/. - P — /_ -
o O —
v

.
= wy S5 & WS @ 8§ 8 8| 8BRS = g=

Peter Nightingale
lan P. Gent

Chris Jefferson
[an Miguel

Karen Petrie
Neil Moore
215t August 13:45-14:10 H1058




Introduction to Minion

Minion is a relatively simple, non-hybrid CP solver
(unlike previous talk!)

Interleaves backtracking search and propagation
(reasoning about constraints)

consequences of
X1=1




Introduction to Minion

Focus on making the propagation loop efficient and
scalable

Deliberately few options - “model and run”

e However, very simple search limits “model and run”

consequences of
X1=1




Propagation Example

First three rows of a Sudoku

Suppose we look at the first row




Propagation Example

First three rows of a Sudoku

Suppose we look at the first row — we can delete some values




Propagation Example

First three rows of a Sudoku

Suppose we look at the first row — we can delete some values

Move on to the first sub-square




Propagation Example

First three rows of a Sudoku

Suppose we look at the first row — we can delete some values

Move on to the first sub-square - deletes some values on the bottom row,
including values 1,2 as a consequence of the first constraint




e =

s

Propagation

Propagation is a tight loop

Constraints read and write variable domains heavily
(mostly read)

Deleting a value from a variable domain triggers other
constraints to be executed

Queue(s) hold variable events or constraints to be
propagated

Managing internal state of constraints

Lots of efticiency issues



Propagation and Minion

Brief overview of some research performed with
Minion

e Specialisation of variables

e Watched Literals

e Propagator Generation



Specialisation of Variables

CSP specification Propagate
Propagate
Queue _—» numerical
of constraints / constraint
Pre-process variable events
t t
Heuristic : pro‘]?aga : Propagate
i ) arbitrary
constraint
Search Propagate Add
constralints /
variabl¢ events \ Propagate
to queye logical
constraint
Solution
i Varial?le _l/\ Propagate
domains <: lIDifferent
. . : constraint
This interface is the

most heavily used



_
Specialisation of Variables

Minion has 5 types of variables:
e Boolean
e Bounds - just stores upper and lower bound
e Discrete
e Sparse Bounds

e Constant (more useful than it sounds)

... And two interfaces:
e Negated Boolean

e Reference to any variable type



—

_..~-/

_
Specialisation of Variables

Minion may have been first to reject one-size-fits-all
variable representation

Gave it a brief advantage
Other systems (ILOG CP, Gecode) have now closed the
gap



Specialisation of Variables

Minion has effectively 6 types of variables
How to access them from propagators?

e Through interface with virtual function calls

e Switch statements

e Specialise propagators
Specialising propagators allows inlining, in-place
optimisation of the variables’ methods

Most propagators in Minion compiled 49 times - 7
times each for two sets of variables



Specialisation of Variables

* Compare specialisation to virtual function calls
* Time (s) for whole solver, not just propagators
® Current version 0.14

BIBD 10 39 107
Graceful Graph k6p2 68 83
Quasigroup 7-10 162 196

Solitaire 6 22 33



/ e e Ll

Watched Literals

Propositional Satisfiability (SAT) solvers introduced
watched literals

All variables are boolean
Constraints all look like this: (x1 or x2 or -x3 or x4)
If x1=F, x2=F and x3=T, then need to assign x4=T



P — — —

Watched Literals

Watch two literals: (x1 or x2 or -x3 or x4)

Suppose x4 is assigned F: don'’t care (not watched)
* O(o) work, compared to O(1) with static triggers
Suppose x2=F.
e Update watches: (x1 or x2 or -x3 or x4)

Suppose x1=F. Update: We can't.
Assign x3 to F to satisty the constraint.



/
Watched Literals in Search

(x1 or x2 or —-x3 or x4)

i ot

(x1 or x2 or -x3 or x4) (x1 or x2 or -x3 or x4)

Watched literals are not backtracked as search
backtracks.

No cost from copying/trailing/recomputing

Supports of constraint must be backtrack stable to use
WLs. Otherwise backtrack them.



e

Watched Literals

WLs adapted to constraint programming

Minion uses WLs for propagating disjunctions of
constraints (among other things)

Generalised pigeon-hole experiment:

<n,p,d> Watched OR Sum Watched Sum Custom

< 100,5,2 > 191,536.22 19,304.05 29,404.22 54,180.04
< 100,10,2 > 499,007.21 1,268.15 1,377.21 79,704.14
< 100, 20,2 > 1,576,413.85 755.48 782.40 87,443.99
< 100, 30,2 > 1,579,347.99 §48.23 564.70 84,170.60
< 100,40, 2 > 1,461,316.06 424 .32 428.23 78,234.20
< 100,950, 2 > 1,439,796.97 370.62 373.935 76,766.77




Propagator Generation

Given a constraint, automatically generate a simple
(tree) propagator...

At each node, branches for a literal in/out of domain
Nodes labelled with deletions

o1in D1 o not in D1

Prune 1 from x2



Propagator Generation

Very simple, no incremental state, no clever triggering,
doesn’t exploit symmetries in the constraint...

Yet performs surprisingly well on small constraints

o1in D1 o not in D1

Prune 1 from x2



/ e e Yy
Propagator Generation

Executes in time O(nd)
Compare to O(d") (at least) for table constraints
Cost is moved up-front

e O(2m) to generate the tree, same space to store it

e Actual size depends on constraint, heuristic



Propagator Generation

* Beating a hand-crafted propagator! (Peg Solitaire)

Starting Node rate (per s)
position| Generated Min Reified
Sumgeq
11249 7088 3303
6338 4140 3312
10986 7514 3926
12964 8431 3652
11135 7531 3544
13456 8886 3920
6892 4315 2587

O T = o=

—_ =
-] O



Propagator Generation

Compared to two table propagators (Oscillating Life)

n period p Time (s)

Generated Sum Lighttable Table
5! 2 0.04 0.09 0.20 0.22
5 3 0.08 0.42 1.34 1.26
5" 4 0.42 2.38 7.42 6.05
5 5 1.09 6.35 21.55 16.66
5 6 2.34 11.18 40.00 38.15
6 2 0.13 0.67 2.03 2.17
6 3 0.93 7.02 19.18 24.59
6 4 11.98 75.29 350.19 225.29
6 5" 124.75 896.97 2779.78 1999.82
6 6 446.44 3108.18 13929.2 6231.22



P — S
Minion
Why use it?
e You have lots of nested Or/And

e Universal reification (including Or and And)

 And universal reifyimply (half reification)

e There is a good static variable order
« Or DOM/WDEG works well

Why not use it?
e You need Cumulative, Hamiltonian Circuit

* You need sophisticated search



Conclusions

* Try it out: minion.sourceforge.net



