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 Introduced by J.-C. Régin (1996) 
 Has become one of the key global constraints 

in CP 
 EGCC(X, V, C) 
◦ X is a vector of target variables 
◦ V is a vector of domain values of interest 
◦ C is a vector of cardinality variables 

 For each value Vi with cardinality variable Ci, 
there are Ci occurrences of Vi in X in any 
solution 
◦ Other values are free 

 
 
 
 



 Car Sequencing problem 

 We need five cars of type A, two cars of type 
B, one of type C, two of type D 

 EGCC(Seq, [A,B,C,D], [5,2,1,2]) 

 One solution for this constraint: 

 

 Car Sequencing also has sub-sequence 
constraints 
◦ These can also be expressed with EGCC – models A 

and AB in experiments 

Seq= A B A C A B A D A D 



 Paper is partly empirical survey of existing 
algorithms.... 
◦ Quimper’s algorithm vs Régin’s algorithm 

◦ Three algorithms for cardinality variables 

◦ Many more 

 ... And partly new optimisations for EGCC 
◦ Dynamic partitioning 

◦ Dynamic triggers 

 



 Help future solver implementors 
◦ Simple algorithms better than complex ones 

 Despite big-O complexity 

◦ Insight into which parts of code to optimise 

 Despite big-O complexity, again 

◦ How to prune cardinality variables 

 Techniques for EGCC might apply elsewhere 
◦ Dynamic partitioning for graph/network constraints 



Sketch of Régin’s 
algorithm: 
 
Phase 1 
 
Find a maximal 
(integral) flow in a 
network representing 
the EGCC constraint 
 
The maximal flow 
corresponds to a 
satisfying assignment 
of the target variables 



Sketch of Régin’s 
algorithm: 
 
Phase 1  
 
We have a maximal 
flow, edges in the flow 
are reversed. 



Phase 2 
 
Compute the Strongly 
Connected 
Components (SCCs) 
 
Value->Variable edges 
crossing from one SCC 
to another must be 
pruned 



 Two algorithms 

 Régin (1996) 
◦ Finds one maximal flow, SCC analysis once 

◦ Network flow, O(n2d) 

 Quimper et al (2004) 
◦ Divides the EGCC into two constraints for the lower 

and upper bounds (on cardinality) 

◦ Finds two matchings and runs SCC analysis twice 

◦ Bipartite matching, O(n1.5d) 



Same search, comparing node rate 
Régin’s algorithm much more efficient 



 Why is Régin’s algorithm faster? 

1. First phase of both algorithms dominate the 
big-O analyses 

 However first phase is incremental and in 
practice very quick 

 Second phase (SCC analysis) takes most of the 
time 

 First phase less than 15% in profiles 

 Quimper’s algorithm does SCC analysis twice! 

2. Simple BFS flow algorithm faster than Hopcroft 
Karp or similar on ‘small’ problems (see 
AllDifferent) 



 When the network splits 
into multiple SCCs, 
partition the constraint 

 Changes to variables 
only trigger the relevant 
cells 

 Changes SCC analysis 
from Θ(nd) to O(nd) 

 Makes SCC incremental x1,x2,x3 

1,2 
x4 

3,4 



Very useful optimization 



 Works well for AllDifferent and EGCC 

 Promising for other graph- or network-based 
constraints, e.g.  
◦ Multiset-Same or Same-With-Cardinalities 

◦ Graph connected constraint – partitions at the 
bridge edges 

◦ If the underlying graph or network partitions, split 
the constraint 



 Katriel identified important values of target 
variables 

 If a value is not important, it will not cause 
any propagation 

 Approx 3n values (n target variables) 

 Retrieve approximation of the important 
value set from SCC analysis – very cheap 

 When EGCC triggered, check if any important 
values removed 



 Doesn’t help much – except magic sequence with a very 
unusual structure 

 Still triggers for some value of each variable 

 Might be valuable with very large domains of target variables 

 



 Simple – for each value: 
◦ Count occurrences in the domains of the target 

variables (upper bound) 

◦ Count target variables assigned to the value (lower 
bound) 

 Sum – simple plus implied sum constraint 
◦ Cardinality variables sum to number of target 

variables 

◦ Only correct when all values are listed 

 



 Sum gives huge improvement for magic 
sequence problem – very unusual structure 

 Overall, sum usually worthwhile 

 



 Flow – for each value: 
◦ Find maximal flows that maximise and minimise 

occurrences of the value 

◦ Solves two extra instances within 30 mins 



 Bound or Range Consistency propagators 
◦ Other points on the time/strength tradeoff 

◦ Not investigated here 

 Decomposition (Bessiere et al) 
◦ nd2+d2 extra variables, Range Consistency 

◦ Exposes the internal state of EGCC 

 Could manually add implied constraints 

 Learning CP solver 

 



 EGCC is one of the key constraints in CP 

 Empirical survey of algorithms and 
optimizations for target variables and 
cardinalities 
◦ Some findings go against big-O complexity 

 More than 4x improvement from 
optimizations 
◦ Same search tree, whole cost of solver 

 One new optimisation was very worthwhile 
◦ Dynamic Partitioning, may apply elsewhere 

 


