

Journal Track, published in Artificial Intelligence, 2011

Peter Nightingale
University of St Andrews

 Introduced by J.-C. Régin (1996)
 Has become one of the key global constraints

in CP
 EGCC(X, V, C)
◦ X is a vector of target variables
◦ V is a vector of domain values of interest
◦ C is a vector of cardinality variables

 For each value Vi with cardinality variable Ci,
there are Ci occurrences of Vi in X in any
solution
◦ Other values are free

 Car Sequencing problem

 We need five cars of type A, two cars of type
B, one of type C, two of type D

 EGCC(Seq, [A,B,C,D], [5,2,1,2])

 One solution for this constraint:

 Car Sequencing also has sub-sequence
constraints
◦ These can also be expressed with EGCC – models A

and AB in experiments

Seq= A B A C A B A D A D

 Paper is partly empirical survey of existing
algorithms....
◦ Quimper’s algorithm vs Régin’s algorithm

◦ Three algorithms for cardinality variables

◦ Many more

 ... And partly new optimisations for EGCC
◦ Dynamic partitioning

◦ Dynamic triggers

 Help future solver implementors
◦ Simple algorithms better than complex ones

 Despite big-O complexity

◦ Insight into which parts of code to optimise

 Despite big-O complexity, again

◦ How to prune cardinality variables

 Techniques for EGCC might apply elsewhere
◦ Dynamic partitioning for graph/network constraints

Sketch of Régin’s
algorithm:

Phase 1

Find a maximal
(integral) flow in a
network representing
the EGCC constraint

The maximal flow
corresponds to a
satisfying assignment
of the target variables

Sketch of Régin’s
algorithm:

Phase 1

We have a maximal
flow, edges in the flow
are reversed.

Phase 2

Compute the Strongly
Connected
Components (SCCs)

Value->Variable edges
crossing from one SCC
to another must be
pruned

 Two algorithms

 Régin (1996)
◦ Finds one maximal flow, SCC analysis once

◦ Network flow, O(n2d)

 Quimper et al (2004)
◦ Divides the EGCC into two constraints for the lower

and upper bounds (on cardinality)

◦ Finds two matchings and runs SCC analysis twice

◦ Bipartite matching, O(n1.5d)

Same search, comparing node rate
Régin’s algorithm much more efficient

 Why is Régin’s algorithm faster?

1. First phase of both algorithms dominate the
big-O analyses

 However first phase is incremental and in
practice very quick

 Second phase (SCC analysis) takes most of the
time

 First phase less than 15% in profiles

 Quimper’s algorithm does SCC analysis twice!

2. Simple BFS flow algorithm faster than Hopcroft
Karp or similar on ‘small’ problems (see
AllDifferent)

 When the network splits
into multiple SCCs,
partition the constraint

 Changes to variables
only trigger the relevant
cells

 Changes SCC analysis
from Θ(nd) to O(nd)

 Makes SCC incremental x1,x2,x3

1,2
x4

3,4

Very useful optimization

 Works well for AllDifferent and EGCC

 Promising for other graph- or network-based
constraints, e.g.
◦ Multiset-Same or Same-With-Cardinalities

◦ Graph connected constraint – partitions at the
bridge edges

◦ If the underlying graph or network partitions, split
the constraint

 Katriel identified important values of target
variables

 If a value is not important, it will not cause
any propagation

 Approx 3n values (n target variables)

 Retrieve approximation of the important
value set from SCC analysis – very cheap

 When EGCC triggered, check if any important
values removed

 Doesn’t help much – except magic sequence with a very
unusual structure

 Still triggers for some value of each variable

 Might be valuable with very large domains of target variables

 Simple – for each value:
◦ Count occurrences in the domains of the target

variables (upper bound)

◦ Count target variables assigned to the value (lower
bound)

 Sum – simple plus implied sum constraint
◦ Cardinality variables sum to number of target

variables

◦ Only correct when all values are listed

 Sum gives huge improvement for magic
sequence problem – very unusual structure

 Overall, sum usually worthwhile

 Flow – for each value:
◦ Find maximal flows that maximise and minimise

occurrences of the value

◦ Solves two extra instances within 30 mins

 Bound or Range Consistency propagators
◦ Other points on the time/strength tradeoff

◦ Not investigated here

 Decomposition (Bessiere et al)
◦ nd2+d2 extra variables, Range Consistency

◦ Exposes the internal state of EGCC

 Could manually add implied constraints

 Learning CP solver

 EGCC is one of the key constraints in CP

 Empirical survey of algorithms and
optimizations for target variables and
cardinalities
◦ Some findings go against big-O complexity

 More than 4x improvement from
optimizations
◦ Same search tree, whole cost of solver

 One new optimisation was very worthwhile
◦ Dynamic Partitioning, may apply elsewhere

