we see the same pattern as under com-
plete semantics, where the HYBRID-GCN-GR model performs the best, due
to the dominance of the large grounded frameworks.

However, when excluding these frameworks the trend reverses again. This
is consistent with the other findings we have seen so far.

Again, it is in the benchmark specific performance, shown in Table 7,
we find the most interesting variation due to the semantics. For AFGen,

1We thank a reviewer for making this observation.
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(a) Equal Weighting

(b) Complete Balanced

(c) Reduced Balanced

Figure 10: AFGCN Results for the DC-ST decision problem
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Barabasi-Albert, Watts-Strogatz, Grounded, admbuster, and Stable bench-
marks, the pattern is the same as we saw under complete semantics. One
might have expected that a model trained on stable extension would perform
better on the Stable benchmark, but this is not reflected in the data. This
would seem to indicate that the GCN has not learned any semantics spe-
cific representations for these semantics. The approximation of ER graphs is
for some reason easier with the GCN-WITH-GR model under stable seman-
tics than under complete semantics where this model completely failed. The
GCN-NO-GR model is still the best performing model here, which was true
for complete, but not preferred semantics. Approximation of LBA frame-
works is somewhere in the middle between those of complete and preferred
semantics. Planning2AF problems have slightly better results under stable
semantics across the board than under complete or preferred semantics, ex-
cepting a slight drop for the GCN-WITH-GR model relative to complete
semantics, the same is true for the Traffic benchmark.

Summary for Credulous Acceptability.
The results for credulous acceptability show that the best performing model
under equal weighting is the HYBRID-GCN-GR model, which combines
GCN and grounded reasoning in a hybrid mode. This model outperforms
the GCN-WITH-GR model, which incorporates grounded reasoning only
through input features, but the difference in performance is minimal. For
positive accuracy and precision, the grounded reasoner achieves a perfect
score, as expected.

In the complete balanced setting, all models have very strong perfor-
mance, with the HYBRID-GCN-GR model being the best performing model
both in terms of accuracy and MCC. In the reduced balanced setting, the
GC-WITH-GR model performs marginally better, mainly due to its slightly
better thresholds for targeting benchmarks that do not rely exclusively on
grounded reasoning.

When looking at the results by benchmark type, there is a marked differ-
ence in performance. All models achieve comparable results on the ABA2AF
framework, but the model without grounded features achieves a much lower
MCC. For the AFGen benchmark, no model is strong enough to have real
predictive power according to MCC, although the grounded GCN variants
perform slightly better. The three GCN models have equivalent correlation
scores for BA graphs, but the GCN-NO-GR model has the highest accuracy,
indicating that grounded reasoning is not an important factor for this graph

37



Table 6: Overview of AFGCN approximation results for DC-CO ordered by benchmark.
Accuracy to 2 decimal places, MCC to 2 significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 98.74% 99.10% 99.03% 99.21% 0.64 0.77 0.77 0.82
AFGen 54.66% 65.93% 54.60% 62.43% -0.099 0.068 -0.10 0.058
Barabasi-Albert 93.88% 95.61% 49.93% 95.91% 0.78 0.84 0.31 0.85
Erdős–Rényi 91.75% 88.80% 96.04% 81.90% 0.75 0.061 0.67 0.10
Grounded 97.95% 98.51% 100.00% 99.78% 0.69 0.79 1.0 0.98
LBA 67.76% 95.73% 0.00% 96.11% 0.30 0.30 -1.0 0.30
Planning2AF 72.48% 83.09% 59.66% 77.34% 0.36 0.64 0.40 0.54
Stable 67.49% 71.36% 62.04% 69.30% 0.34 0.43 0.19 0.40
Traffic 81.04% 89.79% 32.95% 85.59% 0.27 0.72 0.029 0.64
Watts-Strogatz 73.42% 76.64% 75.25% 78.14% 0.13 0.27 0.0 0.21
admbuster 99.38% 99.67% 100.00% 100.00% 0.99 0.99 1.0 1.0

Table 7: Overview of AFGCN approximation results for DC-ST ordered by benchmark.
Accuracy to 2 decimal places, MCC to 2 significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 98.97% 98.90% 98.53% 98.57% 0.049 0.12 0.070 0.085
AFGen 54.53% 54.83% 54.60% 59.70% -0.087 0.0016 -0.10 0.045
Barabasi-Albert 94.24% 92.81% 49.93% 82.25% 0.78 0.77 0.31 0.61
Erdős–Rényi 95.38% 93.73% 96.04% 80.93% 0.78 0.73 0.67 0.12
Grounded 97.75% 98.50% 100.00% 99.97% 0.64 0.77 1.0 1.0
LBA 97.05% 97.81% 0.35% 97.81% 0.70 0.50 -0.70 0.50
Planning2AF 80.76% 84.55% 62.06% 84.73% 0.58 0.67 0.42 0.68
Stable 68.35% 72.36% 64.49% 66.55% 0.32 0.43 0.23 0.27
Traffic 81.49% 88.58% 31.52% 80.18% 0.58 0.56 -0.071 0.47
Watts-Strogatz 76.78% 76.14% 75.25% 73.56% 0.15 0.15 0.0 0.23
admbuster 99.79% 99.73% 100.00% 100.00% 1.0 0.99 1.0 1.0
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type.
Overall, the MCC scores indicate that all the GCN models are strong

positive predictors for credulous acceptability under the preferred and com-
plete semantics. The GR-ONLY model exhibits only a moderate positive
relationship as a predictor in comparison.

The results for credulous acceptability show that incorporating grounded
reasoning into the model can improve its performance, especially in cases
where the problem relies heavily on grounded reasoning. The hybrid ap-
proach seems to be more effective in incorporating grounded reasoning than
just using features, and the choice of evaluation setting can have a significant
impact on the model’s performance.

5.1.3. Results for Sceptical Acceptance

Preferred Semantics.
Now we turn attention to sceptical acceptance under the preferred semantics.

We start again with the equally weighted setting (refer to Figure 11). On
an equally weighted basis results are slightly better overall than for credulous
acceptance. The GR-ONLY model is the second best performing on an MCC
basis, which is on expectation. The best performing model is the GCN-
WITH-GRmodel, which is somewhat surprising given the better performance
we saw from the hybrid model on the Grounded benchmark for credulous
acceptance. However, the GCN-WITH-GR model would seem to have better
ability to generalise sceptical acceptance across benchmarks leading to the
overall higher score.

Looking instead at the complete balanced setting, the GR-ONLY model
is the overall winner followed by GCN-WITH-GR both in terms of accu-
racy and MCC, largely reflecting its superior performance on the Grounded
benchmark. The hybrid model does particularly poorly in this evaluation,
which reflects an overoptimism in the configured thresholds leading to low
precision.

Excluding the Grounded and admbuster benchmarks, the GCN-WITH-
GR model edges ahead of pure grounded reasoning in both accuracy and
MCC, reflecting this model’s better ability to generalise across benchmarks.
The GCN-NO-GR model performs the worst under this setting, although the
HYBRID-GCN-GR model is still underperforming due to low precision.

Considering the benchmark evaluation in Table 8, the ABA2AF bench-
mark shows a common phenomenon when dealing with sceptical acceptance,
which is very high accuracy, but significantly lower MCC, which is due to a
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(a) Equal Weigthing

(b) Complete Balanced

(c) Reduced Balanced

Figure 11: AFGCN Results for the DS-PR decision problem
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large imbalance in favour of negative cases in the data. This is demonstrated
perfectly by the AFGen benchmark, where 93.96% accuracy is revealed to
have no predictive power by the MCC score. Watts-Strogatz graphs reveal
similar behaviour, but less strongly. This is consistent with neither of these
models having any arguments in their grounded extensions.

For Barabasi-Albert graphs and ER graphs all models perform effectively
on par, excepting a small dip for the hybrid model on BA graphs. Grounded
graphs are solved perfectly by the grounded model, but less well by the
various GCN model. On the other hand the grounded model does not have
any predictive power for LBA graphs, which is consistent with low proportion
of the grounded extension while the scores for the GCN models are much
lower than in the credulous setting.

Planning2AF graph performance is on par between the GR-ONLY and the
GCN-WITH-GR models, suggesting that in this case the GCN simply applies
grounded reasoning via the approximation. For the Stable benchmark, the
GCN-WITH-GR model has best performance. In contrast, it has worst per-
formance on the Traffic benchmark, while other models are approximately on
par. Neither of these phenomena are readily explainable. Admbuster graphs
are once again solved near-perfectly in the sceptical setting.

Table 8: Overview of AFGCN approximation results for DS-PR ordered by benchmark.
Accuracy to 2 decimal places, MCC to 2 significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 99.21% 99.55% 99.52% 99.52% 0.68 0.81 0.84 0.84
AFGen 93.96% 93.96% 93.96% 93.96% 0.0 0.0 0.0 0.0
Barabasi-Albert 84.22% 84.98% 82.86% 81.08% 0.69 0.71 0.71 0.61
Erdős–Rényi 96.04% 96.04% 96.04% 96.04% 0.67 0.67 0.67 0.67
Grounded 98.04% 98.64% 100.00% 92.37% 0.73 0.79 1.0 0.68
LBA 68.72% 81.40% 50.50% 68.92% 0.40 0.62 0.045 0.43
Planning2AF 81.76% 88.29% 88.20% 84.99% 0.56 0.72 0.72 0.65
Stable 79.27% 81.36% 79.12% 75.68% 0.29 0.40 0.27 0.21
Traffic 70.77% 61.35% 69.26% 68.50% 0.36 0.23 0.36 0.34
Watts-Strogatz 82.08% 82.64% 82.03% 81.69% 0.020 0.15 0.0 0.011
admbuster 99.73% 99.92% 100.00% 100.00% 0.99 1.0 1.0 1.0

Complete Semantics.
The sceptical setting for the complete semantics is equal to the grounded
semantics and computable in polynomial time. One would therefore never in
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practice need to approximate this task. However, for the sake of complete-
ness, we will still run through the results.

The equally weighted setting shown in Figure 12, shows perfect per-
formance for the GR-ONLY model with near-perfect performance for the
HYBRID-GCN-GR model, indicating that it is using a .99 threshold for all
size bands and therefore almost always use a grounded reasoner to answer.
The other GCN models do not reach the same level of performance, indicat-
ing that they have not learnt pure grounded reasoning.

The picture is identical for the complete balanced setting, although the
underperformance of the GCN models is less marked.

The reduced balanced setting is somewhere in between the two other
evaluation settings, but shows the same overall pattern.

The benchmark level view in Table 9 shows us where the difficulties are in
approximation. The hardest to approximate frameworks in this setting are
the Planning2AF and Traffic benchmarks, accounting for most of the reduced
performance in the GCN models. It would be worth a separate investigation
to see why these are hard to approximate.

Stable Semantics.
Moving on to stable semantics, we see a drop in performance for the GR-
ONLY model, relative to the other semantics we have examined when con-
sidering the equally weighted performance in Figure 13. In contrast, the
three GCN models are within the same performance envelope, once again
reinforcing the view that grounded reasoning does not add as much to an ap-
proximation attempt under stable semantics as it does under other semantics
we have seen.

The complete balanced setting, as with past cases, accentuates the perfor-
mance of the pure grounded elements in the GR-ONLY and HYBRID-GCN-
GR models. In contrast, the GCN-WITH-GR model becomes the worst
performing in this setting, because it has learned to generalise more across
benchmarks at the cost of underperforming on the Grounded one.

In the reduced setting, the trend again reverses and the three GCN-based
models are once again within the same performance envelope. The GCN-NO-
GR model is marginally ahead as it was for the equally weighted setting, but
not enough to be noteworthy.

The benchmark specific analysis for the stable semantics can be seen
in Table 10. Comparing to the results for sceptical acceptance under the
preferred semantics, we find rough equivalence of results for AFGen, ER,
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(a) Equal Weighting

(b) Complete Balanced

(c) Reduced Balanced

Figure 12: AFGCN Results for the DS-CO decision problem
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(a) Equal Weighting

(b) Complete Balanced

(c) Reduced Balanced

Figure 13: AFGCN Results for the DS-ST decision problem
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Grounded, Planning2AF, Stable, Watt-Strogatz, and admbuster. As was
the case with credulous acceptance, the ABA2AF frameworks are not ap-
proximable under stable semantics. There are notable performance drops for
Barabasi-Albert and Traffic benchmarks and a large increase in performance
for LBA frameworks.

Summary of Sceptical Results.
The results for sceptical acceptance show some interesting patterns. For the
preferred and complete semantics, the best performing model is generally
the GCN-WITH-GR model, which combines GCN with grounded reasoning
features. This model is able to generalize well across benchmarks and show
strong performance overall. However, it is worth noting that the HYBRID-
GCN-GR model, which incorporates grounded reasoning in a hybrid mode,
also performs well, particularly in the complete balanced setting where it is
dominated by the large Grounded benchmarks.

For stable semantics, the performance of the GR-ONLY model drops,
indicating that grounded reasoning is less relevant for this semantics. In
this case, the three GCN models are within the same performance envelope,
with the GCN-NO-GR model being marginally ahead in some settings. This
suggests that grounded reasoning does not add as much to an approximation
attempt under stable semantics compared to other semantics.

Overall, the results demonstrate that combining GCN with grounded rea-
soning can lead to improved performance in approximating argumentation
semantics, particularly for preferred and complete semantics.

5.1.4. Cross-Cutting Results

In this section, we will look at the results across the various parameters
that we have used for our analysis. This includes analyses across semantics,
benchmarks, and sizes. We do this in order to show any general results that
are not specific to individual semantics. We will start by presenting the
cross-cutting analysis based on semantics.

By Semantics.
Table 11 shows accuracy and MCC results aggregated for each semantics. It
is difficult to clearly identify significant differences in the ease with which
semantics can be approximated using these models. Excluding the DS-CO
task, which can be calculated in polynomial time, the spread between ap-
proximation performance in both accuracy and MCC terms is low. Overall,
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Table 9: Overview of AFGCN approximation results for DS-CO ordered by benchmark.
Accuracy to 2 decimal places, MCC to 2 significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 99.76% 99.83% 100.00% 100.00% 0.84 0.85 1.0 1.0
AFGen 100.00% 100.00% 100.00% 100.00% 1.0 1.0 1.0 1.0
Barabasi-Albert 97.29% 97.25% 100.00% 99.76% 0.95 0.94 1.0 1.0
Erdős–Rényi 100.00% 100.00% 100.00% 100.00% 1.0 1.0 1.0 1.0
Grounded 98.49% 98.28% 100.00% 99.99% 0.78 0.75 1.0 1.0
LBA 99.97% 100.00% 100.00% 100.00% 0.90 1.0 1.0 1.0
Planning2AF 90.75% 92.07% 100.00% 99.86% 0.71 0.75 1.0 1.0
Stable 99.93% 100.00% 100.00% 100.00% 0.97 1.0 1.0 1.0
Traffic 84.20% 88.38% 100.00% 96.79% 0.20 0.53 1.0 0.94
Watts-Strogatz 100.00% 100.00% 100.00% 100.00% 1.0 1.0 1.0 1.0
admbuster 99.94% 99.83% 100.00% 100.00% 1.0 1.0 1.0 1.0

Table 10: Overview of AFGCN approximation results for DS-ST ordered by benchmark.
Accuracy to 2 decimal places, MCC to 2 significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 99.46% 99.38% 98.80% 98.80% 0.035 0.050 0.050 0.050
AFGen 94.04% 93.37% 94.04% 94.04% 0.0 0.0061 0.0 0.0
Barabasi-Albert 83.11% 81.41% 68.60% 84.45% 0.62 0.58 0.53 0.66
Erdős–Rényi 96.04% 92.75% 96.04% 96.04% 0.67 0.41 0.67 0.67
Grounded 98.11% 97.73% 100.00% 99.98% 0.71 0.65 1.0 1.0
LBA 98.12% 99.38% 10.25% 98.75% 0.80 0.90 0.0055 0.80
Planning2AF 86.51% 83.26% 78.43% 84.29% 0.71 0.64 0.57 0.67
Stable 82.08% 81.80% 81.56% 81.55% 0.30 0.29 0.27 0.27
Traffic 58.53% 61.25% 63.56% 55.72% 0.21 0.16 0.24 0.10
Watts-Strogatz 81.92% 82.00% 81.92% 81.92% 0.0 0.031 0.0 0.0
admbuster 99.74% 99.52% 100.00% 100.00% 0.99 0.99 1.0 1.0
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considering both factors, semi-stable semantics would seem to be the easiest
to approximate and stable semantics the hardest. But the difference is not
large enough to make a substantial point.

Identifying a best performing model is also difficult. The GR-ONLY
model wins the DS-CO task, but for the other tasks, it is very close between
the HYBRID-GCN-GR model and the GCN-WITH-GR model. For DC-CO
and DC-PR, they are close enough in performance to be indistinguishable.
For the DC-SST, DS-ID, DS-SST, and DS-ST tasks, the HYBRID-GCN-GR
models outperform the GCN-WITH-GR model. For DC-ST, DC-STG, DS-
PR, and DS-STG tasks it is the other way around. That means that we
cannot give a clear answer to whether it is better to incorporate grounded
reasoning only using features fed to the neural network or whether there is
a benefit hybridizing GCN models with a grounded solver.

We can, however, note that incorporating grounded reasoning into a GCN
model using either mechanism results in increased performance relative to a
model that does not. The performance boost is modest, but consistent across
semantics, considering both variants that include grounded reasoning.

Table 11: Overview of AFGCN approximation results compared across semantics using
equally weighted setting. Accuracy to 2 decimal places, MCC to 2 significant figures.

Semantics Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

DC-PR 83.10% 83.96% 63.98% 84.69% 0.54 0.58 0.34 0.58
DC-CO 81.31% 88.02% 63.86% 86.58% 0.46 0.58 0.28 0.58
DC-ST 85.62% 87.06% 64.19% 84.66% 0.49 0.52 0.24 0.49
DC-SST 77.04% 86.00% 64.41% 86.64% 0.42 0.55 0.32 0.60
DC-STG 84.05% 86.84% 61.45% 85.76% 0.46 0.57 0.23 0.54
DS-PR 86.24% 87.66% 84.99% 85.14% 0.50 0.56 0.52 0.50
DS-CO 97.00% 97.54% 100.00% 99.64% 0.83 0.88 1.0 0.99
DS-ST 88.65% 88.29% 78.10% 88.44% 0.46 0.45 0.39 0.48
DS-SST 86.75% 86.94% 85.51% 86.63% 0.53 0.51 0.52 0.55
DS-STG 87.48% 88.81% 85.90% 87.86% 0.48 0.55 0.48 0.52
DS-ID 86.16% 87.28% 85.33% 87.44% 0.52 0.53 0.52 0.57

By Benchmark.
The benchmark specific results, shown in Table 12 are more varied than was
the case for the analysis based on semantics. We can start with the admbuster
benchmark, which is designed to foil certain types of solvers and note that
it does not manage to do so for any of the models under consideration here.
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The Grounded benchmark is a major factor in the evaluation, due to the
large size of the frameworks and their focus on grounded reasoning. Here we
see that the GR-ONLY model has its expected perfect performance, followed
closely by the HYBRID-GCN-GR model for the simple reason that it will
default to grounded reasoning in the majority of cases. The difference in
performance to the GCN-WITH-GR model indicates that these two models
have substantially different ways of incorporating grounded reasoning.

Four other benchmarks have a large component of grounded reason-
ing: ABA2AF, ER, Planning2AF, and Barabasi-Albert. Interestingly, for
both ER and Barabasi-Albert graphs, the better performance for the GCN-
models comes from the GCN part of the equation, despite the importance of
grounded reasoning that can be seen from the performance of the GR-ONLY
model. The reverse seems to be the case for ABA2AF. For Planning2AF
there is a small boost from combining both GCN and grounded reasoning.

ER and LBA graphs both varied substantially in the performance seen
across the semantics. In aggregate, they end up being fairly approximable,
which is obviously misleading given the specific results we have seen.

Stable and Traffic benchmarks have similar and rather middling perfor-
mance in aggregate, which is the result of the small but significant variations
that were seen across semantics for these benchmarks.

AFGen and Watts-Strogatz graphs are some of the most consistent bench-
marks in the set, given that they are weakly approximable or unapproximable
by these models across semantics.

Table 12: Overview of AFGCN approximation results compared across benchmarks for
all semantics using equally weighted setting. Accuracy to 2 decimal places, MCC to 2
significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 98.81% 99.07% 98.96% 99.04% 0.49 0.59 0.63 0.64
AFGen 75.63% 76.51% 74.89% 77.20% 0.083 0.13 0.050 0.12
Barabasi-Albert 89.24% 89.69% 67.60% 89.32% 0.74 0.75 0.53 0.75
Erdős–Rényi 89.90% 94.79% 89.64% 90.87% 0.60 0.57 0.50 0.52
Grounded 97.93% 98.27% 100.00% 99.06% 0.68 0.74 1.0 0.95
LBA 79.86% 93.14% 27.56% 88.94% 0.53 0.65 -0.24 0.53
Planning2AF 80.66% 84.04% 74.83% 85.00% 0.57 0.64 0.58 0.68
Stable 75.77% 77.77% 73.58% 76.28% 0.37 0.43 0.31 0.38
Traffic 75.64% 76.74% 52.32% 76.64% 0.37 0.43 0.22 0.45
Watts-Strogatz 80.86% 81.53% 80.41% 80.87% 0.19 0.26 0.10 0.19
admbuster 99.63% 99.72% 100.00% 100.00% 0.99 0.99 1.0 1.0
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The heterogeneity in grounded extension proportions across benchmarks
underscores the significance of incorporating grounded reasoning. Bench-
marks with higher proportions of grounded arguments, such as Barabasi-
Albert (57.71%), provide a robust signal for the model.

However, it is noteworthy that even benchmarks with null grounded ex-
tensions (e.g., AFGen, Erdős–Rényi) benefit in some cases from models hav-
ing incorporated grounded reasoning, suggesting that this process contributes
valuable structural information beyond mere argument inclusion.

We also in a number of cases examined the correlation between the pro-
portion of arguments in the grounded extension and the performance im-
provement gained by incorporating grounded reasoning. This analysis re-
vealed that while higher proportions generally led to greater improvements,
the relationship was not strictly linear, suggesting that other structural prop-
erties of the graphs also play a significant role.

5.2. Ablation Studies

To investigate the impact of various architectural choices and training
strategies on the performance of the AFGCN model, a series of ablation
studies were conducted. These studies aimed to examine the effects of net-
work depth, class balancing, and training optimization techniques on the
model’s accuracy and Matthews Correlation Coefficient (MCC) when solv-
ing the credulous and sceptical acceptability problems under the preferred
semantics. The results of these ablation studies are presented in Table 13.

5.2.1. Effects of Depth

The impact of network depth on the AFGCN model’s performance was
examined by training models with 4, 5, and 6 layers. For the credulous
acceptability problem under the preferred semantics (DC-PR), the 4-layer
AFGCN achieved the highest accuracy (95.1%) and MCC (0.61), followed
closely by the 5-layer model. The 6-layer model exhibited a notable decrease
in performance, with an accuracy of 93.2% and an MCC of 0.398.

For the sceptical acceptability problem under the preferred semantics
(DS-PR), the 4-layer AFGCN also outperformed the deeper models, achiev-
ing an accuracy of 97.5% and an MCC of 0.72. The 5-layer and 6-layer
models both had slightly lower accuracy (97.4%) and MCC (0.704) scores.

These results suggest that increasing the depth of the AFGCN model
beyond 4 layers does not necessarily lead to improved performance and may
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even be detrimental in some cases. This finding is consistent with the chal-
lenges faced by deep GCNs, such as the over-smoothing problem [50, 51] and
vanishing gradient issue [52].

5.2.2. Effects of Training Optimization

The impact of training optimization techniques on the AFGCN model’s
performance was assessed by comparing the 4-layer AFGCN model with and
without the training optimization strategies.

For both the DC-PR and DS-PR problems, the model trained with op-
timization techniques significantly outperformed the model trained without
them. In the DC-PR setting, the optimized model achieved an accuracy of
95.1% and an MCC of 0.61, while the non-optimized model had an accuracy
of 92.2% and an MCC of 0.327. Similarly, for the DS-PR problem, the opti-
mized model attained an accuracy of 97.5% and an MCC of 0.72, compared
to the non-optimized model’s accuracy of 94.9% and MCC of 0.291.

These results highlight the importance of employing appropriate training
optimization strategies, such as the randomized training regime, to improve
the AFGCN model’s performance on the acceptability problems.

Table 13: Ablation study results for the AFGCN model on the credulous (DC-PR) and
sceptical (DS-PR) acceptability problems under the preferred semantics.

Model Semantics Accuracy (%) MCC

4-Layer AFGCN DC-PR 95.1 0.610
5-Layer AFGCN DC-PR 94.9 0.601
6-Layer AFGCN DC-PR 93.2 0.398
4-Layer AFGCN (no training optimization) DC-PR 92.2 0.327

4-Layer AFGCN DS-PR 97.5 0.720
5-Layer AFGCN DS-PR 97.4 0.704
6-Layer AFGCN DS-PR 97.4 0.704
4-Layer AFGCN (no training optimization) DS-PR 94.9 0.291

5.2.3. Summary of Ablation Studies

The ablation studies presented in this section provide insights into the
factors influencing the performance of the AFGCN model on the credulous
and sceptical acceptability problems under the preferred semantics. Key
findings include:
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• Increasing network depth beyond 4 layers does not consistently improve
performance and may lead to a decline in accuracy and MCC scores.

• Employing appropriate training optimization strategies, such as the
randomized training regime, is important for achieving strong perfor-
mance on the acceptability problems.

These results emphasize the importance of carefully designing the ar-
chitecture and training process for AFGCN models to effectively solve the
credulous and sceptical acceptability problems in argumentation frameworks.
Further research should focus on refining these techniques and exploring ad-
ditional strategies to enhance the model’s performance and robustness.

5.2.4. Runtime Performance

Runtime performance is one of the major reasons one might consider using
an approximate approach to solving abstract argumentation problems. Here
we consider the runtime in a variety of contexts focusing on a comparison
that either includes or excludes the time it takes to compute the grounded
extension for an argumentation framework.

Table 14: Overview of AFGCN runtime results, key statistics

Runtime with GR (ms) Runtime without GR (ms)

min 6.83 6.12
25% 12.44 10.55
50% 28.96 20.72
75% 810.58 242.72
max 21563.85 4922.45

The runtime statistics shown in Table 14 gives the results breakdown
for classifying an entire argumentation framework with all its arguments.
This table shows that while most frameworks can be fully classified in less
than a second including the overheads needed to initialise the model, this
can increase substantially for the worst case. It also shows that the cost of
computing the grounded extension increases disproportionately with scale.
This is as expected as the algorithm to compute the grounded extension has
polynomial runtime in the number of arguments.
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5.2.5. Runtime Comparison with Exact Methods

In this analysis, we compare the runtime performance of PYGLAF [53],
an exact method that won the preferred track at ICCMA 2021, and AFGCN.
The results presented are derived from the actual data obtained during the
ICCMA 2021 competition, evaluated on the relevant argumentation seman-
tics.

Table 15 shows the runtime performance of the PYGLAF method for
single argument evaluation across various argumentation semantics groups.
The results are capped at 600 seconds as per the competition rules. This
implies that if the actual runtimes exceeded 600 seconds, the real comparison
would be even more striking.

Table 15: PYGLAF runtime to determine a single argument. All times are in milliseconds,
to 6 significant figures.

Group Mean (ms) Median (ms) Min (ms) Max (ms)

DC-CO 123490 51294.7 122.480 594880
DC-PR 123646 50806.5 137.729 595089
DC-SST 190652 64992.1 137.916 600172
DC-ST 147624 68084.8 151.857 588594
DC-STG 470557 599532 135.897 601137
DS-CO 92184.7 46223.1 108.567 570255
DS-ID 490946 595811 170.028 601034
DS-PR 239657 104572 114.881 600682
DS-SST 191973 66349.2 145.543 600861
DS-ST 192526 93378.4 137.009 589832
DS-STG 460623 599432 152.218 601131

Tables 16 and 17 present the runtime performance of the AFGCN method
in two different scenarios: ‘all arguments’ and ‘time per argument’. The ‘all
arguments’ method is the right comparison mode when the answer is required
for a single argument, while the ‘time per argument’ method is more appro-
priate when the answer is needed across all arguments in an argumentation
framework. It should be noted that the ‘per argument’ method is not directly
comparable to the ‘single argument’ case for PYGLAF since enumeration of
extensions would be used rather than running the solver for each argument.
However, the comparison can still provide an indicative sense of the speedup
when answers are needed across a framework.

52



Table 16: AFGCN runtime for all arguments in a framework. The columns show the
time taken to classify all arguments in an argumentation framework. All times are in
milliseconds (ms).

Group Mean Median Min Max

DC-CO 29014.5 18456.3 976.1 63070.5
DC-PR 29294.5 19194.8 1012.3 62154.1
DC-SST 27876.7 17168.7 1039.0 65651.4
DC-ST 28333.2 18064.9 972.0 67038.8
DC-STG 8952.2 7669.2 980.9 36944.3
DS-CO 32225.2 31585.8 995.3 62023.9
DS-ID 3988.8 3260.6 982.8 15123.2
DS-PR 10107.5 8449.7 965.2 33380.9
DS-SST 9120.6 7917.3 1024.8 42996.7
DS-ST 21555.2 15009.3 1015.2 62530.0
DS-STG 8938.6 7894.1 975.2 39858.8

Table 17: AFGCN runtime per argument. All times are in milliseconds (ms), to 6 signifi-
cant figures.

Group Mean Median Min Max

DC-CO 0.511720 0.325508 0.0172153 1.11236
DC-PR 0.517241 0.338915 0.0178741 1.09743
DC-SST 0.493667 0.304039 0.0183997 1.16261
DC-ST 0.521155 0.332283 0.0178783 1.23310
DC-STG 0.992253 0.850040 0.108718 4.09485
DS-CO 0.450129 0.441197 0.0139025 0.866363
DS-ID 3.29238 2.69133 0.811174 12.4827
DS-PR 0.922482 0.771186 0.0880943 3.04659
DS-SST 1.01557 0.881593 0.114106 4.78765
DS-ST 0.689990 0.480453 0.0324956 2.00161
DS-STG 0.971628 0.858082 0.106003 4.33264
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Focusing on the mean runtimes, we observe that AFGCN consistently out-
performs PYGLAF in terms of speed. In the ‘all arguments’ case, AFGCN is
up to 122.8 times faster than PYGLAF when comparing the mean runtimes,
despite classifying all arguments in the framework rather than just one (e.g.,
DS-ID group: 3988.83 ms for AFGCN vs. 490946 ms for PYGLAF). The
lowest speedup in this case can be seen in the DS-CO group, where AFGCN
is 2.86 times faster than PYGLAF (e.g., 32225.2 ms for AFGCN vs. 92184.7
ms for PYGLAF).

The speedup is even more pronounced when comparing the ‘time per
argument’ case, with AFGCN being theoretically up to 149,116 times faster
than PYGLAF (e.g., DS-ID group: 3.29238 ms for AFGCN vs. 490,946 ms
for PYGLAF) if one were to run the solver once for each argument, although
as noted this wouldn’t be the practical implementation.

Other metrics, such as median, minimum, and maximum runtimes, also
support the observation that AFGCN is significantly faster than PYGLAF.

The runtime analysis comparison highlights the superior speed of the
AFGCN method compared to the exact PYGLAF method in the context of
abstract argumentation. This finding is particularly relevant when evaluating
multiple arguments in argumentation frameworks or when time constraints
are crucial.

5.3. Comparison to Related Work

The two most important pieces of related work are Kuhlmann and Thimm [10],
and Craandijk and Bex [31]. Kuhlmann and Thimm trained a graph convo-
lutional neural network (named FM2) to predict credulous acceptability with
respect to the preferred semantics (DC-PR). They evaluated two versions of
their model using a sample of 45 graphs from the ICCMA 2017 competition.
The better version of their model obtained a total accuracy of 63%. For com-
parison, AFGCN was evaluated with 99 graphs also drawn from the ICCMA
2017 competition, and achieved a total accuracy of 97% (Complete Balanced
setting) for both the GCN-WITH-GR and HYBRID-GCN-GR versions of
AFGCN. While this is not an exact comparison, it indicates that there is
a significant performance difference. Kuhlmann et al. [40] found that the
AGNN model defined by Craandijk and Bex [31] achieved higher accuracy
and MCC than FM2 for every combination of training and test set used in
their experiments, so our main focus is on comparing AFGCN to AGNN.

Craandijk and Bex defined the argumentation graph neural network (AGNN),
as described in Section 3. They report very high accuracy for random argu-
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mentation frameworks with up to 200 arguments. In this section we com-
pare the accuracy of the AGNN model (when trained exactly as described by
Craandijk and Bex, and using their software distribution2) to the AFGCN
with three semantics and with both credulous and sceptical acceptance tasks.
The number of message passing layers of the AGNN model was fixed to 32 in
this experiment, and similarly the AFGCN models both have a fixed number
of layers.

In this experiment, both the AGNN and AFGCN are evaluated using
our test set of 99 argumentation frameworks sampled from the ICCMA 2019
competition (as described in Table 4). We use MCC as used by Craandijk
and Bex, and each argument is given equal importance regardless of the size
of the framework (i.e. the Complete Balanced setting). A training set of 1
million random argumentation frameworks was generated with sizes ranging
from 5 to 25 arguments, along with a validation set of 1000 frameworks of
size 25. For each task, the AGNN was trained for 200 epochs. The trained
model with the highest MCC on the validation set was retained in each case.
Training for each task took approximately 50 hours on an NVIDIA Quadro
P6000 GPU.

Table 18 contains the MCC results for AGNN, and for two versions of the
AFGCN. Training of the AGNN was successful, as shown by the extremely
high MCC achieved for the validation set. However, AFGCN achieves sub-
stantially higher MCC values for every task on the test set. It is worth noting
that most of the graphs in our test set are substantially larger than those in
the validation set, and also drawn from a variety of different distributions,
most of which are not represented in the AGNN training set. Given the shift
in both size and distribution of graphs, it is not surprising that the AGNN
model performs less well than the AFGCN models.

6. Summary

This article has presented systematic results from applying deep learning
based approximation approaches to key problems in abstract argumentation.
First, we can note that, in general, argumentation frameworks adhering to
a variety of schemes can be approximated moderately well to very well by
an approach that combines grounded reasoning with graph neural networks.
This is true of both credulous and sceptical acceptance and across semantics.

2Available from https://github.com/DennisCraandijk/DL-abstract-argumentation
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Table 18: MCC of AGNN on the validation set, and on the test set of 99 competition
argumentation frameworks. For comparison the rightmost columns are the MCC on the
test set for two versions of the AFGCN model.

Semantics AGNN MCC AFGCN MCC

Validation Test GCN-WITH-GR HYBRID-GCN-GR

DC-PR 1.00 0.41 0.85 0.93
DC-CO 1.00 0.36 0.86 0.93
DC-ST 1.00 0.36 0.82 0.90
DS-PR 1.00 0.28 0.85 0.80
DS-CO 1.00 0.23 0.89 1.00
DS-ST 1.00 -0.20 0.76 0.89

There are cases that prove unapproximable or very hard to approximate
and require further analysis such as the unapproximability of ER graphs
under some but not all semantics and the general low approximability of
Watts-Strogatz graphs.

However, the one benchmark that is generally unapproximable, AFGen,
is likely to be for the reason that it is a random graph model with very little
structure in its generating function. This means it does not contain enough
regularity for a neural network to learn anything.

It’s worth noting that ER and Watts-Strogatz are also random graph
models with different generating functions, so in general we can suggest that
approximation for random graph models is problematic with our chosen ap-
proaches. However, differences in how the random graph model is generated
do seem to matter in terms of learnability.

We can also conclude that while a GCN-based approach on its own
is a good approximator, it is a better approximator when combined with
grounded reasoning, although we cannot definitively conclude which is the
best way to combine grounded reasoning with GCN-based approaches on the
basis of these results.

A grounded reasoner is a good, but not perfect approximator for scep-
tical acceptance across semantics and in general the improvement made by
adding a GCN model is small for sceptical acceptance. On the basis of these
results, one might be tempted to conclude that it is not worth bothering with
additional approximation approaches for sceptical acceptance unless one is
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dealing with problems of a scale where a marginal improvement is worth a
substantial investment. The problem with this position, however, is that the
grounded reasoner is fixed. It will never provide a better approximation than
it already does, which is still no better than 80% accuracy on an equally
weighted basis in most cases. While the current approach only improves
marginally on this by adding a GCN, it at least shows it is possible to im-
prove on this baseline. Further research may lead to greater improvements
still.

Perhaps the most promising line of enquiry coming out of this research
can be found by considering the considerable difference in performance found
across benchmarks and semantics. For some benchmarks in some semantics,
such as LBA frameworks under preferred semantics, the approximation per-
formance is near perfect. This begs the question, whether the goal of creating
a general purpose approximator for abstract argumentation is actually a fool-
ish one and whether the more profitable approach might be to create task
specific approximators depending on the problem at hand.

Referring back to our contributions, we have confirmed that it is possible
to create a high-performing approximation approach for abstract argumenta-
tion using GNNs. We developed a unique training approach, using a modified
GCN architecture that works effectively in this context. We also discussed in
detail the effects of bringing in the grounded extension as a starting point and
demonstrated that it can provide a boost in approximation performance in
many cases. Finally, we systematically evaluated differences in performance
across semantics, and benchmarks.

In our future work, we aim to address the limitations and scope for im-
provement in the accuracy of our current models, particularly for certain
poorly performing benchmark types. We believe there are several avenues
to achieve better performance, including the development of argumentation-
specific graph embeddings, leveraging more data, utilizing targeted data,
and employing data augmentation techniques. Additionally, we plan to ex-
plore the potential of incorporating advanced architectural elements such as
Deep Reinforcement Learning. Although our initial experiments with this
approach did not generalize well [54], we believe that further research could
yield promising results.

Furthermore, we intend to extend our approach beyond the basic for-
malism of abstract argumentation, as it is not inherently restricted to this
specific formalism. We plan to adapt our models to accommodate other
similar formalisms, such as bipolar argumentation [55], assumption-based
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argumentation [56], and probabilistic argumentation [57]. By extending our
approach to these formalisms, we aim to make our solver more versatile and
valuable for future research in the field of argumentation.
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Appendix A. Additional Results Tables

Table A.19: Results DC-PR - equal weighting

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 83.10% 85.36% 77.89% 86.40% 63.06% 0.64 0.54
GCN-WITH-GR 83.96% 86.12% 76.87% 87.52% 69.19% 0.70 0.58
GR-ONLY 63.98% 100.00% 59.69% 100.00% 37.93% 0.43 0.34
HYBRID-GCN-GR 84.69% 88.27% 76.61% 89.93% 68.89% 0.69 0.58
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Table A.20: Results DC-PR - complete balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 96.45% 93.08% 96.64% 93.15% 76.11% 0.81 0.80
GCN-WITH-GR 96.82% 95.22% 96.97% 95.27% 80.70% 0.85 0.84
GR-ONLY 95.84% 100.00% 95.47% 100.00% 89.70% 0.91 0.90
HYBRID-GCN-GR 97.39% 96.59% 97.38% 96.65% 93.48% 0.93 0.92

Table A.21: Results DC-PR - reduced balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 80.90% 81.63% 80.05% 82.89% 48.52% 0.51 0.44
GCN-WITH-GR 82.90% 81.88% 82.22% 83.21% 61.18% 0.64 0.55
GR-ONLY 70.89% 100.00% 68.31% 100.00% 27.86% 0.36 0.33
HYBRID-GCN-GR 82.52% 82.39% 80.58% 84.81% 54.37% 0.57 0.50

Table A.22: Results DS-PR - equal weighting

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 86.24% 84.53% 86.99% 87.81% 51.82% 0.53 0.50
GCN-WITH-GR 87.66% 84.78% 87.89% 87.55% 57.91% 0.61 0.56
GR-ONLY 84.99% 100.00% 83.31% 100.00% 46.79% 0.51 0.52
HYBRID-GCN-GR 85.14% 76.19% 86.62% 81.00% 57.82% 0.55 0.50

Table A.23: Results DS-PR - complete balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 97.21% 91.44% 97.61% 91.66% 77.09% 0.81 0.81
GCN-WITH-GR 97.88% 94.48% 98.03% 94.59% 80.41% 0.85 0.85
GR-ONLY 98.27% 100.00% 98.13% 100.00% 91.20% 0.92 0.93
HYBRID-GCN-GR 95.58% 77.77% 98.35% 78.33% 92.31% 0.79 0.80

Table A.24: Results DS-PR - reduced balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 88.57% 82.43% 90.39% 85.06% 48.17% 0.50 0.50
GCN-WITH-GR 90.97% 84.49% 91.48% 86.22% 57.06% 0.62 0.60
GR-ONLY 90.16% 100.00% 89.33% 100.00% 49.88% 0.55 0.58
HYBRID-GCN-GR 88.54% 78.85% 90.59% 81.87% 56.22% 0.57 0.54
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Table A.25: Results DC-CO - equal weighting

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 81.31% 88.16% 69.93% 89.71% 63.11% 0.64 0.46
GCN-WITH-GR 88.02% 84.34% 78.52% 85.13% 75.34% 0.75 0.58
GR-ONLY 63.86% 100.00% 59.65% 100.00% 38.99% 0.43 0.28
HYBRID-GCN-GR 86.58% 86.46% 76.61% 87.42% 77.64% 0.75 0.58

Table A.26: Results DC-CO - complete balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 96.31% 93.21% 96.50% 93.33% 77.62% 0.82 0.81
GCN-WITH-GR 97.15% 92.22% 97.25% 92.28% 85.44% 0.88 0.86
GR-ONLY 96.37% 100.00% 96.01% 100.00% 90.75% 0.92 0.92
HYBRID-GCN-GR 97.47% 97.53% 97.34% 97.56% 94.79% 0.95 0.93

Table A.27: Results DC-CO - reduced balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 81.19% 83.34% 80.86% 85.35% 58.25% 0.58 0.47
GCN-WITH-GR 84.75% 82.57% 84.15% 83.60% 65.61% 0.68 0.57
GR-ONLY 74.75% 100.00% 72.21% 100.00% 35.63% 0.42 0.41
HYBRID-GCN-GR 82.56% 84.78% 81.44% 85.98% 63.73% 0.65 0.55

Table A.28: Results DS-CO - equal weighting

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 97.00% 83.37% 98.52% 88.91% 86.84% 0.78 0.83
GCN-WITH-GR 97.54% 86.74% 99.10% 90.76% 91.58% 0.84 0.88
GR-ONLY 100.00% 100.00% 100.00% 100.00% 100.00% 1.0 1.0
HYBRID-GCN-GR 99.64% 98.59% 100.00% 99.05% 100.00% 0.99 0.99

Table A.29: Results DS-CO - complete balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 99.15% 93.16% 99.52% 93.40% 87.92% 0.86 0.90
GCN-WITH-GR 99.00% 93.66% 99.30% 93.91% 85.88% 0.85 0.89
GR-ONLY 100.00% 100.00% 100.00% 100.00% 100.00% 0.96 1.0
HYBRID-GCN-GR 99.98% 99.92% 100.00% 99.93% 100.00% 0.96 1.0
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Table A.30: Results DS-CO - reduced balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 98.21% 88.93% 99.41% 91.23% 90.42% 0.68 0.88
GCN-WITH-GR 98.17% 92.44% 99.33% 94.12% 91.35% 0.69 0.91
GR-ONLY 100.00% 100.00% 100.00% 100.00% 100.00% 0.78 1.0
HYBRID-GCN-GR 99.90% 99.57% 100.00% 99.67% 100.00% 0.77 1.0

Table A.31: Results DC-ST - equal weighting

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 85.62% 78.92% 79.72% 81.26% 67.60% 0.60 0.49
GCN-WITH-GR 87.06% 80.23% 77.62% 82.23% 72.18% 0.65 0.52
GR-ONLY 64.19% 87.14% 60.22% 90.91% 41.22% 0.36 0.24
HYBRID-GCN-GR 84.66% 77.66% 74.08% 78.79% 73.35% 0.65 0.49

Table A.32: Results DC-ST - complete balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 96.65% 92.44% 96.54% 92.55% 75.15% 0.77 0.77
GCN-WITH-GR 97.13% 93.15% 97.17% 93.24% 81.93% 0.83 0.82
GR-ONLY 96.22% 96.45% 95.86% 96.55% 91.20% 0.89 0.88
HYBRID-GCN-GR 97.55% 94.19% 97.34% 94.24% 94.86% 0.92 0.90

Table A.33: Results DC-ST - reduced balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 82.84% 58.21% 81.40% 62.25% 62.66% 0.40 0.32
GCN-WITH-GR 84.67% 59.43% 84.74% 62.96% 70.69% 0.47 0.39
GR-ONLY 74.14% 70.61% 71.67% 76.38% 39.77% 0.22 0.20
HYBRID-GCN-GR 83.23% 58.85% 81.51% 61.29% 64.83% 0.43 0.34

Table A.34: Results DS-ST - equal weighting

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 88.65% 75.31% 90.12% 80.05% 65.01% 0.54 0.46
GCN-WITH-GR 88.29% 69.62% 88.18% 73.61% 60.95% 0.52 0.45
GR-ONLY 78.10% 85.29% 75.87% 89.90% 45.16% 0.39 0.39
HYBRID-GCN-GR 88.44% 78.28% 88.18% 82.45% 64.18% 0.55 0.48
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Table A.35: Results DS-ST - complete balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 97.53% 90.35% 97.65% 90.63% 77.64% 0.78 0.78
GCN-WITH-GR 97.14% 86.00% 97.37% 86.31% 76.10% 0.76 0.76
GR-ONLY 97.67% 95.91% 97.48% 96.04% 90.78% 0.88 0.88
HYBRID-GCN-GR 98.14% 94.98% 98.17% 95.12% 92.07% 0.89 0.89

Table A.36: Results DS-ST - reduced balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 89.29% 59.92% 89.69% 66.67% 54.63% 0.34 0.32
GCN-WITH-GR 88.50% 55.40% 89.30% 61.24% 54.86% 0.34 0.31
GR-ONLY 86.05% 70.69% 84.89% 76.29% 44.78% 0.27 0.29
HYBRID-GCN-GR 88.86% 65.38% 89.00% 71.22% 52.48% 0.32 0.32

Table A.37: Results DC-SST - equal weighting

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 77.04% 85.15% 72.33% 87.25% 51.36% 0.53 0.42
GCN-WITH-GR 86.00% 88.80% 75.46% 89.93% 65.67% 0.68 0.55
GR-ONLY 64.41% 100.00% 60.12% 100.00% 40.03% 0.44 0.32
HYBRID-GCN-GR 86.64% 90.26% 76.09% 91.54% 72.72% 0.74 0.60

Table A.38: Results DC-SST - complete balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 95.16% 94.27% 95.23% 95.00% 63.51% 0.66 0.66
GCN-WITH-GR 96.87% 93.75% 96.82% 93.84% 77.91% 0.83 0.82
GR-ONLY 96.24% 100.00% 95.83% 100.00% 90.59% 0.92 0.91
HYBRID-GCN-GR 97.75% 97.38% 97.52% 97.42% 94.81% 0.95 0.94

Table A.39: Results DC-SST - reduced balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 79.64% 79.10% 81.51% 81.07% 46.17% 0.48 0.41
GCN-WITH-GR 84.77% 84.53% 84.15% 85.89% 56.67% 0.60 0.54
GR-ONLY 76.09% 100.00% 73.48% 100.00% 40.14% 0.46 0.45
HYBRID-GCN-GR 85.84% 84.82% 84.12% 86.32% 66.96% 0.68 0.61
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Table A.40: Results DS-SST - equal weighting

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 86.75% 78.94% 90.20% 82.34% 59.76% 0.59 0.53
GCN-WITH-GR 86.94% 81.95% 88.05% 85.23% 52.29% 0.55 0.51
GR-ONLY 85.51% 100.00% 83.80% 100.00% 47.43% 0.51 0.52
HYBRID-GCN-GR 86.63% 90.36% 85.76% 92.41% 53.47% 0.57 0.55

Table A.41: Results DS-SST - complete balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 97.70% 91.17% 98.12% 91.33% 80.95% 0.84 0.83
GCN-WITH-GR 97.32% 92.59% 97.50% 92.73% 74.91% 0.80 0.80
GR-ONLY 98.33% 100.00% 98.18% 100.00% 91.27% 0.92 0.93
HYBRID-GCN-GR 98.39% 98.55% 98.35% 98.58% 92.09% 0.93 0.93

Table A.42: Results DS-SST - reduced balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 89.78% 79.43% 91.55% 81.55% 51.25% 0.54 0.53
GCN-WITH-GR 88.43% 77.39% 89.71% 79.93% 43.61% 0.49 0.47
GR-ONLY 90.02% 100.00% 89.16% 100.00% 47.98% 0.53 0.56
HYBRID-GCN-GR 90.37% 90.47% 90.17% 91.54% 52.84% 0.58 0.58

Table A.43: Results DC-STG - equal weighting

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 84.05% 87.42% 68.89% 88.05% 67.34% 0.69 0.46
GCN-WITH-GR 86.84% 88.13% 74.87% 88.85% 73.22% 0.75 0.57
GR-ONLY 61.45% 100.00% 57.08% 100.00% 32.89% 0.39 0.23
HYBRID-GCN-GR 85.76% 89.01% 72.98% 90.01% 74.32% 0.74 0.54

Table A.44: Results DC-STG - complete balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 96.82% 95.02% 96.70% 95.05% 77.67% 0.83 0.82
GCN-WITH-GR 97.00% 94.95% 97.19% 95.00% 81.78% 0.86 0.84
GR-ONLY 96.16% 100.00% 95.76% 100.00% 88.91% 0.90 0.90
HYBRID-GCN-GR 97.54% 96.89% 97.74% 96.94% 94.15% 0.94 0.92
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Table A.45: Results DC-STG - reduced balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 83.00% 82.97% 81.29% 83.78% 53.11% 0.57 0.46
GCN-WITH-GR 84.08% 82.17% 84.26% 83.29% 64.14% 0.66 0.55
GR-ONLY 73.35% 100.00% 70.59% 100.00% 23.07% 0.34 0.32
HYBRID-GCN-GR 83.20% 82.40% 83.76% 84.36% 59.44% 0.61 0.50

Table A.46: Results DS-STG - equal weighting

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 87.48% 83.28% 87.94% 86.99% 49.03% 0.52 0.48
GCN-WITH-GR 88.81% 85.70% 89.34% 88.01% 55.31% 0.59 0.55
GR-ONLY 85.90% 100.00% 84.24% 100.00% 42.60% 0.48 0.48
HYBRID-GCN-GR 87.86% 92.84% 87.65% 94.58% 50.12% 0.54 0.52

Table A.47: Results DS-STG - complete balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 97.62% 93.31% 98.02% 93.50% 78.48% 0.82 0.82
GCN-WITH-GR 98.00% 95.32% 98.26% 95.40% 81.09% 0.85 0.85
GR-ONLY 98.39% 100.00% 98.24% 100.00% 89.98% 0.91 0.92
HYBRID-GCN-GR 98.42% 99.84% 98.30% 99.84% 90.12% 0.92 0.92

Table A.48: Results DS-STG - reduced balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 89.30% 79.63% 91.17% 83.10% 42.10% 0.46 0.44
GCN-WITH-GR 90.50% 81.88% 91.88% 83.86% 51.58% 0.56 0.54
GR-ONLY 90.36% 100.00% 89.49% 100.00% 40.04% 0.48 0.51
HYBRID-GCN-GR 90.54% 98.96% 89.84% 99.14% 40.84% 0.49 0.51

Table A.49: Results DS-ID - equal weighting

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 86.16% 79.43% 87.16% 82.54% 56.30% 0.58 0.52
GCN-WITH-GR 87.28% 81.77% 87.27% 84.35% 54.77% 0.58 0.53
GR-ONLY 85.33% 100.00% 83.57% 100.00% 46.70% 0.51 0.52
HYBRID-GCN-GR 87.44% 87.98% 87.03% 89.93% 57.87% 0.60 0.57
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Table A.50: Results DS-ID - complete balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 97.39% 89.95% 97.94% 90.14% 79.71% 0.82 0.82
GCN-WITH-GR 97.59% 94.42% 97.64% 94.52% 76.93% 0.82 0.82
GR-ONLY 98.09% 100.00% 97.92% 100.00% 90.03% 0.91 0.92
HYBRID-GCN-GR 98.31% 98.54% 98.22% 98.57% 91.30% 0.92 0.92

Table A.51: Results DS-ID - reduced balanced

Type Accuracy Acc (yes) Acc (no) Precision Recall F1 MCC

GCN-NO-GR 88.91% 76.57% 90.72% 79.14% 51.67% 0.55 0.52
GCN-WITH-GR 89.64% 80.90% 89.87% 82.69% 49.02% 0.53 0.53
GR-ONLY 89.30% 100.00% 88.34% 100.00% 44.02% 0.50 0.53
HYBRID-GCN-GR 90.51% 91.09% 90.00% 92.14% 51.18% 0.56 0.57

Appendix B. Analyses of Additional Semantics

Appendix B.1. Additional Credulous Results

Semi-stable Semantics.
We would intuitively expect the results for semi-stable semantics to most
closely resemble those of the stable and preferred semantics. That intuition
is not entirely borne out in practice, as the results for these semantics are
quite distinctive.

Looking first at the equally weighted setting in Figure B.14, we note a
much reduced performance for the GCN-NO-GR model. It would seem that
semi-stable semantics presents a harder approximation problem for a GCN
than some of the others we have considered. The overall best performing
model is the HYBRID-GCN-GR model, not surprising considering the pre-
vious observation.

The complete balanced setting, does not change the picture as much as it
has in some other semantics. The GR-ONLY model increases performance as
expected, but the ordering among the GCN-based models remains constant.

The reduced balanced setting reverts the picture to one fairly close to
the equally weighted one. Overall, the HYBRID-GCN-GR model is the clear
winner in terms of performance for credulous acceptance under semi-stable
semantics.

On the benchmark side, shown in Table B.52 we can note a similar pat-
tern to stable semantics for AFGen, Barabasi-Albert, Planning2AF, Traffic,
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Figure B.14: Overview of AFGCN approximation results for DC-SST

71



Watts-Strogatz, and admbuster graphs. ABA2AF is approximable under
semi-stable semantics as it is under preferred semantics. ER graphs prove
overall somewhat easier to approximate under semi-stable semantics that
we’ve seen previously, whereas Stable and Traffic benchmarks have some
reduced performance. The performance on the LBA benchmark is a bit
lower than for stable semantics, but not as bad as for complete semantics.
Finally, we can note that the reason the GCN-NO-GR model does poorly
under these semantics is mainly attributable to a bad performance on the
Grounded benchmark.

Table B.52: Overview of AFGCN approximation results for DC-SST ordered by bench-
mark. Accuracy to 2 decimal places, MCC to 2 significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 98.55% 98.91% 99.12% 99.27% 0.53 0.65 0.81 0.83
AFGen 54.60% 55.73% 54.60% 54.60% -0.10 0.021 -0.10 -0.10
Barabasi-Albert 88.27% 92.21% 49.93% 90.56% 0.71 0.75 0.31 0.72
Erdős–Rényi 93.07% 94.72% 96.04% 96.04% 0.74 0.71 0.67 0.67
Grounded 96.84% 97.99% 100.00% 99.87% 0.38 0.69 1.0 0.99
LBA 29.69% 97.40% 1.48% 96.82% 0.20 0.50 -0.70 0.50
Planning2AF 74.36% 82.69% 62.06% 87.74% 0.46 0.62 0.42 0.75
Stable 64.67% 70.95% 63.55% 70.90% 0.20 0.38 0.20 0.37
Traffic 83.63% 80.65% 32.95% 82.36% 0.46 0.48 0.029 0.51
Watts-Strogatz 75.86% 77.81% 75.25% 78.00% 0.12 0.20 0.0 0.23
admbuster 98.64% 99.75% 100.00% 100.00% 0.97 1.0 1.0 1.0

As can be seen in Table B.53, the general pattern for size related perfor-
mance holds for the GR-ONLY, HYBRID-GCN-GR, and GCN-WITH-GR
models under semi-stable semantics. However, it breaks for the GCN-NO-
GR model as the performance at the low end is much worse that has been
seen for other semantics. This demonstrates that while much of the bad per-
formance of this model under semi-stable semantics is attributable to inferior
grounded reasoning that is not the whole story.

Stage Semantics.
Stage semantics are the only semantics not based on admissible sets of the
ones considered in this article. One might therefore expect a significantly
different results than for the other semantics based on the different way
extensions are created. However, we don’t see any such radical departure
from the patterns we have seen, although as in other cases, we see interesting
variation in benchmark specific performance.
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Figure B.15: Overview of AFGCN approximation results for DC-STG
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Table B.53: Overview of AFGCN approximation results for DC-SST ordered by band.
Accuracy to 2 decimal places, MCC to 2 significant figures.

Band Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

0 48.41% 87.99% 21.85% 86.12% 0.25 0.61 -0.33 0.51
1 87.44% 88.61% 33.25% 91.00% 0.60 0.58 0.023 0.62
2 57.31% 92.93% 26.20% 90.90% 0.44 0.46 -0.091 0.55
3 67.09% 69.39% 62.44% 70.58% 0.26 0.38 0.19 0.31
4 70.63% 74.92% 66.29% 76.47% 0.12 0.20 0.10 0.25
5 70.64% 73.49% 71.06% 74.34% 0.17 0.31 0.15 0.34
6 80.19% 84.45% 76.76% 84.43% 0.37 0.50 0.42 0.58
7 91.43% 94.17% 90.47% 95.25% 0.56 0.72 0.81 0.85
8 95.53% 97.55% 98.31% 99.21% 0.71 0.82 0.96 0.98
9 98.18% 99.23% 100.00% 100.00% 0.66 0.88 1.0 1.0

Looking first at the equally weighted results for credulous acceptance in
Figure B.15, we find the GCN-WITH-GR model performing best both in
accuracy and MCC terms. The GR-ONLY model performs relatively poorly
under this semantics, which also implies a slight dip in performance for the
HYBRID-GCN-GR model.

The complete balanced setting shows the now familiar increase in accu-
racy and the HYBRID-GCN-GR model performing the best followed by the
GR-ONLY model. Once again, we see the pattern revert to one closer to
the equally weighted setting once we remove the two large grounded-focused
benchmarks. This is consistent with what we have seen for other semantics.

We see benchmark specific behaviour that in many ways is familiar from
other semantics, especially semi-stable ones. This is true for ABA2AF,
AFGen, Barabasi-Albert, Grounded, Planning2AF, Traffic, and admbuster
benchmarks. However, we can note that the GR-ONLY model performs
unusually poorly on ER graphs under these semantics. There is slightly bet-
ter performance from GCN-models on Stable and Watts-Strogatz models and
slightly worse performance from all models on the LBA benchmark compared
to credulous semi-stable semantics.

When we turn to the analysis based on size bands in Table B.55 we see
the usual patterns of peaks at small and large bands for the GCN models,
while the GR-ONLY model has an especially pronounced dip at the lowest
band for these semantics.
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Table B.54: Overview of AFGCN approximation results for DC-STG ordered by bench-
mark. Accuracy to 2 decimal places, MCC to 2 significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 97.47% 98.03% 97.43% 97.87% 0.48 0.66 0.52 0.63
AFGen 58.36% 58.03% 54.60% 61.28% 0.018 0.051 -0.10 0.10
Barabasi-Albert 88.82% 93.64% 49.93% 93.77% 0.69 0.78 0.31 0.79
Erdős–Rényi 72.94% 95.05% 29.37% 70.96% 0.37 0.82 -0.67 0.68
Grounded 98.13% 98.46% 100.00% 99.71% 0.71 0.77 1.0 0.97
LBA 84.12% 96.77% 0.90% 94.74% -0.10 0.40 -0.80 0.10
Planning2AF 82.29% 82.98% 62.06% 81.62% 0.62 0.65 0.42 0.63
Stable 70.77% 71.71% 63.70% 70.23% 0.38 0.43 0.22 0.38
Traffic 83.55% 85.35% 25.81% 83.30% 0.46 0.55 -0.054 0.52
Watts-Strogatz 78.19% 77.75% 75.25% 75.28% 0.27 0.20 0.0 0.024
admbuster 99.78% 99.62% 100.00% 100.00% 1.0 0.99 1.0 1.0

Table B.55: Overview of AFGCN approximation results for DC-STG ordered by band.
Accuracy to 2 decimal places, MCC to 2 significant figures.

Band Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

0 82.21% 93.17% 14.12% 93.32% 0.23 0.58 -0.52 0.44
1 83.88% 88.88% 33.25% 85.49% 0.45 0.61 0.023 0.54
2 90.23% 93.94% 26.20% 92.96% 0.30 0.51 -0.091 0.35
3 66.02% 72.77% 44.26% 68.06% 0.28 0.41 -0.17 0.46
4 74.71% 74.40% 67.24% 74.81% 0.27 0.21 0.14 0.24
5 73.73% 71.81% 70.70% 72.08% 0.31 0.37 0.14 0.18
6 85.28% 87.25% 79.85% 84.26% 0.38 0.56 0.36 0.48
7 92.58% 91.99% 87.13% 92.41% 0.74 0.75 0.63 0.75
8 97.69% 98.10% 98.31% 99.12% 0.80 0.83 0.96 0.98
9 99.18% 99.23% 100.00% 100.00% 0.91 0.92 1.0 1.0
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Appendix B.2. Additional Sceptical Results

Semi-stable Semantics.
Considering sceptical acceptance under the semi-stable semantics, the re-
sults are less divergent than for credulous acceptance. The equally weighted
setting in Figure B.16 shows the HYBRID-GCN-GR model having the best
performance on MCC and effectively equal on accuracy with the two other
GCN-based models. This is due to increased positive accuracy from the
grounded reasoner, as both of the other models have better negative accu-
racy.

In the complete balanced setting, considering the large grounded frame-
works, the performance of the GR-ONLY model and the HYBRID-GCN-GR
model are effectively identical.

Removing the two large grounded benchmarks, leads to the HYBRID-
GCN-GR model again coming out ahead. But under these semantics the GR-
ONLY model remains very competitive. For both of the balanced settings
the GCN-NO-GR model outperforms the GCN-WITH-GR model, indicating
that for these semantics the model has not learnt to reason effectively with
grounded features.

Relative to the stable semantics the results are mainly consistent across
benchmarks as shown in Table B.56. ABA2AF is approximable again for
sceptical acceptance as well, which is consistent with preferred semantics.
There is a drop in performance for LBA frameworks as there was for credu-
lous acceptance. In contrast, there is a performance increase for the Traffic
domain.

The performance based on size reveals overall lower performance in the
smaller size bands as shown in Table B.57. However, there is the same
overall pattern that we have seen in general for sceptical acceptance that
performance increases with size.

Stage Semantics.

Moving on to sceptical acceptance under stage semantics, we see in Figure
B.17 that the GCN-WITH-GR model is the best performer overall in the
equally weighted setting as it was for credulous acceptance. As expected the
GR-ONLY model does much better in the sceptical context and is on par
with the GCN-NO-GR model measured by MCC.

The HYBRID-GCN-GR model and the GR-ONLY model are indistin-
guishable in terms of performance in the complete balanced setting. The
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Figure B.16: Overview of AFGCN approximation results for DS-SST
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Table B.56: Overview of AFGCN approximation results DS-SST ordered by benchmark.
Accuracy to 2 decimal places, MCC to 2 significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 99.10% 99.09% 99.43% 99.44% 0.65 0.63 0.82 0.81
AFGen 93.96% 93.96% 93.96% 93.96% 0.0 0.0 0.0 0.0
Barabasi-Albert 82.93% 83.10% 85.38% 84.43% 0.66 0.65 0.74 0.70
Erdős–Rényi 96.04% 96.04% 96.04% 96.04% 0.67 0.67 0.67 0.67
Grounded 98.14% 97.72% 100.00% 100.00% 0.72 0.64 1.0 1.0
LBA 71.23% 77.34% 53.34% 64.67% 0.49 0.57 0.11 0.30
Planning2AF 87.38% 82.11% 88.44% 85.84% 0.70 0.55 0.72 0.66
Stable 79.47% 79.78% 78.75% 80.32% 0.32 0.29 0.23 0.32
Traffic 68.46% 69.34% 69.26% 70.40% 0.42 0.40 0.36 0.36
Watts-Strogatz 82.50% 83.03% 82.03% 82.92% 0.14 0.16 0.0 0.15
admbuster 99.82% 99.68% 100.00% 100.00% 1.0 0.99 1.0 1.0

Table B.57: Overview of AFGCN approximation results for DS-SST ordered by band.
Accuracy to 2 decimal places, MCC to 2 significant figures.

Band Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

0 69.87% 76.89% 60.54% 64.18% 0.45 0.56 0.24 0.30
1 69.55% 70.28% 65.09% 70.32% 0.44 0.38 0.26 0.33
2 86.37% 85.41% 88.12% 87.57% 0.52 0.49 0.56 0.55
3 86.28% 84.96% 86.01% 87.22% 0.44 0.43 0.46 0.46
4 89.42% 88.10% 89.37% 89.40% 0.22 0.18 0.22 0.22
5 87.00% 87.21% 86.44% 87.64% 0.28 0.26 0.21 0.32
6 89.99% 89.49% 87.87% 88.46% 0.58 0.56 0.58 0.61
7 93.93% 92.11% 94.86% 94.86% 0.71 0.65 0.83 0.83
8 97.93% 97.18% 99.87% 99.75% 0.84 0.76 1.0 0.99
9 99.46% 99.35% 100.00% 100.00% 0.89 0.87 1.0 1.0

78



Figure B.17: Overview of AFGCN approximation results for DS-STG
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other models also retain good performance in this setting.
The reduced balanced setting has results closer in accuracy terms than

we’ve seen previously, but taking MCC into account, the GCN-WITH-GR
slightly outperforms the pack as in the equally weighted setting.

There is a fair degree of overlap with semi-stable semantics in the case
of benchmark specific performance. We can see from Table B.58 that seven
benchmarks have similar patterns including ABA2AF, AFGen, Grounded,
Planning2AF, Stable, Watts-Strogatz, and admbuster benchmarks. There is
increased performance for all models on Barabasi-Albert graphs, while ER
graphs are unapproximable under these semantics. All GCN-based models
perform slightly better on LBA frameworks and all models perform slightly
worse on Traffic frameworks.

The size based results for stage semantics are shown in Table B.59. They
are consistent with what we have seen for previous semantics and do not
present a distinctive pattern for consideration.

Ideal semantics.
The ideal semantics are defined by the largest admissible set that is a member
of all preferred extensions. As such it is related to the grounded extension
and like the grounded extension one cannot distinguish between sceptical and
credulous acceptance as the ideal extension is unique.

Considering the results for sceptical acceptance using the equally weighted
setting, shown in Figure B.18, we find that despite the conceptual similarity
with grounded reasoning, the GR-ONLY model does not perform exception-
ally well under these semantics. Instead, the HYBRID-GCN-GR model has
overall best performance, followed by the GCN-WITH-GR model.

The picture for the complete balanced setting is the familiar one with the
GR-ONLY and HYBRID-GCN-GR models performing more or less equiva-
lently with the other GCN models following somewhat behind.

Unsurprisingly, this picture changes if we remove the two large grounded-
focused frameworks from the equation. This evaluation setting results in the
HYBRID-GCN-GR model outperforming the rest, which are relatively close
in performance.

The benchmark specific performance is nearly indistinguishable from that
under sceptical preferred semantics. All 11 benchmarks are sufficiently close
that it is hard to ascribe the minor deviations to anything but chance, except-
ing a slight reduction across the board for the ABA2AF benchmark. This
makes a certain amount of sense, as the overlap between the set of argu-
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Table B.58: Overview of AFGCN approximation results for DS-STG ordered by bench-
mark. Accuracy to 2 decimal places, MCC to 2 significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 98.36% 98.86% 98.72% 98.72% 0.49 0.66 0.67 0.67
AFGen 93.91% 93.97% 93.91% 93.91% 0.0 0.027 0.0 0.0
Barabasi-Albert 88.11% 89.35% 89.52% 90.30% 0.77 0.78 0.81 0.82
Erdős–Rényi 94.73% 94.73% 94.73% 94.73% 0.0 0.0 0.0 0.0
Grounded 97.92% 98.43% 100.00% 100.00% 0.73 0.78 1.0 1.0
LBA 81.96% 85.60% 57.96% 71.60% 0.61 0.69 0.046 0.33
Planning2AF 85.14% 86.41% 87.69% 87.14% 0.64 0.68 0.71 0.69
Stable 80.08% 81.14% 80.03% 80.26% 0.29 0.36 0.26 0.27
Traffic 63.27% 67.03% 64.97% 70.34% 0.21 0.35 0.29 0.35
Watts-Strogatz 81.92% 83.42% 81.92% 81.92% 0.0 0.23 0.0 0.0
admbuster 99.73% 99.95% 100.00% 100.00% 0.99 1.0 1.0 1.0

Table B.59: Overview of AFGCN approximation results for DS-STG ordered by band.
Accuracy to 2 decimal places, MCC to 2 significant figures.

Band Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

0 69.06% 76.87% 56.77% 69.21% 0.41 0.57 0.20 0.41
1 74.84% 75.57% 67.02% 73.87% 0.41 0.47 0.19 0.34
2 89.59% 90.25% 89.55% 89.80% 0.39 0.41 0.38 0.37
3 90.52% 90.51% 91.30% 90.99% 0.41 0.44 0.43 0.42
4 86.30% 86.74% 87.31% 87.27% 0.26 0.28 0.29 0.28
5 86.50% 87.64% 86.59% 86.82% 0.14 0.35 0.20 0.21
6 90.59% 91.10% 89.70% 89.70% 0.49 0.56 0.56 0.56
7 92.74% 93.46% 93.88% 93.88% 0.65 0.76 0.70 0.70
8 97.42% 98.40% 99.87% 99.86% 0.83 0.86 1.0 0.99
9 99.42% 99.61% 100.00% 100.00% 0.89 0.90 1.0 1.0
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Figure B.18: Overview of AFGCN approximation results for DS-ID
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ments contained in the largest admissible subset of all preferred extensions
of an argumentation framework will share much with the set of arguments
sceptically accepted for that framework under preferred semantics.

The size band based analysis, shown in B.61 shows the pattern of generally
ascending performance with size that we are used to, but the performance
at the low end is relatively good compared to some other semantics.

Appendix C. Additional Runtime Results

If we look at the median runtime to classify a single argument broken
down by semantics shown in Table C.62, we see that the difference per ar-
gument of including the grounded features is approximately 0.015ms. This
may be within the acceptable boundary for many applications. We can also
observe significant differences in the runtime for different semantics and a
general tendency for runtime to be slightly slower for sceptical than for cred-
ulous acceptance. See Figure C.19 for the distribution.

The difference in runtime by benchmark is nearly two orders of magnitude
between the fastest, Planning2AF, and the slowest, ABA2AF. While some
variation would be expected by benchmark, this is unexpectedly large. You
can roughly group the benchmarks into three classes: Fast, Medium, Slow.
Fast benchmarks include Planning2AF, Stable, admbuster, Watts-Strogatz,
and Barabasi-Albert. Medium include AFGen, ER, Grounded, LBA, and
Traffic. ABA2AF is in its own slow category. Interestingly, this partitioning
does not straightforwardly map to the classification performance for these
benchmarks. See Figure C.20 for an overview of the distribution.

Turning to the results by size band in Table C.64, we do see an obvious and
expected pattern. Large frameworks as expected result in longer runtimes
and this increases with size fairly reliably, although the band (547.0, 696.0] is
an outlier in this regard presumably because it contains more samples from
hard benchmarks than the other bands. See Figure C.21 for an overview of
the distribution.
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Table B.60: Overview of AFGCN approximation results DS-ID ordered by benchmark.
Accuracy to 2 decimal places, MCC to 2 significant figures.

Benchmark Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

ABA2AF 99.31% 99.13% 99.36% 99.39% 0.70 0.70 0.77 0.78
AFGen 93.96% 93.96% 93.96% 93.96% 0.0 0.0 0.0 0.0
Barabasi-Albert 85.89% 86.10% 87.03% 86.96% 0.72 0.71 0.77 0.74
Erdős–Rényi 96.04% 96.04% 96.04% 95.38% 0.67 0.67 0.67 0.65
Grounded 97.41% 97.94% 100.00% 99.99% 0.69 0.69 1.0 1.0
LBA 65.74% 73.68% 49.72% 69.76% 0.39 0.53 0.12 0.50
Planning2AF 83.23% 87.22% 88.12% 91.60% 0.61 0.69 0.72 0.80
Stable 80.63% 80.41% 79.24% 80.02% 0.34 0.30 0.23 0.27
Traffic 68.69% 67.59% 69.26% 65.95% 0.40 0.32 0.36 0.30
Watts-Strogatz 82.42% 82.17% 82.03% 82.36% 0.11 0.15 0.0 0.080
admbuster 99.90% 99.90% 100.00% 100.00% 1.0 1.0 1.0 1.0

Table B.61: Overview of AFGCN approximation results for DS-ID ordered by band. Ac-
curacy to 2 decimal places, MCC to 2 significant figures.

Band Accuracy MCC

NO-GR W/GR GR HYBR NO-GR W/GR GR HYBR

0 69.57% 72.74% 66.60% 72.31% 0.42 0.44 0.37 0.46
1 67.53% 69.86% 64.37% 65.67% 0.38 0.40 0.30 0.34
2 81.04% 82.79% 74.53% 84.22% 0.41 0.46 0.33 0.49
3 91.21% 91.74% 91.61% 91.81% 0.37 0.40 0.39 0.39
4 86.74% 89.62% 89.70% 90.92% 0.36 0.40 0.41 0.44
5 87.71% 87.38% 86.89% 87.51% 0.35 0.33 0.22 0.29
6 91.95% 91.85% 90.28% 92.21% 0.62 0.61 0.61 0.66
7 89.05% 89.70% 90.77% 90.77% 0.57 0.58 0.68 0.68
8 97.85% 98.28% 99.89% 99.88% 0.84 0.83 1.0 1.0
9 99.46% 99.51% 100.00% 100.00% 0.87 0.88 1.0 1.0
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(a) w/GR

(b) No GR

Figure C.19: Runtime distribution by semantics for the AFGCN solver experiments
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(a) w/GR

(b) No GR

Figure C.20: Runtime distribution by benchmark for the AFGCN solver experiments
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(a) w/GR

(b) No GR

Figure C.21: Runtime distribution by size for the AFGCN solver experiments
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Table C.62: Overview of AFGCN runtime results ordered by semantics. Median runtime
given. Results in seconds.

Semantics Runtime w/GR Runtime No GR

DC-CO 0.027 0.020
DC-PR 0.031 0.022
DC-SST 0.031 0.021
DC-ST 0.029 0.020
DC-STG 0.029 0.020
DS-CO 0.029 0.022
DS-ID 0.042 0.031
DS-PR 0.028 0.022
DS-SST 0.029 0.019
DS-ST 0.029 0.020
DS-STG 0.027 0.020

Table C.63: Overview of AFGCN runtime results ordered by benchmark. Median given.
Results in seconds.

Benchmark Runtime w/GR Runtime No GR

ABA2AF 1.79 1.32
AFGen 0.06 0.05
Barabasi-Albert 0.01 0.01
Erdos-Renyi 0.03 0.03
Grounded 1.84 0.55
LBA 0.01 0.01
Planning2AF 0.02 0.01
Stable 0.04 0.02
Traffic 0.01 0.01
Watts-Strogatz 0.02 0.02
admbuster 2.61 0.10
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Table C.64: Overview of AFGCN runtime results ordered by size. Median given. Results
in seconds.

Band Runtime w/GR Runtime No GR

(4.999, 19.0] 0.01 0.01
(19.0, 30.0] 0.01 0.01
(30.0, 51.0] 0.01 0.01
(51.0, 99.0] 0.02 0.02
(99.0, 195.5] 0.02 0.02
(195.5, 380.0] 0.03 0.02
(380.0, 547.0] 0.10 0.04
(547.0, 696.0] 1.85 1.35
(696.0, 1992.0] 1.02 0.41
(1992.0, 10000.0] 3.69 0.40
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