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Abstract

Advances in scheduling theory have given designers of control systems greater flexibility over their choice of timing requirements. This

could lead to systems becoming more responsive and more maintainable. However, experience has shown that engineers find it difficult to

exploit these advantages due to the difficulty in determining the ‘real’ timing requirements of systems and therefore the techniques have

delivered less benefit than expected. Part of the reason for this is that the models used by engineers when developing systems do not allow for

emergent properties such as timing. The paper presents an approach and framework for addressing the problem of identifying an appropriate

and valid set of timing requirements in order that the best use can be made of the advances in scheduling theory by the use of modelling

techniques that allow for emergent properties such as timing behaviour.
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1. Introduction

This paper addresses the perennial problem of how to

identify an appropriate and valid set of timing requirements

for a hard real-time system. Our main concern is with

systems where failure(s) to meet timing requirements can

lead to dangerous behaviour, and may ultimately lead to loss

of life. Over the years, research on real-time systems has

evolved techniques which provide greater flexibility in

scheduling whilst still providing a means for guaranteeing

that timing requirements are met [1,2]. The increased

flexibility was expected to give many benefits, including

more efficient use of resources and simpler maintenance of

schedules when changes to the control software are made.

Maintaining schedules is often a costly and error prone

manual process, therefore these techniques have the

potential to offer significant economic benefits as well as

engineering benefits.

Experience has shown that engineers find it difficult to

exploit this increased flexibility and hence the techniques

have delivered less benefit than expected. Based on our own

experience and that of others in industry [3,14], the main

cause of the shortfall in benefit gained is an absence of

information about the true timing requirements which is

needed to make best use of the approaches. In many cases

current systems are developed with simple timing require-

ments, such as a timing margin to be achieved. In other

cases the timing requirements are largely historic, and are

simply expressed in terms of iteration rates, which have

been proven effective in previous designs. Despite the

changing contexts between systems, this strategy is

normally successful because the requirements are over

conservative, e.g. update rates specified are much faster than

needed. Even where more modern control law design

environments (e.g. Matlab/Simulink [4]) are used the

control models are often produced assuming a particular

computational model. For example a 50 ms cycle/20 Hz

bandwidth is chosen because there is a regular clock tick in

the system with a period of 25 ms (i.e. 40 Hz) and therefore

it is easier to release tasks at a harmonic of this frequency.

An often-used way to select timing requirements is the

Nyquist criterion [6]. Nyquist’s criterion places a lower

bound on the sampling period—equal to twice the highest

input frequency. This highest frequency can be open ended,

for example a square wave has frequency components up to

infinity so leaving an unanswered question of where would

we draw the line. Similarly while a plant model may be

limited to order N; the actual plant would be much more

complicated. This could result in a sampling rate that is too
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high. Therefore practitioners normally assume the input

signal can be represented by a frequency range within which

N% of the intensity exists. Also, Nyquist’s criterion is based

on the assumption that the system under control is time

invariant which in the case of a computer controlled system

is not valid. Despite these assumptions, the Nyquist’s

criterion does not lead to instability as long as the time

variations in when sampling occurs does not cause the

bound on the sampling rate derived using Nyquist’s

criterion to be exceeded.

The work contained in this paper does not purpose an

alternative to the Nyquist’s criterion but instead a

complementary method. Even with Nyquist’s criterion,

there is a need to choose an actual sampling rate since the

criterion only provides a lower bound on the rate.

A major contributor to the methods using for selecting

timing requirements is that the research and into the

practical use of control theory and scheduling theory have

largely been carried out in isolation [5]. Thus, for example,

work on advanced control regimes such as H1 [6], which

might benefit from more sophisticated scheduling has not

been the subject of joint work between control engineers

and real-time systems researchers. Perhaps as a conse-

quence there are few examples of H1 being used in real-

time embedded control systems.

The paper presents an approach and framework for

addressing the problem of identifying an appropriate and

valid set of timing requirements in order that the best use

can be made of the advances in scheduling theory. The

essence of the approach is to use component-based models

that allow for emergent properties of systems, in this case

timing, so that the models are more representative of how a

real system would actually behave. Then, heuristic search

techniques are used to explore the design space and to

identify timing requirements which enable properties such

as control stability to be achieved, thus deriving and

validating the requirements against more fundamental

properties of the control system. The advantage of using

heuristic search techniques instead of traditional model-

based design approaches, such as root locus [6], include it

allows many properties and effects to be considered at the

same time and their demands on the system to be traded-off

against one another.

The work presented here is intended for use in a range of

control problems, but is illustrated with the Proportional

Integral Differential (PID) control approach [6].

The rest of the paper is structured as follows. Section 2

gives further background on the control techniques to be

used in the context of this work. It also provides a technical

motivation (as opposed to the ‘economic’ motivation

outlined above) for seeking a systematic approach to

deriving timing requirements. Section 3 presents the

approach outlining the heuristics used, and the costs of

evaluating the requirements. Section 4 contains two simple

case studies which have been used to evaluate the approach,

as well as presenting a discussion of how the resulting

timing requirements may be used. Finally, Section 5 gives a

summary and suggests possible future developments for the

work.

2. Background and motivation

All scheduling approaches require a minimum set of

information about timing requirements so that an appro-

priate scheduler can be produced. For most scheduling

approaches the minimum set of information for any

approach is the deadline and period of tasks [7,8]. This

section explains why these requirements are important in the

context of PID loops and how they can be generated by

considering basic control properties.

2.1. PID loop

The principal purpose of a PID loop is to ensure the

controller meets its objectives. Objectives of the controller

could include responsiveness to input, stability, accuracy

and limits on data are maintained. Fig. 1 depicts a typical

PID loop, in a control system, being used to control the

operation of a plant. The Figure shows the key aspects and

components of the controller. There is only one input to, and

one output from, the control system. The output of the

control system is the plant input. The control system input is

the difference between the input demand (typically from the

operator of the plant) and the plant’s actual output, and it is

referred to as the error (in this paper error is defined as the

difference between actual and desired plant state).

In the computer-based approach, the Input Demand and

the Actual Plant Output are usually analogue signals. The

computer performs the rest of the processing in the digital

domain. Converters are used to sample the analogue signals,

e.g. to produce the Error input, and then converted back to

analogue values at the output. Converting back to an

analogue signal is often referred to as digital to analogue

conversion, or de-sampling.

The controller (PID loop) works by adding scaled

versions of the error, differential of the error and integral

of the error to achieve the desired control response. The

scale factors are KP for the proportional term, KI for

the integral term, and KD for the differential term.

Fig. 1. Typical PID loop.
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The integration term is used to control steady state error

(higher values of KI reduces steady errors) but too high a

value can lead to instability. Assuming the value of the

differentiation term ðKDÞ is not too high, it improves the

speed of closed loop response and increases the stability

margin. The ‘design problem’ at this level is one of

choosing the gains ðKP; KI; KDÞ to achieve (approximately)

the desired control response.

In industrial practice it is common for a controller to be

developed as a continuous system based on the system’s

response in the frequency domain. Often modelling

packages or special purpose plant simulations are used to

validate the requirements. If a computer-based implemen-

tation is to be used, then once the requirements have been

established in the continuous domain they are converted to

the discrete domain. Typically the conversion involves

calculating the PID loop gains ðKP; KI; KDÞ based on the

assumption that a constant sampling period is used. This

means the conversion is performed based on an idealised

model of the computer system. In other words the

conversion uses unrealistic assumptions, e.g. infinite

processing bandwidth and zero jitter in sampling the inputs

(jitter is the variation in time when an action occurs between

one cycle of the controller and the next). Our approach

addresses this shortcoming by taking into account the

constraints of real computer systems, and thus enables valid

and realistic requirements to be produced. To explain how

this is done the rest of this section explains in more detail the

relationship between computational properties such as jitter

and control properties such as stability.

2.2. Scheduling properties

It is, of course, essential that the sampling, core functions

and de-sampling tasks are executed in that order. Other

work, e.g. [7,9], has shown how to specify and control the

precedence of functionality for a PID loop to ensure that

these requirements are met. More importantly for our

discussions in this paper, sampling and de-sampling will be

subject to jitter due to limits on the accuracy of clocks, and

the interference of other software running on the processor.

Thus the true sampling times will vary, and the simple

assumptions of fixed and precise iteration rates used in

validating the control model will not be representative of the

computations, which occur in practice.

Fig. 2 presents properties for a typical transaction of a

control loop that can be controlled by the scheduler. The

three tasks are sensor capture, calculation and actuation

output. The figure shows:

† how each task has jitter comprising both release and

execution jitter as well as an invariant in its execution

time

† there is jitter on both sensor capture (referred to as

sampling jitter) and actuation (referred to as desampling

jitter),

† a task must be completed before the next task in the

transaction starts its execution so that the next task can

use fresh data,

† the response time of a transaction is equal to the time

between the release of the first task and the completion of

the last task (the worst-case response time for a

transaction must be less than its deadline), and

† the period of a task is the time between two

consecutive earliest releases.

Fig. 3 shows the earliest and latest release, earliest start

of execution, and earliest and latest completion for an

individual task. The following are a number of properties

related to the diagram.

1. Each task has a variation in execution time in the range

[BCET, WCET].

2. Each task suffers from release jitter.

3. Each task has a deadline (denoted by D) greater than its

WCET.

2.3. Control and scheduling interactions

The classic definition of stability in general terms is that a

system is stable if bounded inputs return outputs that remain

bounded for all time [6]. Based on this definition,

Fig. 2. Scheduling properties for a transaction.
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the stability of a control system can be judged on its

responsiveness (time taken to settle to N% of the intended

value) and its degree of overshoot (the amount by which a

value exceeds that intended). There are three basic

phenomena that can lead to a system being unstable.

These are:

† slow and irregular responses to stimuli caused by finite

update rates and jitter;

† errors within calculations, e.g. due to sampling inputs at

the ‘wrong’ time;

† the gain at the crossover frequency being greater than

unity.

The stability of the system is related to the frequency

response of the control system (and hence the calibration

settings for the control loop) as well as the other two

properties discussed. From a scheduling perspective, only

the responsiveness and size of the errors can be controlled

since the gain is a functional property of the control

software. The following subsections address these issues as

well as a discussion of how these relate to timing

requirements.

2.3.1. Responsiveness

The responsiveness of the system is dependent on two

factors: the degree of damping that the PID loop exerts on

the input parameters and the sampling rate. The first of these

is a control issue and the second a scheduling issue. With

respect to the sampling rate, too fast a rate uses valuable

resources unnecessarily but a slower rate increases the time

before the PID loop receives changes in the Input Demand

and hence increases the response time. Therefore a trade-off

needs to be made between the sampling rate, responsiveness

and resource availability for other tasks.

2.3.2. Error

The error in the system is dependent on two factors: the

time to respond to changes in input stimuli (as previously

discussed in Section 2.3.1), and effects due to sampling jitter

and end-to-end response time. The end-to-end response time

of the control loop introduces error because the output at

any time should relate to the input at that time, therefore

latency introduces error. The sampling jitter introduces

errors due to the differentiation and integration calculations

assuming a constant period. The de-sampling jitter intro-

duces error because in the feedback loop (and subsequently

the control loop) there is variation when the exact output is

made so it introduces error in the calculations of the

differentiation and integration of the difference between the

input and output signals.

An example of how errors originate is given by showing

how input jitter affects the differentiation function of the

PID loop. A differentiation is normally approximated using

Eq. (1). However, since the gain factors for the PID loop are

dependent on the sampling period, then Dt is not actually

altered in the calculations, and this leads to error. Consider a

situation as shown in Eq. (2) where dx=dt is actually 2.

Eq. (3) shows the effect of the previous sample ðxðt 2 DtÞÞ

being early by half a sampling period. Whereas, Eq. (4)

shows the effect of the current sample being taken half a

sampling period late. In both examples the error caused by

jitter is 50%, this results in a difference between the two of a

factor of 3. Thus variations in sampling time caused by

limited precision of the system clock, and by interference

from other tasks, can cause computational errors, and may

lead to instability.

In our experience, interference is a particular problem.

For example, even if the tasks related to control are

scheduled at much higher rates than strictly needed,

dependent on how the system is scheduled and the rest of

the system’s workload, the amount of jitter can still be

significant. Hence control system performance is adversely

affected. The timing properties and requirements of ‘other’

tasks will necessitate trade-offs in the timing requirements

of the system. For instance, if the tasks’ utilisation of the

processing resource is low, then the control tasks can be

executed at a higher rate. However, if the utilisation is high,

then the control tasks may have to be executed at a slower

rate and hence their jitter controlled more carefully. In

addition for the high utilisation case, the timing require-

ments and properties of the ‘other’ tasks would have to be

managed more stringently.

dx

dt
<

xðtÞ2 xðt 2 DtÞ

Dt
ð1Þ

dx

dt
<

xðtÞ2 xðt 2 DtÞ

Dt
¼ 2 ð2Þ

dx

dt
<

xðtÞ2 xðt 2 0:5DtÞ

Dt
¼ 1 ð3Þ

Fig. 3. Scheduling properties for a task.
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dx

dt
<

xðt þ 0:5DTÞ2 xðt 2 DtÞ

Dt
¼ 3 ð4Þ

where

t is the current time,

Dt is the sampling period,

xðtÞ is the value of the variable to be differentiated at time

t; and,

dx=dt is the result of the differentiation.

2.3.3. Summary of interactions

In summary, it is important for reasons of stability and

responsiveness that appropriate values of period and

deadline are specified and met for the control loop. To be

effective, the approach to setting these requirements must

allow for the effects of the implementation (where possible

independence of the scheduling policy used should be

maintained), and must be carried out in conjunction with

deriving PID loop gains, otherwise the resulting system may

be unstable, or fail to meet its design objectives in some

other way. For any given control loop, there are a set of

possible timing requirements that can achieve the desired

results. These requirements can vary from short periods with

deadline equal to period, to longer periods but deadlines

being less than their period. Section 3 presents our

framework for deriving timing requirements.

3. Modelling approach and framework for evaluating
timing requirements

For the purpose of this work, no specific scheduling

approach is assumed. Instead, it is assumed that the

‘scheduling problem’ can be divided into two parts:

devising a set of timing requirements and verifying that a

chosen schedule meets those requirements. There are

several solutions to the latter problem, e.g. [1,7], so, for

the purposes of this paper, we consider this to be a solved

problem, and focus on the issue of generating requirements.

Our approach seeks to build on the capability of existing

tools for developing control laws, and to exploit the power

of heuristic search to explore the ‘design space’ produced by

the interplay of task periods, deadlines and jitter as well as

the loop gains ðKP; KI; KDÞ:

There are three significant parts to the framework that has

been developed in MATLAB [4]:

1. Modelling the PID Operation

2. Tuning the PID loop

3. Determining the valid set of timing requirements by

stepping through a range of combinations of periods

and deadlines and using the previous two stages to

decide whether the combination meets the criteria for

the control system.

The following subsections discuss each of these parts in

more depth.

3.1. Modelling the PID operation

The MATLAB model for simulating a classical PID

control loop is shown in Fig. 4. The key elements here are

that the gains of the PID loop can be fixed or programmable,

and that the timing of the sensor and actuation is controlled

by the representative sampling signal produced by a discrete

pulse generator. The purpose of the signal is to simulate the

varying jitter on when actions (sampling and actuation)

occur as shown in Fig. 2. That is, the signal is used to control

when signals are converted from the continuous to the

discrete domain and vice versa. As such the signal was

generated every T þ d time units, where T is the ideal

sampling period, d is a random value in the range ½0; JMAX�

and JMAX is the maximum possible jitter according to Eq.

(5). The framework was developed so that d could be chosen

using one of two distributions, Normal and Uniform.

D ¼ BCET þ JMAX ð5Þ

The input IðtÞ to the model is currently a ‘pure’ signal in that

the framework does not automatically add disturbances such

as noise. However, it would be straightforward for the signal

Fig. 4. MATLAB model of the framework.
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source to be replaced by one with a noise generator adding

to the demand signal. The framework also contains a plant

model which can be anything from a ‘real’ system to a

computer-based model as long as it meets our assumptions

of a single input and single output.

This simulation model is used to explore the performance

of the control system with a given set of parameters, e.g.

values for KP; KI; KD; deadlines, etc.

3.2. Tuning the PID loop

It is possible to use PID loop gains in the discrete domain

that were originally established in the continuous domain

but first they must be transformed using relationships based

on the sampling period and the discretisation method. In the

context of our approach, the relationships are as shown in

Table 1.

However, in the framework produced, an option is to

tune the actual gains for any given period and/or

deadline. This is where we make use of heuristic

approaches, specifically genetic algorithms [10] config-

ured to search the design space for a set of valid and

appropriate requirements. Heuristic approaches are gen-

erally based on a recursive procedure for mutating (or

tuning) a design solution (with the aim of achieving an

‘optimum’ solution) based on calculations of a fitness

function that is used to judge whether the design solution

meets the chosen criteria. The basic differences between

the types of heuristic approaches are the nature of the

fitness functions and the mechanisms used to tune the

design solution based on the results of the fitness

function calculation.

The advantage of using heuristic search techniques

instead of traditional model-based design approaches, such

as root locus [6], include that it allows many properties and

effects to be considered at the same time and their demands

on the system to be traded-off against one another.

Specifically, the tuning is performed using a genetic

algorithm whose inputs are:

1. The saturation value for the actuator—i.e. the largest

magnitude of output allowed from the controller.

2. The maximum allowed overshoot.

3. The maximum and minimum values of the input demand.

This can be used for calculating the maximum controller

response allowed on a unit step input as shown in Eq. (6).

Omax ¼
saturation value

Imax 2 Imin

ð6Þ

where

Omax is the maximum allowed controller response

based on a unit step input,

Imax is the max value for the step input,

Imin is the min value for the step input.

4. The period of the sensor capture task—i.e. the sampling

period. It is assumed that other tasks in the transaction

have a rate that is harmonic of sensor capture task’s rate.

5. The deadline—used to calculate JMAX refer to Eq. (5) for

details.

6. The length of the simulation—the longer this is, the more

accurate the calculations are.

Each time the design space is searched (a simulation run)

the fitness of the result is assessed, and results are retained if

they are ‘better’ than previous results. This judgement is

made according to a fitness function, so-called by analogy

with ‘survival of the fittest’. There is a substantial literature

on design of fitness functions, e.g. Ref. [10]. Our work has

built on the standard results, but modified them slightly for

our purposes.

The fitness function used is modified from the standard

genetic algorithms in that tunings that cause the PID

controller to saturate the actuator score zero, i.e. they are

marked as sufficiently ‘unfit’ that they will not survive. In all

other cases Eq. (7) is used. This approach prevents the

specifics of the optimisation of the chosen fitness function

allowing unacceptable cases through. Hence the integrity of

the results is assured and the only impact of the chosen

fitness function is the selection and prioritisation of the

attributes against which quality can be judged [13,15].

In Eq. (7), the GAT term is a penalty for overshooting,

proportional to the length of time spent outside the bound. G

is a weighting factor that compensates for an individual

system’s measurement units (e.g. Newtons) and scale of

input/output. The value of G is chosen such that GAT is

generally an order of magnitude less than
Ð

t2lOðtÞ2 IðtÞldt:

Trails have shown that the timing requirements generated

using the framework are relatively insensitive to the exact

value. In the examples considered within this paper, a value

of 1000 is chosen for G:

It is noted that most control systems utilise anti-windup

protection to deal with overshoots by limiting the outputs.

However, for the context of this work, the system is to be

tuned to keep the outputs within range instead of relying on

protection mechanisms and that the mechanisms should

only be used to ensure failsafe operation. The integral term

is intended to be a measure of how good the response is. The

error, EðtÞð¼ OðtÞ2 IðtÞÞ; becomes rapidly more important

Table 1

Transformations between continuous and discrete domains

Parameter in continuous domain Parameter in discrete domain

(sampling period ¼ T)

KP KP

KI T £ KI

KD KD=T
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as time increases to reward tunings that settle fast.

F ¼
1

Ð
t2lOðtÞ2 IðtÞldt þ GAT

ð7Þ

where units of time are seconds,

F is the output of the fitness function,

T is the sampling period, t is the time in the range [0,

simulation length],

OðtÞ is the observed plant output at time t;

IðtÞ is the input demand at time t; G is a weighting factor,

A is the number of time periods for which the process

variable was above the overshoot bound.

The tuning approach for each combination of deadline

and period consists of two steps. Firstly the genetic

algorithm mutates the previous set of PID loop gains

based on the output of the fitness function. Then, the

MATLAB model is exercised with the new PID loop gains.

While the MATLAB model is executing, the parameters of

interest are returned (e.g. A from Eq. (7)). These parameters

of interest can then be used to calculate the fitness function

again in the first step. The two steps are recursively followed

with a goal of optimising control system performance until

the allowed simulation time is reached. The optimisation

strategy means that the longer the simulation time the better

the results obtained.

During the tuning of the PID loops’ gains, the need for

appropriate control behaviour (stability, overshoot and

responsiveness) is accounted for. Initially, stability was

measured using the Routh–Horowitz Criterion [6] by

deriving a system model based on the step response and

then performing root-locus assessment of where the poles

and zeros exist to see if the Criterion is met. However,

experimentation showed that responsiveness and overshoot

provided a faster and more controllable assessment, and that

these parameters relate to whether the system is stable as

defined in Section 1.

3.3. Overall evaluation technique

Before the evaluation, the user, via a provided interface,

defines the limits for the period of individual activities

within the system (e.g. sampling of signals) and the size of

steps taken between the limits (e.g. periods between zero

and ten might be evaluated in steps of one; resulting in

evaluations being performed at 0,1,2,…,9,10). The valid set

of timing requirements, as chosen by the fitness function, is

then found by systematically searching the possible set of

periods ð½Tmin;Tmax�Þ and deadlines ð½0;Tcurrent�Þ for values

where the tuning algorithm can meet the criteria discussed

in Section 3.2. (Tcurrent refers to the current period being

evaluated.) The searching is performed by stepping through

the possible range of periods insteps defined by the user, e.g.

5% steps. Given a set of periods and deadlines, then other

requirements can be calculated using the equations defined

in Section 2.2. For example, the maximum overall jitter can

be calculated using the relationships defined in Eq. (5), and

later shown to be met based on its individual components of

release jitter and execution jitter using properties (such as

execution profiles) from the actual systems. The main input

to the system used during the evaluation is a step response,

which was chosen because of its wide frequency response.

4. Evaluation

In this paper, two examples are used to evaluate the

technique. Each example is chosen because it represents a

commonly occurring class of control problem. Firstly, a car

cruise control system [11] is used because it normally

operates in a stable fashion. Thus it represents a class of

systems, e.g. engine control systems, and flight control

systems for civil aircraft. Secondly, an inverted pendulum

[12] is used because it normally operates in an unstable

fashion with stability only being possible with external

control assistance. Therefore it represents an important,

albeit rather smaller, class of systems, e.g. military fast jet

flight control systems.

4.1. Case study 1—cruise control

The plant model (i.e. the car) can be represented by the

first-order system depicted in Fig. 5 and mathematically

using Eq. (8). For this example, the input, FðtÞ; is the

accelerating force in Newtons, and the output, vðtÞ; is the

velocity in metres per second. The variable under control is

the velocity.

vðsÞ

FðsÞ
¼

1

1000s þ 50
ð8Þ

Due to the fact the car is an integrating system, it has a slow

over-damped response. An example step response from zero

to one at time zero is shown in Fig. 6. The input value is a

step function of input from zero to one at time zero. The line

at output ¼ 1.1 represents the overshoot limit of 10%. There

are also lines at 5% above and below the input demand of

unity output. Fig. 6 illustrates a settling time of approxi-

mately 5 seconds.

The evaluation was performed on a PC running Linux

with an Athlon 700 MHz processor using the approach

described in Section 3.3. The total evaluation time was

approximately 3 hours. (It should be noted that the

Fig. 5. Model of a car’s velocity.
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simulation time can be adjusted as described in Section 3.2,

but the longer the simulation time the better the results

obtained.) Two graphs (Figs. 7 and 8) were produced that

combined the results of all the runs. In all graphs, a dot

indicates that the system at that period and deadline passed

the suitability test (i.e. test for overshoot and responsiveness

limits was met, and the system was stable) and hence

represents a valid combination of period, deadline and

gains, and a cross indicates that it did not pass the suitability

test.

Fig. 7 illustrates the effect of sampling jitter at each of a

range of periods with the separation between sample and

actuation being held constant at 0.1 seconds i.e. assuming a

100 ms response time for the tasks in the system that

execute between the sampling and activities. Fig. 8

illustrates the effect of sampling jitter at each of a range

of periods and the effect of variable latency (chosen using a

random distribution) between sample and actuation.

The choice of actual requirements will depend on other

factors, e.g. an assessment of the practicality of meeting the

requirements given the other load on the processor. For

example, a period of 0.5 and a deadline of 0.2 might be

chosen because they allow other timing requirements to be

met whilst allowing some margin for ‘relaxing’ require-

ments without causing instability.

Fig. 7, and to a lesser extent Fig. 8, shows the two effects

that were anticipated:

1. For periods up to 0.7 seconds, as the period increases the

maximum deadline at which the system meets its criteria

increases at a similar rate. The increasing maximum

deadline is due to the possible range of deadlines

increasing (since our evaluation only considers situations

where deadline is less than or equal to period), and the

relatively small period means errors due to the difference

between the actual input and the current sampled value

are small and hence the tuner can counteract the effects

of errors due to jitter.

2. For periods over 1 seconds, as the period increases the

maximum deadline at which the system meets its

Fig. 6. Step response of the car system.

Fig. 7. Deadline versus period with constant separation.

Fig. 8. Deadline versus period with variable separation.

Fig. 9. Tolerated deadline over period versus period.
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criteria reduces. The reason is the tuner can only

counteract the effects of the increasing difference

between actual and sampled input (and the subsequent

errors caused) by reducing jitter.

In the range between (i.e. period is greater than

0.7 seconds but less than 1 seconds), the maximum deadline

remains fairly steady as the two effects counteract each

other.

Fig. 9 further shows the relationship between the ratios of

maximum possible deadline with period (y-axis) as the

period (x-axis) increases.

4.2. Case study 2—inverted pendulum

The plant model (i.e. inverted pendulum) [12] can be

mathematically represented by a third-order system using

Eq. (9). The controller output represents the speed of the

cart (in m/s), vðtÞ; and the variable under control is the angle

of the pendulum from the vertical, uðtÞ: The inverted

pendulum is unstable without control, and as such is more

difficult than the car example to control. The pendulum is

made of a stiff rod and a weight, balanced, inverted, on a cart

as illustrated in Fig. 10.

uðsÞ

vðsÞ
¼

4:546s

s3 þ 0:182s2 2 31:182s 2 4:454
ð9Þ

The transfer function model being used for the inverted

pendulum has been simplified so that it can be represented

as a linear equation. It therefore neglects non-linear effects

such as the weight hitting the surface that the cart is running

on, and it has been optimised for situations where the

pendulum does not travel more than a few degrees away

from the vertical. Fig. 11 shows the step response for this

pendulum system when controlled by a suitably tuned PID

controller. The period of the controller was set very small

for this tuning. The tuning was performed with a 50%

overshoot limit, and the settling boundary of 5% either side

of unity output is shown on the graph.

Again, the evaluation was performed on a PC running

Linux with an Athlon 700 MHz processor using the

approach described in Section 3.3. The total evaluation

time was approximately 12 h. Two graphs (Figs. 12 and 13)

were obtained from the framework. In both cases, the PID

loop gains were not re-tuned for each period because this

gave wider variations in behaviour than for a stable system.

Retuning every time would have meant comparison

between the results at different periods would have been

more difficult. Fig. 12 shows the results for constant

separation (at 0.5 ms) between sampling and actuation.

Fig. 13 shows the results for varying the separation (chosen

using a random distribution) between sampling and

actuation. Again, in the figures a dot indicates a combination

of deadline, period and gains that are valid, and a cross

indicates where the period, deadline and gains are not a

valid combination.

The effects shown for the Figures generated in this case

study are similar to those for the previous one in Section 4.1.

However, a key difference is the system can tolerate a higher

Fig. 10. Inverted pendulum.

Fig. 11. Step response of controlled pendulum system.

Fig. 12. Deadline versus period with variable sampling jitter.

I. Bate et al. / Microprocessors and Microsystems 27 (2003) 159–169 167



ratio of deadline to period. The reason for this is the

behavioural dynamics of the system under control.

4.3. Use of the results

The paper has presented a means by which timing

requirements can be determined. The results obtained can be

used in many ways. For instance on some projects, a

decision may be made not to operate the system at the limits

of its ability. For example, if at period T the maximum

deadline that has been shown to meet the criteria is D; then a

deadline of 0:8D could be chosen in-order to give a ‘safety’

margin. Another way of ensuring the system is not operating

at its limits is to input objectives into the framework

objectives beyond that actually needed. This would mean

the valid solutions that emerge would be on the safe side.

Based on the assumption that a shorter period means we

can have a longer deadline and vice versa, the results can be

used to help make the system schedulable or scaleable. For

instance dependent on the timing requirements associated

with the rest of the system, then a larger period may be

beneficial in helping reduce processor utilisation. On the

other hand for systems with many tasks having short

deadlines (making scheduling difficult unless the tasks are

phased), it may be better to have a shorter period so that the

deadline is longer.

Future work could look at applying genetic algorithms

across a number of control loop(s) at the same time as well

as other tasks in-order to search for the optimum balance of

timing requirements for scheduling and ability to scale the

system.

5. Summary and future work

In this paper, a framework for deriving and evaluating

the timing requirements for control systems has been

presented. For a given control system, the framework

automatically evaluates the effect of jitter and period

on control properties such as responsiveness and overshoots

in-order to derive the set of requirements that meet our

criteria, including stability. In other words, it addresses in an

integrated way the issue of evaluating the effectiveness of

the control system, and the possible realisation of the

controller on a computer system. The use of the approach

has been illustrated for two very different examples: a car

cruise control system that is inherently stable and an

inverted pendulum that is unstable without external control.

The work has shown that for a particular system, the

control criteria to be satisfied can be met, according to the

chosen fitness function, with a wide range of timing

requirements. The ability to select the requirements from

a variable set can be used to optimise the timing behaviour

of the overall system to improve schedulability and

scalability.

In general, the advantage of our approach is that it

enables control and scheduling issues to be addressed in an

integrated way, producing valid and appropriate require-

ments. If it fulfils its promise then there should be less

problems of ‘mismatch’ between the control systems

designers and the software engineers who have to

implement their requirements. More specifically, the use

of the approach make it less likely that control problems,

e.g. instability, are discovered in system testing because the

software engineers were working to inappropriate or

incomplete requirements. The tools we have developed

provide a ‘proof of concept’.

Future work could include: determining the optimum

balance of timing requirements across multiple control

loops and allowing for other resource contentions, further

case studies, allowing for important effects such as

disturbances (e.g. noise) and non-linear effects, and

expanding the framework for so called robust controllers

such as H 1 [6]. A robust controller is where the effects of

time varying behaviour (e.g. jitter on sampling and

actuation) and missed samples are accounted for. The

disadvantages of robust controllers are: the extra processing

needed due to their increased mathematical complexity, the

difficulty in assuring their behaviour in all situations and

their use in the real-time systems domain is not normal

practice. Supporting robust controllers in the framework

would allow comparisons to be performed between the

relative effectiveness of PID loops versus robust controllers,

and thus give designers a more effective tool for selecting

control algorithms and establishing the requirements for

their software implementation.
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