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Abstract.

Much excitement has been generated by the success of stochastic local search
procedures at finding solutions to large, very hard satisfiability problems. Many
of the problems on which these procedures have been effective are non-Boolean
in that they are most naturally formulated in terms of variables with domain sizes
greater than two. Approaches to solving non-Boolean satisfiability problems fall into
two categories. In the direct approach, the problem is tackled by an algorithm for
non-Boolean problems. In the transformation approach, the non-Boolean problem is
reformulated as an equivalent Boolean problem and then a Boolean solver is used.

This paper compares four methods for solving non-Boolean problems: one di-
rect and three transformational. The comparison first examines the search spaces
confronted by the four methods then tests their ability to solve random formulas,
the round-robin sports scheduling problem and the quasigroup completion problem.
The experiments show that the relative performance of the methods depends on the
domain size of the problem, and that the direct method scales better as domain size
increases.

Along the route to performing these comparisons we make three other contri-
butions. First, we generalise Walksat, a highly-successful stochastic local search
procedure for Boolean satisfiability problems, to work on problems with domains of
any finite size. Second, we introduce a new method for transforming non-Boolean
problems to Boolean problems and improve on an existing transformation. Third,
we identify sufficient conditions for omitting at-least-one and at-most-one clauses
from a transformed formula. Fourth, for use in our experiments we propose a model
for generating random formulas that vary in domain size but are similar in other
respects.
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1. Introduction

Much excitement has been generated by the success of stochastic local
search (SLS) procedures at finding satisfying truth assignments to large
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formulas of propositional logic. These procedures stochasticly search
a space of all assignments for one that satisfies the given formula.
Many of the problems on which these methods have been effective are
non-Boolean in that they are most naturally formulated in terms of
variables with domain sizes greater than two. To tackle a non-Boolean
problem with a Boolean procedure, the problem is first reformulated
as an equivalent Boolean problem in which multiple Boolean variables
are used in place of each non-Boolean variable.

This encode-and-solve approach often results in comparable, if not
superior, performance to solving the problem directly. Because Boolean
satisfiability (SAT) is conceptually simple, algorithms for it are often
easier to design, implement and evaluate. And because SLS algorithms
for Boolean satisfiability have been studied intensively for more than a
decade, highly-optimised implementations are publicly available.

This paper proposes and studies a new approach to solving non-
Boolean satisfaction (NB-SAT) problems: that of generalising a Bool-
ean SLS procedure to operate directly on a non-Boolean formula by
searching through a space of assignments to non-Boolean variables. In
particular, we have generalised Walksat (Selman et al., 1994), a highly-
successful SLS procedure for Boolean satisfiability problems, to a new
procedure, NB-Walksat (first reported by Peugniez, Frisch and Peug-
niez, 1998, 1998), that works on formulas whose variables have domains
of any finite size.1 In this way we are able to apply highly-refined SLS
technology directly to non-Boolean problems without having to encode
non-Boolean variables as Boolean variables.

The main question addressed by this paper is how the performance of
the direct approach compares to that of the transformational (or encode
and solve) approach. In particular we compare one direct method, NB-
Walksat, and three transformational methods by empirically testing
their ability to solve large random non-Boolean formulas, the round-
robin tournament scheduling problem, and the quasi-group comple-
tion problem. Our three transformation methods consist of applying
Walksat to the results of three transforms.

Boolean variables are merely a special case of non-Boolean vari-
ables, and, intuitively, the difference between the non-Boolean and
Boolean variables grows as the domain size of the non-Boolean vari-
able increases. Consequently, one would expect that in a comparison
of encodings for non-Boolean problems that domain size would be the
most important parameter to consider and that one would find that

1 NB-Walksat and a suite of supporting programs are available at
http://www.cs.york.ac.uk/∼frisch/NB.
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any difference in performance between the encodings would increase
when domain size is increased. Ours is the first study to consider this.

We shall also see that the polarity of a non-Boolean formula—
whether it is positive, negative or neither, as defined later—is another
significant factor that affects its translation to a Boolean formula.

Our experimental results show NB-Walksat to be highly effective,
demonstrating that the effectiveness of the Walksat strategies can be
transferred from the Boolean case to the non-Boolean case. On prob-
lems with large domain sizes our direct method is often superior to the
transformation methods, which in many cases are ineffective.

Besides introducing the generalisation of Boolean formulas to non-
Boolean formulas and Walksat to NB-Walksat, we make several other
new contributions, including the following three. (1) Of the three non-
Boolean to Boolean transformations we use, one is new and one is
an enhanced version of a well-known transformation. (2) We identify
sufficient conditions for omitting at-least-one and at-most-one clauses
from a transformed formula. (3) In order to test the effect of domain
size on problem solving performance we want a method for generating
random formulas that vary in domain size but are similar in other
respects. We propose such a method and use it in our experiments.

We conjecture that the transformation of non-Boolean SAT to Bool-
ean SAT is an inherent component of using the encode-and-solve ap-
proach on any problem that is conceived of as having non-Boolean
domains. More specifically, we put forward a hypothesis.

The SAT-Transform Hypothesis: Let P be a problem that we con-
ceive of as having variables with finite domains of more than two
elements. Let T be a SAT-effective transform for P ; that is, P
can be solved effectively by using a SAT solver on the result of
applying transform T to P . Then T can be obtained by composing
a transform from P to NB-SAT with a transform from NB-SAT to
SAT.

Note that this is an empirical hypothesis and that it could be refuted
by identifying a SAT-effective transform that cannot be decomposed in
the stated manner. Such a transform might, for example, exploit some
complex interaction between the encoding of the non-Boolean variables
and the encoding of some other aspect of the problem. But in all uses
of encode-and-solve known to us the hypothesis does hold, and thus
every use embeds a transform from NB-SAT to SAT. This underscores
the importance of studying the transformation of NB-SAT to SAT, as
well as the alternative of generalising SAT solvers to work directly on
NB-SAT.
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2. Non-Boolean Formulas

Syntactically, non-Boolean formulas are constructed from propositional
variables, each of which is associated with a finite, non-empty domain.
We refer to the domain of a variable X as dom(X). Atomic non-Boolean
formulas (or nb-atoms) are of the form X/d, where X is a variable and
d is a member of its domain. Non-atomic non-Boolean formulas are
constructed from atomic non-Boolean formulas with logical connectives
in precisely the same manner as is used for Boolean formulas. As an
example, if X and Y are variables both with domain {d1, d2, d3}, then

X/d1 ∧ (Y/d2 ∨ Y/d3) (1)

in a non-Boolean formula
Now consider the semantics of non-Boolean formulas. A non-Boolean

assignment maps every variable to a member of its domain. A non-
Boolean assignment, A, satisfies an atomic non-Boolean formula X/d if
and only if A maps X to d. The satisfaction of non-atomic non-Boolean
formulas is determined from the satisfaction of atomic components in
precisely the same manner as for Boolean formulas. So, an assignment
that maps X to d1 and Y to d3 satisfies X/1, Y/3 and formula (1).

Walksat, and many other Boolean SLS procedures, operate on Bool-
ean formulas in conjunctive normal form (CNF), and NB-Walksat, our
generalisation of Walksat, operates on non-Boolean formulas in CNF.
A formula, Boolean or non-Boolean, is in CNF if it is a conjunction
of disjunction of literals. A literal is either an atomic formula (called a
positive literal) or its negation (called a negative literal). We say that a
CNF formula is positive if all its literals are positive and negative if all
its literals are negative. Thus, formula (1) is in CNF and it is positive.

Non-Boolean formulas generalise Boolean formulas since a Boolean
formula can be transformed to a non-Boolean formula simply by re-
placing every Boolean atom P with the non-Boolean atom P ′/TRUE,
where P ′ is a variable whose domain is {TRUE,FALSE}.

We sometimes use terms such as “nb-atom” or “nb-formula” to
emphasise that these syntactic objects are part of the non-Boolean lan-
guage. Similar use is made of terms such as “b-atom” and “b-formula”.

3. NB-Walksat

Walksat is a highly successful SLS procedure for finding satisfying as-
signments to Boolean formulas in clausal form. We have generalised
Walksat to a new procedure, NB-Walksat, that operates similarly on
non-Boolean formulas. Indeed when handling a Boolean formula the
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two procedures perform the same search.2 NB-Walksat was implemented
by replacing the code of the core search procedure of Walksat version
19. Obtaining this generality required a complete reworking of the
data structures that maintain formulas and assignments. This section
describes the operation of NB-Walksat3 and, since on Boolean formu-
las NB-Walksat and Walksat perform the same search, this section
implicitly describes the operation of Walksat.

The simplest way to understand the operation of NB-Walksat is
to consider it as working on positive CNF nb-formulas. This can be
achieved by considering NB-Walksat’s first step to be the replacement
of every negative literal ¬X/di with X/d1∨· · ·∨X/di−1∨X/di+1∨· · ·∨
X/dn, where X is a variable with domain {d1, . . . , dn}.

Like many other SLS procedures for satisfiability, NB-Walksat op-
erates by choosing a random assignment and then, until a satisfying
assignment is found, repeatedly selecting a literal from an unsatisfied
clause and modifying the assignment so as to satisfy that literal, and
hence the clause in which it appears. Since the selected literal, X/d,
occurs in an unsatisfied clause, the present assignment must map X
to a value other than d. The present assignment is modified so that it
maps X to d, and its mapping of all other variables is unmodified. We
say that the literal X/d has been flipped.

What distinguishes NB-Walksat and Walksat from other procedures
is the heuristic employed for choosing which literal to flip. Though
recent versions of Walksat provide a range of user-selectable heuristics
for choosing the literal, the original heuristic is the one called “best”
or “SKC.” As it has been used in many reported experiments (e.g.,
Selman et al., 1994; Kautz et al., 1997; Walser, 1997) it is the “best”
version of Walksat that forms the basis for NB-Walksat and is the focus
of this paper.

NB-Walksat with the “best” heuristic chooses a literal to flip by
first randomly selecting a clause with uniform distribution from among
all the clauses that are not satisfied by the current assignment. Let
L be the set of literals in the selected clause. We say that flipping
a literal breaks a clause if the clause is satisfied by the assignment
before the flip but not after the flip. If L contains a literal such that
flipping it would break no clauses, then the literal to flip is chosen
randomly with uniform distribution from among all such literals. If L
contains no such literals, then a literal is chosen either (i) randomly with

2 We used this property to help test that NB-Walksat was correctly implemented.
3 The description applies to NB-Walksat versions 4, 5 and 6. Version 6 is the

most recent version at the time of writing this paper. Versions 1, 2 and 3 computed
probability distributions in a subtly-different way—a difference that affects only
some problem instances.
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Input: F , a Non-Boolean formula in CNF; Pnoise , the noise probability setting.
Output: A, an assignment that satisfies F .

(a) Transform F into a positive CNF formula.

(b) From among all assignments to the variables of F choose one at random
with uniform distribution. Call it A.

(c) Repeat until A satisfies F :

(d) From among the clauses of F that are not satisfied by A select one at
random with a uniform distribution. Let L be the set of literals of this
clause.

(e) If there is a literal in L such that flipping it would break no clauses
then set L to the set of all such literals in L.

(f) Otherwise, with probability 1 − Pnoise remove from L all literals that,
if flipped, would break more clauses than would flipping another literal
of L.

(g) From among the literals of L select one at random with uniform
distribution. Call it X/d.

(h) Modify A by flipping X/d.

(i) Output A.

Figure 1. NB-Walksat with the “best” heuristic.

uniform distribution from L or (ii) randomly with uniform distribution
from among the literals in L that if flipped would break the fewest
clauses. The decision to do (i) or (ii) is made randomly; with a user-
specified probability, Pnoise , the “noisy” choice (i) is taken. Figure 1
gives pseudo-code for the NB-Walksat procedure.

Experiments with Walksat (Selman et al., 1994). show that the
incorporation of noisy choices dramatically improves its performance
and that performance can vary greatly according to the value of Pnoise .
As one would expect, the same is true of NB-Walksat.

4. Transforming Non-Boolean Formulas

To transform NB-SAT to SAT we map each nb-formula to a b-formula
such that the satisfying assignments of the two formulas correspond,
though not necessarily one to one. This paper presents three such trans-
forms, called the unary/unary, unary/binary and binary transforms.
Each operates on an arbitrary formula, though our experiments only
apply the transforms to CNF formulas. Each transform operates by
replacing each nb-atom in the formula with a b-formula that, in a sense,
encodes the nb-atom it replaces. The resulting formula is known as the
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Unary/Unary Enhanced Binary Unary/Binary
Positive Negative

kernel variables V D V ⌈lg D⌉ V ⌈lg D⌉ V D

kernel size L ≤ L⌈lg D⌉ ≤ L⌈lg D⌉ L

kernel CNF size L ≤ L⌈lg D⌉J ≤ L⌈lg D⌉ L

at-least-one variables V D 0 0 V (D + ⌈lg D⌉)
at-least-one size V D 0 0 ≤ V D(⌈lg D⌉ + 1)
at-least-one CNF size V D 0 0 ≤ V D(⌈lg D⌉ + 1)
at-most-one variables V D 0 0 V (D + ⌈lg D⌉)
at-most-one size V D(D − 1) 0 0 ≤ V D(⌈lg D⌉ + 1)
at-most-one CNF size V D(D − 1) 0 0 ≤ 2V D⌈lg D⌉

Figure 2. Size of the Boolean formulas produced by each of the three transformations
applied to a non-Boolean formula of size L that has V variables, each with domain
size D. The “CNF size” rows give the size of the formula when put into CNF form.
It is assumed that the non-Boolean formula is in CNF and its clauses each have J
literals. The size of the enhanced binary transformation is divided into two cases: a
positive kernel and a negative kernal.

kernel of the transformation. The transforms employ two core ways of
producing a kernel; we call these two encodings “unary” and “binary”.

If the unary encoding of the kernel is used, the transform also needs
to conjoin two additional formulas to the kernel, known as the at-least-
one formula (or ALO formula) and the at-most-one formula (or AMO
formula). As with the kernel, two encodings can be used for the ALO
and AMO formulas: unary and binary. The three transforms we use
in this paper are enhanced binary (which uses a binary encoding for
the kernel and no ALO or AMO formula), unary/unary (which uses
unary encodings for the kernel and for the ALO and AMO formulas)
and unary/binary (which uses a unary encoding for the kernel and
an enhanced binary encoding for the ALO and AMO formulas). The
unary/binary transform is new, as is the enhanced version of the binary
transform.

In the following presentation we discuss the size of the formula
produced by each transform, where we take a formula’s size to be the
number of occurrences of atoms it contains. Throughout we assume
that each transform is being applied to an nb-formula containing V
variables each of which has a domain of size D, and we present the
sizes of the resulting formulas in terms of these two parameters. The
results of the discussion are summarised in Figure 2.

4.1. The Unary/Unary Transform

The unary/unary transform produces a kernel by transforming each
nb-atom X/d to a distinct propositional variable, which we shall call
X:d. The idea is that a Boolean assignment maps X:d to TRUE if
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and only if the corresponding non-Boolean assignment maps X to d.
Thus, the role of an nb-variable with domain {d1, . . . dn} is played by
n b-variables.

Furthermore, one must generally add additional formulas to the
Boolean encoding to represent the constraint that a satisfying assign-
ment must satisfy exactly one of X:d1, . . . ,X:dn. This constraint is
expressed as a conjunction of one formula (known as the ALO formula)
asserting that at least one of the variables is true and another (known
as the AMO formula) asserting that at most one of the variables is
true.

To state that at least one of X:d1, . . . ,X:dn must be satisfied we
simply use the clause X:d1 ∨ · · · ∨ X:dn. The entire ALO formula is
a conjunction of such clauses, one clause for each nb-variable. Thus,
the ALO formula consists of a conjunction of V clauses each with D
literals, giving it a total size of V D.

To say that at most one of X:d1, . . . ,X:dn must be satisfied we add
¬X:di ∨ ¬X:dj , for all i and j such that 1 ≤ i < j ≤ n. The entire
AMO formula is a conjunction of such clauses, 1

2D(D − 1) clauses for
each nb-variable. Thus, the AMO formula consists of a conjunction of
1
2V D(D − 1) clauses, each containing 2 literals, giving it a total size of
V D(D − 1).

Notice that these ALO and AMO formulas are in CNF. And since
the transform produces a kernel whose form is identical to that of the
original formula, the entire b-formula produced by the unary/unary
transform is in CNF if and only if the original nb-formula is.

4.2. The Binary Transform

The unary/unary transform uses D b-variables to encode a single nb-
variable of domain size D and, hence, uses a base 1 encoding. By using
a base 2 encoding, the binary transformation requires only ⌈lg D⌉ b-
variables to encode the same nb-variable.4 If X is a variable with
domain {d1, . . . , dn}, the binary transform maps an nb-literal of the
form X/di by taking the binary representation of i − 1 and encoding
this in ⌈lg n⌉ Boolean variables. For example, if n is 4 then

X/d1 is mapped to ¬X2 ∧ ¬X1 ,
X/d2 is mapped to ¬X2 ∧ X1 ,
X/d3 is mapped to X2 ∧ ¬X1 and
X/d4 is mapped to X2 ∧ X1 .

To see what happens when the domain size is not a power of two,
reconsider X to have the domain {d1, d2, d3}. If we map X/d1, X/d2 and

4 The ceiling of a real value x, written ⌈x⌉, is the smallest integer that is greater
than or equal to x.
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X/d3 as above then there is a problem in that the Boolean assignment
that satisfies X2∧X1 does not correspond to an assignment of a domain
value to X. One solution to this would be to add an ALO formula,

(¬X2 ∧ ¬X1) ∨ (¬X2 ∧ X1) ∨ (X2 ∧ X1),

which ensures that the extraneous binary combination X2 ∧X1 cannot
be satisfied in any solution. Alternatively, one could make the logically-
equivalent statement that the extraneous binary combination must be
false: ¬(X2∧X1). The latter of these two has the advantage that it can
be put into CNF without any blowup, and is the method adopted by
Hoos (1998, page 180).

Frisch and Peugniez (2001) introduced a version of the binary trans-
form in which no extraneous combinations are produced and therefore
no ALO formula is required. We call this the enhanced binary trans-
form, and the version with extraneous combinations the basic binary
transform. We use the term binary transform to refer generically to any
version of the transform.

In the example considered above the extraneous combination is
eliminated if

X/d1 is mapped to ¬X2,
X/d2 is mapped to X2 ∧ ¬X1 and
X/d3 is mapped to X2 ∧ X1.

Here, the transform of X/d1 covers two binary combinations: (¬X2∧X1)
and (¬X2 ∧ ¬X1).

To see what happens in general let X be a variable with domain
{d1, . . . , dn} and let k be 2⌈lg n⌉−n. Then X/d1, . . . ,X/dk are each
mapped to cover two binary combinations and X/dk+1, . . . ,X/dn are
each mapped to cover a single binary combination.

Notice that this transform generates no extraneous binary combina-
tions. Also notice that, as a special case, if n is a power of two then
each X/di (1 ≤ i ≤ n) is mapped to cover a single binary combination,
and thus is identical to the basic binary transform. Finally, to confirm
that the extended binary transform requires no AMO formula and no
ALO formula, observe that every Boolean assignment must satisfy the
extended binary transform of exactly one of X/d1, . . . ,X/dn.

Since the enhanced binary transform replaces each nb-atom with a
conjunction of at least ⌊lg D⌋ b-atoms and at most ⌈lg D⌉ b-atoms, it
produces a formula whose size is ⌊lg D⌋ to ⌈lg D⌉ times that of the
original formula.5

5 The floor of a real value x, written ⌊x⌋, is the largest integer that is less than
or equal to x.
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Notice that the enhanced binary transformation of a CNF formula is
not necessarily in CNF. However, the enhanced binary transformation
of a negative CNF formula is almost in CNF; it is a conjunction of
disjunctions of negated conjunctions of literals. For example, using
variables X and Y , both with domain {d1, d2, d3}, the enhanced binary
transform of the clause ¬X/d1∨¬Y/d2 is ¬(¬X2)∨¬(Y2∧¬Y1). By using
De Morgan’s law, the negations can be moved inside of the innermost
conjunctions, resulting in a CNF formula of the same size. Thus, our
example formula becomes the clause X2 ∨ ¬Y2 ∨ Y1. At the other ex-
treme, the enhanced binary transformation of a positive CNF formula
is a conjunction of disjunctions of conjunctions of literals. One way
of transforming this to CNF is to distribute the disjunctions over the
conjunctions. Unfortunately, applying this distribution to a disjunction
of n conjunctions, each with m literals, produces a CNF formula with
nm conjuncts, each with m literals. Thus, if an nb-clause has J literals,
its enhanced binary transformation consists of between ⌊lg D⌋J and
⌈lg D⌉J clauses, each with J literals. Thus, if a positive nb-formula
consists of L/J clauses each with J literals, then the size of its enhanced
binary transform is between L⌊lg D⌋J and L⌈lg D⌉J .

It is possible to avoid this exponential expansion by introducing new
variables into the formula and, indeed, this is what is generated by the
unary/binary transform to which we now turn our attention.

4.3. The Unary/Binary Transform

The unary/binary transform, originally introduced by Frisch and Peug-
niez (2001), produces the same kernel as the unary/unary transform.
The ALO and AMO formulas it produces achieve their effect by in-
troducing the enhanced binary encodings of nb-atoms and adding for-
mulas linking the two encodings together. Following the practice of
the constraint programming community, we call these linking formulas
“channeling” formulas. Since the enhanced binary encoding requires no
ALO or AMO formulas, the unary/binary encoding requires no ALO
or AMO formulas beyond the channelling formulas.

The channelling formulas that act as AMO formulas state that the
unary encoding of each nb-atom implies its enhanced binary encoding.
So, for example, if the nb-variable X has domain {d1, d2, d3} then the
AMO formula for X is

(X:d1 → ¬X2) ∧
(X:d2 → (X2 ∧ ¬X1)) ∧
(X:d3 → (X2 ∧ X1)),
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which is logically equivalent to the CNF formula

(¬X:d1 ∨ ¬X2) ∧
(¬X:d2 ∨ X2) ∧ (¬X:d2 ∨ ¬X1) ∧
(¬X:d3 ∨ X2) ∧ (¬X:d3 ∨ X1).

The entire AMO formula is a conjunction of such channelling formulas,
one for each of nb-variable.

It is easy to see that the CNF of the channelling formula for each
variable consists of between D⌊lg D⌋ and D⌈lg D⌉ clauses of two literals.
Since the entire AMO formula consists of a conjunction of channelling
formulas for each of V variables, its total size is between 2V D⌊lg D⌋
and 2V D⌈lg D⌉.

The channelling formulas that act as ALO formulas state that for
each nb-atom, its unary encoding is implied by its enhanced binary
encoding. So, for example, if the nb-variable X has domain {d1, d2, d3}
then the ALO formula for X is

(¬X2 → X:d1) ∧
((X2 ∧ ¬X1) → X:d2) ∧
((X2 ∧ X1) → X:d3).

which is logically equivalent to the CNF formula

(X2 ∨ X/d1) ∧
(¬X2 ∨ X1 ∨ X:d2) ∧
(¬X2 ∨ ¬X1 ∨ X:d3).

The entire ALO formula is a conjunction of channelling formulas,
one linking formula for each nb-variable. The ALO formula for each
nb-variable is a conjunction of D clauses each of size ⌊lg D⌋ + 1 or
⌈lg D⌉+1; thus the entire ALO formula is a conjunction of DV clauses
and has as a total size of between DV (⌊lg D⌋+1) and DV (⌈lg D⌉+1).

4.4. When Are ALO and AMO Formulas Needed?

It has been known for some time that certain unary SAT-encodings
do not require ALO clauses and certain others do not require AMO
clauses. For example, Jonsson and Ginsberg (1993) argue that AMO
clauses are not needed in graph colouring. It has also been observed that
when it is possible to omit either the AMO or ALO clauses, doing so
improves the performance of local search algorithms. Prestwich (2004)
hypothesises that this improvement is partly a result of increasing the
solution density of the search space. The important open question is
when can ALO and AMO clauses be omitted?
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This section shows that the need for such clauses is not a property
of the problem, but rather a property of the non-Boolean encoding of
the problem. This section identifies, and proves correct, a sufficient syn-
tactic condition for excluding ALO clauses and another for excluding
AMO clauses. In fact, we shall state this on a variable-by-variable basis;
some variables may require ALO and/or AMO clauses while others may
not.

The following definition applies to all formulas, both Boolean and
non-Boolean.

Definition 1 (Positive and Negative Formulas). A formula occurs pos-
itively within itself. If α occurs positively (negatively) within γ then α
occurs positively (negatively) within γ ∧ β, β ∧ γ, β ∨ γ, γ ∨ β, β → γ,
γ ↔ β and β ↔ γ. If α occurs positively (negatively) within γ then α
occurs negatively (positively) within ¬γ, γ → β, γ ↔ β and β ↔ γ. A
formula is said to be negative (positive) with respect to an atom if that
atom does not occur positively (negatively) in the formula. A formula
is said to be positive (negative) if it is positive (negative) with respect
to all atoms.

Notice that this generalises our previous definition that a CNF for-
mula is negative if it contains no positive literals and it is positive if it
contains no negative literals.

We can partially order the Boolean assignments by the atoms that
they satisfy. If A is an atom then we write α ≥A β to mean that α
and β are identical with the possible exception that α satisfies A but
β does not.

Lemma 1 (Monotonicity). Let φ be a formula, let A be an atom and
let α and β be two Boolean assignments such that α ≥A β. If φ is
formula that is positive with respect to A and is satisfied by β, then it
is satisfied by α. If φ is negative with respect to A and is satisfied by
α, then it is satisfied by β.

Proof. Both statements can be proved simultaneously by a straight-
forward induction on the structure of φ.

We now turn our attention to the main theorem, which identifies
conditions under which AMO and ALO formulas can be omitted with-
out affecting satisfiability. The correctness of the theorem depends
on the semantics, not the syntax, of the ALO and AMO formulas.
In particular, all that matters is that an ALO (AMO) formula for
X:d1, . . . ,X:dn is satisfied by an assignment if and only if at least
(most) one of X:d1, . . . ,X:dn is satisfied by that assignment.
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Theorem 1 (Satisfiability without ALO or AMO). Let K be an ar-
bitrary Boolean formula, L be a conjunction of ALO formulas and M
be a conjunction of AMO formulas. Let AMO(X) and ALO(X) be
AMO and ALO formulas, respectively, for X:d1, . . . ,X:dn. (1) If K
is negative with respect to each of X:d1, . . . ,X:dn and K ∧ L ∧ M is
satisfiable then so is K ∧ L ∧ M ∧ AMO(X). (2) If K is positive with
respect to each of X:d1, . . . ,X:dn and K ∧L ∧M is satisfiable then so
is K ∧ L ∧ M ∧ ALO(X).

Proof. Parts (1) and (2) are proved separateley.
(1) The proof proceeds by assuming the antecedent and proving the

consequent. Let α be an assignment that satisfies K ∧L∧M . We now
prove that K ∧L∧M ∧AMO(X) is satisfiable by induction on m, the
number of atoms in X:d1, . . . ,X:dn that are satisfied by α.

Base case, m is 0 or 1 : In this case α itself satisfies K ∧ L ∧ M ∧
AMO(X).

Inductive case, m ≥ 2: The inductive hypothesis is that if K is
negative with respect to each of X:d1, . . . ,X:dn and K ∧ L ∧ M is
satisfied by an assignment that satisfies m − 1 of X:d1, . . . ,X:dn then
K∧L∧M∧AMO(X) is satisfiable. Let X:di be any one of the m atoms
of X:d1, . . . ,X:dn that are satisfied by α. Let α′ be an assignment that
is identical to α except that it falsifies X:di. We now show, in turn,
that α′ satisfies K, L and M . Since K is negative with respect to X:di

and α satisfies K, by the Monotonicity Lemma α′ also satisfies K.
Secondly, L must be satisfied by α′; the truth of an ALO formula for a
variable other than X is unaffected by the change of X:di and we have
constructed α′ so that it satisfies m− 1 ≥ 1 of X:d1, . . . ,X:dn. Finally,
α′ satisfies M since α satisfies M and α′ satisfies fewer atoms than α.
Since α′ satisfies K ∧L∧M and m− 1 of X:d1, . . . ,X:dn then, by the
inductive hypothesis, K ∧ L ∧ M ∧ AMO(X) is satisfiable.

(2) We assume the antecedent and prove the consequent. Let α be an
assignment that satisfies K∧L∧M . If α also satisfies ALO(X) then the
consequent trivially holds. Otherwise, α doesn’t satisfy ALO(X); rather
it falsifies each of X:d1, . . . ,X:dn. Let X:di be any one of X:d1, . . . ,X:dn

and let α′ be an assignment that is identical to α except that it satisfies
X:di. Clearly α′ satisfies ALO(X), so it remains to show that α′ satisfies
K, L and M , which we do in turn. Since K is positive with respect to
X:di and α satisfies K, by the Monotonicity Lemma α′ also satisfies
K. Secondly, α′ satisfies L since α satisfies L and α′ satisfies more
atoms than α. Finally, M must be satisfied by α′; the truth of an
AMO formula for a variable other than X is unaffected by the change
of X:di and we have constructed α′ so that it satisfies exactly one of
X:d1, . . . ,X:dn.
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Corollary 1 (Unary Transform without ALO or AMO). The unary
translation of a negative NB-formula is satisfiable if and only if it is
satisfiable when the AMO clauses are omitted. The unary translation of
a positive NB-formula is satisfiable if and only if it is satisfiable when
the ALO clauses are omitted.

Proof. We prove the first statement; the second is analagous. Let
α be the unary translation of an arbitrary negative NB-formula from
which n AMO formulas have been omitted. The “only-if” part is ob-
vious. The “if” part is proved by induction on n. For the base case, if
n = 0 then the corollary is obvious. The inductive case follows from
Theorem 1 by taking K to be the kernal of α, L and M to be the
ALO formulas and AMO formulas of α, and AMO(X) to be one of the
AMO formulas omitted from α. If α is satisfiable, then by the theorem
it remains satisfiable if we conjoin it with AMO(X).

To see that the need for AMO and ALO clauses is solely a property
of the encoding, not the problem being encoded, consider the problem
of colouring a graph of two connected nodes with the colours red, blue
and green. We can encode this in NB-SAT by using two variables, X
and Y , for the nodes and {red , blue, green} as the domain of each. There
are (at least) two ways to encode the constraint that both nodes cannot
be red.

¬X/red ∨ ¬Y/red (2)

X/blue ∨ X/green ∨ Y/blue ∨ Y/green (3)

According to Corollary 1, AMO clauses are not needed with (2) and
ALO clauses are not needed with (3).

4.5. Mixed Transformations

In presenting the three transformations it was assumed that the same
transformation is applied to all nb-variables. However, there is no rea-
son why different transformations couldn’t be applied to different vari-
ables. Nor is there any reason why the AMO formula for a variable
couldn’t use one encoding (say, binary) while its ALO formula uses
another encoding (say, unary).

This flexibility extends to the issue of whether ALO and AMO for-
mulas are required in a unary transformation. Observe that Theorem 1
applies to the translation of a single nb-variable, X. Thus the need for
ALO and AMO formulas can be considered on a variable-by-variable
basis.
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5. Comparison of Search Spaces

This section considers the search spaces confronted by the four solution
methods: the direct non-Boolean method and the three transforma-
tion methods based on the transforms of the previous section. For
each method, the states in the search space are all assignments to
the variables of the formula—Boolean or non-Boolean—and the state
transitions are made by flipping a single literal.

Consider an nb-formula F containing V variables, each with a do-
main of size D. The search space consists of DV states with V (D − 1)
transitions from each.

The unary/unary transformation of F contains DV b-variables, and
hence has 2DV states with DV transitions from each. An nb-variable
X with domain {d1, . . . , dn} is represented in the unary/unary trans-
formation by the b-atoms X:d1, . . . ,X:dn. A non-Boolean assignment
that maps X to di corresponds to a Boolean assignment that maps X:dj

to TRUE if j = i and FALSE if j 6= i. In a Boolean assignment, such
as this, where exactly one X:dj is mapped to TRUE we say that X is
singularly assigned. Non-singular assignments of X are either empty—
mapping every X:dj to FALSE—or multiple—mapping more than one
X:dj to TRUE. We also use the term “singular” to describe an entire
assignment in which every nb-variable is singularly assigned.

Though non-singular assignments occur in the unary/unary search
space, they cannot be solutions if all AMO and ALO clauses are in-
cluded in the encoding. As domain sizes grow the unary/unary search
space becomes dominated by non-singular assignments. A variable with
domain size D has D singular assignments compared with 2D −D non-
singular assignments. In a problem with V nb-variables the ratio of
non-singular to singular assignments is raised to the power of V .

Consider a transition from state S to state S′ in in the search space of
F . This transition changes the value assigned to some variable, X, from
value d to a different value d′. Both S and S′ correspond to singular
states in the search space of the unary/unary transform of F . However,
the latter search space contains no transition between these two states.
The shortest paths between these two states contain two moves: flipping
X:d from FALSE to TRUE and flipping X:d′ from TRUE to FALSE in
either order. A local search procedure operating on the unary/unary
transformation must inevitably move through some non-singular states
because there are no transitions between two singular states.

Much work on SLS has noted that solution density (the ratio of
number of solutions to number of states in the search space) is one
factor influencing the effectiveness of SLS. An nb-encoding has the same
number of solutions as its unary/unary transform if all ALO and AMO
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16 A.M. Frisch, T.J. Peugniez, A.J. Doggett & P.W. Nightingale

clauses are included. As the unary/unary encoding generally has many
more states, it generally has a lower solution density. Removing ALO
or AMO clauses from a unary/unary encoding potentially increases the
number of solutions without changing the number of states.

The binary transformation of F contains ⌈lg D⌉V variables, and
hence has 2⌈lg D⌉V states; from each there are ⌈lg D⌉V transitions. If D
is a power of 2 then the non-Boolean states and binary states are in a
one-to-one correspondence and, hence, contain the same number of so-
lutions, same number of states, and same solution density. However, the
⌈lg D⌉V transitions from each binary state are a subset of the (D−1)V
transitions in the corresponding nb-state. If D is not a power of two,
then the binary search space has more states than the nb-search space.
The basic binary encoding has the same number of solutions as the
nb-encoding, but the extended binary encoding potentially has more
solutions.

Notice that if all variables in F have a domain size of 2 then the
binary transform of F is essentially the same as F and the non-Boolean
and binary search spaces are isomorphic. NB-Walksat operating on
F behaves identically to Walksat operating on the binary transform
of F . This equivalence was exploited in testing the correctness of the
NB-Walksat implementation.

The unary/binary transformation of F contains both the variables
produced by the unary/unary transform and those produced by the
binary transform, a total of DV + ⌈lg D⌉V variables. Its search space
is a cross product of the other two search spaces. More precisely, if we
let SU be the states of the unary/unary space and SB be the states
of the binary space, then the states of the unary/binary space are the
cross product of SU and SB. If u and u′ are elements of SU and b and
b′ are elements of SB then there is a transition from 〈u, b〉 to 〈u′, b′〉
in the unary/binary space if and only if either (1) b = b′ and there is
a transition from u to u′ in the unary/unary space, or (2) u = u′ and
there is a transition from b to b′ in the binary space.

This discussion raises two questions: Are non-singular states helpful
to the search, perhaps by providing useful paths to a solution or out of
local minima, or is better performance achieved by restricting search
to a smaller space containing only singular assignments? Does the re-
duction of transitions that results from using the binary representation
help or hinder the search process?
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6. Performance Evaluation

Using four problem domains, this section presents experiments that
compare the performance of the four methods, which we shall refer
to as NB (non-Boolean encoding), UU (unary/unary encoding), EB
(enhanced binary encoding), and UB (unary/binary encoding). In all
experiments, Walksat version 35 was used to solve the Boolean en-
codings. The non-Boolean encodings, even in cases where the domain
size is 2, were solved with NB-Walksat; version 4 was used for the
graph colouring problems in Section 6.1 and version 6 was used in all
other experiments. Both Walksat and NB-Walksat provide the user the
option of either compiling the program with fixed size data structures
or allocating the data structures when the formula is input at runtime;
the latter option was used in all experiments. The random formulas
(Section 6.2) and round-robin tournament problems (Section 6.3) were
run on a 700Mhz Athlon with 256 megabytes of memory. The quasi-
group problems (Section 6.4) were run on an Athlon XP 2400+ 2GHz
with 512Mb of memory.

Considerable care must be taken in setting the Pnoise parameter for
the experiments. Much work in this area has been reported without
giving the value used for Pnoise , and thus is irreproducible. Setting the
parameter to any fixed value over all formulas is not acceptable; we have
observed that a parameter setting that is optimal for one formula can,
in another formula, yield performance that is several orders of magni-
tude below optimal. The best option is to report performance at the
optimal setting for Pnoise , which—in the absence of any known method
to determine this a priori—we have determined experimentally. This
is also the route followed by Hoos (1998) in his extremely careful work.

In using SLS procedures it is common practice to restart the search
at a new, randomly-selected assignment if the procedure has not found
a solution after a prescribed number of flips. Since the runtime dis-
tribution using a restart strategy is a function of the runtime distri-
bution without restarts, this study need be concerned only with the
performance without restarts.

6.1. Graph Colouring

Frisch and Peugniez (2001) report experiments with 6 instances of the
graph colouring problem. Each problem instance was encoded as a CNF
nb-formula. For each node in the graph the formula uses a distinct
variable whose domain is the set of colours. The formula itself is a
conjunction of all clauses of the form ¬X/c ∨ ¬Y/c, such that X and
Y are a pair of nodes connected by an arc and c is a colour. For each
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instance the domain size of the variables is the number of colours, which
for these six instances is 5, 5, 15, 17, 18 and 25.

Three SAT-encodings of each problem instance were produced by ap-
plying the unary/unary, enhanced binary and unary/binary transforms.
Since the nb-encodings are negative, AMO clauses were omitted from
the UU and UB encodings, as justified by Corollary 1. Also note that
because the nb-encodings are negative, the enhanced binary transform
maps each nb-clause to a single b-clause (as discussed at the end of
Section 4.2).

Frisch and Peugniez’s experiments reveal that NB and UU are ef-
fective on all six instances and have roughly comparable solution times
(within a factor of 2 to 3). On the two problem instances with domain
size five, the three transformation methods equaled or outperformed the
direct method. However, on each of the other four instances (domain
size 15 to 25), the direct method equaled or bettered each of the trans-
formation methods. Of these same four instances, UB was ineffective
on three and EB was ineffective on two.

Overall, their graph-colouring experiments show that with increas-
ing domain size, NB scales much better than both UB and EB and
slightly better than UU.

6.2. Random Non-Boolean CNF Formulas

Since we can control certain parameters in the generation of random
CNF nb-formulas, they provide a good testbed. In particular, since
this paper is a study of solving problems with domain sizes greater
than two, we would like to know how problem solving performance
varies with domain size. To measure this we need to select problem
instances that have different domain sizes but are otherwise similar.
Formulating a notion of “otherwise similar” has been one of the most
stubborn problems faced by this research.

We have developed a program that generates random, positive CNF
nb-formulas using five parameters: N , D, C, V and L. Each generated
formula consists of exactly C clauses. Using a fixed set of N variables
each with a domain size of D, each clause is generated by randomly
(with uniform distribution) chosing V distinct variables and then, for
each, randomly (with uniform distribution) choosing L values from its
domain. Each of the chosen variables is coupled with each of its L
chosen values to form L·V positive literals, which are disjoined together
to form a clause.

The simplest conjecture on how to study varying domain size is to
fix the values of N , C, V , and L and then to systematically vary D.
One can see that performance on this task would exhibit typical phase-
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transition behaviour (Mitchell et al., 1992): small values of D would
produce under-constrained instances, which would become critically-
constrained and then over-constrained as D increases. The problem
instances generated by this method would not be similar in terms of
their location relative the solubility phase transition.

Our solution to this shortcoming is to vary D and to adjust the
other four parameters so as to put the problem class at the solubility
phase transition—that is, at the point where half the instances in the
class are satisfiable. But for any given value of D many combinations of
values for N , C, V and L put the problem class at the phase transition.

Our first attempt to solve this was based on the idea of keeping the
problem size constant. With each formula consisting of 1000 clauses,
each with three literals, we experimentally determined the appropriate
value of N to put the problem class at the phase transition. As we
later discovered, this approach is faulty, a consequence of the somewhat
counterintuitive observation that the appropriate value of N grows
fairly rapidly with D. A problem instance with 1000 clauses of three
literals is at the phase transition if it has 1031 variables with domain
size 64. Such a problem instance contains only 3000 literal occurrences
drawn out of the possible 65,984 atoms (1031×64). That is, only about
one in 21 of the possible atoms occur in the formula; so, on the average,
each variable occurs with only about 3 of its 64 possible values. Since
the problem instance has all positive literals, each variable has, in effect,
a domain size of approximately 3. Even for a problem with domain size
8, about half of the possible atoms do not occur in a random problem
instance.

The solution we have adopted is to keep DN , the size of the search
space, at a fixed value for all problem instances and then requiring all
clauses to have the same “constrainedness”, as measured by (L/D)V .
Mimicking Boolean 3CNF, we set V to three and aim to keep (L/D)V

at 1/8, which is achieved by setting L to D/2. This follows the constant
length model advocated by Mitchell et al. (1992). Finally C is set to
whatever value puts the problem class at the solubility phase transition.
Thus, while varying D, the parameters that we are holding constant are
search space size, the number of variables constrained by each clause
and the amount of constraint placed on each, and the proportion of
instances with that parameter setting that are solvable.

Our experiments were conducted on domain sizes of 2, 4, 8, 16 and
32. Following the model above we kept DN at a constant value; 260

was chosen since 260 = 2N2 = 4N4 = 8N8 = 16N16 = 32N32 if N2 = 60,
N4 = 30, N8 = 20, N16 = 15 and N32 = 12. Then for each domain size,
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Problem method Pnoise

setting
formula

size
flip rate

(flips/sec)
median

flips
median

time (ms)

Domain size 2 NB .53 783 272,000 506 1.9
60 vars UU .44 903 684,000 3,450 5.0
261 clauses UB .39 1,023 792,000 9,560 12.1

EB .53 783 443,000 502 1.1

Domain size 4 NB .42 1,680 179,000 803 4.5
30 vars UU .17 2,040 414,000 8,770 21.2
280 clauses UB .16 2,160 608,000 44,600 73.4

EB 319,448

Domain size 8 NB .31 3,528 101,000 1,130 11.2
20 vars UU .05 4,648 251,000 20,400 81.0
294 clauses UB .05 4,488 513,000 519,000 1, 010

Domain size 16 NB .24 7,248 55,400 2,250 40.6
15 vars UU .018 10,848 145,000 86,0000 592
302 clauses UB 9,168

Domain size 32 NB .18 14,736 27,900 4,770 171
12 vars UU .01 26,640 77,000 515,000 6, 690
307 clauses UB 18,576

Figure 3. Results, to no more than three significant figures, for a suite of 101
satisfiable non-Boolean CNF formulas chosen at random. The values recorded in
the flips and time column are the flips and time required to solve a single formula,
not the entire suite. On those rows missing entries, the median number of flips to
solution of 101 runs at noise levels .01, .02 and .03 all exceeded 5,000,000.

we used NB-Satz6 (Stock, 2000) to experimentally locate the point of
the phase transition The leftmost column of Figure 3 shows the value
of C (number of clauses) at which these experiments located the phase
transitions.

With the parameters of the random formulas determined, at each
domain size we generated a series of random formulas according to the
above method and kept the first 101 satisfiable ones as identified by NB-
Satz. At each domain size, 1001 attempts were made to solve the suite
of 101 formulas with the NB, UU and UB methods. By Corollary 1 a
positive CNF nb-formula can be transformed to a b-formula without the
ALO formulas. Since our randomly-generated formulas are positive, the
unary/unary and unary/binary encodings that are used here contain
only kernels and AMO formulas.

6 Satz (Li and Anbulagan, 1997) is an implementation of the DPLL algorithm
(Davis et al., 1962) for deciding Boolean satisfiability. NB-Satz generalises Satz
to handle non-Boolean formulas. Satz and other Boolean decision procedures are
incapable of solving these random instances with large domain sizes.
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The results of these experiments,7 as shown in Figure 3, consistently
follow a clear pattern. At all domain sizes, in terms of both time and
number of flips, NB outperforms UU, which in turn outperforms UB.
All the methods show a decline in performance as domain size grows.
The decline is so sharp for the transformation methods that UB is
ineffective on domain size 16, and UU is two orders of magnitude slower
than NB on domain size 32. On these random formulas, as on the graph
colouring problems, the flip rates of all methods decline with increasing
domain size.

Results on the EB method are reported only for domain size 2 since
at larger domain sizes the enhanced binary transformation produces
unreasonably large formulas. As discussed at the end of Section 4.2,
if the enhanced binary transform is used to produce a CNF b-formula
from a positive CNF nb-formula, the size of the resulting b-formula is
exponential in the clause length of the original nb-formula—which in
this case is 3

2D. With a domain size of 4 the transformation produces a
b-formula with 319,488 atoms (which Walksat cannot solve even with
hours of CPU time) and with a domain size of 8, the b-formula has over
5 ·109 atoms. Finally, recall (from Section 4.2) that applying the binary
transform to an nb-formula of domain size 2 results in an essentially
identical Boolean formula. Hence at domain size 2, the only difference
between the NB and EB methods are that NB uses NB-Walksat and
EB uses Walksat. The results in the table show that for these random
formulas NB-Walksat’s flip rate is 61% of Walksat’s flip rate; this slow
down is the overhead incurred by the generality of NB-Walksat. It
should be noted that the amount of overhead could be quite different
on problems with other characteristics.

6.3. Round Robin Tournament Scheduling

The round robin tournament scheduling problem appears as problem
26 in CSPLib (Gent and Walsh, ), where it is specified as

The problem is to schedule a tournament of n teams over n − 1
weeks, with each week divided into n/2 periods, and each period
divided into two slots. The first team in each slot plays at home,

7 The experiments reported here improve upon similar ones reported by Frisch
and Peugniez (2001). Here we correct a faulty Pnoise setting (that for UU at domain
size 4), use larger test suites (101 instances each, instead of 25), and use more sample
more runs (1001 instead of 101). The median flips to solution is generally higher in
these experiments than in the previous ones. We believe that this is a consequence
of using larger test suites. Since the Pnoise parameter is set to optimise performance
over the entire suite, it more closely fits the optimal settings of the instances in a
small suite than those in a large suite. To see this, just consider a one-instance suite
and a two-instance suite.
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whilst the second plays the first team away. A tournament must
satisfy the following three constraints: (1) every team plays once a
week; (2) every team plays at most twice in the same period over
the tournament; (3) every team plays every other team.

An example schedule for 8 teams is:

week 1 week 2 week 3 week 4 week 5 week 6 week 7
period 1 8 vs 1 8 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4
period 2 2 vs 3 1 vs 7 8 vs 3 5 vs 7 1 vs 4 8 vs 6 5 vs 6
period 3 4 vs 5 3 vs 5 1 vs 6 8 vs 4 2 vs 6 2 vs 7 8 vs 7
period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 8 vs 5 3 vs 4 1 vs 3

Before proceeding it is worth observing a constraint that is implied
by the given ones. Since a team plays exactly n − 1 times and at most
twice in each of the n/2 periods it follows that a given team plays twice
in all but one period and in the remaining period it plays once.

We use two general approaches to encoding this problem in NB-SAT.
In the singleton approach the domains of the variables are the teams,
so each match is represented by a pair of variables. In the pairwise
approach the domains of the variables are unordered pairs of teams, so
each match is represented by a single variable.

To aid conceptualisation, we define three macros for producing sets
of NB-formulas. Let Vars be a set of nb-variables and Atoms be a set of
m nb-atoms. Then alldiff(Vars) is true if and only if every variable
in Vars is assigned a different value; am2(Atoms) is true if and only if
at most two of the atoms in Atoms is true; and al2(Atoms) is true if
and only if at least two of the atoms in Atoms is true. The al2 macro
works by asserting that for every m − 1 atoms chosen from Atoms at
least one of the m − 1 is true.

alldiff(Vars)
def
=

{¬v1/d ∨ ¬v2/d | {v1, v2} ⊆ Vars , d ∈ dom(v1) ∩ dom(v2)}
8

am2(Atoms)
def
= {¬a1 ∨ ¬a2 ∨ ¬a3 | {a1, a2, a3} ⊆ Atoms}

al2(Atoms)
def
= {a1 ∨ a2 ∨ · · · ∨ am−1 | {a1, . . . , am−1} ⊆ Atoms}

alldiff(Vars) comprises
∑

{v1,v2}⊆Vars |dom(v1)∩dom(v2)| clauses,

each containing two literals. am2(Atoms) comprises m(m−1)(m−2)/6
clauses, each containing three literals, and al2(Atoms) comprises m
clauses, each containing m − 1 literals.

8 The notation {v1, v2} ⊆ Vars means that a two-element subset is selected from
Vars and, without loss of generality, the two elements are arbitrarily named v1 and
v2
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6.3.1. Singleton Approach
For each period p and each week w we use a pair of variables, 〈Xp,w, Yp,w〉
to represent the pair of teams that play against each other in period p
during week w. We consider the n teams to be denoted by the integers
1 to n, hence the domain of every variable is {1, . . . , n}. By symmetry
and the fact that a team cannot play itself, we can limit our search to
solutions in which Xp,w takes a value that is strictly less than that of
Yp,w. Hence, the domain of each Xp,w is {1, . . . , n− 1} and the domain
of each Yp,w is {2, . . . , n}. Furthermore, our encoding of the problem
includes a symmetry-breaking constraint, which asserts that the value
of Xp,w is strictly less than that of Yp,w. As we shall see, the inclusion of
the symmetry-breaking constraints allows one of the other constraints
to be stated much more compactly with the overall effect of producing
a more compact encoding of the entire problem.

Hence to represent the 4 team problem we use 12 variables as follows:

week 1 week 2 week 3
period 1 X1,1 vs Y1,1 X1,2 vs Y1,2 X1,3 vs Y1,3

period 2 X2,1 vs Y2,1 X2,2 vs Y2,2 X2,3 vs Y2,3

where each Xp,w has domain {1, 2, 3} and each Yp,w has domain {2, 3, 4}.
There are many ways to encode in NB-SAT the three constraints of

the original problem statement and the symmetry-breaking constraint.
Here we present one way of handling each of the problem constraints
and two ways of handling the symmetry-breaking constraint.

(1) Every team plays once a week. Since there are n slots each week
and there are n teams, it suffices to stipulate that each team plays at
most once in each week. For each week w, we use the formula

(s1) alldiff({Xp,w | p ∈ periods} ∪ {Yp,w | p ∈ periods})

Each instance of alldiff generates Ω(n3) clauses of size two. Overall,
Ω(n4) clauses are generated.

(2) Every team plays at most twice in the same period over the tour-
nament. For any team t, for every period p we have the clauses

(s2) am2({Xp,w/t | w ∈ weeks , t 6= n} ∪ {Yp,w/t | w ∈ weeks , t 6= 1})

The restrictions t 6= n and t 6= 1 prevent the set comprehensions from
generating the atoms Xp,w/n and Yp,w/1, respectively, both of which
are ill-formed because the specified value is not in the domain of the
specified variable. Each instance of am2 generates Ω(n3) clauses of
size three. Overall, Ω(n5) clauses are generated.
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(3) Every team plays every other team. This constraint can be ob-
tained by stipulating that no two teams play each other twice. For any
two distinct weeks,w and w′, and any teams t and t′ such that t < t′

and any periods p and p′ we have the formula

(s3) ¬Xp,w/t ∨ ¬Xp′,w′/t ∨ ¬Yp,w/t
′ ∨ ¬Yp′,w′/t′

We only need to consider teams t and t′ such that t < t′ because
the symmetry-breaking constraint ensures that in every solution Xp,w

has a strictly smaller value than does Yp,w. Furthermore, because of
the symmetry-breaking constraint, we need enforce only 〈Xp,w, Yp,w〉 6=
〈Xp′,w′ , Yp′,w′〉, and not 〈Xp,w, Yp,w〉 6= 〈Yp′,w′ ,Xp′,w′〉. Each of these
considerations halves the number of clauses needed to impose this
constraint. Attention can be restricted to distinct weeks since no team
plays more than once in the same week. This encoding produces Ω(n6)
clauses, each with four literals. As we will see, the symmetry-breaking
constraint is encoded far more compactly than the present constraint,
so using the symmetry-breaking constraint enables a smaller encoding
of the entire problem

Symmetry breaking. The symmetry-breaking constraint requires that
for each period p and each week w the value of Xp,w is strictly less than
that of Yp,w. Notice that this also enforces the constraint that no team
ever plays itself. We consider two ways to encode this constraint.

The first encoding, called lopsided, states that if Xp,w has value t
then Yp,w has a value strictly greater than t. The value of Xp,w implies a
restriction on the value of Yp,w. For every team t such that 2 ≤ t ≤ n−1
and every period p and every week w we have the clause

(lopsided) ¬Xp,w/t ∨ Yp,w/t+1 ∨ Yp,w/t+2 ∨ · · · ∨ Yp,w/n.

This encoding generates Ω(n3) clauses ranging in size from 2 to n− 1
literals.

The second encoding, called negated, states that Xp,w and Yp,w can-
not take on any pair of values that results in Yp,w being less than or
equal to Xp,w. For every two teams t and t′ such that 2 ≤ t ≤ t′ ≤ n−1
and every period p and week w we have the clause

(negated) ¬Xp,w/t
′ ∨ ¬Yp,w/t

This encoding produces Ω(n4) clauses, each containing two literals.
Béjar and Manyá have experimented with two singleton encodings.

In one paper (Béjar and Manyà, 1999b) they use the constraints s1, s2,
s3 and lopsided. In another paper (Béjar and Manyà, 2000) they use
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Instance method Pnoise

setting
clauses formula

size

6 teams NB 0.310 2,790 9,300
DS=5 UU 0.250 2,820 9,450

8 teams NB 0.130 18,088 61,992
DS=7 UU 0.090 18,144 62,384

10 teams NB 0.051 72,900 254,520
DS=9 UU 0.033 72,990 255,330

Instance method flip rate
(flips/s)

median
flips

median
time (s)

mean
flips

S.D.
flips

6 teams NB 49,528 333 0.0067 476 461
DS=5 UU 246,867 1,485 0.0060 2,019 1,853

8 teams NB 20,658 1,718 0.0832 2,408 2,221
DS=7 UU 126,675 7,386 0.0583 10,778 9,423

10 teams NB 12,730 15,786 1.2401 23,990 24,577
DS=9 UU 73,369 73,079 0.9961 100,838 99,678

Figure 4. Round Robin formulated with s1, s2, s3, negated and ALO. The domain
size (DS) is one less than the number of teams. Sample size is 1000.

a UU encoding of the constraints s1, s2, s3 and negated. In this UU
encoding they added ALO clauses but no AMO clauses.

We experimented with two nb-encodings of the problem. The first
encoding uses s1, s2, s3 and negated. The unary/unary transformation
was applied to produce a Boolean encoding. As the original nb-formula
is negative, ALO clauses are included in the UU encoding, but AMO
clauses are omitted. Figure 4 shows the results of 1000 runs each on
the UU and NB encodings for 6, 8 and 10 teams.

The second encoding uses s1, s2, s3 and lopsided. The unary/unary
transformation was applied to produce a Boolean encoding. As the
original nb-formula is neither negative nor positive, both ALO and
AMO clauses are included in the UU encoding. Figure 5 shows the
results of 1000 runs each on the UU and NB encodings for 6, 8 and 10
teams.

The two tables exhibit similar patterns. NB requires fewer flips to
solve the problem instances, and its advantage over UU grows as the
domain size increases, markedly so for the lopsided encodings. Both
figures show that UU has a significantly higher flip rate; consequently
UU has a slightly faster solution time in the negated encodings. How-
ever, since UU scales so poorly with the lopsided encodings, NB has a
time advantage here and its advantage grows as the domain size grows.
No results are given for UB or EB as these are ineffective on these
instances.
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Instance method Pnoise

setting
clauses formula

size

6 teams NB 0.270 2,700 9,165
DS=5 UU 0.180 3,030 9,915

8 teams NB 0.100 17,668 61,432
DS=7 UU 0.090 18,900 64,176

10 teams NB 0.052 71,640 252,945
DS=9 UU 0.028 72,970 260,235

Instance method flip rate
(flips/s)

median
flips

median
time (s)

mean
flips

S.D.
flips

6 teams NB 50,258 304 0.0060 467 475
DS=5 UU 227,018 1,683 0.0074 2,372 2,249

8 teams NB 22,762 1,957 0.0860 2,714 2,604
DS=7 UU 120,935 12,997 0.1075 19,540 19,380

10 teams NB 12,899 16,672 1.2925 22,260 20,857
DS=9 UU 69,153 313,134 4.5281 445,906 449,436

Figure 5. Round Robin formulated with s1, s2, s3, lopsided, ALO and AMO. The
domain size (DS) is one less than the number of teams. Sample size is 1000.

6.3.2. Pairwise Approach
The pairwise approach uses a single variable XYp,w for each period p
and week w. The domain of each variable is the set of all unordered
pairs of distinct teams. We shall refer to this set of values as matches
and note that it has n(n−1)/2 elements. We shall also write matches(t)
to denote those pairs in matches that contain team t and note that for
all t this set contains n − 1 elements. Hence to represent the 4 team
problem we use 6 variables as follows:

week 1 week 2 week 3
period 1 XY1,1 XY1,2 XY1,3

period 2 XY2,1 XY2,2 XY2,3

where each XYp,w has the domain:

matches = {{1, 2}, {1, 3}, {1, 4}, {2, 3}{2, 4}, {3, 4}}

Also, to illustrate the notation, matches(2) = {{1, 2}, {2, 3}{2, 4}}.
We now present a single encoding of each of the three problem

constraints.

(1) Every team plays once a week. Unlike the singleton approach, we
impose this constraint by saying that each team plays at least once
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each week. For every week w, for each team t we have the clause:

(p1)
∨

p∈periods ,m∈matches(t)

XYp,w/m

This encoding produces Ω(n2) clauses, each of length Ω(n2).

(2) Every team plays at most twice in the same period over the tourna-
ment. To impose this constraint we add an “imaginary” extra week
and write weeks+ to denote the expanded set of weeks. It follows that
over the course of n weeks+ a team plays at most twice in the same
period if and only if it plays at least twice in the same period. For each
period p for each team t we have the following formula:

(p2) al2({XYp,w/m | m ∈ matches(t), w ∈ weeks+})

Each instance of al2 produces Ω(n2) clauses each with Ω(n2) literals.
Overall, this produces Ω(n4) clauses.

(3) Every team plays every other team. In the pairwise approach it
is straightforward to stipulate that every pair of teams plays at least
once. This can be done with one clause for each m in matches :

(p3)
∨

p∈periods , w∈weeks

XYp,w/m

This yields Ω(n) clauses, each containing Ω(n2) literals.
We experimented with the NB encoding of p1, p2 and p3, and

the UU transform of this. As the NB encoding is neither positive
nor negative, the UU encoding contains both ALO and AMO clauses.
Figure 6 shows the results of 1000 runs each on the NB encodings for
6, 8, 10 and 12 teams, and the UU encoding for 6 teams. Beyond 6
teams, the UU encoding is ineffective and the UB and EB encodings
are ineffective even for 6 teams. Indeed, the Boolean encodings rapidly
become prohibitively large as the number of teams increase. However,
the NB method is highly effective, and easily the best of all the solution
methods considered in this section. Here we see that with large domain
sizes, NB can be the only effective solution method.

6.4. The Quasi-Group Completion Problem

A quasi-group (also called a Latin Square9) of order n is an n×n table
of symbols There are n symbols and each symbol occurs exactly once in

9 A quasi-group is a group whose multiplication table is a latin square. However,
in the AI community the table is commonly referred to as the quasi-group.
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Instance method Pnoise

setting
clauses formula

size

6 teams NB 0.120 159 3,465
DS=15 UU 0.010 2,049 7,245

8 teams NB 0.020 348 15,120
DS=28

10 teams NB 0.012 645 47,025
DS=45

12 teams NB 0.008 1,074 118,404
DS=66

14 teams NB 0.002 1,659 257,985
DS=91

Instance method flip rate
(flips/s)

median
flips

median
time (s)

mean
flips

S.D.
flips

6 teams NB 86,067 294 0.0034 404 364
DS=15 UU 240,768 7,787 0.0323 11,523 11,198

8 teams NB 45,136 973 0.0216 1,373 1,260
DS=28

10 teams NB 24,333 6,026 0.2476 8,619 7,846
DS=45

12 teams NB 13,809 28,290 2.0487 41,010 40,375
DS=66

14 teams NB 8,308 21,8574 26.3087 318,896 319,472
DS=91

Figure 6. Round Robin formulated with p1, p2 and p3. The domain size (DS) is
n(n − 1)/2, where n is the number of teams. The sample size is 1000.

each row and column of the table. Therefore each row and each column
is a permutation of the symbols.

Generating a quasi-group of order n is trivial and can be done in
O(n2) time. However, completing a quasi-group which is partially filled
is an NP-complete problem (Colbourn, 1983). This is known as the
quasi-group completion problem (QCP). For a fixed n, as the number
of unfilled slots (or holes, h) increases, QCP exhibits both a phase tran-
sition from unsatisfiable to satisfiable and an easy-hard-easy pattern of
solvability (Gomes and Selman, 1997).

To evaluate local search procedures with QCP, the instances must be
filtered with a systematic search procedure so that only satisfiable ones
remain. Achlioptas et al. (2000) found generating QCP instances and
filtering with a complete search procedure too compute-intensive. They
suggest generating complete quasi-groups then emptying some of the
slots to create h holes. Problems generated this way are clearly guaran-
teed to be satisfiable, so they do not have traditional phase-transition

jar.tex; 7/06/2005; 17:40; p.28



Solving Non-Boolean Satisfiability Problems 29

behaviour. However, they do retain the easy-hard-easy pattern with
increasing h. This method of generating QCP instances is referred to as
quasi-group with holes (QWH). QWH does include all satisfiable QCP
instances, however Kautz et al. (2001) observe that it is biased away
from the uniform distribution of satisfiable instances because QWH
can generate the same QCP instance from a variable number of com-
plete quasi-groups. Empirically, the most difficult QWH instances are
found where h = 1.6n1.55 (Achlioptas et al., 2000). This result follows
from observation of the performance of Walksat on the unary/unary
transform with ALO clauses.

6.4.1. Generating QWH Instances
For each order size n ∈ {4, 8, 12, 16, 20}, we generated a suite of 25
QWH instances. We used the lsencode v1.0 software (Gomes et al.,
2001) to systematically generate a complete quasi-group instance and
then shuffle it 10000 times. This gives a uniform distribution over all
complete quasi-groups of order n. Using lsencode, 1.6n1.55 holes were
then poked in the quasi-group by the random method.

6.4.2. The Non-Boolean Encoding
We used our own program, PLS-NB, to encode each of the generated
QWH instances as an NB-formula. We initially encoded each instance
with n2 variables, one for each entry in the quasi-group table. For each
row and column, the variables must be assigned a permutation of the
values. For a row or column containing variables , it is sufficient to
assert that each value appears at least once in variables , since this
entails that each value appears exactly once. For each row or column
containing variables, and each symbol s we have the clause

∨

A∈variables

A/s (4)

For each variable A that corresponds to a filled entry in the table (i.e.,
not a hole), we add the unit clause A/s, where s is the symbol that
fills the entry. This gives us a CNF NB-formula that encodes the QWH
instance.

This NB representation is then simplified by performing unit prop-
agation. To propagate the unit clause A/s, all other clauses containing
the variable A are processed with one of two rules:

− Unit subsumption applies to a clause C containing A/s. The unit
clause logically subsumes C, so C is removed from the formula.
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− Unit resolution applies to a clause C containing A/t where t 6= s.
The literal A/t is removed from C because (A/t∨φ)∧(A/s) entails
φ.

Unit propagation is performed to closure, after which all unit clauses
are deleted from the NB formula.

The variables remaining in the formula correspond to the holes in
the QWH instance. The domains of these variables typically contain
less than n values, and can vary from variable to variable. For each
suite Figure 7 shows the mean domain size (MDS) of the NB encodings
for each suite of QWH instances.

It is possible to simplify QWH instances much more than the unit
propagation that we have done. For example, before encoding an in-
stance into NB-SAT, one could consider the instance as a clique of dise-
qualities for each row and column and perform arc-consistency. Or even
stronger, one could consider an instance as an alldifferent constraint for
each row and column and perform generalised arc-consistency (Kautz
et al., 2001; Shaw et al., 1998). Unfortunately, both of these simpli-
fications reduce the domains of the variables so effectively, that all
reasonably-sized problems have small domains. For example, consider
simplifying the instances with arc-consistency (as explained above) and
then with unit propagation (as we have done). Then our suite of 25
instances for order 4 has a mean domain size of 2.84; for order 16 it is
3.85; and for order 20 it is 4.09. As such it is impossible to investigate
the effect of increasing domain size, because the problem instances
become too hard for large n. Since we are interested in producing a
useful testbed, not with solving the problem as fast as possible, we
pre-process by unit propagation only.

6.4.3. The Boolean Encodings
In addition to the NB-encoding, three Boolean transforms of the non-
Boolean formula are considered: UU, UB and EB. As the NB encod-
ings are all positive, no ALO clauses are included in the UU or UB
encodings.

Kautz et al. (2001) use two other Boolean encodings, which we (but
not they) now describe as Boolean transforms of non-Boolean encod-
ings. In both encodings they preprocess the instance by performing
generalised arc-consistency as described above. In the encoding they
call “2D” they do not use (4), but instead impose alldiff(variables)
on each row and column. Finally they apply the unary/unary trans-
form, including ALO clauses, but not AMO clauses. In their “3D”
encoding they impose both (4) and alldiff(variables) on all rows
and columns. Finally, they apply the unary/unary transform, including
both ALO and AMO clauses.
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6.4.4. Results
Once again, we treat the process of solving an entire suite as a single
sample execution. For each solution method, for each test suite, the
optimal Pnoise setting was experimentally determined. These are shown
in Figure 7. However, using a cutoff of 400 seconds (for the suite), EB
could not solve the suites with n ≥ 8 and UB could not solve those
with n ≥ 12.

In particular, EB made nine attempts to solve the order 8 suite at
each of the Pnoise settings 0.4, 0.45, 0.5, 0.55 and 0.6. None of the
attempts completed the suite in 400 seconds; the most successful was
Pnoise = 0.45, which completed the first 12 instances on one of its runs.
Thus, a Pnoise setting of .45 is recorded in Figure 7, with an asterisk
to indicate that this is a special situation.

UB made nine attempts to solve the order 12 suite at each of the
Pnoise settings 0.05, 0.1, 0.15, 0.2, 0.25. The most successful was Pnoise =
0.1, though not all of its runs completed within the cutoff of 400 sec-
onds. Thus a Pnoise setting of .10 is recorded in Figure 7, with an
asterisk to indicate that this is a special situation.

For all the other methods and suites, 101 runs were performed and
all completed within the 400 second limit. The results are shown in
Figure 7, where the the flips and time measurements are reported per
instance (i.e., the measurements for the suite are divided by 25). The
order 4 suite was solved so fast that a reliable measure of CPU time
could not be obtained; thus no flip rates or times are given.

The results reported in Figure 7 show that the performance of EB
and UB scale poorly as domain size increases. EB is competitive for
order 4 instances (MDS=3.93), but not for order 8 (MDS=7.01). UB
is effective, though substantially inferior to NB and UU for instances
of order 4 and 8; it is ineffective for order 12 instances (MDS=9.46).

The results also show that both UU and NB remain effective for
instances of order 20 (MDS=13.52), though NB is superior to UU, and
its superiority grows as domain size increases.

7. Related Work

This section considers related work, first work on solving problems
without encoding, then work on the direct approach and finally work
on the transformational approach.
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Problem method Pnoise

setting
mean

variables
mean

clauses
mean

formula
size

Order 4 NB .22 13.0 26.0 88.3
13 holes UU .16 51.1 101 238
3.93 MDS UB .41 77.1 127 290

EB .50 26.0 293 1, 074

Order 8 NB .20 40.0 79.9 424
40 holes UU .029 279 936 2, 136
7.01 MDS UB .16 399 890 2, 024

EB .45∗ 119 51, 720 345, 085

Order 12 NB 15 75.0 150 998
75 holes UU .035 709 3, 215 7, 129
9.46 MDS UB .10∗ 992 2, 504 5, 707

Order 16 NB .12 117 234 1826
117 holes UU .020 1, 354 7, 558 1, 6473
11.57 MDS

Order 20 NB .108 166 332 2, 953
166 holes UU .015 2, 244 14, 711 31, 711
13.52 MDS

Problem method mean
flip rate

(flips/ms)

median
flips

mean
flips

median
time (ms)

mean
time (ms)

Order 4 NB 27.2 27.5
UU 154 161
UB 568 590
EB 56.0 57.9

Order 8 NB 1, 228 702 721 0.62 0.64
UU 1, 375 4, 982 5, 383 3.63 3.91
UB 1, 472 57, 279 60, 377 38.8 41.0
EB 7.26 > 16, 000 > 16, 000

Order 12 NB 954 7, 819 8, 122 7.97 8.33
UU 1, 116 56, 458 58, 966 50.5 52.7
UB 1, 422 > 16, 000 > 16, 000

Order 16 NB 780 59, 865 61, 673 56.0 58.0
UU 1, 002 354, 759 374, 878 351 369

Order 20 NB 736 167, 738 183, 396 228 249
UU 779 1, 412, 583 1, 422, 320 1, 810 1, 830

Figure 7. Performance on quasigroup with holes.
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7.1. Solving Problems without Encoding

A substantial body of work takes a purely direct approach by apply-
ing local search directly to a problem, for example, to vehicle rout-
ing (Shaw, 1998)). This typically involves the overhead of building
a domain-specific solver from scratch, but allows the development of
problem-specific neighbourhoods and heuristics. Brafman and Hoos
(1999) show that for planning problems this approach can result in a
solver that is more efficient than encoding and solving with SAT. Recent
work on the development of the COMET system (Van Hentenryck and
Michel, 2003) shows that generic facilities, such as incremental data
structures, can be provided to ease the development of domain-specific
local search systems.

The advantage of encoding a problem into SAT or NB-SAT is that
developing an effective encoding is likely to be less difficult than im-
plementing a problem-specific local search procedure. This is demon-
strated by the continuing increase in the number of problems that can
be solved effectively by applying both systematic and SLS solvers to
encodings of the problems.

7.2. Other Work on the Direct Approach

As far as we know, only one other group has worked on a direct ap-
proach to solving non-Boolean satisfiability problems with stochastic
local search. Bejar and his colleagues (Béjar, 2000; Béjar and Manyà,
1999a; Béjar and Manyà, 2000; Béjar et al., 2001) have generalised
GSAT, Walksat, and some of their variants to operate directly on reg-
ular formulas of finitely-valued logic. In regular formulas all variables
have the same finite, totally-ordered domain, which for the sake of
presentation is usually taken to be {1, . . . , n}.10 A regular literal is of
the form ↑i:X or ↓i:X where i is a domain element and X is a variable.
Assignments in regular SAT are the same as those in NB-SAT. An
assignment satisfies ↑ i:X if the value assigned to X is at least i; it
satisfies ↓i:X if the value assigned to X is at most i. A regular CNF
formula is a conjunction of disjunctions of regular literals. Negation is
not used in regular CNF; nor is it needed as the negation of ↑i:X (resp.
↓i:X) is logically equal to ↓(i − 1):X (resp. ↑(i + 1):X).

The NB-Walksat and Regular-Walksat algorithms can be seen as
having only two differences. The first is that instead of step (g) (see
Figure 1), Regular Walksat uses

10 Here we stick with the terminology of this paper. Their presentation uses the
terminology of multi-valued logic.
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(g′) From among the variables that appear in L select one at random.
Call it X.
Let D be the set of values such that flipping X to that value would satisfy
the clause.
Randomly select a member of D and call it d.

The second difference is that the published descriptions of Regular-
Walksat do not specify distributions for the random selections made in
steps (d) or (g′). Assuming that all selections are made with uniform
distribution, in certain situations (g) and (g′) can choose among flips
with different distributions. To see this, consider two variables, X and
Y , each with domains {1, 2, 3}. Then the nb-clause X/2 ∨ X/3 ∨ Y/3 is
logically equivalent to the regular clause ↑2:X ∨ ↑3:Y . If these clauses
are false, then each could be “repaired” by one of three flips: X to 2,
X to 3 or Y to 3. In a noisy move, NB-Walksat would chose each flip
with probability 1/3, whereas Regular-Walksat would choose between
X and Y with probability 1/2 and, if X were chosen it would chose
between 2 and 3 with probability 1/2. Hence, Regular Walksat would
choose among the three flips with probability 1/4, 1/4 and 1/2 respec-
tively. This situation could arise only if a problem has a clause in which
different variables participate in a different number of repairing flips. Of
all the formulations considered in Section 6, this situation arises only
in the lopsided and pairwise formulations of the round-robin problem.

If we ignore the issue of distributions, NB-Walksat and Regular-
Walksat are functionally equivalent in the following sense. Let Creg =
C1, . . . , Cn be a set of regular clauses and CNB = C ′

1, . . . , C
′
n be a set of

NB-clauses. If Ci and C ′
i are logically equivalent for 1 ≤ i ≤ n, then the

set of runs available to Regular-Walksat running on Creg is the same
as those available to NB-Walksat running on CNB .

How do the NB and regular languages compare in terms of their
ability to represent problems and solve them with NB-Walksat and
Regular-Walksat? Considering the equivalence between the algorithms,
this issue hinges on the relative expressiveness of NB-clauses and reg-
ular clauses.

Regular clauses can be transformed easily to NB-clauses by re-
placing each occurrence of ↑ i:X (resp. ↓ i:X) with

∨
j>i X/j (resp.∨

j<i X/j). Going the other way, negative NB-clauses can be trans-

formed easily to regular clauses by replacing each occurrence of ¬X/i
with ↑(i + 1):X ∨ ↓(i − 1):X. However, non-negative NB-clauses are
not, in general, equivalent to any regular clause. The unit clause X/i
is equivalent to ↑i:X ∧ ↓i:X, but it is not equivalent to any regular
clause. Consequently, NB-Walsksat is capable of all the behaviours that
Regular-Walksat is, but not vice-versa. To be clear, the issue is not that
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Regular-Walksat lacks capabilities, rather it is that regular-CNF is not
sufficiently expressive.

Of course, every non-negative NB-formula φNB in CNF is logically
equivalent to some regular formula φreg (by the correspondences men-
tioned in the last paragraph) and φreg can be transformed to a CNF
formula φ′

reg by distributing disjunctions over conjunctions. φNB and
φ′

reg will be logically equivalent, though generally they will not corre-
spond clause by clause. Indeed, φreg may be unreasonably large. For
this reason, Regular-Walksat is typically ineffective on encodings that
correspond to negative NB-formulas in CNF. The two problems used
in the Regular-Walksat experiments of Béjar and Manyà (2000) use
negative encodings: graph colouring using the encoding of Section 6.1
and round robin tournament scheduling using clauses s1, s2, s3 and
lopsided of Section 6.3.1. The most effective round-robin encoding, the
pairwise one, uses both negative and positive clauses and is therefore
ill-suited for Regular-Walksat. Again, the shortcoming is not with the
Regular Walksat algorithm, it is that this non-negative encoding cannot
be expressed in regular CNF.

An obvious difference between NB-SAT and regular SAT is that
regular SAT uses a totally-ordered domain. One consequence is that
in representing inequalities, regular CNF can be more compact. For
example, the lopsided symmetry-breaking constraint of Section 6.3.1
can be represented by the regular formula

↑(t + 1):Xp,w ∨ ↓(t − 1):Xp,w ∨ ↑(t + 1):Yp,w

A second consequence is that Regular-Walksat is able to exploit this
compactness in its internal data structures. This, in effect, is a benefit
that accrues from the limited expressiveness of regular clauses.

7.3. Other Work on the Transformational Approach

Let us now turn our attention to related work on using the trans-
formation approach to solving problems with SLS on Boolean SAT.
Among the numerous problems attacked with this approach are the n-
queens problem (Selman et al., 1992), graph colouring (Selman et al.,
1992; Hoos, 1998), the quasi-group completion problem (or quasi-group
with holes) (Kautz et al., 2001; Achlioptas et al., 2000; Béjar et al.,
2001), the all-interval-series problem (Hoos, 1998; Béjar et al., 2001),
the Hamiltonian circuit problem (Hoos, 1998; Hoos, 1999), random
instances of the finite-domain constraint satisfaction problem (Hoos,
1998; Hoos, 1999; Gent, 2002), the round-robin tournament problem
(Béjar and Manyà, 2000), and planning (Kautz and Selman, 1992;
Kautz and Selman, 1996; Kautz et al., 1996; Ernst et al., 1997; Hoos,
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1998; Brafman and Hoos, 1999). Despite this widespread use we know
only three studies, other than our own, that have compared the per-
formance of SLS on different SAT encodings of non-Boolean variables;
we discuss these below. Other than these three comparative studies, all
work cited above uses the unary/unary encoding. As far as we know,
our work is the first to use or mention the unary/binary encoding.

We preface our discussion of the three studies by noting that no
work we know of considers the SAT-encoding process as two mappings,
one from the problem to NB-SAT and then a second from NB-SAT to
SAT.11 Researchers who take the single-stage viewpoint often overlook
some encodings. For example, from our viewpoint, we might see that
a study considers three ways of mapping a problem to NB-SAT, and
produces four SAT encodings by applying the unary/unary transform
to all three but the binary transform to only one. A similar over-
sight sometimes occurs in considering the inclusion/exclusion of ALO
and AMO clauses. To aid presentation, we shall adopt the two-stage
viewpoint in the following discussion.

Hoos (1998; 1999) compares the performance of Walksat using the
basic binary and unary/unary encodings of random instances of the
Hamiltonian cycle problem (HCP) and of the finite-domain constraint
satisfaction problem (CSP). The CSP instances are mapped to NB-
SAT using the well-known “direct encoding.” The HCP instances are
first mapped to CSP, and then treated the same as the CSP instances.
In both test sets, the NB-SAT encoding is negative; nonetheless, all
the unary/unary encodings include both ALO and AMO clauses. The
experiments show that the unary/unary encodings can be solved with
fewer flips than the basic binary encodings; about 7 times fewer in CSP
and 1.5 times fewer in the HCP.

Ernst et al. (1997) systematically study eight Boolean encodings for
the STRIPS-style planning problem. Over an unidentified suite of 23
instances of the planning problem, they compare the size of each encod-
ing and the average time that Walksat takes to solve each encoding. The
eight encodings they explore are systematically generated by selecting
one of two frame axioms (called classical and explanatory) and one of
four action representations (called regular, simple splitting, overloaded
splitting and bitwise). The regular, simple splitting and overloaded
splitting encodings are three ways of representing the choice of actions
and all three employ a unary/unary encoding. The bitwise action rep-
resentation is not truly a different action representation; it is a binary
encoding of the regular action representation. Thus, in terms of encod-

11 The nearest exception is that Hoos (1998; 1999) maps the Hamiltonian Cycle
Problem to SAT by mapping it first to the constraint satisfaction problem and then
mapping this to SAT.
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ing non-Boolean variables, their study makes two relevant comparisons:
between the classical/regular and the classical/bitwise encodings and
between the explanatory/regular and explanatory/bitwise encodings.
Ernst, Millstein and Weld are keenly aware that the unary/unary en-
coding does not always need ALO and AMO formulas and they pay
particular attention to creating and identifying opportunities for omit-
ting them. Though their binary encoding is not specified, their claim
that it has no extraneous values means that it is the enhanced version
or something similar. On the whole, it appears that each unary/unary
encoding generally outperforms the corresponding binary encoding,
but, as Ernst, Millstein and Weld note, the “timing data is hard to
interpret.”

Prestwich (2004) considers seven SAT-encodings of the graph colour-
ing problem. From our point of view these use four ways of mapping
colouring to NB-SAT. Three of these are mapped to SAT using solely
the unary/unary transform. The fourth, which is based on conflict
clauses, is the one of interest here as it is mapped to SAT in four ways:
(UULM) unary/unary with ALO and AMO, (UUL) unary/unary with
ALO, (BB) basic binary, and (EB) enhanced binary. On a suite of 30
colouring instances with between 4 and 49 colours, each encoded in
seven ways, he tests the performance of Walksat with the best heuris-
tic. He observes that on no instance does EB require more flips on
average than BB. And on almost all instances UUL requires fewer
flips on average than UULM. Since EB and UUL encodings admit
more solutions than the BB and UULM encodings, respectively, these
results are consistent with the hypothesis that higher solution density
(solutions divided by number of possible assignments) tends to yield
better performance for SLS. A surprising result of the experiments
is that the EB and BB encodings performed much better than one
would have expected from the previous work of us and others. The
puzzling pattern presented by the literature on the whole is that EB
and BB sometimes perform quite well and other times very poorly. Our
conjecture is that these two encodings do not perform well on intrinsi-
cally hard instances. Prestwich’s instances are mostly much easier than
the ones we used for colouring and other problems. On the hardest
instances of his, EB and BB perform poorly. On three of the four
easiest graph colouring instances tested by Frisch and Peugniez (2001)
EB performed competitively, but it was totally ineffective on the two
hardest instances.
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8. Conclusion

Boolean variables are merely a special case of non-Boolean variables,
and, intuitively, the difference between the non-Boolean and Boolean
variables grows as the domain size of the nb-variable increases. Con-
sequently, one would expect that in a comparison of encodings for
non-Boolean problems that domain size would be the most important
parameter to consider and that one would find that any difference in
performance between the encodings would increase when domain size
is increased. Nonetheless, this issue has been overlooked. All problem
instances that Hoos considers have a domain size of 10. The plan-
ning instances used by Ernst, Millstein and Weld are not identified
and domain sizes are not reported. The colouring instances used by
Prestwich do vary considerably in domain size, but his experiments
are not designed to control this parameter. In contrast to all other
studies, ours considers the effect of varying domain size and hence is
able to confirm the expectation that domain size is generally a critical
parameter. Our study is also the first to explicitly consider the role
of a formulation’s polarity (being positive or negative). By considering
polarity and domain size we are able to make some observations not
revealed by other studies.

− Of all the methods considered here, NB scales best with increasing
domain size.

− Many researchers have remarked that solving a problem by map-
ping it to SAT (inevitably with the unary/unary encoding) and
using an SLS SAT solver can compete with using a custom-made
SLS solver directly on the problem. Though our results show the
UU method to be quite robust, it can run into difficulties with very
large domain sizes. This is particularly true for non-negative for-
mulations, since excessively many AMO clauses must be included.

− The UB method is rarely effective, and it is never effective on
problems with moderate or large domain sizes.

− On non-negative formulations, the EB method is ineffective since
the encoding becomes prohibitively large with modest domain sizes.

− On negative formulations the EB method is sometimes effective
but often ineffective. It always requires more flips than NB. It
sometimes requires somewhat fewer flips than UU (as shown in
Prestwich’s results), but sometimes requires vastly more. We know
of no good explanation for this puzzling pattern with respect to
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UU, but we can offer a conjecture. The EB encoding generates a
difficult search space for SLS (a point argued well by Hoos), so a
problem that is inherently difficult becomes practically unsolvable
by EB. On the other hand, the EB search space is much smaller
than than that of UU, especially with large domain sizes. We thus
hypothesise that EB will be more effective than UU on problem
instances that have very large domain sizes but are very easy.
Note the we, and almost everyone else, have focussed on hard
problem instances, often deliberately selecting ones at the phase
transition. The one exception is the set of colouring instances used
by Prestwich, and he has observed the most success with BB and
EB.

Many questions remain to be addressed by future work. A wide range
of problems and encodings have yet to be explored. Stamm-Wilbrandt
(1993) shows how more than two dozen problems—most of which are
NP-complete—can be transformed to SAT. The present paper shows
that there is great flexibility in combining the different transforms. For
example, it is possible to use a binary AMO formula with a unary
ALO formula and it is possible to use different transforms on each
variable. From this we see that of all the possible ways of encoding non-
Boolean problems in Boolean formulas, very few have ever been tried.
Even within the small sphere of well-studied problems and well-studied
encodings, there are untried combinations.

The biggest challenge facing the study of problem encodings —
including all encoding issues, not just the handling of non-Boolean
variables — is the quest for generality. What can we say about about
encoding issues that can guide us in producing effective encodings of
new problems? This challenge must be decomposed if progress is to be
made. This paper’s biggest contribution towards this end is separating
out the issue of non-Boolean variables and identifying domain size and
polarity as the critical parameters.

In addition to developing new problem encodings, we claim that
the applicability of SLS technology can also be extended by enriching
the language on which the SLS can operate. This claim is supported
by recent results on pseudo-Boolean constraints (Walser, 1997) and
integer optimisation (Walser, 1999), non-clausal formulas (Sebastiani,
1994); and efficient handling of variable dependencies (Kautz et al.,
1997). Our success with NB-Walksat adds further weight to the claim.
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