

Journal Track, published in Artificial Intelligence, 2011

Peter Nightingale
University of St Andrews

 Introduced by J.-C. Régin (1996)
 Has become one of the key global constraints

in CP
 EGCC(X, V, C)
◦ X is a vector of target variables
◦ V is a vector of domain values of interest
◦ C is a vector of cardinality variables

 For each value Vi with cardinality variable Ci,
there are Ci occurrences of Vi in X in any
solution
◦ Other values are free

 Car Sequencing problem

 We need five cars of type A, two cars of type
B, one of type C, two of type D

 EGCC(Seq, [A,B,C,D], [5,2,1,2])

 One solution for this constraint:

 Car Sequencing also has sub-sequence
constraints
◦ These can also be expressed with EGCC – models A

and AB in experiments

Seq= A B A C A B A D A D

 Paper is partly empirical survey of existing
algorithms....
◦ Quimper’s algorithm vs Régin’s algorithm

◦ Three algorithms for cardinality variables

◦ Many more

 ... And partly new optimisations for EGCC
◦ Dynamic partitioning

◦ Dynamic triggers

 Help future solver implementors
◦ Simple algorithms better than complex ones

 Despite big-O complexity

◦ Insight into which parts of code to optimise

 Despite big-O complexity, again

◦ How to prune cardinality variables

 Techniques for EGCC might apply elsewhere
◦ Dynamic partitioning for graph/network constraints

Sketch of Régin’s
algorithm:

Phase 1

Find a maximal
(integral) flow in a
network representing
the EGCC constraint

The maximal flow
corresponds to a
satisfying assignment
of the target variables

Sketch of Régin’s
algorithm:

Phase 1

We have a maximal
flow, edges in the flow
are reversed.

Phase 2

Compute the Strongly
Connected
Components (SCCs)

Value->Variable edges
crossing from one SCC
to another must be
pruned

 Two algorithms

 Régin (1996)
◦ Finds one maximal flow, SCC analysis once

◦ Network flow, O(n2d)

 Quimper et al (2004)
◦ Divides the EGCC into two constraints for the lower

and upper bounds (on cardinality)

◦ Finds two matchings and runs SCC analysis twice

◦ Bipartite matching, O(n1.5d)

Same search, comparing node rate
Régin’s algorithm much more efficient

 Why is Régin’s algorithm faster?

1. First phase of both algorithms dominate the
big-O analyses

 However first phase is incremental and in
practice very quick

 Second phase (SCC analysis) takes most of the
time

 First phase less than 15% in profiles

 Quimper’s algorithm does SCC analysis twice!

2. Simple BFS flow algorithm faster than Hopcroft
Karp or similar on ‘small’ problems (see
AllDifferent)

 When the network splits
into multiple SCCs,
partition the constraint

 Changes to variables
only trigger the relevant
cells

 Changes SCC analysis
from Θ(nd) to O(nd)

 Makes SCC incremental x1,x2,x3

1,2
x4

3,4

Very useful optimization

 Works well for AllDifferent and EGCC

 Promising for other graph- or network-based
constraints, e.g.
◦ Multiset-Same or Same-With-Cardinalities

◦ Graph connected constraint – partitions at the
bridge edges

◦ If the underlying graph or network partitions, split
the constraint

 Katriel identified important values of target
variables

 If a value is not important, it will not cause
any propagation

 Approx 3n values (n target variables)

 Retrieve approximation of the important
value set from SCC analysis – very cheap

 When EGCC triggered, check if any important
values removed

 Doesn’t help much – except magic sequence with a very
unusual structure

 Still triggers for some value of each variable

 Might be valuable with very large domains of target variables

 Simple – for each value:
◦ Count occurrences in the domains of the target

variables (upper bound)

◦ Count target variables assigned to the value (lower
bound)

 Sum – simple plus implied sum constraint
◦ Cardinality variables sum to number of target

variables

◦ Only correct when all values are listed

 Sum gives huge improvement for magic
sequence problem – very unusual structure

 Overall, sum usually worthwhile

 Flow – for each value:
◦ Find maximal flows that maximise and minimise

occurrences of the value

◦ Solves two extra instances within 30 mins

 Bound or Range Consistency propagators
◦ Other points on the time/strength tradeoff

◦ Not investigated here

 Decomposition (Bessiere et al)
◦ nd2+d2 extra variables, Range Consistency

◦ Exposes the internal state of EGCC

 Could manually add implied constraints

 Learning CP solver

 EGCC is one of the key constraints in CP

 Empirical survey of algorithms and
optimizations for target variables and
cardinalities
◦ Some findings go against big-O complexity

 More than 4x improvement from
optimizations
◦ Same search tree, whole cost of solver

 One new optimisation was very worthwhile
◦ Dynamic Partitioning, may apply elsewhere

