
Peter NightingalePeter Nightingale

Ian P. Gent

Chris Jefferson

Ian Miguel

Karen Petrie

Neil Moore

21st August 13:45-14:10 H1058

Introduction to Minion
� Minion is a relatively simple, non-hybrid CP solver

(unlike previous talk!)

� Interleaves backtracking search and propagation
(reasoning about constraints)(reasoning about constraints)

x1=1 x1!=1

Propagate the
consequences of
x1=1

Introduction to Minion
� Focus on making the propagation loop efficient and

scalable

� Deliberately few options – “model and run”

� However, very simple search limits “model and run”� However, very simple search limits “model and run”

x1=1 x1!=1

Propagate the
consequences of
x1=1

Propagation Example
First three rows of a Sudoku

Suppose we look at the first row

1..9 7 1..9 4 8 9 3 6 5
3 5 6 1..9 1..9 1..9 1..9 1..9 1..9

1..9 1..9 1..9 1..9 1..9 1..9 1..9 1..9 1..9

Propagation Example
First three rows of a Sudoku

Suppose we look at the first row – we can delete some values

1,2 7 1,2 4 8 9 3 6 5
3 5 6 1..9 1..9 1..9 1..9 1..9 1..9

1..9 1..9 1..9 1..9 1..9 1..9 1..9 1..9 1..9

Propagation Example
First three rows of a Sudoku

Suppose we look at the first row – we can delete some values

Move on to the first sub-square

1,2 7 1,2 4 8 9 3 6 5
3 5 6 1..9 1..9 1..9 1..9 1..9 1..9

1..9 1..9 1..9 1..9 1..9 1..9 1..9 1..9 1..9

Propagation Example
First three rows of a Sudoku

Suppose we look at the first row – we can delete some values

Move on to the first sub-square – deletes some values on the bottom row,
including values 1,2 as a consequence of the first constraint

1,2 7 1,2 4 8 9 3 6 5
3 5 6 1..9 1..9 1..9 1..9 1..9 1..9

4,8,9 4,8,9 4,8,9 1..9 1..9 1..9 1..9 1..9 1..9

including values 1,2 as a consequence of the first constraint

Propagation
� Propagation is a tight loop

� Constraints read and write variable domains heavily
(mostly read)

� Deleting a value from a variable domain triggers other � Deleting a value from a variable domain triggers other
constraints to be executed

� Queue(s) hold variable events or constraints to be
propagated

� Managing internal state of constraints

� Lots of efficiency issues

Propagation and Minion
� Brief overview of some research performed with

Minion

� Specialisation of variables

� Watched Literals� Watched Literals

� Propagator Generation

Specialisation of Variables

Pre-process

CSP specification

Heuristic

Queue
of constraints /
variable events
to propagate

Propagate
numerical
constraint

Propagate

Propagate

Search Propagate

Solution

Propagate
allDifferent
constraint

Propagate
logical

constraint

Propagate
arbitrary

constraint

......

Variable
domains

Add
constraints /
variable events
to queue

This interface is the
most heavily used

Specialisation of Variables
� Minion has 5 types of variables:

� Boolean

� Bounds – just stores upper and lower bound

� Discrete � Discrete

� Sparse Bounds

� Constant (more useful than it sounds)

� ... And two interfaces:

� Negated Boolean

� Reference to any variable type

Specialisation of Variables
� Minion may have been first to reject one-size-fits-all

variable representation

� Gave it a brief advantage

� Other systems (ILOG CP, Gecode) have now closed the � Other systems (ILOG CP, Gecode) have now closed the
gap

Specialisation of Variables
� Minion has effectively 6 types of variables

� How to access them from propagators?

� Through interface with virtual function calls

Switch statements� Switch statements

� Specialise propagators

� Specialising propagators allows inlining, in-place
optimisation of the variables’ methods

� Most propagators in Minion compiled 49 times – 7
times each for two sets of variables

Specialisation of Variables
� Compare specialisation to virtual function calls

� Time (s) for whole solver, not just propagators

� Current version 0.14

Minion Minion-virtual funcs

BIBD 10 39 107

Graceful Graph k6p2 68 83

Quasigroup 7-10 162 196

Solitaire 6 22 33

Watched Literals
� Propositional Satisfiability (SAT) solvers introduced

watched literals

� All variables are boolean

� Constraints all look like this: (x1 or x2 or ¬x3 or x4)� Constraints all look like this: (x1 or x2 or ¬x3 or x4)

� If x1=F, x2=F and x3=T, then need to assign x4=T

Watched Literals
� Watch two literals: (x1 or x2 or ¬x3 or x4)

� Suppose x4 is assigned F: don’t care (not watched)

� O(0) work, compared to O(1) with static triggers

� Suppose x2=F. � Suppose x2=F.

� Update watches: (x1 or x2 or ¬x3 or x4)

� Suppose x1=F. Update: We can’t.

� Assign x3 to F to satisfy the constraint.

Watched Literals in Search

1 (x1 or x2 or ¬x3 or x4)

x1=F x1=T

2 3(x1 or x2 or ¬x3 or x4) (x1 or x2 or ¬x3 or x4)

� Watched literals are not backtracked as search
backtracks.

� No cost from copying/trailing/recomputing

� Supports of constraint must be backtrack stable to use
WLs. Otherwise backtrack them.

Watched Literals
� WLs adapted to constraint programming

� Minion uses WLs for propagating disjunctions of
constraints (among other things)

� Generalised pigeon-hole experiment:Generalised pigeon-hole experiment:

Propagator Generation
� Given a constraint, automatically generate a simple

(tree) propagator...

� At each node, branches for a literal in/out of domain

� Nodes labelled with deletions� Nodes labelled with deletions

0 in D1 0 not in D1

Prune 1 from x2

Propagator Generation
� Very simple, no incremental state, no clever triggering,

doesn’t exploit symmetries in the constraint...

� Yet performs surprisingly well on small constraints

0 in D1 0 not in D1

Prune 1 from x2

Propagator Generation
� Executes in time O(nd)

� Compare to O(dn) (at least) for table constraints

� Cost is moved up-front

O(2nd) to generate the tree, same space to store it� O(2nd) to generate the tree, same space to store it

� Actual size depends on constraint, heuristic

Propagator Generation
� Beating a hand-crafted propagator! (Peg Solitaire)

Propagator Generation
� Compared to two table propagators (Oscillating Life)

Minion
� Why use it?

� You have lots of nested Or/And

� Universal reification (including Or and And)

� And universal reifyimply (half reification)� And universal reifyimply (half reification)

� There is a good static variable order

� Or DOM/WDEG works well

� Why not use it?

� You need Cumulative, Hamiltonian Circuit

� You need sophisticated search

Conclusions
� Try it out: minion.sourceforge.net

