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Abstract—Problems such as timetabling or personnel allocation can be modeled and solved using discrete constraint programming
languages. However, while existing constraint solving software solves such problems quickly in many cases, these systems involve
specialized languages that require significant time and effort to learn and apply. These languages are typically text-based and often
difficult to interpret and understand quickly, especially for people without engineering or mathematics backgrounds. Visualization could
provide an alternative way to model and understand such problems. Although many visual programming languages exist for procedural
languages, visual encoding of problem specifications has not received much attention. Future problem visualization languages could
represent problem elements and their constraints unambiguously, but without unnecessary cognitive burdens for those needing to
translate their problem’s mental representation into diagrams. As a first step towards such languages, we executed a study that
catalogs how people represent constraint problems graphically. We studied three groups with different expertise: non-computer
scientists, computer scientists and constraint programmers and analyzed their marks on paper (e.g., arrows), gestures (e.g., pointing)
and the mappings to problem concepts (e.g., containers, sets). We provide foundations to guide future tool designs allowing people to
effectively grasp, model and solve problems through visual representations.

Index Terms—Problem Visualization, Problem Modeling, Problem Solving, Constraint Programming, Visual Programming Languages

1 INTRODUCTION

People encounter constraint problems often in their daily lives. For
example, one might have to create a schedule for a conference in which
some events should take place before other events, avoid certain times,
and several other constraints. One of the first steps in the process of
solving such problems, as highlighted by the problem solving expert
George Pólya, is to represent the problem [63, III].

The potential and importance of appropriate representations of prob-
lems is difficult to overstate. An effective description of the problem can
be useful to communicate the problem to others or to ourselves at a later
point in time. We also know that how the problem is represented might
have a significant effect on a human’s ability to solve it (e.g., [1, 87]).
There are multiple examples of notations (representational systems)
considered key in the advancement of areas of science (some graphical
examples include Feynmann diagrams [34] and Penrose graphical nota-
tion [62]). Finally, if software exists that can help solve the problem, a
representation of the problem becomes a key element of the interface.

One way of representing problems is through visual representation.
Visuals can facilitate problem understanding (one could understand a
problem faster and more precisely), communication (a common lan-
guage of problem description can avoid misunderstanding between
people) and in human-machine interaction (a sufficiently precise lan-
guage would enable people to create problem specifications that can be
interpreted and solved by a computer). Although there has been a large
amount of research in InfoVis about how visual data representations
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are perceived, understood and interacted with, we know relatively little
about how to build effective problem visualizations.

In this paper, we gain understanding of how to build problem vi-
sualizations by asking people to visually represent problems in their
own way. Our explicit assumption is that understanding how people
naturally represent problems will benefit the designs of languages for
problem description. For example, a language designed with this knowl-
edge in mind could be easier to learn and to translate problems into.
Instead of addressing all types of problems, we start by looking only at
discrete constraint problems.

We asked 30 participants with three different levels of formal pro-
gramming expertise (non-computer scientists, computer scientists who
are not constraint programmers and constraint programmers) to sketch
visual representations of constraint problems using pen, paper, scissors
and colour pens. We analyzed their representations and the videos of
their processes. From these we generated a tree of visual elements and
a tree of parts of problem language (problem concepts that participants
visualized) that support a semiotic analysis.

Our analysis provides a first picture of how people with different
levels of formal training in programming approach the task of describ-
ing problems. We measured the variability of mappings, catalogued
regularities, and selected insights grouped around four main issues: di-
agrams and mathematics use; containers and symbols vs. textual labels;
the problem of abstract representation through graphical means; and
implicit information.

At this stage of the research we cannot make inferential quanti-
tative claims that are generalizable to the full population (due to the
methodology, the sample size, and the inability to estimate the statistical
reliability of our prevalence and entropy measurements). Nevertheless,
our findings can inform designers of notations and visual languages
dealing with the representation of constraint problems and enable the
design of visual notations, languages and interfaces that are easier
to learn, faster to understand and are accessible to a wider set of the
general population. Some of our findings may also have applicability
beyond constraint problems (see Section 8.4).

2 EXAMPLE PROBLEM

To give the reader a more concrete idea of what we refer to as a “prob-
lem”, and to show the type of problem associated to the tasks that
our participant completed (problems modellable through constraint
programming), we present here the knapsack problem:

Given a knapsack of capacity X and a set of objects, each with a
specified volume and price, place items in the knapsack to maximize
the total value without exceeding the capacity [47].
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This problem might seem contrived, but it is equivalent to problems
people encounter in their professional and daily lives such as truck
loading. An example model in Essence appears in csplib, problem
133 [33].

3 RESEARCH GOAL, SCOPE AND QUESTIONS

Our main goal is to provide information (e.g., a catalog of regularities,
guidelines) that can help design notations and problem specification
visual languages that are easily learnable, understandable and effective.

As the space of problems that people may encounter is large, we
restrict ourselves to studying problems that can be easily described as
discrete constraint optimization problems, as defined in [69, Chap. 3].
Admittedly, these are a subset of constraints problems (not addressed
types include geometric and layout [4], graphs [30, 83], and continuous
constraints). The reason for this is three-fold: a) a mature set of
software tools (such as ECLiPSe Prolog [3], MiniZinc [57], Savile
Row [58] and Minion [20]) exist that can efficiently find solutions;
b) this problem family is particularly suitable as such problems are
common and relevant in many areas of human activity (e.g., timetabling,
resource and job allocation, and even common puzzles [33]); and, c)
the aforementioned software solvers are inaccessible for non-experts.

In addition, because the way in which people represent problems
is influenced by their experience and formal education, we decided
to look at three cohorts of people representing a range of levels of
familiarity with formal problem specification: non-computer scientists
(Non-CS), computer scientists (CS), and constraint programmers (CP).

Based on this goal and scope, we aim to address these questions:

Q1: Which graphical elements do people choose to externalize
problem constructs?

Q2: Which constructs do people choose to represent?
Q3: Which patterns appear in how people and different cohorts

visually represent problems?

4 BACKGROUND AND RELATED WORK

Our work connects several domains of knowledge and research. We
discuss problem solving and modeling, visual notations, sketching
and visual languages, as well as constraint programming and related
techniques. We also introduce semiotic analysis as a technique.

4.1 Problem solving and modeling
Because problem solving is a ubiquitous human activity it has received
ample attention from multiple disciplines, including psychology and
neuroscience (e.g., [68]) and mathematics (e.g., [63]). Existing research
recognizes problem representation as one of the key elements or stages
for solving a problem, and scientists often propose notations as a way
to advance their fields [34, 62]. Writing and sketching are often seen to
be a natural extension of internal mental processes and help to augment
human memory and processing capacity [75], which has been studied
also for the visualization of data [82].

The role of representation has also been studied in educational con-
texts (e.g., [38]). Despite this, most externalized problem representation
notations are designed ad-hoc for specific problems, and little attention
has been paid to how people construct these problem representations.
In contrast, there is a significant amount of work in understanding how
people build models of working systems (e.g., physical or economic
systems [21]) and, more recently, the role of models in understanding
data through visualization [43].

4.2 Visual Notations, Sketching and Visual Languages
Circuit design and manufacturing has long been supported by the use
of electrical and electronic diagrams. More recently, the growing
complexity of software spurred the development of much work on sup-
porting the design and understanding of programs, culminating with the
most widely used software specification language, UML [71]. These
languages typically specify architectures, structure of systems, and
instances of user behaviour, but usually not problems. In methodologi-
cally related work (although with a different focus), Walny et al. and
Cherubini et al. have studied how software engineers use sketching

to support their thinking processes [14, 80, 81]. Our study shares with
these the classification and categorization of sketches.

Simultaneously, many visual programming languages have been pro-
posed [11, 29, 55], often as attempts to make programming accessible
to broader audiences (e.g., [53, 67, 70]), or to manage the complexity
of specifying systems that are highly interconnected [16, 48]. Visual
programming languages are typically procedural rather than descriptive
or declarative and are not free from their own limitations such as scala-
bility [12] and clutter [56, 65]. Some classical drawing and simulation
tools like Sketchpad and ThingLab also provide a graphical interface
while including geometric or simple numerical constraints. [9, 10, 74]
Theoretical aspects of the design, parsing and specification of visual
programming languages are extensively discussed by Marriott and
Meyer [46].

4.3 Constraint programming and related areas
A constraint problem is a problem that can be expressed through
variables and a set of constraints. A constraint is a rule that ex-
presses the allowable values of variables or of their relationships. Con-
straint Programming [69] and closely-related techniques such as In-
teger Linear Programming (ILP) [28] and Propositional Satisfiability
(SAT) [8] are declarative methods for stating and solving this kind of
discrete decision-making and optimization problem. Each technique
has strengths and weaknesses in solving efficiency. Hybrid solvers
such as SCIP [23] (hybridizing ILP and constraint programming) are
increasingly common. Constraint programming is successfully applied
in many high-impact areas such as timetabling, staff rostering, logistics,
production planning and experiment design [64, 79].

The process of applying constraint programming to a problem can be
crudely divided into two parts: modeling and solving. Once a problem is
modeled into a suitable language, it can be automatically solved using a
standard constraint solver. For complex real life problems, the modeling
step presents a real difficulty: capturing a correct and efficient model is
hard, even for experts. High-level modeling languages like Essence [2,
19] and Zinc [17] reduce the need for this expertise somewhat through
abstract domain types like sets, functions, and relations.

There are several examples of visualization tools for the solving pro-
cess, we describe a small selection here. Bauer et al. [6] presented an
integrated development environment (IDE) for constraint programming.
The IDE provides a visual debugger which displays the search tree that
is explored by the constraint solver. The debugger is solver-independent,
with minor modifications it can support any solver. However their sys-
tem only focuses on visualizing the solving process and not modeling.
Recently Goodwin et al. [25] described a user-centered design process
for tools that visualize the solving process, building on earlier work by
Shishmarev et al. [72]. From an Information Visualization perspective
Goodwin et al. [25] looked at how different visualizations could be
useful in the process of profiling constraint models. In addition, tools
for layout constraints such as Auto Layout are also prevalent in IDEs.
To the best of our knowledge, our paper is the first on the topic of
visualization for the modeling phase of constraint programming.

4.4 Semiotic analysis
In this article we look at people’s problem description ability using the
basic concepts of early semiological analysis as initially proposed by
Saussure [18], who defines symbol systems as mappings between signs
(signifiers) and the signified. In his famous Semiology of Graphics [7]
Bertin dissects, among other things, the mappings between elements on
the page (marks) and data. More recently, Horn [31] has performed a
semiotic analysis of the multimedia signals used in popular and business
communication. Although we borrow from Bertin and Horn, we instead
look at the relationship between signs in the page and gestures and
elements of problem descriptions.

5 METHODOLOGY

We designed a controlled observation of people representing and trying
to solve constraint type problems. We describe all the aspects of the
empirical design although we will only briefly refer to the solving
phases of the study, since this analysis does not fall within our remit.



5.1 Participants
We recruited 30 participants, 10 belonging to each of the three expertise
groups, all from a local university. Non-CS participants (7 female,
between 19 and 28 years in age), were non-computer scientists with
little or no programming experience. Computer scientists (4 females,
between 19 and 42 years in age) were students in a computer science
degree with little or no experience in constraints programming but with
experience of computer programming. Constraint programmers (CP)
(1 female, between 21 and 64 years in age), were a mixture of students
and staff who have either taken a constraints programming module,
taught one or conduct research in that area. Participants received gift
vouchers for their time. The three distinct groups were chosen because
the way in which people represent problems is likely to be influenced
by their experience and formal education, and they represent a range of
levels of familiarity with formal problem specifications.

5.2 Procedure, Tasks and Problem Selection
Each participant provided written consent and was then assigned two
problems. Problems were selected from a pool of constraint problems
collected from csplib [33] as well as suggested by constraint program-
ming experts. We selected six problems according to the following cri-
teria: a) should not be too difficult to understand by a non-programming
person; b) should contain elements that are familiar to most people;
c) problems that are familiar to the general public are preferable; and
d) should cover a wide range of constraint problem types. We piloted
the selected problems to ensure that participants had sufficient time to
explore them and to avoid those not easily understandable. Two of this
article’s authors independently rated the problems for solving difficulty
on a scale of 1 to 5. We used the difficulty scale as well as the type of
problem to balance the selection of problems for each participant. All
groups addressed all problems the same number of times in aggregate.
The final selected problems are: Word Crypto, Subset Sum, Sudoku,
Scheduling, Magic Square, and Knapsack. Exact formulations are in
the supplementary materials.

For each of the two problems assigned to them, participants had to
carry out a visual modelling/specification task as well as a problem
solving task, in sequence. Programmers in the CS and CP groups had
to perform an additional programming task. The problem solving and
programming tasks are not analyzed in this paper. Participants always
completed all representation tasks first, which precludes bias due to the
additional tasks performed by the CS and CP groups.

In the visual modelling/specification tasks the experimenter asked
participants to try to illustrate a problem to a friend assuming that they
can only communicate using paper. The experimenter also instructed
the participants to try to use as few words as possible in the specifica-
tions. Our intention here was to prevent participants simply repeating
or rephrasing the textual instruction given to them. Participants had
14 minutes to complete this task. Participants talked aloud, describing
their thoughts and actions and, occasionally the experimenter would
ask for clarifications or offered short reminders of the task. After the
specification tasks they would complete the problem solving task and
(if applicable) the programming task. Then they repeated the same
process with their second assigned problem.

5.3 Apparatus
The experiment took place in a quiet closed room with the participant
and the experimenter sitting at a table. Blank paper, pencil, pen, colored
pencils, eraser, scissors and a pencil sharpener were provided. Two
different cameras from two vantage points ensured full coverage of the
paper as well as a complete view of the participant’s actions.

5.4 Raw Data
The analyzed data consists of the two streams of video for each of
the participants (a total of 801 minutes of video per stream), and the
paper output from their specifications (available in the supplementary
materials). Snippets from these materials in the remainder of this paper
appear marked with the expertise group (Non-CS,CS,CP), the number
of the participant within that group (from 1 to 10) and whether this was
their first or second problem (E.g., CS 7,2).

5.5 Analysis Methodology
We analyzed both the artifacts from each participant (their sketches)
and their video. As a preliminary step, we transcoded the two video
streams to allow simultaneous viewing of the different camera angles.
In a first analysis step, we analyzed the artifacts produced by creating
an affinity diagram of common occurrences and general themes. We
then iteratively coded the features that appear within the sketches us-
ing MAXQDA [78] initially and then using Microsoft Excel, refining
the code books on each pass, following grounded theory techniques.
Towards the end we settled into two main groups of codes: Visual
Elements (VE) and Parts of Programming Language (PL). The cate-
gories were developed using a langauge based approach as this was
most flexible. We also iteratively coded the videos for occurrences
of gestures and, in a final pass we analyzed process elements (e.g., in
which order did examples and generalizations took place). The authors
meet 3 or 4 times during this period to clarify any ambiguities in the
categories. These form the basis for the analysis in Sections 6.1 to 6.3.

5.6 Coding Validation Analysis
The bulk of the coding was performed by the first author. In order
to ensure the robustness of the coding system, the remaining three
authors performed two independent coding passes of a subset of 50 of
the 230 artifacts in the first pass, and 25 of the 230 artifacts (3 out of 30
participants) and 6 of the 60 videos, at two stages in the development
of the code books (approximately 20 person-hours of joint coding in
total). We calculated the inter-coder reliability ratio as the number of
agreements divided by the total number of codes in the Visual Elements
(VE) category, averaged across all participant outputs (result: 94.5%
agreement for the final coding session).1 To account for randomness,
we also calculated the Cohen Kappa statistic [49] using the scikit-learn
python library [61] (κ = 0.58 when coding VE and PL as separate codes
and κ = 0.37 when coding VE-PL pairs). The numbers reported above
refer to the final coding validation only and roughly correspond with
what is expected in a qualitative coding of this characteristics, especially
taking into account that the Kappa coefficient also has limitations [76,
77]. Regarding the nature of the interpretation of participants’ outputs
see also Section 8.4. The supplementary materials contain the CSV and
python code that we used for these calculations.

6 ANALYSIS

The analysis results are split into three: the graphical elements (sig-
nifiers) that participants used; a catalog of problem constructs (the
signified); and the relationships between elements in the previous two,
with frequencies in which participants across groups mapped them as
well as a summary of the most relevant regularities. Note that, although
we provide multiple numerical measurements from the data (e.g., en-
tropy), our analysis approach does not allow statistical estimates of
the reliability of these measures; readers should exercise caution when
applying or extrapolating these numerical findings.

6.1 Elements of Visual Representation (VE)
Participants created a variety of marks on paper to describe problems.
Although we asked them to use graphical means to convey the prob-
lems (marks on paper, or paper cut-outs), we noticed early on that,
to explain the permanent graphical elements and their relationships,
most participants used also gestures. To avoid missing a potentially
important source of meaning, we considered gestures in our analysis.
From now on we refer to permanent marks on paper or physical objects
(cut-outs)2 and their characteristics (e.g., color) as marks, to distinguish
them from gestures (e.g., pointing with a finger). Together, marks

1The data was coded from two perspectives, the Visual Elements (VE)
perspective, looking at marks on the paper, and Parts of Problem Language (PL)
perspective, looking at problem elements used in representation. See section 6
for more details.

2Although we provided participants with scissors and paper to create cutouts,
only two of the CP participants used these. Moreover, these are straightforward
to map to the other categories in this section. Thus we do not analyze cutouts as
a separate representation.



and gestures are the visual elements of representation (VE), i.e., the
graphical vocabulary to visualize problems.

The tree of visual elements in Figure 1.B contains the categoriza-
tion of marks and gestures that emerged from the analysis. We made
categories based on interesting regularities rather than following pre-
defined classifications of marks such as Bertin’s [7, p.44] or Mun-
zner’s [54, p.96]3 and gestures (e.g., [26, 40, 60, 65]), which might not
have captured with sufficient detail some of the interesting phenomena
in our specific scenario of problem representation, or might provide too
many categories, making the analysis unnecessarily detailed.

6.1.1 Marks (VE1)
We observed a variety of marks and mark characteristics (visual chan-
nels). We divided them into eight categories for which we provide a
brief description and a representative example from our participants’
outputs in Figure 2. The categories are number-coded in Figure 1.B
and the colors for the categories are reused in further figures.

VE1.1 - Graphical Containers. In this category we group ele-
ments that typically contain other elements inside. There are three
sub categories: boxes and circles (VE1.1.1), grids (VE1.1.2), and ta-
bles (VE1.1.3). Boxes and circles are geometric shapes of a size large
enough to fit text or other objects inside. These are common in real-
world diagrams and were often used by our participants (21 out of 30
participants). Grids are different from tables in that position of a cell in
the grid is spatially important (e.g., the top left cell might be special, or
the adjacency of two cells or two columns carries a meaning), whereas
in tables the order of columns and rows might be less important (rows
and columns in tables are typically labeled and it typically does not
matter in which order the columns appear on a table). Grids were
used by 18 out of 30 participants and tables were used by 12 out of
30 participants. Seven participants used both grids and tables. These
numbers are likely influenced by the problem assignments for those
participants (some problems are already in a grid or table form).

VE1.2 - Symbols. This category refers to atomic graphical ele-
ments that are not labels or mathematical symbols (technically, labels
and mathematics use symbols too but we separate them into their own
categories). There are four subcategories of symbols: punctuation
marks such as questions marks or exclamation marks (VE1.2.1); people
(VE1.2.2), which are stick figures or people symbols not showing emo-
tion; emojis (VE1.2.3), which are people symbols showing emotion;
and others (VE1.2.4), which includes more abstract symbols such as
ticks, small arrows4, small geometric shapes (e.g., triangles, circles,
squares, stars) and brackets. 25 out of 30 participants used symbols.

VE1.3 - Labels. Participants often used single letters or written
words to represent objects or to annotate other elements on the page.
Labels are different from symbols in that they are more directly con-
nected to written language, and therefore usually have a pronunciation
and could represent conceptual meaning or elements that are difficult to
draw in a more straightforward way. Numbers are sometimes also used
with labels to indicate order, otherwise the labels are usually unordered.
Only 4 out of 30 participants never used labels.

VE1.4 - Text. We classify the use of textual language as text
when it contains complete or incomplete sentences that go beyond
just labeling. This typically happens when there is a verb. Note that
participants were explicitly discouraged from using text directly in
their representations, yet 11 out of 30 did. This is further discussed in
sections 7.3 and 8.2.3.

VE1.5 - Maths. Participants used mathematical script in two
roughly different ways. We separate ‘simple’ (VE1.5.1) use of maths
such as basic mathematical expressions like numbers and simple op-
erators such as +,−,>,=,6=, and Σ, from what we call ‘advanced’
(VE1.5.2) mathematical expressions, which might include more com-
plex constructions from set theory (∀, ∃) or formal logic. 30 out of

3For practical reasons we do not differentiate mark types and channels.
4Arrows that do not go from one place to another and instead indicate change

(e.g., increasing or decreasing quantity).

30 used maths; this is likely to have been influenced by the problem
types. Although maths is graphical, we will not refer to maths notation
as graphical notation in this paper.

VE1.6 - Arrows and Lines. Arrows and lines are common ele-
ments in most diagrams and were also common in our data set. Arrows
and lines are used to connect graphical elements on the page with each
other (see – in Figure 2). 28 out of 30 participants used arrows or lines.

VE1.7 - Colors. Color is commonly used in visualizations for a
variety of purposes, e.g., to show different instances or that two objects
are the same. We made color pens available to our participants, which
20 of the 30 participants used to convey some meaning.

VE1.8 - Proximity. Sometimes participants put visual elements
next to each other to indicate relationships between them. Although
this is a more implicit type of relationship representation (there is
not a permanent mark), implicit information might still be important.
We coded instances where the proximity of elements was clearly used
to convey meaning or when the participants mentioned the spatial
relationship verbally. In some cases proximity works as an implicit
version of the graphical containers subcategory (VE1.1 – e.g., grids
where the grid is not explicitly drawn). We observed proximity encoding
in 27 out of 30 participants.

6.1.2 Gestures (VE2)

To keep the analysis manageable we only categorized gestures with
hands and fingers that interacted with the elements on the page or the
page itself. These gestures took place when the participants explained
the representations previously created on paper, were thinking about
how to represent the problem, or during the process of writing or
drawing. Gestures were sometimes complementary to marks on the
page, when participants traced lines or circles already drawn on the
paper, although they often did not correspond to marks on the paper.
We distinguish between two types of gestures, pointing gestures and
path gestures.

VE2.1 - Pointing. We put in this category gestures performed with
a finger that highlight an object or area in the page. There are three sub-
categories: serial pointing (VE2.1.1), where the participant pointed at
one object once or at multiple elements or areas successively; parallel
pointing (VE2.1.2) where the participant would use multiple fingers
to point simultaneously at several elements or areas; and multi-tap
(VE2.1.3) pointing gestures where the same element is being repeatedly
tapped. All 30 of the participants used some type of pointing gesture.

VE2.2 - Paths. Paths refer to gestures where the finger or hands
trace a meaningful trajectory on the paper. We observed three sub-
categories: drag (VE2.2.1) where the finger starts on a page location,
usually an object, and moves to a different place while still in contact
with the surface; manipulations (VE2.2.2) which move a physical ob-
ject from one location of the page or table to another (only applies
to cutouts); and lassos (VE2.2.3) where the path traced is closed and
delimits a regular or irregular area (usually with multiple elements
inside). Due to their ability to connect to separate elements, drag paths
are related to arrows. Lassos are also related to graphical containers
because both categories can surround or contain other elements.

6.2 Parts of Problem Language (PL)

In this section we describe the problem concepts that participants rep-
resented, using examples from the knapsack problem described in
Section 2. These do not refer only to the physical or conceptual objects
in the problem but, importantly, also to the relationships between ob-
jects, the constraints that objects have to comply with, and how objects
act or are acted upon. To arrive at categories that are descriptive of
problem concepts in our data, we settled on a linguistic approach; our
categories are analogous to the different parts of speech used in linguis-
tic grammar analysis, but adapted to the specifics of graphical problem
representation. Hence we call these Parts of Problem Language.



Parts of Problem Language

PL1 Objects

PL1.1 Variables PL1.2 Containers

PL1.3 Instances PL1.4 Sets

PL1.5 Examples

PL2 Selection

PL2.1 Elements PL2.2 Groups

PL3 Verbs

PL3.1 Put Into PL3.2 Is Part Of

PL3.3 Is Same As PL3.4 Instance Of

PL4 Modifiers PL5 Sequencers

VE1 Marks

VE1.1 Graphical Containers

VE1.1.1 Grids VE1.1.2 Tables

VE1.1.3 Boxes/Circles

VE1.2 Symbols

VE1.2.1 Punctuation VE1.2.2 People

VE1.2.3 Emoji VE1.2.4 Other

VE1.3 Labels VE1.4 Text VE1.5 Maths

VE1.5.1 Simple VE1.5.2 Advanced

VE1.6 Arrows/Lines VE1.7 Colors VE1.8 Proximity

VE2 Gestures

VE2.1 Pointing

VE2.1.1 Serial VE2.1.2 Parallel

VE2.1.3 Multi-tap

VE2.2 Paths

VE2.2.1 Drag VE2.2.2 Manipulation

VE2.2.3 Lasso

Visual Elements

A

B

Fig. 1. Tree diagrams of the hierarchy of parts of problem language (PL–A,top) and visual elements (VE–B,bottom).

Note also that we chose a classification that expresses a broad range
of constructs in problem description, regardless of whether those actu-
ally belong to the set of constructs used in actual constraint program-
ming languages or other type of programming languages. For example,
constraint programming languages are generally declarative, but our
classification can describe procedural constructs (e.g., “put these ob-
jects in these variables, check that their sum is less than 10, if it is...”).
Table 1 shows a glossary of approximate correspondences between our
categories and the concepts and terms used in linguistics, programming
languages and constraint programming languages.

Table 1. Correspondences between PL, CS and CP concepts.

ID Concept Part of speech Programming Constraint
Programming

PL1 Objects Nouns, Noun
Phrases

PL1.1 Variables Variables Decision variables

PL1.2 Containers Data structures,
collections

Collection of
variables

PL1.3 Instances Objects or Structs Values

PL1.4 Sets Types, Enums Domain

PL1.5 Examples Values, Data
structure state,
assignment of
values to variables

Instance
assignment

PL2 Selection Pronouns,
demonstratives

Indexing (applied
to data),
constraints (appl.
to variables)

PL2.1 Elements Indexing, Aliases

PL2.2 Groups Slices

PL3 Verbs Verbs Properties,
inheritance

Indexing (appl. to
data), constraints
(appl. to vars)

PL3.1 Put Into Assignment

PL3.2 Is Part Of Attributes (and
problem
decomposition)

PL3.3 Is Same As Equivalence

PL3.4 Instance Of Instantiation

PL4 Modifiers Adjectives Conditional
Expressions

Constraints

PL5 Sequencers Temporal Adverbs Logical flow

PL1 - Objects. The objects category is analogous to nouns
or noun phrases in language grammars. Using the knapsack prob-
lem, each unique object (e.g., water bottle) would be an instance
(PL1.3). Variables (PL1.1) are references to objects where the ref-
erenced object might change over time. For example, the variable

totalObjectsValue might refer to the sum of the value of backpack
objects at a particular time, which might vary during the process or for
different solutions. Containers (PL1.2) are collections or groupings
of instances or variables, roughly equivalent to the concept of data
structures in programming languages. For example, a list of all the ob-
jects contained in the knapsack can be a container of several instances
(e.g., water bottle, raincoat, sandwich) or of several variables (object1,
object2, object3, etc.) if the objects have not been specified. Sets
(PL1.4) are groupings of unique objects that denote the possible in-
stances that can be referenced to by a variable or container. This is
roughly equivalent to the concept of Enums in common programming
languages. In our example, a set could be all available objects to put in
the knapsack. When a variable or a container is shown in a particular
state, we call that an example (PL1.5). E.g., a possible list of objects
contained in the knapsack will be an example if it is represented as
having four specific instances of concrete objects. Examples can also
be negative, describing a state that is not valid.

PL2 - Selections. Selections refer to the highlighting of one or
more objects which will be used with a verb (PL3, described below).
There are two types of selections: element selections (PL2.1) and
groups (PL2.2), depending on whether one or more objects are being
selected. A description of a problem might use selection to denote,
in our example, that a particular group of objects make up the set of
objects that can be placed in the knapsack.

PL3 - Verbs. Verbs are actions or operations that are applied to
objects. They include put into (PL3.1) which assigns an object or
selection to a container or variable, is part of (PL3.2), which describes
when containers are split into sub-containers to show a sub-part view,
is same as (PL3.3) which indicates that two representations refer to
the same object, and instance of (PL3.4) which selects an instance out
of a set. An example of put into for the knapsack would be assigning
a particular set to fit into the knapsack container. If the same object
is represented twice, e.g., once to describe what is currently in the
knapsack and once in a list of objects ordered by value, then a mark
indicating that both are the same would be functioning as is same as.

PL4 - Modifiers. Modifiers is a large category covering all the
constraints that can be applied to objects, selections or verbs. Modifiers
can limit values, indicate that values should be all different, to maximize
or minimize or to find all possibilities. For example, a representation
that indicates a variable that contains the sum of all weights in the
knapsack has to be below 30 would be considered a modifier.

PL5 - Sequences. A mark or a gesture functions as a sequence if
it provides an indication of temporal order, akin to a temporal adverb
or adjective in linguistic terms. Sequences were rarely used but some
participants implicitly or explicitly provided procedural descriptions
(e.g., algorithms). An example sequence in our running example would
be an indication that the list of knapsack objects has to be populated
first with the object of highest value, then with the second, etc.

6.3 Semiotic Mappings
We investigated the mappings between visual elements and parts of
problem language that participants created. This is a basic form of
semiotic analysis that matches signifiers (in our case VEs) with the
signified (PL). The results are provided as CSVs in the supplementary
materials and summarized in Figure 3.
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Fig. 2. Snippets of participant outputs highlighting examples of all visual marks.

6.4 Input/Output Entropy Analysis
If the same type of visual element is used to carry out many different
functions (e.g., if we use textual labels to represent instances, name
sets, label examples and tag modifiers) this might make it harder for
the reader of a diagram to recover the meaning of the label when they
encounter it. To quantify this we can calculate the Input/Output Entropy
of the mappings. In other words, we can calculate how many bits of
additional information we would need to recover which PL, a VE is
referring to. We perform this calculation using the finer categories in the
VE tree, and apply the following formula to the aggregated mappings
of each expertise group and the total:
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where i is the input (PL) index, o is the output (VE) index, xio is a
particular number of uses for that input and output combination, m is
the total number of outputs and n is the total number of inputs.

Table 2 summarizes the results, and shows how the higher the level
of formal education in modelling, the smaller the entropy value. It

should be highlighted that, in our calculations we added the rule that
the use of maths would not add entropy. The reason is that maths
can be effectively used for several purposes, using well established
symbols that would not add confusion (e.g., brackets for sets, numbers
as instances). Although it would be possible to apply the same logic
to other areas of the VE tree (e.g., arrows could be combined with
labels or colors to separate different functions), we did not observe
occurrences of this.

Table 2. Input/Output Entropy for the different cohorts, in bits.

Cohort Non-CS CS CP Total

Input/Output Entropy 1.26 1.23 1.12 1.31

7 FINDINGS

This section collects the main insights gained from the analysis pre-
sented above. Insights are discussed by topic and highlighted bold.

7.1 Participant diagrams are chaotic but there is regularity
One goal of our study was to understand the consistency and level
of sophistication of the graphical means that different groups use to
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Fig. 3. Sankey diagrams showing the mapping between VEs (top) and PL (bottom) for All, Non-CS, CS, and CP participant groups.

represent constraint problems. A priori, results could have varied from
a perfectly chaotic set of graphical representations (the same marks or
gestures are used inconsistently to represent any concept), to a perfectly

defined and unambiguous language, almost a graphical programming
language (people are perfectly consistent and use the same marks
always for one and the same purpose without any space for ambiguity).



The findings of the study, especially in the form of the diagrams
in Figures 1–3 and the entropy Table 2 show a picture somewhat in
the middle. Participants’ representations of constraint problems
are not consistent (input-output entropy values are not close to zero)
and substantial variation exists in how participants represent the same
PLs. For example, variables (PL1.1) were represented by participants
using graphical containers, symbols, labels and in one instance maths.
Very diversely represented PLs are group selection (PL2.2 – 7 different
first-level marks or gestures at the high level to represent selections:
graphical containers, symbols, arrows/lines, colour, proximity, and
both pointing and path gestures), and instances, sets and examples
(PL1.3-5 – 6 types of marks). However, neither are the mappings
completely void of regularity; if this was the case the calculated
input-output entropy values would not be in the 1.1–1.4 range that
we observed (Table 2) and would instead be closer to the theoretical
maximum given the number of categories in our scheme—3.7 bits.

7.2 Intrinsic, Expected and Unexpected Regularities
We observed many regularities in the mappings. Here we present the
most obvious in three loose groups based on whether they are intrinsic
to the nature of problem language and marks, expected due to the setup
of the problem or the makeup of the participant groups, and unexpected.

7.2.1 Intrinsic
We saw that graphical containers are mostly used as containers (42
out of the 61 uses of containers) (Figure 3, a). Graphical containers
(VE1.1) are, by definition, able to contain other elements inside, and
therefore their use to represent containers (PL1.2) is a natural choice
for most people (see Figure 4.A). In other words, graphical container
marks and the concept of containers perform very similar functions in
the representation and the conceptual sides of the problem respectively,
and this leads participants to this pairing.
Fig. 4. Snippet of artifact showing (a) containers, (b) put into.

In a similar way, verbs, which in language usually connect a subject
with an object seem easier to represent through arrows/lines which
connect two separate elements in the graphical space (Figure 3, b). A
clear example of this is put into (PL3.1), which is represented largely
by arrows/lines (38 out of 50 cases–see Figure 4.B). We could describe
this as the shape of a visual element determining the syntax of the
visual language.

We also found that the use patterns of drag gestures (VE2.2.1) are
parallel to those of arrows (VE1.6). This makes sense, since drag
gestures replicate the characteristics of arrows/lines (they connect two
separate elements), except that they are transient visual elements rather
than permanent marks. Other similar correspondences between gestures
and marks exist: lassos (VE2.2.3) sometimes work as boxes/circles
(VE1.1.3) and serial and parallel pointing gestures (VE2.1.1 and
2.1.2) often do the same work as lines/arrows.

The paragraphs above describe regularities that are likely a conse-
quence of the intrinsic characteristics of the VEs and their relationship
to the PLs; however, we note that there are always representation alter-
natives, even if most participants chose not to use them. For example,
containment can be represented via arrows, verbs can be represented
by containment; both can also be expressed with text.

7.2.2 Expected
Numbers, which appear in our scheme as simple maths (VE1.5.2) were
often used to represent instances, sets and examples throughout the
different representations and groups (Figure 3, c). This is likely due to
the problem set selected for the experiment being often number-based.

We also saw differences in patterns across the participant groups that
can be expected from their formal training. CP used more advanced
maths, probably because they are familiar with the advanced notation
and regularly use it. Due also to differences in training, the mappings
also show a clear preference by the CS and CP groups for using
labels to represent variables (as they usually do when programming
with editors) (Figure 3, d). In the case of CP, labels were the only
mechanism to represent variables, whereas CS used also symbols and

numbers5. Some non-CS also used unlabeled graphical containers
to represent variables (i.e., a box that contains a different value at
different times). Although this is a common metaphor in beginner
programming textbooks to introduce the concept of variable, we only
saw this in three problems by two participants.

7.2.3 Unexpected

Some trends are not easily explainable. We noticed that CS use ar-
rows/lines for more purposes than other groups (for groups, put into,
is part of, is same as, instance of and sequencers, whereas non-CS only
used them for groups, put into, is part of and instance of, and CP used
them only for put into and is part of ) (Figure 3, e).

CP used graphical containers to represent more PLs than any
of the other groups (CP: containers, instances, sets, examples, element
selection and group selection; CS: containers, element selection and
group selection; Non-CS: variables, containers, element selection and
group selection).

The Sankey diagrams also show that CS used color more often
than other groups (for 21 PL-VE problem instance pairs vs CP 10
pairs and non-CS in 15 pairs) (Figure 3, f).

7.3 Use of Text vs. Graphical Marks

Our experimental protocol included asking participants to minimize
the use of text and written language and favor the use of graphical
means in their representations. Despite of this, we observed the use
of text (VE1.4) in the form of sentences in a substantial number of
occasions (21 problem instances across all expertises). Participants
used text as a last resort for elements that they found important but
difficult to represent otherwise. Therefore, text use provides indirect
evidence about which PLs are harder to represent visually. For example,
CP Participant 6,2, when solving the subset sum problem, encoded the
constraints through text in the following way: “Find All Subsets Which
Add To Zero” (Figure 5.

Fig. 5. Snippet of artifact showing text use.

The Sankey diagrams and the tables in the supplementary materials
show that text was mostly used to represent modifiers (PL4), with a
few examples of use for instances, sets and examples (Figure 3, g).
In other words, participants found it difficult to represent constraints
with any other types of visual marks, including maths.

7.4 Use of Maths vs. Graphical Marks

The generalized and consistent use of mathematical notation
(maths–VE1.5– is the most commonly used group of marks) is note-
worthy. Some concepts such as addition, or inequality comparisons
(greater than or less than) are plausibly quite easy to represent through
graphical constructions. For example, a greater than comparison is
visually perceived by a visually obvious difference in height when
represented in a bar chart, or even by the position of an element in a
number line [41]. Yet when representing the concept of greater than
the overwhelming majority of our participants chose to simply write
a mathematical expression that uses the symbol >. Mathematical lan-
guage is a formalized language that is used to represent reality and that
is learned by most people early in their education; therefore it is not
altogether surprising, although still significant, that our participants
chose to use mathematical notation instead of drawing from visual
properties or inventing their own graphical notations. The point
also extends to the use of numbers—although there might be other rep-
resentations of cardinality and ordered sets that might be visually more
evident, people’s use of numbers and digits is second-nature. These
points are further elaborated in Section 8.

5Using only numbers to denote a variable only happened once in our dataset,
and is an example of a relatively easy to avoid mapping for instances and
variables—numbers are often used to designate specific values because they
have a fixed meaning, rather than to name elements that can change.



7.5 Use of Symbols vs Labels

We separated symbols (VE1.2) as a separate category of graphical
marks. Symbols are similar to labels in that they are very flexible
marks that can represent many PLs, and be quite abstract. Participants
used symbols to represent specific instances, variables, modifiers
(constraints) or to refer to containers (see (Figure 3, h)). Just as
labels, they often provide a shorthand to refer to other elements on the
page that might otherwise be time consuming to redraw (see Figure 6).
Fig. 6. A label used to avoid redrawing the grid.
Fig. 7. Symbols representing an instance (l), variable (r) and set (below).

Despite the similarity of functions with labels, symbols were still
heavily used. Figure 7 shows the use of symbols for a instance, set and
variable, demonstrating their versatility (symbols were used by 25 out
of 30 participants and labels were used by 26 out of 30).

7.6 Implicit Representations

Not everything is represented using marks on the paper. Participants
often represented elements, especially verbs (PL3), more implicitly
either through proximity on the page or gestures. This is important
because implicit graphical relationships and gestures can be difficult to
recognize by human and computer interpreters (this is further discussed
in Section 8.2.5). Some examples of the most common implicitly
represented elements follow.

Participants often indicated implicitly that something is an in-
stance of (PL3.4) through proximity on the page (VE1.8–18 out of
27 times–Fig 8.a) (Figure 3, i). Similarly, same as (PL3.3), is often
signalled by pointing (VE2.1–26 out of 57 times–Fig 8.b) (Figure 3, j).
Interestingly, CP did not make same as explicit in a graphical way.6

Fig. 8. Figure showing (a) instance of through proximity (b) same as
with parallel pointing gesture.

Another part of problem language that is not commonly repre-
sented on paper but appears sometimes as gestures is element se-
lection (PL2–Fig 9), especially for CS and CP cohorts (39 times overall,
out of which 15 times for CS and 15 times for CP). Participants also
denoted is part of through gestures (5 times–Fig 10) and proximity (5
times–Fig 11). Interestingly, CP did make is part of explicit for the
most part (4 out of 6 times).
Fig. 9. Element selection represented through lasso gesture.
Fig. 10. Is part of represented through a serial pointing gesture.
Fig. 11. Is part of represented through proximity.

Finally, looking at the Sankey diagrams from the bottom-up, implicit
representation elements (Proximity and Gestures, VE1.8 and VE2)
are only used to represent verbs and selections.

7.7 Bottom-up vs Top-down Processes

We were interested in understanding not only the kind of mappings
that people make, but also how the process of creating representations
takes place and may support understanding of the problem. For this
purpose we carried out an initial process analysis by looking at the
videos of participants creating their representations. More specifically,
we looked at when they created examples as opposed to when they
described general structures or relationships.

The analysis revealed that most participants (all but one) start try-
ing to describe the problem with general rules and abstract struc-
tures. Participants then resort to examples that often expose the
incompleteness of their specifications (26 out of the remaining 29),
and finally they review their output to establish relationships be-
tween the general and the specific. Of the three participants that
stayed at the abstract level without examples, two were CP and one CS.

An additional observation about process is that participants often
redraw parts of their representations, perhaps to clarify and clean
their output, but perhaps also to give themselves the time to understand,
review, and debug what they have done as part of their thinking process.
Ten out of the thirty erased or crossed out parts of their previous marks.

6CP establish the same as relationship by naming objects with the same
label, which is explicit but we do not consider graphical. See also Section 8.2.3.

8 DISCUSSION

Here we interpret the findings from Sections 6 and 7 and elaborate on
their implications for the goals stated in Section 3.

8.1 Addressing the Research Questions
Our analysis of the data from thirty participants provides a picture of
the visual elements that they used (Q1), and the kinds of constructs that
they aim to represent (Q2). These are represented as the VE categories
tree in Figure 1.B and the PL categories tree in Figure 1.A respectively.
The bulk of our results, however, is the description of the ways in which
VEs are used to represent the PLs by the different groups (Q3). These
are summarized in the diagrams in Figure 3 which are then dissected
and complemented by examples in Section 7. The following discusses
the findings around the most important topics.

8.2 Key Topics
8.2.1 Towards a consistent problem graphical language
In Visual Language, Global Communication for the 21st century, Horn
argues that visual forms of communication “have begun to encounter
one another and integrate into a larger, more inclusive language” [31,
p. 5]. The question occupying us is whether this “confluence visual
language” seems to be happening, and whether it applies to the spec-
ification of constraint problems. Within this chosen area of interest,
our evidence suggests that the use of graphical means to represent
problems is not consistent across people and that people only partially
know how to take advantage of graphical means to represent problems
effectively. More formal modelling expertise translates into slightly
improved consistency (Table 2).

Nevertheless, the found regularities provide a starting point for the
design of languages for constraint problem specification. We can lever-
age this knowledge in three ways: first, designers can choose graphical
representations, concepts and mappings that are somewhat familiar
or “natural” to people, with the associated advantage of making the
language easier to learn and more straightforward; second, when peo-
ple’s current representations fail to be complete, accurate, or readable,
designers can use this information to design better alternatives; and
third, knowing which concepts are hardest to represent highlights what
will require better solutions and more training.

8.2.2 Diagrams vs Maths
One might claim that we already have an appropriate language to
represent problems: the language of mathematics. This is somewhat
corroborated by our analysis; we found examples in our data that indi-
cate that maths notation does already much of the work of representing
problems. A basic example is representing ordered sets. It is difficult
to beat numerals (which we classify as maths) to express order (our
participants all used numbers when trying to represent order). We also
observed that participants very rarely use graphical means to represent
number comparisons, instead using mathematical symbols (e.g., >,
<). Although these symbols are not completely abstract or arbitrary
(see Figure 12.left), there exist graphical alternatives in visualization to
represent differences and comparisons (e.g., Figure 12.right) yet people
generally still prefer the short hand.

2 < 4 5 > 2 2 = 2 2 < 5 2 = 25 > 1

Fig. 12. The greater than, lesser than and equals symbols can be
considered shorthand for visual representations of comparison (left);
other graphical representations of comparison are also possible (right).

Mathematical notation is powerful enough to represent most prob-
lems, and its symbols are mostly consistent and precise [86]. However,
translation into maths is often difficult, time-consuming to write and
comprehend and does not always fit the problem. For example, geo-
metrical axioms are easily representable through mathematical equa-
tions but a simple diagram can be faster to understand and remember.



Whether illustration and graphical representation enriches or detracts
from maths is a debate of philosophical consequence out of scope for
us here (see [59]). We make the assumption that graphical representa-
tion can facilitate people’s understanding of problems and data. The
existence of early illustrations in science [42], and of InfoVis as a field
can be considered a form of support for this position.

Our findings suggest that forcing people to use new graphical repre-
sentations for elements that are already well assimilated from maths, as
in Figure 12, is probably unnecessary and, at worse, counterproductive;
yet restricting ourselves to maths only is not a good option either, for the
reasons in the previous paragraph, and because there are likely cognitive
benefits that escape current mathematical representations. Among these
are the benefits already highlighted by Margaret Burnett and others in
the long history of the study of visual languages (e.g., [12, 13, 50, 55]),
such as the higher dimensionality of visuals, which can lead to better
concreteness, directness, explicitness and feedback. We also discuss
visual indexing as another possible advantage in the next section.

8.2.3 Containers and Symbols vs Labels

The choice between a (textual) label and a graphical container to repre-
sent a content abstraction (e.g., a variable) has interesting consequences
in terms of visual language: a label is a referent that exists in the domain
of language (a name), whereas a box is a referent that exists mostly
in the domain of space (the page). Both accomplish the same kind of
work (a form of abstraction as defined in [35,52]: a way of representing
multiple elements by hiding them behind a single referent) yet they
require very different types of retrieval. In the case of a box, when
someone needs to go back to it, they can remember the approximate
location on the page and its shape/size/color, or follow arrows from
where they are currently looking (if they know they are connected).
Conversely, a text label can retrieved by phonological or conceptual
memory, or by pattern matching the label text within the content of the
page to find other references to the same label. We suspect that the
different ways of retrieving elements can have important repercussions
for the building and reading of these diagrams because the retrieval
mechanism is a key part of cognition itself [5]. However, the exact
impact and importance of retrieval within the representation process of
is not well known and requires further study.

Unlike graphical containers, symbols were used often in all expertise
groups and for non-CS and CS more often than labels. Since text-based
labels and symbols can fulfill the same functions, why do participants
use symbols instead of only labels? We see three possible advantages:

First, if symbols are only used to represent one concept, one part of
problem language, or even a subset of elements, recognizing the symbol
provides straightforward association to its function in the diagram. If
instead we use labels for virtually anything (e.g., to designate variables,
containers, instances, sets), the reader will have to retrieve the function
based on cues and context. For example, the author/reader of the
diagram may have to remember the function of that object, or derive
it from its use in context/syntax (e.g., a container cannot be same as
a variable), or from another hint in the meaning or form of the label
itself (a capital letter convention, or the meaning of the label, such
as in matrixKnapsackObjects). This is often the case in text-based
programming languages, and is sometimes addressed through color
and fonts automatically changed by syntax highlighting. In our data
set we did not find any instance of the use of color or any typographic
(calligraphic) parameter for the purpose of differentiating PLs. Another
example of the use of special symbols to designate function is in maths,
where vectors are often marked with an arrow on top, or the use of
Greek letters, which might denote a particular type of variable (e.g.,
angles). Note that these graphical distinctions are not strictly necessary,
but might provide cognitive advantages.

Second, symbols are special types of glyphs, some easier to find on
a visual search due to pre-attentive processing [84, p.152], [85]), as
opposed to uniform-looking text labels. Although one could argue that
visual search does not matter when specifying a problem description,
we believe, from our observation of the participants, that going back
and forth between the different areas of the page (or pages) is common
enough for this to have an impact (see also arguments that present

marks on paper as a key part of the cognitive process [5, 15]).
Third, participants might like representing some objects in a more

literal way. Turning a symbol into an icon (e.g., using a stick person
figure to represent a person in the problem) establishes a more direct
link between the significant and the signifier (see, e.g., Non-CS 10,2 in
Figure 2). This, in turn, might facilitate thinking about the problem by
bringing it closer to a familiar situation through analogy [22].

It is important to remark that the use of symbols to denote a particular
type of elements in the page also has an input and cognitive cost that
increases with the number of special symbols or categories of symbols
used. Most ad hoc symbols will take longer to create and to redraw (the
nice simple shapes are, for the most part, already taken by letters and
maths) and some energy to remember and keep consistent.

This might be the reason why we found that the CS and CP groups
used symbols less, with three CP participants never using symbols.
People with a more formal expertise in the programming area are
constrained to labels in their daily practice, and might have developed
strategies to cope with the ambiguity.

8.2.4 Graphical Abstraction, Deduction, Induction and Solving

During the analysis it became evident that one of the difficulties of
visual representation is that abstraction and some actions and relation-
ships are hard to represent graphically. For example, it is hard to find
effective visual representations for a structure (e.g., a grid) that has a
variable number of columns or rows. A similar problem appears when
trying to represent some constraints (for which our participants often
resorted to text), or when representing procedures, sequences, repetition
or recursion. This does not mean that it is impossible to graphically
represent those (e.g., Figure 13). Stenning and Oberlander [73] discuss
a similar problem in the context of Euler diagrams; graphical represen-
tations make complex structures concrete and explicit, which makes
them easier to acquire and process, yet this involves a tradeoff with the
ability to represent multiple alternatives through abstraction.

2 < 4 5 > 2 2 = 2 2 < 5 2 = 25 > 1

Fig. 13. Example of variable size representation in a matrix grid.

In 7.7 we described how participants generally start with the abstract
and general parts of the problem representation and then become spe-
cific (examples), often going back and forth. Although our observations
are undoubtedly affected by how problems were formulated in our em-
pirical design, the evidence suggests that processes are not exclusively
bottom-up or top-down, but a combination of the two, often with several
iterations. In other words, it would be inaccurate to assess the process
that participants go through as entirely inductive or deductive.

Anecdotally, we have seen this when teaching constraint program-
ming. Constraint programs (models) are very abstract; before one can
get to a final model of the problem one might need to understand spe-
cific cases (this is particularly true for novices). Thus we suspect that,
although most current tools to solve constraint problems seem appropri-
ate for describing the final formulation of the problem, they may not be
ideal to support the process of building and understanding it. Tools that
support people’s complex and non-linear thought processes have the
potential to increase their effectiveness, especially when learning. This
“constructive” approach showed benefits in other areas of visualization
(e.g., [32, 51]).

A related issue is description vs. solving of problems. Although tex-
tual constraint programming languages are considered declarative (as
opposed to imperative), we observed that many participants describe
problems procedurally (e.g., CS 2 in Figure 14). This might be an
important source of friction between how people naturally think about
problems and how most current constraint programming languages
work, and therefore an opportunity to improve constraint modeling
learning and make it more accessible. Nevertheless, we note that con-
straint programming is inherently declarative and integrating procedural
elements requires further research in constraint solvers.



Fig. 14. Word crypto solved through procedure: define containers and
instances, assign variable, define instance, consider next value.
Fig. 15. Ambiguous graphical formulation for the Scheduling problem.
The relationship between the groups being scheduled and the two repre-
sentations of the calendar could be interpreted in different ways.

8.2.5 Under-specification and Implicit Information

Perhaps partly due to the difficulty of representing abstraction and
actions graphically (Section 8.2.4), we observed that people often
under-specify the problems (e.g., the representation in Figure 15 can
easily be misinterpreted). Although sometimes people simply do not
provide enough information to unambiguously describe a problem,
other times the information is there, just not committed to written marks.
Participants often used gestures to indicate relationships between items
or actions. There is evidence that gestures can be key constituents of the
cognitive process or a representation thereof [24,36,44,45]. From other
domains we also know that sometimes subtle gestures can contain very
relevant information (e.g., [39]). Therefore, it follows that interfaces
might want to exploit gestures and other sources of implicit information
(e.g., proximity in the page) to support the process.

Another conspicuous source of implicit information is temporal
order. Looking only at the participants’ final results, the representation
is difficult to understand. However, watching the specification process
(e.g., by playing the video) is easier because the order in which things
are specified contains information; people tend to assume that the
information available to them during the process is the same as that the
reader will have, and fail to see that further modification and addition
of elements can make the specification ambiguous or harder to read at a
later time. We call this process state bias: people assume that the state
at creation time will be the same as at reading time. This affects 2D
media more because objects in the page can be added anywhere in the
space, as opposed to textual media where the order is assumed to be left-
right, top-bottom. This is connected with provenance representation
(e.g., [27, 66]).

Relatedly, participants often fail to explicitly mark the elements of
the problem that need to be solved, minimized or maximized (the final
outcomes), to differentiate them from intermediate steps or even from
sketches or annotations in the page that were useful during specification.
This is relevant because the additional information, similarly to the
previous paragraph’s argument, might obscure the representation, but
also because constraint solvers might be able to optimize the process of
finding a solution by relaxing or changing intermediate representations.
In constraint programming languages the sought solution is usually
indicated explicitly (e.g., Essence+ uses the reserved word find).

8.3 Suggestions for Designers
Here we distill the findings and discussion into suggestions that might
be useful for designers of constraint problem specification (CPS) visual
languages, regardless of whether these are for communication with
others, oneself at a another time, or for computers to solve (e.g., as part
of a constraint solver user interface).

• CPS languages should probably be hybrids, combining different
forms of expression drawn from mathematical notation, text, iconic
language and others:

– Leverage common knowledge of basic mathematical notation,
even if “more graphical representations” exist.

– Consider adding text descriptions for input/output [37].

• Support the process rather than just the outcome:

– Consider that problem specification is not only top-down or
bottom-up, but an alternation of the two.

– Intermediate states might be wrong or under-specified but
likely part of the natural process of specification.

• Consider leveraging implicit information as a source of data:

– Gestures can show useful information not written as marks.
– Proximity and temporal information also encode useful infor-

mation for reading a problem specification.

8.4 Limitations and Future Work
Readers should be careful not to interpret the regularities we describe
in Sections 6-8 as a direct blueprint of how this kind of visual language
should look like. There are two main reasons. First, what participants
did might not be the optimal way to describe a problem, could be
incomplete or even contradictory—the design of a visual language
has to balance “naturalness” and ease of learning with other aspects
such as correctness, completeness and consistency with the domain the
language is being applied to. Second, if the language is to be read by
a machine its design should support fast and accurate parsing, which
is not trivial (see [46]). Conversely, the ontology of the language and
the forms of input for the UI (e.g., dragging elements from a palette or
using templates vs. enabling free pen input) could have a substantial
impact in how easily the language is to be understood and put to use by
humans (we know of this kind of effect in InfoVis [51]).

Likewise, our quantitative calculations for Entropy use non-trivial
maths, which might make them appear deceptively precise. Although
these measurements are useful to get an idea of the level of consistency
in the use of VEs, they are nevertheless very dependent on the number
of categories and their coding, which are both somewhat subjective and
affected by the skill of the experimental analyst. Additionally, these
measurements are relative and therefore should never be compared to
entropy measurements with a different coding schema.

Our entropy analysis is partly based on the assumption that it is better
to have a different PL represented with a different VE. In Section 8.2.3
we argued for the likely advantages of this approach. However, it might
be possible to use the same category of VE for multiple functions in
a way that preserves these advantages; specifically, a visual language
could use combinations of visual elements such as labels+arrows, sym-
bols+arrows, or colour+containers to generate a much larger set of
sub-classes of visual elements that can then be mapped one-to-one
with the PLs, perhaps even in a more granular way (e.g., by splitting
PL4–Modifiers into different types of constraints and qualifiers). We
did not observe our participants using this approach and therefore we
can neither recommend nor discourage its use. This ability to articulate
visual elements can be very expressive and takes the visual language
closer to the versatility of spoken/written language but more research
is needed to discern whether this will have unwanted consequences in
the learnability, writability and readability of the language.

In this paper we have looked at the generation side of the problem:
participants produced problem specifications to the best of their ability.
However, we now know less about which of these descriptions tend to
be more complete, accurate and interpretable by humans. Future work
should address this by reversing the question of the analysis to some-
thing like what patterns of representation used by participants tend to
be most complete/accurate/interpretable by humans? The dataset of
participant-generated diagrams included as part of the supplementary
materials can be a starting point. Similarly, deeper semiotic analysis of
our data is possible. For example, looking at the implied syntax of the
participant sketches might reveal interesting patterns of how and why
certain types of visual elements connect to each other.

A decision of our empirical design that might have impacted the
results is that problems given to participants were already formulated in
text. This text is already a fairly precise representation of the problem,
and therefore our study cannot cast light on earlier stages of the problem
comprehension process. More research is needed to understand how
people make sense or derive problems from situations.

Another practical aspect of the experimental design to notice when
interpreting our results is age and gender balance. Our recruitment
strategy was to balance gender and age when possible, but the sign-ups
resulted in more females in non-CS than in the CS and CP cohort.
Also, the age group in CP was higher than in the other two, which is a
natural consequence of constraint programming knowledge being more
specific and only encountered at a later stage in education.

Finally, our findings are directly applicable to discrete constraint
problem representations only, since we only asked participants to repre-
sent constraint problems. Constraint programming is a broad paradigm
that covers a large set of problems common in real life (e.g., schedul-
ing, resource allocation, multi-objective optimization), but there are



types of problems that are not easily represented through this paradigm
(e.g., data-fitting, simulation) and problem kinds that are impractical
or impossible to compute through constraint programming, namely,
problems in PSPACE or those where the answers sought are unbounded
or harder than NP-complete. Nevertheless, we believe that some of the
patterns that we observed for constraint problem specification will also
show up when people try to describe other problem categories.

As a next step, we plan to design a visual language for discrete
constraints and a system for the input and visualization of such prob-
lems, based on the finding from this study. Such a visual language and
system will allow for evaluation of the finding and refining of the visual
language, as well as exploring any learning effects in participants.

9 CONCLUSION

In this paper we have analyzed how people create representations of
constraint problems. The analysis is made under the assumption that
understanding the ways in which unconstrained participants attempt to
model problems is useful for designers of visual languages for problem
specification. The observations reveal interesting patterns, and provide
pointers for the design of future languages for problem specification,
be it for facilitating human-to-human communication about problems
or to create better UIs that improve and broaden access to constraint
modelling to non-specialists.

Some of the main findings are that participant’s diagrams are gen-
erally not very good problem specifications but show regularities that
might be useful for design, that people naturally integrate maths and
textual language in their specifications, that people seem to naturally
resort to symbols, besides textual labels, in order to provide naming
and abstraction of different types of parts of the problem language, and
that there is implicit information in gestures, proximity and temporal
order that can make problem specifications more complete.

In addition to these findings, we contribute:

• A categorization of visual elements useful for analysis of visual
language in this domain.

• A high-level language description of how problems are specified by
3 different expertise groups.

• Entropy measures of the mappings between the two above.
• Suggestions for designers of visual problem specification languages.
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