
Consistency and the Quantified Constraint Satisfaction
Problem

A thesis submitted to the

UNIVERSITY OF ST ANDREWS

for the degree of

DOCTOR OF PHILOSOPHY

by

Peter Nightingale

School of Computer Science

University of St Andrews

August 2007

Abstract

Constraint satisfaction is a very well studied and fundamental artificial intelligence technique.

Various forms of knowledge can be represented with constraints, and reasoning techniques from

disparate fields can be encapsulated within constraint reasoning algorithms. However, problems

involving uncertainty, or which have an adversarial nature (for example, games), are difficult to

express and solve in the classical constraint satisfaction problem. This thesis is concerned with

an extension to the classical problem: the Quantified Constraint Satisfaction Problem (QCSP).

QCSP has recently attracted interest. In QCSP, quantifiers are allowed, facilitating the expression

of uncertainty.

I examine whether QCSP is a useful formalism. This divides into two questions: whether

QCSP can be solved efficiently; and whether realistic problems can be represented in QCSP. In

attempting to answer these questions, the main contributions of this thesis are the following:

• the definition of two new notions of consistency;

• four new constraint propagation algorithms (with eight variants in total), along with em-

pirical evaluations;

• two novel schemes to implement the pure value rule, which is able to simplify QCSP

instances;

• a new optimization algorithm for QCSP;

• the integration of these algorithms and techniques into a solver named Queso;

• and the modelling of the Connect 4 game, and of faulty job shop scheduling, in QCSP.

These are set in context by a thorough review of the QCSP literature.

3

Acknowledgements

I would like to thank all members of the CPPod and APES research groups for their input. In

particular, I would like to thank my supervisor Ian Gent and second supervisor Ian Miguel for all

their help and support. I would also like to thank all those I have collaborated with, in particular

Ian Gent, Kostas Stergiou and Andrew Rowley. I would like to thank my parents for all their

support over the last three years. This work was supported by an EPSRC doctoral training grant.

5

Contents

Chapter 1. Introduction 11

1.1. Solving The Classical Constraint Satisfaction Problem 12

1.2. Limitations of CSP 16

1.3. The Quantified Constraint Satisfaction Problem 17

1.4. Contributions of this thesis 19

1.5. Thesis outline 21

Chapter 2. Literature review 25

2.1. Constraint Programming 26

2.2. QBF 38

2.3. QCSP 41

2.4. Other formalisms 61

2.5. Summary 64

Chapter 3. A search framework for QCSP 65

3.1. Introduction 65

3.2. Definitions 66

3.3. Search algorithms 83

3.4. Managing domains and the constraint queue 91

3.5. The pure value rule 97

3.6. Backjumping and learning 102

3.7. Queso solver implementation 103

3.8. Encodings 106

3.9. Summary 116

7

Contents

Chapter 4. Strong consistency for arbitrary constraints 117

4.1. Introduction 117

4.2. Motivating examples 117

4.3. An algorithm for enforcing SQGAC 120

4.4. A general schema for enforcing WQGAC 124

4.5. Space and time complexities 134

4.6. Empirical evaluation 136

4.7. Summary 155

Chapter 5. Logical constraints 157

5.1. Introduction 157

5.2. A propagation algorithm for reified disjunction 162

5.3. Empirical evaluation 173

5.4. Summary 180

Chapter 6. Bounds consistency and the sum constraint 181

6.1. Introduction 181

6.2. Definition of bounds consistency 182

6.3. Propagation rules 185

6.4. Implementation 192

6.5. Summary 195

Chapter 7. Application of QCSP to factory scheduling 197

7.1. Introduction 197

7.2. Modelling Faulty Job Shop Scheduling in QCSP 203

7.3. Empirical evaluation 213

7.4. Summary 218

Chapter 8. Conclusion 221

8.1. Summary 221

8.2. Future work 224

8

Contents

8.3. Final words 225

Bibliography 229

9

CHAPTER 1

Introduction

Constraints are a natural way to represent many different computational problems. This thesis

is about extending classical constraint reasoning with quantifiers. I will first introduce the classical

constraint satisfaction problem, then move on to the extended problem.

A constraint is simply a relation over a set of variables. Constraints often take the form of

equalities, inequalities and logical relations. To illustrate, figure 1 shows a simple puzzle, where

two six-digit numbers (DONALD and GERALD) are added together to form another six-digit

number (ROBERT). Each letter A, B, D, E, G, L, N, O, R and T represents a distinct digit 0 . . . 9.

The puzzle can be represented with the expressions below, given by Bessière and Régin [13].

100000× D + 10000× O + 1000× N + 100× A + 10× L + D

+100000× G + 10000× E + 1000× R + 100× A + 10× L + D

= 100000× R + 10000× O + 1000× B + 100× E + 10× R + T

and allDifferent(A, B, D, E, G, L, N, O, R, T)

This representation of the puzzle illustrates the main concepts of constraint programming.

A, B, D, E, G, L, N, O, R and T are variables, each with initial domain 0 . . . 9. There are two

constraints, one representing the sum and the other representing that the variables each take a

different value. A solution is a function mapping each variable to a value in its initial domain,

such that all constraints are satisfied. The solution to this puzzle is A=4, B=3, D=5, E=9, G=1,

L=8, N=6, O=2, R=7, T=0.

Many different kinds of information, from many areas of artificial intelligence, can be rep-

resented with constraints. The following are simple examples: one variable is less than another;

11

Chapter 1. Introduction

D O N A L D

+ G E R A L D

= R O B E R T

FIGURE 1. Alphametic problem

a set of variables must take distinct values; task A must be scheduled before task B; two objects

may not occupy the same space. It is this flexibility which allows constraints to be applied to many

theoretical, industrial and mathematical problems.

Constraints are declarative — the statement of the problem and the algorithms used to solve

it are separated. This is an attractive feature of constraints, since it can reduce the human effort

required to solve a problem. Various general purpose and specialized algorithms exist for solv-

ing systems of constraints. A great variety of problems can be expressed with constraints. The

following list of subject areas was taken from CSPLib [63]:

• Scheduling (e.g. job shop scheduling [77]),

• Design, configuration and diagnosis (e.g. template design [80]),

• Bin packing and partitioning (e.g. social golfer problem [59]),

• Frequency assignment (e.g. the golomb ruler problem [89]),

• Combinatorial mathematics (e.g. balanced incomplete block design [42]),

• Games and puzzles (e.g. maximum density still life [90]),

• Bioinformatics (e.g. discovering protein shapes [67]).

1.1. Solving The Classical Constraint Satisfaction Problem

The classical constraint satisfaction problem (CSP) has a finite set of variables, each with a

finite domain, and a set of constraints over those variables. A solution to an instance of CSP is an

assignment to each variable, such that all constraints are simultaneously satisfied — that is, they

are all true under the assignment. Solvers typically find one or all solutions, or prove there are

no solutions. The decision problem (‘does there exist a solution?’) is NP-complete [6], therefore

there is no known polynomial-time procedure to find a solution.

12

Chapter 1. Introduction

Constraint programming includes a great variety of domain specific and general techniques

for solving systems of constraints. This section is necessarily restricted to the most common

techniques, and only those used on classical CSP as described above. Since CSP is NP-complete,

most algorithms are based on a search which potentially explores an exponential number of nodes.

Since the applications of CSP are difficult combinatorial problems, efficiency is very important,

and this has led to a great deal of effort to reduce the number of search nodes.

The most common technique is to interleave splitting and propagation. Splitting is the basic

operation of search, and propagation simplifies the CSP instance. Apt views the solution process

as the repeated transformation of the CSP until a solution state is reached [6]. In this view, both

splitting and propagation are transformations, where propagation simplifies the CSP by removing

values which cannot take part in any solution. A splitting operation transforms a CSP instance

into two or more simpler CSP instances, and by recursive application of splitting any CSP can be

solved.

There are a variety of ways of employing splitting and propagation [6]. Avoiding details, and

assuming all constraints involve just two variables, I sketch three methods here.

Forward Checking: Reasoning is performed on individual constraints from instantiated

variables to uninstantiated variables, reducing their domains. If a variable domain be-

comes empty, the simplified instance is false.

Partial Lookahead: This is a stronger version of forward checking, which additionally

performs directional consistency: for all pairs of variables xi and xj>i, if a value for

xi is incompatible with all remaining values of xj it is removed. This is repeated to

exhaustion.

Maintaining Arc-Consistency: This is stronger than partial lookahead since it performs

arc-consistency reasoning to exhaustion on all individual constraints. Informally, a do-

main value is arc-inconsistent iff it is incompatible with all remaining values of some

other variable.

Maintaining Arc-Consistency (MAC) can be trivially generalized to constraints over more than

two variables. MAC is used by commercial constraint programming toolkits such as ILOG Solver

13

Chapter 1. Introduction

[1] and Eclipse [3], as well as research systems such as Minion [50], Gecode [88] and Choco [68].

It is typically the most robust and efficient of these three methods, and has enjoyed the most

attention.

In MAC, each constraint has an associated definition of consistency, for example bounds con-

sistency for numerical constraints. If the constraint is consistent, then no reasoning is required on

it unless it becomes inconsistent by the modification of the domain of one of its variables. At this

point, a propagation algorithm would be executed on the constraint, which returns the constraint

to consistency by removing the necessary values from variable domains.

A small example of MAC. Consider the CSP instance below, representing the pigeonhole prob-

lem for three variables. All three variables must take a distinct value, and there are two values in

total, so the CSP instance is unsatisfiable.

A,B, C ∈ {1, 2} : A 6= B, A 6= C, B 6= C

Propagation is typically applied to individual constraints. Each type of constraint has a prop-

agation algorithm and these are applied iteratively. In this case, it is not possible to remove any

values from the variable domains by reasoning on any constraint individually. Therefore we search

by setting the variable A to 1. This is referred to as splitting for A = 1.

A = 1, B, C ∈ {1, 2} : A 6= B, A 6= C, B 6= C

At this point, propagating A 6= B and A 6= C would remove value 1 from the domains of B

and C respectively. Propagating B 6= C would remove value 2 from B or C — either way, the

domain of a variable is empty and this indicates the CSP instance has no solution.

The most recent search decision did not lead to a solution, so it is reversed and A is set to 2.

A = 2, B, C ∈ {1, 2} : A 6= B, A 6= C, B 6= C

Again, propagation empties the domain of some variable, and the CSP instance is unsatis-

fiable. There are no remaining values to try for variable A, and there were no search decisions

14

Chapter 1. Introduction

made before searching on A, so the original CSP instance is unsatisfiable. This simple example

illustrates the use of depth-first backtracking search with MAC.

Constraint solvers. Figure 2 is a simple representation of how many constraint solvers work.

The search element is typically depth-first chronological backtracking by default, although a solver

will often allow different search algorithms to be programmed. When searching, a variable and

value must be selected. This can be done statically or with a dynamic heuristic.

After each search operation, the relevant constraints are propagated. The key to the success

of constraint programming is efficient and effective propagation. The diagram represents a con-

straint queue, containing constraints which may be inconsistent, because some variable domain

has changed. Whenever a variable domain is changed, either by a search operation or by propa-

gation, the relevant constraints are added to the queue for propagation. The algorithm iteratively

propagates constraints until the queue is empty, which indicates that all constraints are consistent.

The queue system can be seen as a collaborative solver, where each constraint propagator

contributes to simplifying the problem, and the whole is greater than the sum of its parts. Common

propagators include:

• allDifferent for various different consistency definitions [71, 83];

• bounds consistency propagators for a + b = c, ab = c and other numerical constraints

(explained by Marriott and Stuckey [76]), which update only the upper and lower bounds

of variables;

• generalized arc consistency propagators for logical constraints a ∨ b ⇔ c, ¬a ⇔ b,

a ∧ b⇔ c, found in common solvers and described by Apt [1, 3, 6, 50, 68];

• generalized arc consistency propagators for arbitrary constraints of any arity [13,14,78].

Heuristics are important to reduce search effort, because the application of a suitable heuristic

can reduce the number of nodes hugely, compared to a static ordering. Russell and Norvig cover

three heuristics for CSP:

• most-constrained-variable, which selects the variable with the lowest number of remain-

ing values, picking a value with a static order,

15

Chapter 1. Introduction

Search Simplify

Pre-process

CSP specification

Solution

Heuristic

Queue
of constraints
to propagate

Propagate
allDifferent
constraint

Propagate
numerical
constraint

Propagate
logical

constraint

Propagate
arbitrary

constraint

......

Simplify

Variable
domains

Add
constraints
to queue

FIGURE 2. Overview of a MAC constraint solver

• most-constraining-variable which selects the variable involved in the largest number of

constraints on other unassigned variables, and

• least-constraining-value which chooses a value which rules out the smallest number of

values in variables connected to the current variable by constraints. This is applied after

selecting a variable by some means [86].

Many problems have symmetries inherent in them, for example in a vehicle routing problem,

two vehicles with the same starting point and same capabilities can be swapped in any solution,

yielding another solution [32, 48, 91]. These can be exploited in various ways and there are a

number of different definitions of symmetry, and related concepts such as conditional symmetry

(which emerges if some condition is satisfied [49]).

1.2. Limitations of CSP

Many useful problems can be expressed as a CSP. However, some real life problems are not

fully specified at solution-time, or even part way through executing the solution. There is often

ample time for computation before action is required, but while executing the solution there is

often no time to re-solve or re-optimize according to the actual environment. These problems are

typically not representable compactly as a CSP.

16

Chapter 1. Introduction

1g

5g

10g

Flour
bowl

Weight Weight

FIGURE 3. Baker’s puzzle

For example, factory scheduling with uncertainty in the durations of tasks or with possible

faults can be approached by constructing a single robust schedule, or by generating multiple sched-

ules or schedule fragments for different scenarios [33]. The first approach could be represented

as a constraints optimization problem, but the second approach would require a more expressive

language. In CSP, each schedule (fragment) would have to be represented explicitly which could

be very costly in space if there are a large number of scenarios.

Such problems can be modelled compactly in the Quantified Constraint Satisfaction Problem

(QCSP). QCSP is a challenging PSPACE-complete problem [23], which is interesting theoretically

and also relevant to solving PSPACE problems arising in AI, such as reasoning with uncertainty,

model checking and adversarial games.

1.3. The Quantified Constraint Satisfaction Problem

The classical CSP has been extended in many ways, to encompass problems which cannot be

efficiently represented in the classical problem. In this thesis I explore one such generalization.

The Quantified Constraint Satisfaction Problem (QCSP) extends CSP by allowing the quantifica-

tion of each variable with the existential (∃) or universal (∀) quantifiers.

Consider the baker’s puzzle: a baker needs to purchase four weights of different sizes in the

range 1 . . . 40, such that it is possible to weigh out all integral quantities of flour in the range

1 . . . 40, using a balance (figure 3). To weigh out a quantity of flour, each weight can be placed on

either side of the balance, or not used.

17

Chapter 1. Introduction

This puzzle can be written in first-order logic as follows. The w variables represent the masses

of the four weights. f represents the mass of the flour, and each integral value from 1 to 40 must be

covered. The c variables represent how a weight is used. c1 = 0 if w1 is not used on the balance.

with 1 representing that it is on the balance, opposite the flour.

∃w1∃w2∃w3∃w4 w1, w2, w3, w4 ∈ {1, 2, . . . , 40}

∧[∀f f ∈ {1, 2, . . . , 40}

⇒ [∃c1∃c2∃c3∃c4 c1, c2, c3, c4 ∈ {−1, 0, 1}

∧c1w1 + c2w2 + c3w3 + c4w4 = f]]

QCSP allows quantifiers in prenex form, but not infinite domains. Each variable has an asso-

ciated initial domain. The puzzle can be expressed in QCSP as follows.

∃w1, w2, w3, w4 ∈ {1, 2, . . . , 40},∀f ∈ {1, 2, . . . , 40},∃c1, c2, c3, c4 ∈ {−1, 0, 1} :

c1w1 + c2w2 + c3w3 + c4w4 = f

The puzzle could be expressed in CSP by duplicating the c variables, and the constraint, for

each value of f . Even for this tiny example, the CSP representation would be approximately 40

times larger than the QCSP representation. It is suspected, but not proven, that NP (PSPACE. If

this inclusion is true, then any encoding from QCSP to CSP could not be polynomial in size. The

solution (which is unique up to symmetry) to the puzzle is {1, 3, 9, 27}, which are all powers of

three.

1.3.1. QCSP and uncertainty. The QCSP can be used to model problems containing un-

certainty, in the form of the universal variables which have a finite domain but whose value is

unknown at solution time. Therefore a QCSP solver finds solutions suitable for each value of

these variables.

18

Chapter 1. Introduction

Kenyon and Sellmann [65] give an example. Consider a delivery company that, every night,

solves a vehicle routing problem to schedule the deliveries for the next day in a road network

with some unreliable links. They tackle this problem by generating a set of optimized solutions

such that when the uncertainty is resolved (the morning when the trucks are loaded), one of the

solutions in the set is near optimal for the actual problem. This example makes two assumptions:

that a road link is busy but never impassable (i.e. a solution cannot become infeasible because of an

impassable road) and that road conditions can be reasonably predicted at the beginning of the day.

Using a QCSP model, both these assumptions can be removed at the cost of higher computational

complexity.

Let L be the loading configuration of the trucks, Rt be a routing of all trucks during time

interval t, and Dt be data about the roads during time interval t. If we have two time intervals,

0 and 1, the QCSP instance could be ∀D0∃L,R0∀D1∃R1 : feasible(D0, R0, D1, R1), which

reads: ‘for all D0, there exists L and R0, such that for all D1 there exists R1 such that the routing

is feasible’. At the start of the second time period, the company would communicate to its drivers

their route for the second half of the day, based on up-to-date road information. Solving with a

branch and bound procedure would allow optimization of the route. The solver would produce a

plan which branches for all values of D0, and later for all values of D1 hence there are (at most)

|D0| × |D1| solutions for R1. The modeller would have to be careful not to include unlikely

contingencies in Dt (e.g. more than one road impassable) because this would cause excessive

branching. Online repair could be used for those unlikely contingencies. This scheme has the

advantage that the second stage (R1) can be optimized just as effectively as the first, with up-to-

date road information.

1.4. Contributions of this thesis

The contributions of this thesis can be divided into two areas. The first is a significant devel-

opment of algorithms to solve QCSP. These include four novel constraint propagation algorithms

(or eight variants of algorithms in total), procedures to perform search and optimization, and also

novel procedures to apply the pure value rule — a form of local reasoning which is able to reduce

19

Chapter 1. Introduction

the domains of universal variables. These algorithms compare favourably to existing methods both

analytically and experimentally, in some cases being orders of magnitude faster.

The second area is modelling problems in QCSP. There are currently no models of realistic

problems in the literature [12]. The major contribution here is a model of job shop scheduling,

where machines may require periods of servicing with a certain probability. This model is specif-

ically designed for the algorithms described herein, to ensure that it can be solved efficiently.

Connect 4 and Noughts and Crosses are also modelled, each in two ways. All the models exhibit

a novel feature, which allows the pure value rule to prune universal variables.

Specifically, the individual contributions are as follows.

• The enhanced log encoding of binary QCSP into QBF, which significantly outperforms

the previous best encoding.

• The hidden variable encoding of arbitrary QCSP into binary QCSP.

• The definition of the non-binary pure value rule which is able to prune universal vari-

ables.

• Two general schemes for applying the pure value rule, both of which are shown to be

effective in later experiments.

• The SQGAC-propagate algorithm which enforces a strong consistency (SQGAC [21])

on quantified constraints.

• The definition of the WQGAC consistency notion.

• The development of the WQGAC-Schema algorithm from GAC-Schema [13].

• Adaptation of the positive and predicate instantiations of GAC-Schema for WQGAC-

Schema, allowing the algorithm to enforce WQGAC on constraints expressed as a list of

tuples (positive), or constraints expressed compactly with a program (predicate).

• The development of the Next-Difference list as a much more efficient alternative to the

positive instantiation. This is also applicable in the CSP context, and is effective there

[51].

20

Chapter 1. Introduction

• SQGAC-propagate, and WQGAC-Schema with two variants of Next-Difference list and

the positive and predicate instantiations, are experimentally compared amongst them-

selves and with QBF and binary QCSP solvers.

• A linear-time propagation algorithm for logic (reified disjunction) constraints, which

enforces SQGAC. This is instantiated to handle two different types of constraint.

• The reified disjunction is experimentally compared with the algorithms above using Con-

nect 4. It is also compared with the work of Bordeaux [19] and found to be more effective

in both cases.

• The definition of Qbounds(R) consistency, an adaptation of bounds(R) consistency in

CSP.

• A propagation algorithm for long weighted sum constraints which enforces Qbounds(R)

consistency. This is compared against SQGAC-propagate and found to be much more

efficient.

• Models of Connect 4 and Noughts and Crosses, which are used in experiments to com-

pare propagation algorithms. These models take advantage of the pure value rule in a

novel way to prune cheating moves.

• A model of a job shop scheduling problem with probabilistic machine faults. All possible

worlds within a probability bound are scheduled. This is a proof of concept for applying

QCSP to real scheduling problems.

1.5. Thesis outline

The aim of this thesis is to investigate the usefulness of QCSP as a formalism for reasoning

with uncertainty. This breaks down into two main questions: can QCSP be solved efficiently,

and can problems containing uncertainty be modelled effectively in QCSP? To address the first

question, I extend the existing work on QCSP, developing new algorithms and methods. These

are evaluated using games and random QCSP instances. The second question is whether problems

containing uncertainty can be modelled effectively. To address this, I have modelled a factory

21

Chapter 1. Introduction

scheduling problem, along with Connect 41 and noughts and crosses. Lessons learned from this

are explored in the relevant chapters.

The primary motivation for investigating QCSP is that it is a natural generalization of CSP.

CSP has been applied very successfully to many useful problems, and QCSP extends it in such

a way that the powerful propagators of CSP are still applicable to constraints which contain no

universal variables. Therefore all the power of CSP is available in a system which also supports

reasoning with uncertainty.

This thesis has a particular emphasis on constraint propagation, as a promising way of attack-

ing QCSP instances. Chapters 4, 5 and 6 present propagation algorithms for various constraints.

These are developed to take advantage of the quantifier prefix and therefore to do stronger reason-

ing than their CSP counterparts when applied to constraints with universal variables.

Another form of simplification, the pure value rule, is implemented using constraint propa-

gators. Two schemes to achieve this are developed in chapter 3. The pure value rule is able to

remove values from universal variables, and it has an important part in solving the Connect 4 and

factory scheduling examples.

The structure of the thesis is outlined below.

Chapter 2 Review of the most relevant literature.

Chapter 3 Development of the underlying definitions related to QCSP, with search algorithms

directly based on those definitions, and the pure value rule which also simplifies the

instance based on local reasoning.

Chapter 4 Presents propagation algorithms for arbitrary constraints of any arity, and evaluates

them experimentally, using games and random instances.

Chapter 5 Presents propagation algorithms for logical constraints, and evaluates them experi-

mentally with the Connect 4 game.

Chapter 6 Presents a definition of bounds consistency in QCSP, along with a propagation algo-

rithm for the sum constraint.

1Connect 4 has been suggested as a grand challenge for QBF by Toby Walsh at the SAT-2003 conference, in his talk
‘Challenges for SAT and QBF’ [100]. Gent and Rowley have developed an encoding of Connect 4 in QBF [46].

22

Chapter 1. Introduction

Chapter 7 Develops a QCSP model for a factory scheduling problem with faulty machines, using

a probability bounding approach to exclude highly improbable fault scenarios.

Chapter 8 Conclusions and future work.

23

CHAPTER 2

Literature review

The work in this thesis depends on, and is inspired by, various publications in the areas of

constraint programming, and quantified Boolean formulae, as well as the limited literature about

QCSP. I will also cover other extensions to constraint programming which are related to QCSP, to

set this thesis in context.

Figure 4 summarizes the relationship among six combinatorial problems. There are three

problems where all variables are existentially quantified, namely SAT, binary CSP and constraint

programming (CSP), which are all NP-complete, and their quantified PSPACE-complete equiva-

lents which are called Quantified Boolean Formulae (QBF), binary QCSP and (non-binary) QCSP

respectively. QBF and binary QCSP are both restricted cases of QCSP.

Constraint
Programming

(CSP)
QCSP

Quantified
Boolean
Formulae

Binary QCSP

SAT

Binary CSP

Nonquantified,
NPcomplete:

Quantified,
PSPACEcomplete:

Increased computational complexity

In
cr

ea
se

d
co

ns
tra

in
t e

xp
re

ss
ive

ne
ss

FIGURE 4. Six combinatorial problems

25

Chapter 2. Literature review

This literature review is divided into three sections. Firstly, I review a small amount of the

large body of work on constraint programming in section 2.1. In section 2.2, some key techniques

for QBF are reviewed. In section 2.3, I will look at the existing work on QCSP with both binary and

non-binary constraints. Each of these three areas is broadly divided into search and propagation.

2.1. Constraint Programming

Apt provides neat definitions of the central concepts in classical constraint programming [6].

I adapt them slightly to match the usual notation for QCSP. I also restrict the domains to be finite

subsets of the integers, without loss of generality. In this thesis, Finite Constraint Satisfaction

Problem (CSP) refers to the problem defined below, and constraint programming to the whole

process of representing a problem in CSP then solving it using domain specific or general means.

This definition of CSP deliberately excludes any problems with infinite domains.

DEFINITION 2.1.1. Finite Constraint Satisfaction Problem (CSP)

A CSP is a triple P = 〈X ,D, C〉. It consists of n variables X = 〈x1, . . . , xn〉 and n initial

domains D = 〈D1, . . . , Dn〉 where Di (Z, |Di| < ∞ is the finite set of all potential values of

xi, and a conjunction C = C1 ∧ C2 ∧ · · · ∧ Ce of constraints.

To understand the semantics of the CSP, it is necessary to define constraints.

DEFINITION 2.1.2. CSP Constraint

Within CSP P = 〈X ,D, C〉, a constraint Ck ∈ C consists of a sequence of m > 0 variables

Xk = 〈xk1 , . . . , xkm〉 with respective domains Dk = 〈Dk1 , . . . , Dkm〉 s.t. Xk is a subsequence

of X and Dk is a subsequence of D. Ck has an associated set CS
k ⊆ Dk1 × · · · ×Dkm of tuples

which specify allowed combinations of values for the variables in Xk.

A solution to a CSP is an assignment to all variables in the CSP, such that every constraint is

satisfied: under the assignment, ∀k : 〈xk1 , . . . , xkm〉 ∈ CS
k . The problem of deciding whether a

CSP has a solution (the decision problem) is NP-complete [38].

In the context of QCSP, the equivalent concepts to these are developed in detail in chapter 3.

CSP is also re-defined as a subset of QCSP.

26

Chapter 2. Literature review

2.1.1. Search. Search involves repeatedly transforming the CSP instance into two or more

CSP instances, and solving these recursively. The original instance is satisfiable iff one or more of

the transformed instances are satisfiable. The transformation is known as branching or splitting,

and usually involves partitioning the domain of a variable. The variable to branch on is decided

by a static ordering or some dynamic heuristic like most-constrained-variable (smallest domain

first). Van Beek identifies three popular branching strategies [85]. He also observes that these are

identical if the domains are binary.

(1) Enumeration. The variable x is instantiated to each value in its domain in turn. For each

value a, an instance is created with additional constraint x = a, and it is solved recur-

sively. The order in which the values are used can be decided by a dynamic heuristic.

(2) Binary branching. The variable x is instantiated to some value a in its domain. Two

instances are created with the additional constraints x = a and x 6= a respectively. The

value a can be chosen by a heuristic. Usually, the x = a instance is solved first, then

x 6= a.

(3) Domain splitting. The domain of x is partitioned into two sets A and B, and two in-

stances are generated with the additional constraints x ∈ A and x ∈ B respectively.

It is clear that enumeration can be simulated using binary branching. However, the converse is

not true, and Hwang and Mitchell give a class of problems where enumeration takes exponentially

more steps than binary branching [64]. A domain splitting strategy is likely to be problem-specific.

Figure 5 illustrates the three branching strategies. Each dot is a CSP instance and the arrows

labelled with a constraint are transformations to create a new instance. When branching is applied

recursively, a search tree is built. For example, for a very simple CSP, a binary branching search

tree is shown in figure 6. At each node of this tree, the constraints are checked. If any is violated,

the node is labelled false, and it is not branched further. If all variables are instantiated and no

constraint is violated, the node is labelled true. This CSP has two solutions, 〈3, 1, 2〉 and 〈3, 2, 1〉.

Typically the search tree is explored depth-first. In the case of binary branching, the = branch

is usually explored before the 6= branch. In figure 6 the nodes are numbered according to the order

27

Chapter 2. Literature review

(a) Enumeration

x1=4x1=3x1=2x1=1

x1=1 x1≠1

(b) Binary branching

x1∈{1,2} x1∈{3,4 }

(c) Domain splitting

FIGURE 5. Three branching strategies for variable x1 with domain D1 = {1, 2, 3, 4}

x1=1 x1≠1

x1≠ x2 , x1≠ x3 , x2≠x3 where D1={1,2,3} ,D2={1,2} , D3={1,2 }

x2=1 x2≠1

false

x3=1 x3≠1

false false

x1=2 x1≠2

x2=1 x2≠1

false

x3=1 x3≠1

false

false

x2=1 x2≠1

false

x3=1 x3≠1

true true

x3=1 x3≠1

false

1

2

3 4

5 6

7

8

9

10 11

12

13

14

15 16

17

18 19

FIGURE 6. A binary branching search tree

28

Chapter 2. Literature review

the search algorithm would explore them. If we were searching for the first solution, the search

would stop at node 16.

The search tree explored by such an algorithm could be very large. Indeed the tree shown in

figure 6 is very large for such a simple CSP instance. The typical solution to this problem is to

simplify the instance at each node, through the application of consistency. This can reduce the

size of the search tree dramatically. Consistency is discussed in section 2.1.2.

Several more sophisticated search algorithms have been proposed. One of the most important

is backjumping (first informally proposed by Stallman and Sussman [92]). Backjumping is applied

at a node where all sub-nodes are false leaves (e.g. node 4 in figure 6). It potentially backtracks

further than chronological backtracking, thus saving search effort. This is done by reasoning

about which search decisions contributed to the contradiction. Conflict backjumping (CBJ, first

proposed by Prosser [81]) is a generalization of backjumping which is able to backjump from any

failed node in the search tree. CBJ is of particular interest because it has been adapted to QBF

and binary QCSP. I omit to describe it here because the adapted algorithms (described in sections

2.2.3 and 2.3.4.1) are more relevant to this thesis.

2.1.2. Consistency and propagation. In order to solve large-scale instances of CSP with

search, strong simplification is required at each node of the search tree. This is usually supplied by

propagation, which performs reasoning on the constraints to remove values from variable domains

that cannot take part in any solution1. If some domain is emptied, then the CSP instance is false.

In this way, propagation can simplify a CSP instance, sometimes determining that it is false.

Here I will define consistency on individual constraints. A constraint is consistent or incon-

sistent, and it is made consistent by constraint propagation. Each constraint may have a differ-

ent propagation algorithm, enforcing a different definition of consistency. Solvers such as ILOG

Solver [1], Eclipse [3], Minion [50] and Gecode [88] support this heterogeneous approach to con-

sistency.

1Some propagation algorithms add constraints to the instance, instead of or in addition to removing values. However
this approach is not widely used.

29

Chapter 2. Literature review

Not all the forms of consistency in the literature are defined on individual constraints. Some

are defined over several constraints (e.g. path consistency [6]) or the entire instance (e.g. singleton

consistencies [37]). However, in the majority of the recent literature consistency notions (and

propagation algorithms) are defined on individual constraints.

2.1.2.1. Arc consistency. Arc consistency (AC) is the oldest definition of consistency, with

the first algorithms to enforce it given by Waltz [101] and Gaschnig [45]. The notion of arc

consistency was first formally defined by Mackworth [72].

AC is defined for binary constraints. A constraint Ck is AC iff all values a ∈ Dk1 are compat-

ible with some value b ∈ Dk2 (∀a : a ∈ Dk1 ⇒ [∃b : b ∈ Dk2 ∧ 〈a, b〉 ∈ CS
k]), and in the same

way all values b ∈ Dk2 are compatible with some value a ∈ Dk1 .

The propagation algorithms for AC are many and varied. Mamoulis and Stergiou [74] have

generalized arc consistency for QCSP, adapting the optimal and simple AC-2001 algorithm by

Bessière and Régin [15] to QCSP. This is covered in section 2.3.1.2.

The AC algorithms may be broadly divided into two sets: coarse-grained (such as AC-2001),

where the removal of a value will cause all relevant constraints to be propagated completely, and

fine-grained (such as AC-4) where the removed value is used to minimize the amount of work

done [16]. This is important for this thesis since the following chapters will deal with both fine

and coarse-grained algorithms.

2.1.2.2. Generalized arc consistency. Generalized arc consistency (GAC) is the generaliza-

tion of arc consistency for non-binary constraints2. Historically, it was first defined by Mack-

worth [73]. It is defined neatly by Apt [6]. For some constraint Ck with set of allowed tuples

of values CS
k ⊆ Dk1 × · · · × Dkr , Ck is generalized arc consistent when each value a in the

domain of each variable xki
in the constraint is contained in some tuple t ∈ CS

k (ti = a). The

tuple t is referred to as a support for xki
7→ a. When a value loses all its supports, it must be

removed to maintain consistency. GAC is defined more formally in the following chapter, along-

side analogous consistencies in QCSP. GAC propagation algorithms for arbitrary constraints take

exponential time in the constraint arity.

2Generalized arc consistency refers to a generalization within CSP, not to be confused with the generalization of CSP
to QCSP.

30

Chapter 2. Literature review

GAC4. Mohr and Masini proposed GAC4 [78], a generalization of the AC4 algorithm. AC4

is an optimal time algorithm for binary arc consistency. For each pair xki
7→ a, GAC4 maintains

a doubly-linked list of pointers to supporting tuples. Suppose value a is removed from the domain

of xki
by some other constraint. The list of supports for xki

7→ a contains all tuples t which have

become invalid (i.e. t /∈ Dk1 × · · · ×Dkr). For each t, it is removed from all lists it is present in.

This can be done in O(r) time, with careful implementation. Whenever a list becomes empty, its

corresponding value has no remaining supports and must be removed.

One criticism of GAC4 is that a separate data structure is required for each constraint. In an

instance with a set of identical constraints, the space overhead can be reduced by storing the tuples

in a single static data structure. Also, doubly-linked lists containing pointers can be wasteful, since

each element has three pointers in it.

GAC-Schema. Bessière and Régin proposed GAC-Schema [13], which addresses the criti-

cisms of GAC4. GAC-Schema maintains mutable lists of supports much like GAC4, except that

only a polynomial number of tuples are stored in the lists. When a list becomes empty, GAC-

Schema calls a procedure to search for another supporting tuple. If this procedure does not return

a valid supporting tuple, then the appropriate value is not supported and must be removed. This

procedure (seekNextSupport) can be instantiated in different ways depending on the type of con-

straint.

GAC-Schema maintains three data structures, described below.

• SC(xki
, a) contains tuples τ that have been found to satisfy Ck and which include value

a: τi = a. Each tuple supports n values, so when a tuple is found, it is added to all n

relevant lists in SC . The lists are doubly-linked so that removals and restorations can be

made in O(1) time. Removals are made lazily, so at any time SC(xki
, a) may contain

invalid tuples.

• S(τ) contains the set of pairs xki
7→ a for which τ is the current support.

• lastC(xki
, a) is the last tuple returned by seekNextSupport as a support for xki

7→ a;

nil otherwise. This is used to allow seekNextSupport to continue searching at the point

where it left off in the lexicographic ordering of tuples.

31

Chapter 2. Literature review

The algorithm is fine-grained and very simple in principle. It is called with a variable and value

pair xki
7→ a which has been removed from Dki

. All tuples containing xki
7→ a are now invalid.

SC(xki
, a) contains all such tuples discovered so far. The algorithm iterates through SC(xki

, a),

and for each tuple τ ∈ SC(xki
, a) it removes τ from all SC(xkj

, b) lists it is present in.

If τ is the current support for some value xkj
7→ b, then xkj

7→ b may need a new current

support. The list of such values is S(τ). The algorithm iterates for each element of S(τ), checking

if the related SC list contains a valid tuple. If not, a new tuple is sought by calling seekNextSupport.

If a new tuple is found, it is added into each of the three data structures. The key point of the

algorithm is that each tuple found by seekNextSupport is reused for r values. This is referred to

as multidirectionality and is described in more detail in chapter 4, where GAC-Schema is adapted

for quantified constraints.

The original paper contains two instantiations of seekNextSupport. The simpler one is for

constraints expressed as a set of satisfying tuples. This addresses the problems with GAC4, since

the set of satisfying tuples is not changed, it is simply searched, and can therefore be shared

between constraints. Also, it is searched linearly so arrays or singly-linked lists can be used,

saving space.

The more sophisticated instantiation of GAC-Schema uses a predicate, which is a procedure

that takes a tuple and returns a Boolean value indicating whether the tuple satisfies the constraint.

For example, if the constraint is allDifferent, and the tuple is 〈2, 3, 3, 4〉 then the predicate re-

turns false. The seekNextSupport procedure explores the space of valid tuples in lexicographic

order, jumping forward in the ordering to avoid discovering the same tuple twice. The predicate

instantiation is also generalized to QCSP in chapter 4.

In a second paper, Bessière and Régin propose to instantiate seekNextSupport with a CSP

sub-problem [14]. When a new satisfying valid tuple is required, a search is performed in the

sub-problem. Constraint propagation in the sub-problem avoids exhaustive search.

Efficient tuple search. When the constraint is expressed as a set of satisfying tuples, the

seekNextSupport procedure must search through the set to find a tuple which is valid w.r.t. cur-

rent domains. The most basic algorithm, presented by Bessière and Régin [13], creates a list of

32

Chapter 2. Literature review

allowed tuples for each literal xki
7→ a before search. A pointer into each list is maintained, and

updated whenever a new valid tuple is discovered. When seekNextSupport(xki
,a) is called, it iter-

ates from the pointer to the next valid tuple, thus avoiding repeated work down one branch of the

search tree.

This simple algorithm can be very inefficient when there is a large set of satisfying tuples,

because it iterates through all tuples regardless of whether they are valid with respect to current

variable domains. More efficient alternatives have recently been developed by Lecoutre and Szy-

manek [31], Lhomme and Régin [70], and by Gent, Miguel and Nightingale [51]. These work by

jumping forward in the tuple list.

Lecoutre and Szymanek give an algorithm seekSupport-valid+allowed, which uses binary

search rather than simple iteration [31]. Lists for each literal are constructed as in the basic al-

gorithm. All lists are sorted in lexicographic order (lex, ≺lex). The algorithm first constructs the

lex least valid tuple t, then performs a binary search for t in the list, finding t′ which is the lex

least tuple in the list s.t. t ≺lex t′. If t′ is valid, we are done. Otherwise, the lex least tuple t′′

is constructed s.t. t′ ≺lex t′′ and t′′ is valid. The algorithm then repeats the binary search and

proceeds from there.

Lhomme and Régin add extra information to the list of allowed tuples, enabling jumping

forward over sequences of invalid tuples [70]. The data structure and algorithm are unfortunately

complicated, and a comparative experimental study shows that simpler algorithms are preferable

[51].

Gent, Miguel and Nightingale present two approaches: tries and Next-Difference lists [51].

Tries are tree data structures which are searched in a depth-first way, avoiding entering areas of the

tree which represent invalid tuples. Next-Difference lists are described in chapter 4 section 4.4.1.3

as a contribution of this thesis. Experimental evaluation, comparing these and other approaches

in the context of CSP, is provided [51]. This shows the benefits of both tries and Next-Difference

lists.

GAC2001/3.1. Bessière et al. [16] develop a new algorithm for GAC, which is coarse-grained

and therefore has a simpler interface to the core of a backtracking constraint solver. The algorithm

33

Chapter 2. Literature review

itself is also simpler, but unfortunately takes O(r2dr) (where r is the arity and d the domain size)

to establish GAC at each node down a branch of the search tree, whereas GAC-Schema takes

O(rdr) time. The difference is because GAC-Schema exploits multidirectionality. Therefore I

make use of GAC-Schema later in this thesis.

Polynomial time generalized arc consistency algorithms. It is possible to enforce GAC on

many classes of constraint in polynomial time. One popular polynomial time propagation algo-

rithm is Régin’s allDifferent propagator [83]. The allDifferent constraint simply expresses that a

set of variables take distinct values in any solution. The propagator constructs a graph represent-

ing the variables and values in the constraint, then uses results from graph theory to compute new

domains for all variables in the constraint.

It may be possible to adapt this algorithm (and others) to deal with quantifiers while retaining

the polynomial time bound, but it is not clear how this could be done.

2.1.2.3. Bounds consistency. When dealing with numerical variables, the domains can be

very large. This creates two problems: storing and updating the domains is inefficient, and en-

forcing GAC (or some other consistency which is concerned with every value in the domain) is

inefficient. A popular way of solving these problems in CSP is to approximate the variable with

an interval [xi, xi], and to enforce a form of consistency which narrows the interval but does not

remove values in the middle of the domain. The standard term for this form of consistency is

bounds consistency (BC).

Choi, Harvey, Lee and Stuckey [30] identify three commonly used but incompatible definitions

of BC. They are described below, restated in the terminology used for this thesis.

(1) A constraint Ck is bounds(D) consistent iff for each variable xki
in Ck, for each bound

di ∈ {xki
, xki
}, there exist integers dj with dj ∈ Dkj

, j 6= i such that 〈d1, . . . , dr〉 ∈

CS
k . That is, each bound must be supported by a solution to Ck, such that the solution

contains only values which are in their respective domains.

(2) A constraint Ck is bounds(Z) consistent iff for each variable xki
in Ck, and for each

bound di ∈ {xki
, xki
}, there exist integers dj ∈ Z, with xkj

≤ dj ≤ xkj
, j 6= i such that

34

Chapter 2. Literature review

〈d1, . . . , dr〉 ∈ CS
k . That is, each bound must be supported by a solution to Ck, such that

the solution contains only integers within their respective bounds.

(3) A constraint Ck is bounds(R) consistent iff for each variable xki
in Ck, and for each

bound di ∈ {xki
, xki
}, there exist real numbers dj ∈ R, with xkj

≤ dj ≤ xkj
, j 6= i

such that 〈d1, . . . , dr〉 ∈ CS
k . That is, each bound must be supported by a solution to Ck,

such that the solution contains only real numbers within their respective bounds.

In the definition of bounds(R) consistency, the set CS
k is used loosely, it is assumed in this case to

contain all real number solutions of constraint Ck.

The three definitions are given in order, such that the following holds for any constraint. In

words, bounds(D) is the strongest and bounds(R) is the weakest.

bounds(D) ⇒ bounds(Z)

bounds(Z) ⇒ bounds(R)

For a simple constraint, deriving a bounds consistency propagation algorithm can be very

simple, particularly bounds(R) consistency. Consider x1+x2 = x3 (the example used by Marriott

and Stuckey [76]). Rearranging for x1 gives a simple expression, and the maximum and minimum

values of that expression can be straightforwardly derived. These are then applied to x1, narrowing

the bounds if necessary, as shown below.

x1 = x3 − x2

x1 ≤ x3 − x2

x1 ≥ x3 − x2

The case for x2 is very similar. The new bounds for x3 are shown below.

35

Chapter 2. Literature review

x3 ≤ x1 + x2

x3 ≥ x1 + x2

Assuming the bounds are initially integral, applying the six inequalities to exhaustion gives

us a bounds(Z) propagator. Each new bound corresponds to an integer solution to the constraint

within the domains. However, the propagator does not achieve bounds(D) consistency in all cases.

Consider the following domains: x1 ∈ {0, 2}, x2 ∈ {0, 2} and x3 ∈ {0, 1, 2, 3}. 3 is an integer

solution but not a domain solution, and the propagator is unable to reduce the upper bound of x3.

CSP toolkits often provide bounds consistency propagators for primitive constraints of the

form x1 + x2 + x3 + . . . = 0 and similar, and use a decomposition method to rewrite more

complex expressions using only primitive constraints. This is discussed in section 2.3.3.1 be-

low. For example, in Eclipse [3], using the FD (finite domain propagators) library, the expression

x1x2x3 + x4 + x5 = x6 is decomposed into the following three primitives.

x1 × x2 = τ1

τ1 × x3 = τ2

τ2 + x4 + x5 − x6 = 0

Bordeaux and Monfroy studied bounds consistency for QCSP. This work is reviewed in section

2.3.3 below.

2.1.3. Difficulty of a CSP instance. CSP instances of the same size can vary considerably

in difficulty, due to their structure. Since CSP is NP-complete, the worst-case execution time for

any known algorithm is exponential in the size of the instance. However, considering only the

size gives an incomplete picture of how difficult instances are likely to be. Many instances can be

solved much faster than the worst-case analysis suggests.

36

Chapter 2. Literature review

C
o
m

p
u
ta

ti
o
n
a
l
co

st

Parameter

Critical
region

FIGURE 7. Phase transition and the critical region

Cheeseman, Kanefsky and Taylor [28] introduced the concept of phase transition in NP-

complete problems. They proposed that some aspect of a problem can be described by an order

parameter, and varying this parameter while fixing other parameters exhibits a phase transition. At

some critical value for the order parameter, the computational cost of the instances peaks. Away

from the critical value, computational cost falls off. If computational cost is plotted against the

order parameter, a phase diagram is obtained. A typical phase diagram is sketched in figure 7.

The critical value lies within the critical region. Some property of the problem instances, such as

satisfiability, changes abruptly within the critical region.

For random binary CSP, the order parameter could be the constraint tightness (i.e. propor-

tion of disallowed tuples per constraint). In this case, to the left of the critical region, almost all

instances will be satisfiable. To the right of the region, almost all will be unsatisfiable. When

the tightness is very low, it is very easy to find a solution by searching. When it is very high,

consistency is very effective, and unsatisfiability can be proven with very little search. Hence the

computational cost is low for the extreme values of constraint tightness. In the critical region,

search tends to explore many dead-end paths before either finding a solution or proving unsatisfi-

ability.

In chapter 4, phase transitions are seen for experiments with random QCSP instances, when

varying the number of constraints in the instance. In some cases the usual phase transition be-

haviour is apparent.

37

Chapter 2. Literature review

2.2. QBF

Quantified Boolean Formulae (QBF) solvers typically operate on conjunctive normal form

(CNF), which is a conjunction of disjunctions of literals (e.g. (l1 ∨ l2 ∨ l3)∧ (l2 ∨ l4)) where each

literal li is a positive or negative instance of some Boolean variable xi (li = xi or li = ¬xi). Each

variable is quantified in a prefix. For example, the formula

∃x1∀x2∃x3 : (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x1 ∨ x3)

is false, since no value of x1 extends to a solution for both values of x2. The disjunctions

are called clauses, and can be considered as constraints since they must all be satisfied for the

formula to be satisfied. Hence QBF can be considered a subset of QCSP, with a restricted form of

constraint. QBF is PSPACE-complete [24].

There are two main approaches to QBF. Search-based solvers, which interleave search with

reasoning [47], and resolution solvers, which eliminate variables one by one until the formula is

trivial [18]. There are also hybrids of these two approaches [10]. Resolution solvers tend to use

a large amount of memory (exponential in the size of the instance). The majority of QBF solvers

are search-based, generalizing the Davis Putnam Logemann Loveland (DPLL) procedure, which

is the work of Davis and Putnam including unit propagation and the pure literal rule [35], refined

by Davis, Logemann and Loveland who introduced the branching rule [34].

2.2.1. Unit propagation. Search-based QBF solvers perform unit propagation on the clauses,

which is a form of quantified constraint propagation. Quantified unit propagation is a generaliza-

tion of unit propagation in SAT [35], proposed by Cadoli et al. [24] for their solver Evaluate. It

works as follows.

(1) Clauses are simplified as literals are assigned. If the assigned literal li satisfies the clause,

the clause is removed. Otherwise li is removed from the clause.

(2) If a clause is composed entirely of universal literals, the clause is false.

(3) If a clause is of the form ∃x1∀x2 . . . xn : l1 ∨ l2 ∨ · · · ∨ ln (an existential literal with

0 or more universal literals quantified later) then x1 is set to satisfy the clause. This

38

Chapter 2. Literature review

is because the value of x1 must extend to a solution for all combinations of values of

x2 . . . xn, including the combination which does not satisfy the clause, therefore l1 must

satisfy the clause. If l1 = x1, then x1 is set true, and if l1 = ¬x1 then x1 is set false.

If there are no universal literals, then this rule is equivalent to unit propagation in

SAT. If there is a universal literal quantified before the existential literal, for example

∀x1∃x2 : l1 ∨ l2, then l2 cannot be set because the universal may satisfy the clause,

leaving the existential free. If there are more than one existential literals, none can be set

because we do not know which one will satisfy the clause.

QBF solvers are designed for fast search, with lightweight constraint propagation, whereas the

overall goal of this thesis is to evaluate an approach with more powerful propagation. Any new

logic constraint should be at least as powerful as quantified unit propagation. Therefore the propa-

gation algorithm I develop in chapter 5 is exactly as powerful as quantified unit propagation when

it is applied to a clause, but can be applied to a larger set of logical constraints.

2.2.2. Pure literal rule. Cadoli et al. [24] also generalized the pure literal rule originally

written by Davis and Putnam [35] (and called the affirmative-negative rule by them). If some

literal li is present in the formula but ¬li is not, then li is pure. It is proposed to instantiate li if xi

is existential, and ¬li if xi is universal. This rule has also been adapted to binary QCSP (described

in section 2.3.1.3 below).

Informally, if some positive literal li = xi is not contained in any clause, and xi is universal,

then xi can be assigned to true. This is because setting it to true satisfies no clauses. In terms of

the game analogy, the universal player intends to falsify the formula, therefore it sets xi to true.

If xi is existential, then xi would be set to false, because this satisfies all clauses containing ¬xi

without any other effects on the formula.

2.2.3. Search. Straightforward backtracking search is used by Evaluate [24]. This search

procedure is similar to enumeration in CSP (section 2.1.1), where each variable xi branches for

values true and false, and the QBF instance is simplified at each node before branching. The sim-

plifications are quantified unit propagation, pure literal rule, and simple rules to detect trivial truth

39

Chapter 2. Literature review

Algorithm 1 A simple QBF search algorithm
procedure QBFSearch(φ: QBF instance): Boolean
σ ←Simplify(φ)
if σ =true: return true
if σ =false: return false
if σ is of the form ∀x1 . . .:

t1 ←QBFSearch(σ[x1 = true]) {Set x1 to true and recurse}
if t1 =false: return false
t2 ←QBFSearch(σ[x1 = false]) {Set x1 to false and recurse}
return t2

else: {σ is of the form ∃x1 . . .}
t1 ←QBFSearch(σ[x1 = true]) {Set x1 to true and recurse}
if t1 =true: return true
t2 ←QBFSearch(σ[x1 = false]) {Set x1 to false and recurse}
return t2

and falsity. There are two important differences compared to CSP enumeration: the variable order

must respect the quantifier sequence (although two adjacent variables with the same quantifier can

be transposed) and when branching on a universal variable, both branches must be satisfiable.

The search procedure is summarized in algorithm 1. The Simplify procedure is assumed to (at

a minimum) simplify φ to true or false if all variables are instantiated, and to remove quantifiers

for instantiated variables. The notation σ[xi = a] creates a new QBF instance where xi has only

the value a in its domain.

More sophisticated search algorithms have been proposed. The clausal form of the constraints

eases the development of efficient backjumping and learning algorithms. These are summarized

below.

• Conflict Backjumping (CBJ), proposed by Giunchiglia et al. [56, 57], exploits informa-

tion available at a search dead-end. At a dead-end, a series of search decisions has led

to a contradiction. CBJ computes the minimal set of decisions which contributed to the

contradiction (the reason), and backtracks directly (backjumps) to the most recent deci-

sion in that set. (Universal literals are excluded from the reason [56].) Therefore CBJ

typically backtracks further than naive search from a dead-end, reducing the number of

nodes in the search tree.

40

Chapter 2. Literature review

• Solution Backjumping (SBJ), which exploits solutions found during search in a similar

way to CBJ. At a search node where all clauses are satisfied, a series of search decisions

has led to the satisfaction of the clauses. SBJ computes the minimal set of decisions

which contributed to the satisfaction. This set is also referred to as the reason, and

existential literals are excluded. SBJ backjumps to the most recent decision in the reason.

• Conflict Learning (CL) and Solution Learning (SL), introduced by Giunchiglia et al. [58],

extend CBJ and SBJ respectively. For CL, the reason that is computed with CBJ is con-

verted into a clause: if the reason contains literal li, the clause contains ¬li. Therefore,

unit propagation of the clause ensures that the search never explores search nodes where

all the literals in the reason are true. This avoids re-discovering the same contradiction.

SL uses the reason computed by SBJ to construct a conjunction C of literals: if the

reason contains literal li, the conjunction contains li. Thereafter, if C is satisfied, then all

the literals in the reason are true at the current search node, and the search can backtrack.

Recent QBF solvers with SL (such as QuBE [58]) perform a variant of unit propaga-

tion on C: if all but one of its literals are true, leaving li, then we know that instantiating

li leads to a solution, therefore we can instantiate ¬li even though this involves pruning

a universal variable.

The algorithms CBJ and SBJ have been adapted to binary QCSP. This work is reviewed in section

2.3.4.1 below.

2.3. QCSP

Allowing quantifiers significantly changes the character of CSP. QCSP is PSPACE-complete,

whereas CSP is NP-complete (Börner et al. [23]), and different algorithms are required to prove

satisfiability or unsatisfiability. The scope of this thesis is to investigate the usefulness of, and

algorithms for solving, the finite quantified constraint satisfaction problem (QCSP). Therefore

handling variables with infinite domains is outside the scope of this thesis. A real-valued variable

(i.e. a variable which takes any real value between two initial bounds) can be approximated to

some degree of accuracy using a finite-domain variable. Since all finite domains can be represented

41

Chapter 2. Literature review

by a set of integers, all domains throughout this thesis are a finite subset of the integers, Z. I define

the finite quantified constraint satisfaction problem below.

DEFINITION 2.3.1. Finite Quantified Constraint Satisfaction Problem

A QCSP P = 〈X ,D, C,Q〉 is defined as a set of n variables X = 〈x1, . . . , xn〉, a set of

domains D = 〈D1, . . . , Dn〉 where Di (Z, |Di| < ∞ is the finite set of all potential values

of xi, a conjunction C = C1 ∧ C2 ∧ · · · ∧ Ce of constraints, and a quantifier sequence Q =

Q1x1, . . . , Qnxn where each Qi is a quantifier, ∃ (existential, ‘there exists’) or ∀ (universal, ‘for

all’).

Following the literature, I use n for the number of variables, e for the number of constraints,

and for instances where all variables have the same initial domain, d for the cardinality of the

domain. The terms inner and outer variables are also used in the literature. With respect to

variable xi, an outer variable is a variable xj such that j < i (i.e. a variable which is quantified

before xi in Q). Similarly an inner variable is a variable xj where j > i.

In the following sections I review the literature on QCSP.

2.3.1. Consistency and other properties for QCSP. In the literature, QCSP has been ade-

quately defined, along with the notion of winning strategy which allows the solution of QCSP. This

section is concerned with definitions of consistency and other properties related to local reasoning.

2.3.1.1. Theoretical framework for non-binary QCSP. The key paper in this area neatly de-

fines QCSP, consistency and several other properties in terms of winning strategies (Bordeaux,

Cadoli and Mancini [21]). Three of these properties are used in this thesis. These three properties

are described informally below, and the other properties are briefly sketched.

First, the paper defines the notions of solution, strategy, winning strategy, scenario and out-

come. These are formally defined in the following chapter, but I sketch them here. QCSP can be

understood as an adversarial game, where the existential and universal quantifiers are the players.

The players assign their own variables in quantification order. The aim of the existential player is

to satisfy all constraints, and the aim of the universal player is to break at least one constraint.

42

Chapter 2. Literature review

• Solution. A tuple 〈a1, . . . , an〉 of values for each variable such that if x1 = a1, x2 =

a2, . . . then all constraints are satisfied.

• Strategy. A family of functions which specify the values of each existential variable

based on the values of universal variables which precede it in the quantifier sequence.

• Scenario of a strategy S. A tuple 〈a1, . . . , an〉 of values s.t. the value for each existential

variable is defined by S based on preceding values for universal variables.

• Winning strategy. A strategy S s.t. all scenarios of S are also solutions.

• Outcome. A solution which is also a scenario of some winning strategy.

All of these concepts are used within this thesis, although the terminology is slightly changed.

These are defined formally in chapter 3 section 3.2.1. These concepts are illustrated in the paper

using a small QCSP instance with a tree diagram. Figure 8 is based on figure 1 from Bordeaux et

al. [21], and it is described there as follows.

“Illustration of the notions of solution, winning strategy, scenario and outcome

on the QCSP represented by the logical formula ∃x1 ∈ [2, 3]∀x2 ∈ [3, 4]∃x3 ∈

[3, 6].x1 + x2 ≤ x3. And and or labels on the nodes correspond to universal

and existential quantifiers, respectively. The solutions are all triples 〈x1, x2, x3〉

s.t. x1 + x2 ≤ x3. The only two winning strategies assign x1 to 2: one (s1)

assigns x3 to 6 while the 2nd one (s2) assigns it to x2+2 (note that each strategy

is constrained to choose one unique branch for each existential node). The

scenarios of s1 and s2 are therefore those indicated, while the set of outcomes

of the QCSP is the union of the scenarios of s1 and s2 (also shown in bold

line).”

The figure illustrates that solutions are not necessarily included in any winning strategy, and that

such solutions should not influence which values are defined as consistent. From inspection of the

diagram, it is clear that a definition of consistency should regard x1 7→ 3 as inconsistent, along

with x3 7→ 3 and x3 7→ 4, since these three values do not take part in any winning strategy.

As their second contribution, Bordeaux et al. define various properties which allow a QCSP in-

stance to be simplified. The definitions are given in terms of a QCSP instance, but their application

43

Chapter 2. Literature review

∨

∨

∧

2 3

∨

3 4

∨

∧

∨

3 4

3 4 5 6 3 4 5 6 3 4 5 63 4 5 6

sol

sce(s1)

sce(s2)

out

FIGURE 8. Illustration of scenarios and outcomes for QCSP instance ∃x1 ∈
{2, 3}∀x2 ∈ {3, 4}∃x3 ∈ {3, 4, 5, 6} : x1 + x2 ≤ x3

is usually to a single constraint. The three most relevant properties are listed below. The definition

of consistency is inconveniently named inconsistent, but I refer to it as SQGAC to distinguish it

from other forms of consistency in QCSP.

• inconsistent(xki
, a) iff there is no outcome t such that ti = a.

• d-fixable(xki
, a) iff for all outcomes t, there exists an outcome t′ which is identical except

that t′i = a (deep fixability).

• s-fixable(xki
, a) iff for all outcomes t, there exists an outcome t′ where t′i = a and for

each j < i, t′j = tj (shallow fixability).

D-fixable and s-fixable are defined precisely in chapter 3 section 3.2.6. Other properties include

implied values, substitutable values (i.e. value b may be substituted for value a in any outcome), re-

movable values, pairs of interchangeable values, determined and irrelevant values, and dependent

44

Chapter 2. Literature review

variables (where the value of the dependent variable is a function of the values of a set of other

variables). Substitutable, removable, interchangeable and irrelevant all have deep and shallow

variants, where the deep property is a special case of the shallow property.

Bordeaux et al. also show some relationships between the various properties, and state various

propositions about them. In particular, all properties are related to either removability or fixability.

It is then proven that removable values can be removed from the domain of an existential variable

without affecting the existence of a winning strategy for the QCSP instance. Also, if an existential

variable has a fixable value, then all other values in its domain may be removed without affecting

the existence of a winning strategy.

Bordeaux et al. do not consider the possibility of removable or fixable values of universal

variables [21]. In chapter 3 I prove that instantiating a d-fixable value is sound for existential

variables, and that for universal variables the d-fixable value can be removed from the domain.

2.3.1.2. Consistency for binary QCSP. In CSP, one of the first forms of consistency to be

proposed was arc consistency, discussed in section 2.1.2.1.

Prior to the work of Bordeaux Cadoli and Mancini [21], Mamoulis and Stergiou extended

arc-consistency for binary constraints from CSP to QCSP, embedding it in search in the form of

forward checking or MAC [74].

There are four quantifier subsequences for a binary constraint: ∀xk1 , xk2 ; ∀xk1 ,∃xk2 ; ∃xk1 ,∀xk2

and ∃xk1 , xk2 . For each one, Mamoulis and Stergiou define quantified binary arc consistency. This

definition generalizes the classical definition in CSP [38].

∀xk1 , xk2 : If the constraint has any unsatisfying tuples, it is not QAC. In other words it is QAC

iff each value a ∈ Dk1 is compatible with all values b ∈ Dk2 .

∀xk1 ,∃xk2 : The constraint is QAC iff all values a ∈ Dk1 are compatible with some value b ∈ Dk2

(∃b : 〈a, b〉 ∈ CS
k), and all values b ∈ Dk2 are compatible with some value a ∈ Dk1 .

∃xk1 ,∀xk2 : The constraint is QAC iff each value a ∈ Dk1 is compatible with all values b ∈ Dk2 .

∃xk1 , xk2 : This is the case for standard binary CSP. The constraint is QAC iff all values a ∈ Dk1

are compatible with some value b ∈ Dk2 (∃b : 〈a, b〉 ∈ CS
k), and all values b ∈ Dk2

are compatible with some value a ∈ Dk1 .

45

Chapter 2. Literature review

For the four types of constraint, rules are given to propagate them.

∀xk1 , xk2 : If Ck is inconsistent, then the QCSP instance simplifies to false.

∀xk1 ,∃xk2 : If there exists a value a ∈ Dk1 which is not compatible with some value b ∈ Dk2 ,

then the QCSP instance is false. All values b ∈ Dk2 which are not compatible with

some value a ∈ Dk1 are removed from Dk2 .

∃xk1 ,∀xk2 : Any value a ∈ Dk1 which is not compatible with all values b ∈ Dk2 is removed.

∃xk1 , xk2 : Any value a ∈ Dk1 which is not compatible with some value b ∈ Dk2 (∃b : 〈a, b〉 ∈

CS
k) is removed from Dk1 . Similarly, any value b ∈ Dk2 which is not compatible with

some value a ∈ Dk1 is removed from Dk2 .

If the domain of an existential variable is emptied, then the QCSP instance is false. Mamoulis

and Stergiou observe that for the types ∀xk1 , xk2 and ∃xk1 ,∀xk2 , the propagation rules can be

applied once before search, and then these constraints can be deleted, because these constraints

will remain arc-consistent throughout search.

The propagation rules are embedded in search as follows. For Maintaining Arc-Consistency

(MAC), all constraints are propagated to exhaustion at each node in the search tree. The propa-

gation algorithm for MAC is closely based on AC-2001 [15]. For Forward Checking (FC), when

the search procedure instantiates a variable, only the constraints containing that variable are prop-

agated.

I prove in chapter 3 that binary quantified arc consistency is equivalent to the inconsistency

property defined by Bordeaux et al. [21].

2.3.1.3. Pure value property for binary QCSP. Gent, Nightingale and Stergiou [54] defined

the pure value property for binary QCSP. This work was inspired by the pure literal rule in QBF

solvers (reviewed in section 2.2.2).

Bacchus and Walsh define the same property in CSP for their constraint algebra [7]. They

name a pure value valid, and observe that the set of inconsistent values of some constraint E is

equal to the set of valid values of ¬E . This is a useful result when combining constraints with

conjunction, disjunction and negation symbols. However, they do not use pure values directly to

prune the domains.

46

Chapter 2. Literature review

By encoding binary QCSP into QBF (repeating the experiments of an earlier paper by Gent,

Nightingale and Rowley [52], which is reviewed below), and investigating the effect of the pure

literal rule on the encoded instances, we discovered that the pure literal rule improved the perfor-

mance of the QBF solver by several orders of magnitude. This is the motivation for adapting the

rule to QCSP.

The binary pure value property is defined as follows.

DEFINITION 2.3.2. Binary pure value property in a binary QCSP P

A value a ∈ Di is a pure value iff ∀xj ∈ X where j 6= i and ∀b ∈ Dj , the assignments xi 7→ a

and xj 7→ b are compatible in any constraints Ck where Xk = 〈xi, xj〉 or Xk = 〈xj , xi〉.

If some value is found to be pure, it is also d-fixable (by inspection of the definitions) but

d-fixability does not imply purity.

The pure value property can be used to reduce domains of both existential and universal vari-

ables, as in QBF. The algorithm used by Gent, Nightingale and Stergiou in the solver QCSP-

Solve [54] is naive: to check value a ∈ Di, the algorithm iterates for each constraint containing xi

and some other variable xj , and iterates for each value b ∈ Dj , checking compatibility.

Since this is joint work, led by Kostas Stergiou, I do not claim the binary pure value property

as a contribution of this thesis. However, in chapter 3 I re-define the pure value rule for non-binary

QCSP, and prove that this implies d-fixability.

2.3.1.4. Dual consistency. Another approach to the problem of pruning universal variables is

to apply consistency in a dual problem. This was proposed by Bordeaux et al. [22]. It is not related

to the dual transformation of a non-binary CSP into a binary CSP, but the dual problem represents

the negation of the original (primal) problem P . Propagation in the dual problem can yield useful

information.

Ideally the dual problem would be automatically generated from the primal problem. I believe

it would be unreasonable to expect the user to provide a dual, and verify that it is the negation of

the primal. I first provide a method for transforming any QCSP into a dual.

Transformation of arbitrary QCSP into a dual. If P is the primal problem and P ′ is the dual,

a dual problem can be derived as follows. First I just write down the negation of P .

47

Chapter 2. Literature review

P ′ = ¬(Q1x1, Q2x2, . . . , Qnxn :
∧
C)

Now the negation symbol can be pushed inside the quantifier prefix, because (¬∀x : C) ≡

(∃x : ¬C) and (¬∃x : C) ≡ (∀x : ¬C). By applying these two identities repeatedly, we have the

following. The quantifier Q′
1 is the opposite quantifier to Q1.

P ′ = Q′
1x1, Q

′
2x2, . . . , Q

′
nxn : ¬(

∧
C)

By De Morgans rule, we can turn the conjunction into a disjunction.

P ′ = Q′
1x1, Q

′
2x2, . . . , Q

′
nxn : ¬C1 ∨ ¬C2 ∨ · · · ∨ ¬Ce

For local constraint reasoning, a conjunction of constraints is required, so the disjunction is

reformulated by introducing an additional Boolean variable bk for each term, and reifying the

constraint Ck, forming constraint Cr
k , by adding bk to the scope. Suppose Xk = 〈xk1 , . . . , xkr〉,

then the new scope would be X r
k = 〈xk1 , . . . , xkr , bk〉. The set CSr

k for the new constraint is

constructed from CS
k so that bk is constrained to be 1 if Ck would be satisfied, and 0 otherwise. For

all tuples t ∈ CS
k , the tuple 〈t1, . . . , tr, 1〉 is in CSr

k . For all other tuples t ∈ (Dk1×· · ·×Dkr)\CS
k ,

the tuple 〈t1, . . . , tr, 0〉 is in CSr
k . The reformulated problem is shown below.

(1) P ′ = Q′
1x1, Q

′
2x2, . . . , Q

′
nxn∃b1, . . . , be : Cr

1 ∧ · · · ∧ Cr
e ∧ (¬b1 ∨ ¬b2 ∨ · · · ∨ ¬be)

This is a general form of the dual problem, which only requires that each constraint is reifiable.

There must be efficient procedures to test the entailment and disentailment (CS
k = ∅) of each

constraint in the problem.

Consistency in the dual. The domains of variables x1, . . . , xn can be synchronized between

the primal and dual problems when performing search, and local consistency can be performed on

the dual problem. The dual problem is unsatisfiable iff the primal problem is satisfiable. If local

consistency is performed on the dual problem, it can determine that the dual is unsatisfiable and

48

Chapter 2. Literature review

therefore the primal is satisfiable. If the primal is satisfiable, the search procedure can backtrack

immediately.

Local consistency can also prune a value xi 7→ a of an existential variable in the dual, and

xi 7→ a can be pruned in the primal as well. Since the quantifiers are opposite in the dual problem,

this is a way of pruning universal variables in the primal problem. In terms of the primal problem,

the intuition is that setting xi 7→ a would cause every constraint to be trivially true, therefore there

is no need to branch for xi 7→ a.

In the transformation described above (equation 1), suppose SQGAC is enforced for all con-

straints in the dual problem, including the extra disjunction constraint. All the b variables except

one bi must be set to true before bi is set to false by the disjunction constraint. This is equivalent to

constraints ∀k 6= i : Ck in the primal being trivially true (CS
k = Dk1×· · ·×Dkr). Following this,

the constraint Cr
i can potentially perform some pruning which will carry through to the primal

problem. All but one of the constraints in the primal must be trivially true before any useful com-

putation occurs in the dual problem. Therefore reasoning on the dual problem during search will

only perform useful computation towards the leaves of the search tree, when sufficient variables

have been instantiated to satisfy all but one of the constraints.

In specific cases, it may be possible to construct the dual problem differently (and more effec-

tively). One such case is described below. For arbitrary QCSPs however, I do not know of a better

transformation than the one given above. Therefore I do not pursue the dual problem approach

any further.

As an example where dual is effective, suppose we originally wanted to solve P ′ (equation 1),

rather than P . Then a useful dual problem would be P , because it is a negation of P ′. The primal

and dual problems have been swapped. Now the propagation in the primal problem is highly

ineffective, and in the dual it is highly effective. This illustrates an attractive symmetry: solving

some problem P is approximately as difficult as solving ¬P when using this approach.

2.3.2. Adapting CSP propagation algorithms to QCSP. Benedetti, Lallouet and Vautard

[11] propose to re-use existing CSP propagation algorithms in QCSP, adapting them in one of four

49

Chapter 2. Literature review

ways. For constraint Ck with propagation algorithm Prop and variables xk1 . . . xkr (in quantifica-

tion order), the four adaptations are as follows.

Existential analysis: Prop is applied, ignoring quantification. Prop may prune existential

variables as usual. If a universal variable is pruned, then the constraint is considered to

be unsatisfiable.

Functional domain analysis: Ck is functional with respect to variable xki
iff the constraint

is a function mapping the rest of its variables to xki
. For example, xk1 + xk2 = xk3 is

functional w.r.t. all its variables, since instantiating any two variables leaves exactly one

value for the third variable.

If Ck is functional w.r.t. xki
, and xki

is universal, with inner existential variables

X = {xkj>i
, xkl>j

, . . .}, each value of xki
must map to a distinct combination of values

for X . Intuitively this is because universal and outer variables cannot be freely set after

setting the value of xki
, and because of the functional property no combination of values

for X can be used for two values of xki
. (Unfortunately, Benedetti et al. omit the proof

of correctness of this rule [11].) If there are too few combinations of values for X , then

Ck is not functionally consistent for xki
. Therefore if the product of domain sizes of X

is less than the domain size of xki
, Ck is not functionally consistent.

There is also a property for injective functional constraints. If Ck is injectively func-

tional w.r.t. xki
, and some inner universal variable xkj>i

has domain size greater than

one, then Ck is inconsistent because no single value of xki
will be compatible with all

values of xkj
.

Look-ahead analysis: An enumeration step is applied to a variable of the constraint. For

each value, some form of propagation is applied (possibly existential analysis), and the

final domains are obtained by intersection if the variable is universal, and union oth-

erwise. Benedetti et al. also identify a special case for convex constraints, where it is

sufficient to use only the upper and lower bounds.

Unfortunately I believe there is an error: when performing look-ahead analysis

on a universal variable xki
, the computed domains for variable xkj

where j 6= i are

50

Chapter 2. Literature review

combined by intersection. Where j > i, union should be used. Consider the QCSP

∀x1 ∈ {0, 1}∃x2 ∈ {0, 1} : x1 = x2. The unique winning strategy for this instance

contains both values for x2, and both values of x2 are consistent. Look-ahead analysis on

for the values of x1 gives domains {0} and {1} for x2. Combining these by intersection

gives D2 = ∅, but union gives D2 = {0, 1}.

Dual analysis: The dual of a QCSP instance is discussed in section 2.3.1.4. Benedetti et

al. propose to construct the dual of a single constraint, and apply some form of consis-

tency to it (possibly existential analysis). The values which are pruned in the dual can

then be ignored in the primal. The analysis applied to the primal constraint can then be

stronger (e.g. existential analysis) or more efficient (e.g. look-ahead analysis).

Existential and functional analysis are implemented in the solver Qecode, derived from Gecode

[88]. Experiments are provided comparing Qecode to QCSP-Solve on random binary QCSP. The

instances are not suitable to evaluate functional analysis. The brief experiments show that Qecode

can be competitive with QCSP-Solve on some instances.

Ratschan proposed a way of generalising CSP algorithms to solve first-order constraint sat-

isfaction over the reals [82]. This language admits quantifiers and various numerical constraints

including equality, inequality, multiplication, addition, sine, cosine and tangent. The language is

undecidable, but Ratschan claims that in many cases, useful results can be derived by a constraint

solver. This work is related to finite QCSP because constraint propagators over the reals are also

sound over the integers, therefore this work could be a source of propagation algorithms.

The work concentrates on interval reasoning (where each variable domain is approximated

by an interval [xi, xi]). Ratschan defines first-order C-consistency (FOC-consistency), where C-

consistency can be any form of interval consistency. Rules are given to use a narrowing operator

(a propagation algorithm for C-consistency) for an unquantified constraint on a constraint with

existential and universal quantifiers, enforcing FOC-consistency.

However, FOC-consistency is weak on constraints over universal variables, as the example in

the paper demonstrates (figure 2). The handling of quantifiers in the definition is as follows: ‘if

φ is of the form Qy ∈ I ′ : φ′, where Q is a quantifier, then FOCC(φ,B) iff FOCC(φ′, B I
y)’,

51

Chapter 2. Literature review

Constraint type Primitive Given by Bordeaux [19]
Logical x1 ∨ x2 ⇔ x3 yes, x3 quantified last

x1 ∧ x2 ⇔ x3 no, but ∨ can be used
x1 ⇔ ¬x2 yes

Numerical x1 + x2 = x3 yes, x3 quantified last
−x1 = x2 yes

c× x1 = x2 yes, x2 quantified last
x1 ≤ x2, x1 < x2, x1 = x2, x1 6= x2 yes
(x1 ≤ x2)⇔ x3, (x1 = x2)⇔ x3 yes, x3 existentially quantified last

TABLE 1. Primitive constraints for logic and arithmetic

where φ is a quantified constraint. The notation B I
y simply adds the interval of the quantified

variable, y, to the set of intervals B. There is no special handling of the universal quantifier in the

definition. For this reason, I do not consider FOC-consistency in the remainder of this thesis.

2.3.3. Numerical and logic constraints in QCSP. Lucas Bordeaux in his Ph.D. work (first

published with Eric Monfroy [22] then later, independently and more comprehensively [19]) de-

signed a general framework for propagating numerical and logical constraints in QCSP. In this

framework long expressions are decomposed into ternary and binary primitive constraints, which

makes the framework extendable (with new primitive constraints) and propagation tractable. Table

1 shows the propagators given by Bordeaux [19] (in the form of a set of rules). In some cases, rules

are given for all possible quantifier sequences, but in other cases one variable must be quantified

at the end. This is noted in the table.

For the numerical primitive constraints, the propagators enforce a form of bounds consistency

which takes advantage of quantification. Therefore it is significantly stronger in many cases than

any of the CSP bounds consistency notions defined by Choi et al. [30]. However Bordeaux et

al. do not define a quantified bounds consistency notion, and do not prove either the correctness or

completeness of their propagation rules.

2.3.3.1. Decomposition. It is necessary to break down complex expressions into the primitive

constraints in table 1. First an expression is put into prenex form using equivalence rules such

as ¬(∀x A) ≡ ∃x (¬A) and ¬(∃x A) ≡ ∀x (¬A). Second, the expression is broken down

52

Chapter 2. Literature review

by introducing existential variables. If we have a predicate symbol p with k arguments, and a

functional symbol f with t arguments, the following formula:

p(x1, . . . , f(y1, . . . , yt), . . . , xk)

is equivalent to the following:

∃z (z = f(y1, . . . , yt) ∧ p(x1, . . . , z, . . . , xk))

where z may be Boolean or numerical [19]. For Boolean expressions, f is one of the following

three functions, corresponding to the three primitives.

(1) f(y1, y2) = y1 ∧ y2

(2) f(y1, y2) = y1 ∨ y2

(3) f(y1) = ¬y1

Every connector (∧, ∨, ¬) in the original expression is replaced with a single primitive constraint

and an existential variable. For example, consider the quantifier sequence and expression below.

∃x1∀x2∃x3, x4 : ¬(x3 ∧ ¬x1) ∨ (¬x2 ∧ x4)

The subexpressions ¬x1 and ¬x2 can both be rewritten by using function 3 twice:

∃x1∀x2∃x3, x4, x5, x6 : (¬x1 ⇔ x5) ∧ (¬x2 ⇔ x6) ∧ ¬(x3 ∧ x5) ∨ (x6 ∧ x4)

Now the conjunctions can be rewritten by using function 1 twice:

∃x1∀x2∃x3, x4, x5, x6, x7, x8 :

(x3 ∧ x5 ⇔ x7) ∧ (x6 ∧ x4 ⇔ x8) ∧ (¬x1 ⇔ x5) ∧ (¬x2 ⇔ x6) ∧ (¬x7 ∨ x8)

Function 3 is applied to ¬x7:

53

Chapter 2. Literature review

∃x1∀x2∃x3, x4, x5, x6, x7, x8, x9 :

(¬x7 ⇔ x9) ∧ (x3 ∧ x5 ⇔ x7) ∧ (x6 ∧ x4 ⇔ x8)

∧(¬x1 ⇔ x5) ∧ (¬x2 ⇔ x6) ∧ (x9 ∨ x8)

Finally function 2 is applied:

∃x1∀x2∃x3, x4, x5, x6, x7, x8, x9, x10 :

(x9 ∨ x8 ⇔ x10) ∧ (¬x7 ⇔ x9) ∧ (x3 ∧ x5 ⇔ x7)

∧(x6 ∧ x4 ⇔ x8) ∧ (¬x1 ⇔ x5) ∧ (¬x2 ⇔ x6) ∧ x10

Now there are six primitive constraints and six additional variables, representing the six con-

nectors in the original expression. The variable x10 can be simplified to 1 and then deleted at this

point.

2.3.3.2. Advantages and disadvantages of decomposition. The main advantage of decompo-

sition is that new primitives can be introduced, expanding the input language. Unfortunately the

decomposition yields a large number of constraints and additional variables, which could cause

efficiency problems.

Table 2 shows the propagation rules for the constraint ¬x ⇔ y, for each of four quantifier

sequences. The other four sequences, with x and y transposed, are equivalent. Even for this very

simple constraint, there are a large number of rules and they are derived by hand. x1 + x2 = x3

has many more propagation rules. This shows another difficulty with the approach.

A third problem with this approach is that interaction between variables can be lost when

they are not contained in the same primitive constraint, so enforcing consistency on the primitive

constraints is potentially much weaker than enforcing the same definition of consistency on the

54

Chapter 2. Literature review

constraint condition action
∀x∀y : ¬x = y 0 ∈ Dx, 0 ∈ Dy ⇒ false

1 ∈ Dx, 1 ∈ Dy ⇒ false
∀x∃y : ¬x = y 0 ∈ Dx, 1 /∈ Dy ⇒ false

1 ∈ Dx, 0 /∈ Dy ⇒ false
0 /∈ Dx ⇒ y = 0
1 /∈ Dx ⇒ y = 1

∃x∀y : ¬x = y 1 ∈ Dy ⇒ x = 0
0 ∈ Dy ⇒ x = 1

∃x∃y : ¬x = y 0 /∈ Dy ⇒ x = 0
1 /∈ Dy ⇒ x = 1
0 /∈ Dx ⇒ y = 0
1 /∈ Dx ⇒ y = 1

TABLE 2. Propagation rules for the x1 ⇔ ¬x2 primitive

original expression. Examples where this is the case are given in chapter 5 section 5.1.1 and

chapter 6 section 6.1.1, for logical and numerical constraints respectively.

2.3.4. Search for QCSP. The literature contains two main approaches to search, both in

the context of binary QCSP. Top-down search instantiates variables in quantification order (as

implemented in QCSP-Solve). This is very similar to the search for QBF described in section

2.2.3. It is possible that top-down search may explore two identical subtrees, therefore bottom-up

search was developed by Verger and Bessière [97]. This approach attempts to factor out identical

subtrees, and explore them only once. As a third approach, binary QCSP can be encoded into QBF

and solved with a QBF solver.

The three main approaches to binary QCSP are elaborated in the following three subsections.

QCSP-Solve and its relatives use a search-based approach similar to search for QBF. Blocksolve

attempts to reduce the size of the search tree by factoring out common branches. Encodings into

QBF exploit efficient QBF solvers.

2.3.4.1. Top-down search with QCSP-Solve. Simple top-down QCSP search (algorithm 2,

which is very similar to QBF search, algorithm 1) branches on variables in quantifier order. It is

assumed that the Simplify procedure is able to simplify the QCSP instance to true or false when

all variables have been instantiated, and that it can simplify away all instantiated variables. In

practice, Simplify would do much more than this.

55

Chapter 2. Literature review

Algorithm 2 Simple top-down QCSP search algorithm
procedure TopdownSearch(φ: QCSP instance): Boolean
σ ←Simplify(φ)
if σ =true: return true
if σ =false: return false
if σ is of the form ∀x1 . . .:

for all values a ∈ D1:
t1 ←TopdownSearch(σ[x1 = a]) {Set x1 to a and recurse}
if t1 =false: return false

return true
else: {σ is of the form ∃x1 . . .}

for all values a ∈ D1:
t1 ←TopdownSearch(σ[x1 = a]) {Set x1 to a and recurse}
if t1 =true: return true

return false

In QCSP-Solve [54], simple top-down search is augmented with preprocessing, forward check-

ing of the binary constraints, application of the pure value rule, conflict directed backjumping

(CBJ) and solution directed pruning (SDP). QCSP-Solve does not exactly follow the structure of

algorithm 2 because of various complications. It is presented iteratively.

As a preprocessing step, binary arc-consistency is enforced to exhaustion (as described in

section 2.3.1.2) and the binary pure value rule is applied to exhaustion (section 2.3.1.3). Binary

quantified arc-consistency completely solves all constraints with quantifiers ∀x1∀x2 and ∃x1∀x2,

therefore these types of constraint are deleted during preprocessing.

The QCSP-Solve algorithm performs the following reasoning at each search node.

• Forward checking is performed for the last assignment xi 7→ a. If this empties the

domain of some variable, then the value a cannot extend to a solution.

• The pure value rule is applied to the current variable before branching on it. This poten-

tially reduces the number of values to explore.

• For universal variables, before branching, each value is instantiated in turn and forward

checking is performed. If any value leads to a contradiction (i.e. an empty domain) then

the current assignments cannot lead to a solution.

These three forms of local reasoning could be integrated with algorithm 2, by means of the Simplify

function. However, the other two features of QCSP-Solve, CBJ and SDP, go beyond the recursive

56

Chapter 2. Literature review

structure of algorithm 2, because they both perform backjumping, which is non-chronological

backtracking.

When the search reaches a dead end, CBJ is applied. CBJ constructs a conflict set for each

variable xi, which consists of the outer variables xj<i whose assignment xj 7→ b has directly

or indirectly contributed to the removal of some value in the domain Di. CBJ is applied in two

circumstances:

(1) When branching on existential variable xi, and xi has only one value a left in its domain

Di: if forward checking on a empties some other domain Dl>i, then the conflict set of

xi is used to backjump. The search procedure backtracks to the innermost variable in the

conflict set.

(2) When branching on universal variable xi, if forward checking on any value a ∈ Di

empties some other domain Dl>i, then the conflict set of xi is used to backjump, in the

same way as for existential variables.

A possible execution of CBJ is illustrated in figure 9, where the solid arrows represent flow of

control in the algorithm. This does not illustrate CBJ on a particular problem instance, but is just

a general illustration. Without backjumping, after exploring x3 = 3, the algorithm would have

returned to x2 and potentially explored other values in D2.

If all variables are assigned and all constraints are satisfied, then we have a solution τ =

〈a1, a2, . . . , an〉 and SDP is applied. SDP is inspired by SBJ for QBF. For the innermost universal

variable xi, the solution is adapted for each value a ∈ Di by changing τi to a and checking the

constraints. If the constraints are all satisfied by the modified solution, value a can be ignored,

since it has a solution. Thus values can be pruned from Di. If Di is not emptied, SDP backtracks

directly to xi and continues searching using the remaining values. If Di is emptied, then SDP

moves on to the next universal (in order of decreasing index i) and repeats the same process. If

the domains of all universal variables are emptied by SDP, then the algorithm halts, having found

a winning strategy.

QCSP-Solve is evaluated experimentally using random QCSP instances. Unfortunately the

version of QCSP-Solve evaluated in the paper [54] contains a bug with the pure value rule. The

57

Chapter 2. Literature review

x1=3x1=2x1=1

x2=2

x3=3x3=2

CBJ
backjumps
to x1

Both values (2 and 3) lead to contradiction

FIGURE 9. Conflict Backjumping in QCSP-Solve

algorithm presented there will remove the final value of a universal variable and immediately

backtrack, assuming that the simplified instance is true. It is incorrect to remove the final value,

since the pure value rule is a subsumption rule. Consider the following instance, which would

trigger the bug: ∀x1 ∈ {1, 2}∃x2 ∈ {1, 2} : x2 6= x2. All values of x1 are immediately pure, but

the instance is not satisfiable. The experiments reported in this thesis are not subject to this bug.

2.3.4.2. Top-down search and repair. Stergiou later proposed to use repair-based methods in

QCSP, with a general framework (RB-Schema) which incorporates propagation and repair-based

methods [93]. Essentially this expands on the idea of SDP, by adapting (repairing) the solution to

be compatible with different assignments to the universal variables. RB-Schema has two param-

eters: Propagate, the algorithm to propagate search assignments, and Repair, the algorithm which

repairs a solution τ , after a change to τi, by changing values τi+1 . . . τn such that all constraints

are satisfied. If Repair is not complete, RB-Schema is also not complete.

RB-Schema behaves like simple top-down search until the first solution is found. After that,

the algorithm uses a combination of top-down search (using Propagate) and repair. The Repair

58

Chapter 2. Literature review

algorithm is called when the value of a universal variable is changed, to adapt the last solution for

the new value, and if this fails RB-Schema backtracks like top-down search.

Any repair-based technique subsumes SDP, however CBJ has not been embedded in RB-

Schema. The paper presents some experiments on random binary QCSP instances [93], showing

that RB-Schema can outperform QCSP-Solve.

2.3.4.3. Bottom-up search with Blocksolve. Verger and Bessière propose to search over the

innermost quantified variables first, with their algorithm Blocksolve [97]. A block is a maximal

substring of variables in the quantifier sequence that have the same quantifier. The variables are

partitioned into blocks, and the blocks are paired into levels, where a universal block followed by

an existential block forms one level.

The levels and the blocks are processed in reverse quantifier order, finding solutions to the

innermost block first. Currently Blocksolve is restricted to binary constraints, and the innermost

block is assumed to be existential.

Simple top-down search (algorithm 2) can explore two identical subtrees of the search tree.

As a simple example, for a QCSP instance with variables x1 . . . xn, if x1 . . . xm are not connected

by any constraint to xm+1 . . . xn, then whenever algorithm 2 reaches variable xm+1 it will explore

a subtree which is identical in every case. The aim of Blocksolve is to avoid exploring identical

subtrees of the search tree, by factoring them out.

For each existential block, starting with the innermost, Blocksolve uses a CSP search algo-

rithm combined with some level of consistency (at least forward checking on the binary con-

straints). This is used to instantiate (if possible) the variables of the existential block, without

causing empty domains for variables in other blocks. These instantiations are matched with com-

patible tuples (compatible w.r.t. the constraints) of the values of outer variables. This allows one

instantiation of the current block to be used with many different instantiations of outer blocks, thus

avoiding exploring identical subtrees.

Figure 10 shows a complete tree of possible assignments for a small example, with the two lev-

els marked on the diagram. The simple top-down search algorithm could explore one of the trees

marked with thick black lines, by first setting x1 to 2. Blocksolve in contrast would first attempt to

59

Chapter 2. Literature review

∨

∨

∧

2 3

∨

3 4

∨

∧

∨

3 4

3 4 5

Level 2

Level 1

A

B

3 4 5

A

3 4 5 3 4 5

FIGURE 10. Illustration of the operation of Blocksolve on instance ∃x1 ∈
{2, 3}∀x2 ∈ {3, 4}∃x3 ∈ {3, 4, 5} : x1 6= x2, x1 6= x3, x2 6= x3

instantiate all existential variables in the innermost level (only x3 in this case). Blocksolve’s value

ordering heuristic favours values which are compatible with a large number of combinations of

values of the universals in level 2. In this case, the instantiation x3 7→ 5 would be made, labelled

with an A in the figure. This instantiation is compatible with both values of x2. Blocksolve has

constructed the subtree marked with a box in the figure.

Following this, Blocksolve would move up to level 1 and attempt to instantiate the existential

variable at this level. The instantiation x1 7→ 2 is made (labelled B in the figure), and the algorithm

terminates at this point. However, if it had not been possible to instantiate the existentials at level

1, then Blocksolve would have returned to level 2 to find another subtree, guided by the failure at

level 1.

This example has only one existential variable at each level, so it does not illustrate search at

each level. This search would probably take up a substantial part of the running time on a large

instance.

The experimental evaluation shows Blocksolve is often faster than QCSP-Solve for soluble

random instances. On the other hand, the experiments in this thesis (in chapter 4 section 4.6.1.2)

show that there are instances where Blocksolve performs several orders of magnitude worse than

60

Chapter 2. Literature review

QCSP-Solve. The probable reason for this is that the innermost block of existentials contains a

large number of variables with large domains (as an artifact of the hidden variable encoding), and

that search in this innermost block is taking a large amount of time.

Currently Blocksolve is restricted to binary constraints, and it is not clear how it might be

extended for non-binary constraints. If this limitation can be overcome, then a huge array of

propagation algorithms from CSP could be applied.

2.3.5. Restricted forms of QCSP. There is a small body of work on restricted forms of

QCSP. Fargier proposed mixed CSP [39], where a set of parameters represents the state of the

world, and the CSP is solved repeatedly for all (or a large subset of) the possible worlds. If the

parameters are P and decision variables X , the quantifier sequence of the equivalent QCSP would

be ∀P∃X .

Gervet and Yorke-Smith define uncertain CSP [102], which is very similar to mixed CSP, and

propose various closures including the most robust individual solution, and the minimal set of

solutions which covers all possible worlds. This work is very interesting but the algorithms bear

little resemblance to those for unrestricted QCSP.

Chen and Dalmau [29] and Börner et al. [23] identify tractable subsets of QCSP. Chen and

Dalmau give an algorithm to enforce k-consistency [29], however the algorithm they propose is

designed to give tractability results, with no reference to optimality or embedding in a search

procedure, therefore I will not consider this algorithm to be competitive with the algorithms I

develop in this thesis.

2.4. Other formalisms

QCSP is not the only extension of CSP intended to address uncertainty. I briefly review three

other formalisms.

2.4.1. Stochastic CSP. Walsh introduced Stochastic CSP and gave some basic algorithms

[99], and Tarim, Manandhar and Walsh proposed an encoding of Stochastic CSP into CSP [75,

96]. Balafoutis and Stergiou correct and extend the work of Walsh, introducing the stochastic

61

Chapter 2. Literature review

equivalent of generalized arc consistency and integrating it within search [8], generalizing the

GAC2001/3.1 algorithm.

Stochastic CSP allows decision variables (which the solver must find values for) and stochastic

variables (which follow some probability distribution), and the constraints must all be satisfied

with some probability φ. The variables have an ordering, similar to a quantifier sequence. A

policy (similar to a winning strategy) must assign the decision variables based on the values of

previous decision and stochastic variables. Stochastic CSP may be PSPACE-complete in general,

and if φ = 1 then stochastic CSP is equivalent to QCSP. The framework is extended with an

optimization function.

Interesting problems can be modelled in stochastic CSP. Walsh gives a production planning

example, where customer orders are satisfied with probability 0.8, given stochastic demand for

the product [99]. Tarim et al. give further examples from portfolio management, farming yield

management and production/inventory control [75, 96].

2.4.2. Strategic CSP. Bessière and Verger identify a difficulty in modelling with QCSP [17].

When modelling an adversarial game in either QCSP or QBF, the moves of one player are repre-

sented with existential variables, and the other with universal variables. The variables are quanti-

fied in chronological order. The difficulty is that the valid moves often depend on previous moves.

For the existential move variables, the invalid moves can be pruned by consistency. Unfortunately,

with universal variables, if a value is inconsistent then the entire QCSP instance is false, so some

other device must be used to deal with invalid moves.

Gent and Rowley encode Connect-4 into QBF using indicator variables, which indicate when

an invalid move has been made [46]. When a universal variable is set to an invalid value, unit

propagation simplifies the formula to true. The invalid value is not pruned, but the search pro-

cedure branches for every value of each universal variable. The encoding is also very complex.

Ansótegui, Gomes and Selman [5] also explore this modelling difficulty, proposing to avoid it

by altering the search algorithm of QBF solvers to avoid invalid moves. The invalid values of

universal variables are not pruned, therefore no further pruning can occur subsequently.

62

Chapter 2. Literature review

Bessière and Verger address this modelling issue by defining Strategic CSP [17]. This new

formalism has a new type of variable similar to a universal variable, but which can be pruned

by certain constraints. These are quantified with existential variables, and there is also a set of

state variables which are not quantified in the conventional way. (The state variables are handled

separately from those in the quantifier sequence.) The state variables are intended to represent

the board state of a game, or the state of the environment. The rules of a game are expressed by

constraints over the state variables. The quantified variables are connected with the state variables

by channelling constraints. Connect-4 is modelled tersely in Strategic CSP, and solved effectively

(by top-down search and consistency), demonstrating its applicability.

However, Strategic CSP has some unusual properties. For example, where A is a state variable

and E is existential, the constraints A = E ∧ E = 1 are not equivalent to A = 1 ∧ E = 1. The

framework may need to be re-defined in a cleaner way to avoid this problem.

2.4.3. QCSP+. Benedetti et al. [12] perceive the same difficulty with modelling as Bessière

and Verger [17], and propose QCSP+ to address it. This is a generalization of QCSP. Written as

first-order logic, a quantifier in QCSP+ has one of the following two forms.

∃X1 : L1 ∧ [. . .]

∀X2 : L2 ⇒ [. . .]

In these expressions, X1 and X2 are sets of variables, and L1 and L2 are instances of CSP. The

ellipsis represents the rest of the QCSP+ instance, including other quantifiers if necessary. QCSP+

also has free (unquantified) variables, and a set of constraints.

The CSPs L1 and L2 allow to encode conditions on the quantifiers (e.g. rules of a game) which

rule out some combinations of values. Each CSP instance can contain variables from the quantifier

it is attached to, from quantifiers to the left, and from the set of free variables. Therefore, the

approved combinations of values of universal variables can depend on the values of any variables

63

Chapter 2. Literature review

quantified to the left. This solves the modelling difficulty, and allows the re-use of CSP constraint

propagators.

QCSP+ can be straightforwardly encoded into QCSP. However, in QCSP a top-down search

solver may branch for each value of a universal variable, regardless of whether it satisfies the

conditions. This difficulty can be solved by making use of the pure value rule, as it is used in the

models of Connect 4 and faulty job shop scheduling presented later in this thesis. Therefore I see

no advantage of QCSP+ compared to QCSP with the pure value rule.

Benedetti et al. do not conclusively show that QCSP+ can be solved efficiently: the solver

uses conventional CSP propagation algorithms rather than the stronger quantified variants [12].

However, experimental results are promising.

2.5. Summary

This chapter reviewed the most relevant literature from the fields of constraint programming

and QBF. This was followed by detailed examination of the QCSP literature, and some discus-

sion of other, similar formalisms. In each of the three fields of constraint programming, QBF

and QCSP, the definitions and algorithms related to local reasoning (particularly consistency) and

search are covered in most detail, since they are most relevant to this thesis.

64

CHAPTER 3

A search framework for QCSP

3.1. Introduction

The aim of this thesis is to explore whether QCSP is a useful formalism, and whether QCSP

can be effectively solved using a combination of consistency and search, with a particular em-

phasis on consistency. The point of this chapter is to provide the theoretical background for the

following chapters about consistency, and to provide the algorithmic framework that the consis-

tency algorithms fit into. This second part includes search algorithms and an algorithm to enforce

the pure value rule, using consistency.

The theoretical background (section 3.2) includes definitions of finite QCSP, local consistency

in general and specific definitions of consistency, as well as the pure value rule and various other

notions which are used in the following chapters. In this section, the definition of WQGAC (a

consistency notion) and of the pure value rule (as a form of local reasoning) are novel.

Two search algorithms are presented in section 3.3, one to decide satisfiability of QCSP and

the other to perform optimization. Both allow a winning strategy to be extracted, represented by

a tree. For the second algorithm, each branch of the winning strategy is optimal. The second

algorithm is new, since there are no QCSP optimization algorithms in the literature.

The search algorithms interface with a constraint queue for the purpose of maintaining local

consistency (section 3.4). The pure value rule is another form of local reasoning which is able to

prune values from universal variables. Two novel schemes to enforce this are described in section

3.5.

The various algorithms are implemented in a solver called Queso. I give an overview of the

structure and implementation decisions of Queso in section 3.7.

65

Chapter 3. A search framework for QCSP

Finally, in section 3.8, two encodings from binary QCSP to QBF are discussed. The second

of these is a novel improvement of the first.

3.2. Definitions

The finite quantified constraint satisfaction problem is defined in chapter 2, definition 2.3.1. It

is reproduced here for convenience.

DEFINITION 3.2.1. Finite Quantified Constraint Satisfaction Problem

A QCSP P = 〈X ,D, C,Q〉 is defined as a set of n variables X = 〈x1, . . . , xn〉, a set of

domains D = 〈D1, . . . , Dn〉 where Di (Z, |Di| < ∞ is the finite set of all potential values

of xi, a conjunction C = C1 ∧ C2 ∧ · · · ∧ Ce of constraints, and a quantifier sequence Q =

〈Q1x1, . . . , Qnxn〉 where each Qi is a quantifier, ∃ (existential, ‘there exists’) or ∀ (universal, ‘for

all’).

I use n for the number of variables, e for the number of constraints, and for QCSPs where all

variables have the same domain, d for the cardinality of the domain. r is used for the arity of a

constraint.

Before defining the semantics of a QCSP, it is necessary to define constraints. I use subse-

quence in the sense where 〈1, 3〉 is a subsequence of 〈1, 2, 3, 4〉.

DEFINITION 3.2.2. Constraint

Within QCSPP = 〈X ,D, C,Q〉, a constraint Ck ∈ C consists of a sequence of r > 0 variables

Xk = 〈xk1 , . . . , xkr〉 with respective domains Dk = 〈Dk1 , . . . , Dkr〉 s.t. Xk is a subsequence of

X , Dk is a subsequence of D, and each variable xki
and domain Dki

matches a variable xj and

domain Dj in P . Ck has an associated set CS
k ⊆ Dk1 ×· · ·×Dkr of tuples which specify allowed

combinations of values for the variables in Xk.

The variables Xk are called the scope of the constraint. CS
k may be represented implicitly,

for example by an algebraic expression. Notice that the set CS
k depends on the domains, hence in

a QCSP solver which simplifies the problem P by removing values from the domains to form a

smaller problem P ′, CS
k in P ′ is reduced accordingly.

66

Chapter 3. A search framework for QCSP

Simplifying a QCSP by reducing the size of the domains is key to the definition of QCSP

semantics, and also to the algorithms for solving QCSP as we will see later in this chapter. This

simplification is defined here. A variable xi is called instantiated or set if |Di| = 1.

Let the initial problem be P = 〈X ,D, C,Q〉 with domains D = 〈D1, . . . , Dn〉 and the sim-

plified problem be P ′ = 〈X ,D′, C′,Q〉 with domains D′ = 〈D′
1 ⊆ D1, . . . , D

′
n ⊆ Dn〉 and

constraints C ′
k ∈ C′. Now ∀k : CS′

k = CS
k ∩ (D′

k1
×D′

k2
× · · · ×D′

km
). Only the domains and

sets CS
k are different between P and P ′. When the simplification involves setting a variable xi to

value a ∈ Di, I use the following notation: P ′ = P[Di = {a}].

In order to define the semantics of QCSP, function firstx(P) gives the first uninstantiated

variable, or ⊥ if no such variable exists.

if ∀i : |Di| = 1 then firstx(P) = ⊥

otherwise firstx(P) = xi s.t. |Di| > 1 and @j < i : |Dj | > 1

When firstx(P) = ⊥, all domains Di are unit and the set Dk1 ×Dk2 × · · · ×Dkn consists of

a single tuple, therefore for all constraints ∀k :
∣∣CS

k

∣∣ ∈ {0, 1}. Following Apt [6], if
∣∣CS

k

∣∣ = 0

the constraint is failed and if
∣∣CS

k

∣∣ = 1 the constraint is solved.

Informally, a QCSP instance is satisfiable if there is some way of setting the existential vari-

ables such that all constraints are solved, whatever values the universal variables take. This is

analogous to the concept of satisfiability in traditional CSP. The following definition formalises

this concept. The definition has a base case where all variables are set, and a recursive case which

is subdivided for existential and universal variables.

DEFINITION 3.2.3. Semantics of the QCSP P = 〈X ,D, C,Q〉

• In the case where firstx(P) = ⊥: If all constraints Ck ∈ C are solved, the problem is

satisfiable. If any constraint is failed, P is unsatisfiable.

• Otherwise, let firstx(P) = xi. If (∃xi) ∈ Q then P is satisfiable iff there exists a value

a ∈ Di such that the simplified problem P[Di = {a}] is satisfiable. If (∀xi) ∈ Q then P

is satisfiable iff for all values a ∈ Di the simplified problem P[Di = {a}] is satisfiable.

67

Chapter 3. A search framework for QCSP

The finite constraint satisfaction problem (CSP) has been extensively studied, and is a subset

of QCSP where all variables are existentially quantified. It is defined below.

DEFINITION 3.2.4. Finite Constraint Satisfaction Problem

A CSP P = 〈X ,D, C〉 with n variables X = 〈x1, . . . , xn〉, is defined to be a QCSP P ′ =

〈X ,D, C,Q〉 where Q = ∃x1,∃x2, . . . ,∃xn.

CSPs are most commonly solved by interleaving constraint propagation and search. Work on

QCSPs has mainly followed the same path so far [22, 54, 74], and I take the same approach here.

3.2.1. Solutions, strategies and scenarios. All three concepts defined in this subsection are

to do with solving QCSPs. A solution to a QCSP is an assignment to all variables such that the

constraints are satisfied. This is a linear structure, and the existence of a solution does not prove

that the QCSP is satisfiable under definition 3.2.3. The second object is a strategy, which specifies

how existential variables should be set with reference to the values of universal variables. Finally

the winning strategy is defined. The existence of a winning strategy does prove that a QCSP is

satisfiable. This is proven in theorem 3.2.9 below. Unless stated otherwise, the definitions closely

follow those of Bordeaux et al. [21].

An intuition for understanding quantifier alternation is to consider existential and universal as

two players who are interacting. The aim of the existential player is to satisfy the set of constraints

C, by assigning values to existential variables. The aim of the universal player is to cause at least

one constraint to be unsatisfied. The variables are assigned in quantification order (as definition

3.2.3 suggests), however two adjacent variables with the same quantifier may be transposed. If

the existential player can win the game whatever moves (assignments) the universal player makes,

then the QCSP is satisfiable.

A certificate proving the satisfiability of the QCSP is called a winning strategy. It describes

the moves the existential player must make to win, given the moves the universal player makes in

response. In the literature there are two ways of formalising a winning strategy. The form favoured

here is that of Bordeaux, Cadoli and Mancini [21], who define a family of total functions which

68

Chapter 3. A search framework for QCSP

map universal assignments to later existential assignments. (The other form is the solution tree,

discussed in section 3.2.2.) First I will define solutions, then strategies.

A solution to the QCSP P is a tuple t of values for all variables, such that ti ∈ Di, and in the

simplified QCSP P ′ with domains Di = {ti}, all the constraints in C′ are solved. The set of all

solutions of P is called solP .

DEFINITION 3.2.5. Solution

A tuple t is a solution to QCSP P = 〈X ,D, C,Q〉 iff |t| = n and ∀i : ti ∈ Di and in the

simplified QCSP P ′ = 〈X ,D′, C′,Q〉 where D′ = 〈{t1}, {t2}, . . . , {tn}〉, all constraints C ′
k are

solved.

To define a strategy requires tuples of outer universal assignments. The whole set of outer

universal assignments for variable xi is denoted OUAi. The universal variables outside (i.e. earlier

in the quantifier prefix than) xi are Ui = {xj ∈ X |Qj = ∀ ∧ j ≤ i}. Given Ui = {xj , xl, . . .},

then OUAi = {〈vj , vl, . . .〉|vj ∈ Dj ∧ vl ∈ Dl ∧ · · · }. That is, all tuples constructed from the

initial domains of the outer universal variables.

DEFINITION 3.2.6. Strategy

A strategy S is a set of functions S = {si|Qi = ∃} of the following type: for each xi which

is existential, function si associates to each tuple t ∈ OUAi a value in Di. Therefore S specifies

which value should be assigned to every existential variable depending on the values assigned to

the preceding universal variables.

Note that if some variable xi has no outer universal variables, there is just one member of

OUAi, the empty tuple, which is mapped to a single value from Di.

Bordeaux, Cadoli and Mancini continue by defining a scenario. This is a tuple of values

which form a complete assignment to variables x1 . . . xn. The scenario is affected by both the

strategy and the values assigned to universal variables. To define the set of scenarios, we need

to extract the values of outer universal variables from a scenario t. Given Ui = {xj , xl, . . .},

OUAi(t) = 〈tj , tl, . . .〉.

69

Chapter 3. A search framework for QCSP

DEFINITION 3.2.7. Scenario

The set of scenarios of a strategy S for a QCSP P , denoted sce(S), is the set of all tuples t

which are such that, for each i ∈ 1 . . . n, we have:

ti ∈ Di

and

if Qi = ∃ then ti = si(OUAi(t))

This definition allows the values of existential variables to be consistent with the strategy and

the values of outer universal variables. There is no restriction to the values of universal variables.

In the degenerate case where all variables are universal, sce(S) = D1 × · · · ×Dn.

If all the scenarios of a strategy satisfy the constraints, then the strategy is a winning strategy.

DEFINITION 3.2.8. Winning strategy

A strategy S is a winning strategy for the QCSP P iff sce(S) ⊆ solP .

Winning strategies are particularly interesting, since the existence of such a strategy proves

the solubility of the QCSP. A winning strategy is also useful in itself, because it encodes a solution

to the original problem. For example, if the QCSP represented a contingent planning problem, a

winning strategy would represent a contingent plan.

THEOREM 3.2.9. QCSP instance P is satisfiable under definition 3.2.3 if and only if there

exists a winning strategy S for P .

PROOF. The proof follows the recursive structure of definition 3.2.3.

Let firstx(P) = xi. If Qi = ∃ then function si ∈ S specifies the value a for xi as a function

of the values of outer universals xj<i. Now according to definition 3.2.3 the simplified problem

P[Di = {a}] must be satisfiable so we recurse (n.b. the definition of scenario requires that xi

is instantiated according to function si). If Qi = ∀ then for all values a ∈ Di the simplified

70

Chapter 3. A search framework for QCSP

problem P[Di = {a}] must be satisfiable, so we recurse for all values a ∈ Di (n.b. the definition

of scenario allows a universal variable to take any value in its domain).

In the base case where firstx(P) = ⊥, all variables have been instantiated in accordance with

S. Where the instantiations are x1 7→ a1, . . . , xn 7→ an, τ = 〈a1, . . . , an〉. By the definition of

scenario, τ ∈ sce(S). By the definition of winning strategy, sce(S) ⊆ solP , therefore τ ∈ solP

and all constraints are solved, as required. �

We denote by WINP the set of winning strategies of P . WINP is an important set for com-

puting consistency. The set of scenarios sce(WINP) (which is denoted outcomes by Bordeaux et

al. [21]) can be used to define consistency in the following way: the set of supported assignments

is exactly the set of assignments contained in scenarios in sce(WINP). The set of supported as-

signments is {xi 7→ a|t ∈ sce(WINP) ∧ ti = a}. I denote this consistency Strong Quantified

GAC (SQGAC) and it is equivalent to the definition of inconsistency by Bordeaux et al. [21]. It is

formalised in the definition of SQGAC (definition 3.2.13).

3.2.2. Solution trees. A winning strategy may be alternatively represented as a tree. This is

the approach taken by Verger and Bessière, who define such a tree as follows.

DEFINITION 3.2.10. Solution tree of QCSP instance P .

A solution tree for P is a tree such that:

• the root node r has no label,

• every node s at distance i (1 ≤ i ≤ n) from the root r is labelled by an instantiation

xi 7→ v where v ∈ Di,

• for every node s at depth i (0 ≤ i ≤ n− 1), the number of successors of s in the tree is

|Di+1| if xi+1 is a universal variable or 1 if xi+1 is an existential variable. When xi+1 is

universal, every value w in Di+1 appears in the label of one of the successors of s,

• for any leaf, the instantiation on x1, . . . , xn defined by the labels of nodes from r to the

leaf satisfies all constraints in C [97].

71

Chapter 3. A search framework for QCSP

The definition is quoted almost exactly, except for some notation. Henceforth I will refer to a

tree T = 〈V,E, r, L〉, where r is the root, V is the set of vertices, E is the set of edges and L is

the labelling (a function L : V \ {r} → {xi 7→ a|a ∈ Di}).

Verger and Bessière clearly intended the solution tree to be a representation of a winning

strategy, equivalent to the other representation using a family of functions. Indeed there is a

bijection between solution trees T and and winning strategies S for any QCSP instance P . I show

this by giving an isomorphism between a solution tree T and the equivalent winning strategy S.

The isomorphism connects every node in the tree which is labelled with an existential vari-

able, to a mapping in one of the functions in S, and vice versa. This is illustrated in figure 11,

where there are five nodes labelled with existential variables, and five equivalent mappings in the

functions of the winning strategy. In the figure, for x4 there are four paths from r to some node

labelled with x4. These four paths correspond to four possible combinations of inner universal

assignments. The isomorphism depends on this correspondence.

The tree T branches for each value of universal variables, and for exactly one value of existen-

tial variables. Therefore at any level i of the tree, where all nodes are labelled with xi, the number

of nodes at that level is the product
∏
{|Dj | |1 ≤ j ≤ i, Qj = ∀}. For each possible combination

of values of outer universal variables xj≤i, there is a path from r to a node at level i. Where xi is

existential, this exactly matches the definition of the set OUAi, which contains all tuples of outer

universal assignments. Each element t ∈ OUAi corresponds to a path from r to a node labelled

with xi, and vice versa.

For all existential variables xi ∈ X , the winning strategy contains a total function si ∈ S of

type si : OUAi → Di. Each mapping in si, si(t) = ai, corresponds to a node in T which is

labelled xi 7→ ai and vice versa.

Finally, the corner case where all variables are universal. S is the empty set, and the set of

scenarios is sce(S) = D1×D2× · · · ×Dn. Since S is a winning strategy, sce(S) ⊆ solP . In T it

is required by the definition that each path from r to a leaf node corresponds to a solution in solP .

Since T branches for all values of each variable, this is identical to the requirement for S.

72

Chapter 3. A search framework for QCSP

r

x3=6

x1=2

x3=5

x2=3 x2=4

x3=6x3=5

x4=6 x4=5 x4=4 x4=3

S={s1 , s4} where
s1〈 〉=2

 and

The tree T below is isomorphic to S

s4〈3,5〉 =6
s4〈3,6 〉=5
s4〈4,5〉 =4
s4〈4,6 〉=3

FIGURE 11. For a QCSP instance ∃x1 ∈ {1, 2}∀x2 ∈ {3, 4}∀x3 ∈ {5, 6}∃x4 ∈
{3, 4, 5, 6} : C, example of mapping between a solution tree and a winning strat-
egy.

There is a close relationship between T and the scenarios sce(S). Each leaf node in T cor-

responds to a scenario in sce(S). The scenario can be constructed from the path from r to the

leaf node: the sequence of labels x1 7→ a1, x2 7→ a2, . . . , xn 7→ an corresponds to the scenario

〈a1, a2, . . . , an〉.

To illustrate solution trees, consider the following QCSP [21].

∃x1 ∈ {2, 3} ∀x2 ∈ {3, 4} ∃x3 ∈ {3, 4, 5, 6} : x1 + x2 ≤ x3

There is a winning strategy S = {s1, s3} such that s1(〈〉) = 2, s3(〈3〉) = 5, s3(〈4〉) = 6. S

is represented by the tree shown in figure 12(a). Just the labels are shown for all vertices except r.

More than one winning strategy can be represented in a single tree. For example there is a

second winning strategy for the problem above: S′ = {s′1, s′3} such that s′1(〈〉) = 2, s′3(〈3〉) = 6,

s′3(〈4〉) = 6. The tree representing both S and S′ is shown in figure 12(b).

In this second example, two winning strategies are represented using one tree. The tree corre-

sponds to a set of three scenarios, 〈2, 3, 5〉, 〈2, 3, 6〉 and 〈2, 4, 6〉, which is the union of the sets of

scenarios of the two winning strategies.

73

Chapter 3. A search framework for QCSP

r

x3=6

x1=2

x3=5

x2=3 x2=4

(a) Single winning strategy

r

x3=6

x1=2

x3=5

x2=3 x2=4

x3=6

(b) Two winning strategies

FIGURE 12. Strategy trees

3.2.3. Multiple winning strategy trees. The idea of representing multiple winning strategies

in one tree finds a use in the SQGAC propagation algorithm in chapter 4. In that context, a multiple

winning strategy tree containing all winning strategies is maintained. If any value is not contained

in the tree, it is inconsistent.

The multiple winning strategy tree simply represents a larger set of scenarios. The main

difference is that nodes labelled with existential variables can have siblings, therefore multiple

values for existential variables can be represented. It is defined below.

DEFINITION 3.2.11. Multiple winning strategy tree (MWST) for a set of winning strategies

S = {S1, . . . , Sn} of QCSP instance P .

An MWST T for P is a tree such that:

• the root node r has no label,

• every node s at distance i (1 ≤ i ≤ n) from the root r is labelled by an instantiation

xi 7→ v where v ∈ Di,

• for every node s at depth i (0 ≤ i ≤ n− 1), the number of successors of s in the tree is

|Di+1| if xi+1 is a universal variable or 1 or more if xi+1 is an existential variable. When

xi+1 is universal, every value w in Di+1 appears in the label of one of the successors of

s, and when xi+1 is existential, the labels of the successors of s must be distinct.

74

Chapter 3. A search framework for QCSP

• for any leaf, the instantiation on x1, . . . , xn defined by the labels of nodes from r to the

leaf satisfies all constraints in C.

• The set of winning strategies S = {S1, . . . , Sn} has a combined set of scenarios sce(S) =

sce(S1) ∪ · · · ∪ sce(Sn). There is a bijection between leaf nodes w in T and scenarios

sce(S) as follows: the path from r to w in T traverses the sequence of vertices labelled

x1 7→ a1, x2 7→ a2, . . . , xn 7→ an, corresponding to the scenario 〈a1, a2, . . . , an〉 ∈

sce(S).

Note that for all nodes s in an MWST T , the labels of children of s are distinct. Therefore, for

any two distinct tuples τ , τ ′ in sce(S) (represented by two paths in T), the lowest index i where

τi 6= τ ′i must also be the point where the two paths in T diverge. The point of divergence is unique.

Because of this, T is unique in representing sce(S).

An MWST can be thought of as a trie [40], and sce(S) as the set of words stored in the trie.

The definition above leads naturally to a consistency definition when S includes all winning

strategies for the QCSP P (S = WINP). If some assignment xi 7→ a is contained in the tree (i.e.

∃v ∈ V : F (v) = xi 7→ a) then it is also contained in a tuple in sce(WINP), and xi 7→ a is

consistent, otherwise not. This is formally defined later.

3.2.4. Local consistency. To enforce consistency on the whole problem P including a con-

junction of constraints is intractable in general [21], therefore Bordeaux et al. define local consis-

tency (consistency on individual constraints) which is tractable in general if the arity of the con-

straints is bounded above by a constant. Local consistency is also tractable for particular classes

of constraints of any arity (for example, logic constraints and sum, which will be explored in later

chapters).

Local consistency is consistency in the local problemPk = 〈X ,D, Ck = {Ck},Q〉 containing

just the constraint Ck. X , D and Q are identical to their counterparts in the global problem P .

If an assignment is inconsistent in Pk then it must be inconsistent in P , since the semantics of P

require that all constraints are satisfied. This allows us to detect inconsistent values in P tractably.

I call P locally consistent iff all the local problems Pk are consistent. This definition of Pk is

taken from Bordeaux et al. [21], so theorems in their work apply without alteration here.

75

Chapter 3. A search framework for QCSP

Unfortunately, defining Pk like this means that the winning strategies of Pk cover too many

variables. Consider a second reduced problemP ′k = 〈Xk, 〈Dk1 , . . . , Dkr〉, {Ck}, 〈Qk1 , . . . , Qkr〉〉.

There is a simple relationship between the two: every scenario of a winning strategy of P ′k, t′ ∈

sce(WINP ′
k) is a subsequence of some t ∈ sce(WINPk) (where ∀i ∈ {1 . . . r} : t′i = tki

), and ev-

ery scenario of a winning strategy t ∈ sce(WINPk) is a supersequence of some t′ ∈ sce(WINP ′
k).

By any definition of consistency, P ′k is consistent iff Pk is consistent, because the extra vari-

ables are irrelevant to the constraint. From here on, by an abuse of notation, I refer to the winning

strategies WINCk of constraint Ck, meaning the winning strategies of the local problem P ′k.

3.2.5. Definitions of consistency. I say two consistencies, consistency A and consistency B,

are equivalent iff (in the given context) a constraint is A iff it is also B. For example, consisten-

cies for QCSP are sometimes equivalent to consistencies for CSP when there are no universally

quantified variables in the scope of the constraint.

Consistencies are defined on constraints, so that constraints are either consistent or inconsis-

tent. To make an inconsistent constraint Ck consistent according to some definition, a set of values

is removed from the domains of P such that Ck is consistent. This set will be unique under any

definition of consistency in this thesis. This is dealt with more carefully at the end of the section.

An algorithm which does this is a propagation algorithm. If the set of values to be removed

contains a value of a universal variable, then the constraint cannot be made consistent, and P

simplifies to false. This can be seen from the definition of QCSP semantics (definition 3.2.3).

DEFINITION 3.2.12. Generalized Arc-Consistency (GAC)

A constraint Ck is Generalized Arc-Consistent (GAC) iff for each variable xi ∈ Xk and value

a ∈ Di there exists a tuple t ∈ CS
k where ti = a.

Note that the definition of CS
k is the set of allowed tuples within the current domains. The

definition of GAC clearly ignores the quantification of the variables. However, in QCSP there

is an additional rule that values may not be removed from the domains of universal variables by

consistency (by the definition of QCSP semantics). If such a removal is required to establish

76

Chapter 3. A search framework for QCSP

GAC, then the constraint cannot be made GAC and the QCSP instance is false. This means that

establishing GAC can have a greater effect in QCSP than in CSP.

DEFINITION 3.2.13. Strong Quantified GAC (SQGAC)

M is a multiple winning strategy tree representing all winning strategies WINPk for constraint

Ck. Ck is SQGAC iff for each variable xki
∈ Xk and value a ∈ Dki

, a vertex labelled xki
7→ a is

contained in M (i.e. ∃v ∈ V : F (v) = xki
7→ a).

SQGAC is defined based on the multiple winning strategy tree containing all winning strate-

gies for constraint C. Since there is a bijection between the MWST and the set of scenar-

ios sce(WINPk), SQGAC is equivalent to the consistency defined by Bordeaux et al. [21] (re-

viewed in chapter 2 section 2.3.1.1). In their definition, a value xki
7→ a is inconsistent iff

@t ∈ sce(WINPk) : ti = a. The values that are inconsistent by their definition are exactly

the values that would have to be removed for the constraint Ck to be SQGAC in my definition.

This is because the MWST containing all winning strategies is a compressed form of the scenarios

sce(WINPk). The only difference is that their definition operates on values whereas mine operates

on the constraint. Bordeaux et al. simply named their property inconsistency. I rename it SQGAC

to distinguish it from the other definitions of consistency in this thesis.

Weak Quantified GAC (WQGAC) relaxes the condition that a support must be part of a valid

winning strategy. For a constraint to be WQGAC, for each variable and value there must exist a set

of tuples containing the value, with one tuple for every combination of inner universal values. This

is stronger than GAC, but weaker than SQGAC because the tuples do not necessarily constitute a

subset of scenarios of a winning strategy. This definition is new to the best of my knowledge.

DEFINITION 3.2.14. Weak Quantified GAC (WQGAC)

A constraint Ck is weak quantified GAC (WQGAC) iff for each variable xki
∈ Xk and value

a ∈ Dki
, with inner universal variables Uki

= {xkj
|j > i ∧Qkj

= ∀}, each function p such that

∀xkj
∈ Uki

: p(xkj
) 7→ b ∈ Dkj

has a matching tuple t ∈ CS
k s.t. ti = a and ∀xkj

∈ Uki
: tj =

p(xkj
)

77

Chapter 3. A search framework for QCSP

The function p maps inner universal variables to values in their domain. For xki
7→ a to be

supported, there must be a supporting tuple for every p, therefore every combination of values of

inner universal variables. This can be a much stronger consistency than GAC, and in experiments

it appears to be almost as strong as SQGAC. WQGAC and SQGAC are not equivalent: they are

separated by an example in section 4.2, on page 120.

When there are no universal variables in the scope of a constraint Ck, SQGAC, WQGAC and

GAC are equivalent for that constraint. This is because CS
k = sce(WINPk): there is a bijection

between satisfying tuples and winning strategies for the constraint.

In the case of binary constraints, Mamoulis and Stergiou [74] defined binary arc-consistency

(referred to as QAC). This is reviewed in chapter 2 section 2.3.1.2, and the definition is given

there. I argue here that both SQGAC and WQGAC applied to binary constraints are equivalent to

QAC.

There are four quantifier sequences for a binary constraint Ck: ∀xk1 , xk2 ; ∀xk1 ,∃xk2 ; ∃xk1 ,∀xk2

and ∃xk1 , xk2 . For each one, I argue that QAC is equivalent to both SQGAC and WQGAC.

∀xk1 , xk2 : Ck is QAC iff CS
k = Dk1 × Dk2 . For Ck to be SQGAC, the degenerate strategy S

when all variables are universal, has sce(S) = Dk1 × Dk2 . For S to be a winning

strategy, sce(S) ⊆ CS
k , therefore CS

k = Dk1 × Dk2 . For Ck to be WQGAC, each

value a1 of xk1 must have a tuple 〈a1, a2〉 ∈ CS
k for all values a2 of xk2 , so again

CS
k = Dk1 ×Dk2 .

∀xk1 ,∃xk2 : Ck is QAC iff (1) all values a1 ∈ Dk1 have support for some value a2 ∈ Dk2 (∀a1 ∈

Dk1∃a2 : 〈a1, a2〉 ∈ CS
k), and (2) all values a2 ∈ Dk2 have support for some value

a1 ∈ Dk1 . For SQGAC, it is possible to construct a winning strategy S iff (1) is

true, and S can be adapted to include any value in Dk2 iff (2) is true. Therefore Ck

is SQGAC iff it is QAC. Identically, the constraint is WQGAC (and GAC) iff each

assignment xki
7→ ai where ai ∈ Dki

is contained in some satisfying tuple t ∈ CS
k .

∃xk1 ,∀xk2 : The constraint is QAC and WQGAC iff each value a1 ∈ Dk1 has a supporting tuple

in CS
k for all values a2 ∈ Dk2 . For SQGAC, each winning strategy S with value

a1 ∈ Dk1 , has scenarios sce(S) = {〈a1, a2〉|a2 ∈ Dk2} which must be in CS
k .

78

Chapter 3. A search framework for QCSP

The constraint is SQGAC iff there exists a winning strategy containing each value

a1 ∈ Dk1 , and constructing these winning strategies requires the same set of tuples

sce(WINCk) that QAC and WQGAC require.

∃xk1 , xk2 : This is the case for standard binary CSP. QAC, GAC, SQGAC and WQGAC are

equivalent on a constraint of this form, because for each assignment xki
7→ ai where

ai ∈ Dki
, all four definitions require that a tuple t ∈ CS

k contains xki
7→ ai for the

constraint to be consistent, ∃t ∈ CS
k : ti = ai.

In these definitions, the constraint Ck is said to be consistent or inconsistent. If Ck is inconsistent,

consistency may be established on Ck. This is a transformation on P , forming a new QCSP

instance P ′ where ∀i : D′
i ⊆ Di, and WINP = WINP ′

: the simplification does not remove any

values which take part in a winning strategy in WINP . When WINP = ∅, the transformation may

empty some domain, or may remove a value from the domain of a universal variable. In these

cases, P ′ is further simplified to false.

The second of these two requirements (that winning strategies are preserved) is intractable to

compute. Therefore the transformation is defined only on the constraint, with the proviso that the

exact set of values (and no more) are removed from each domain such that Ck is consistent in P ′.

More precisely, P ′ is unique and is such that
∑n

i=1 |D′
i| is maximised and Ck is consistent.

If it is not always possible to establish consistency while maintaining the property WINP =

WINP ′
, then the definition of consistency must be incorrect: values which take part in a winning

strategy are removed.

During the process of solving a QCSP, consistency is established on Ck using a propagation

algorithm. This algorithm establishes consistency by removing (pruning) a set of values, referred

to as inconsistent values. If the algorithm is complete, then it always removes enough values

to make Ck consistent, and if it is sound then it removes no more values than required to make

Ck consistent. Therefore if it is sound and complete, it performs exactly the transformation of

establishing consistency.

3.2.6. The pure value rule. The previous work on the pure value rule is reviewed in chapter

2 section 2.3.1.3, and the related concepts of d-fixability and s-fixability in section 2.3.1.1.

79

Chapter 3. A search framework for QCSP

In CSP, the similar concept of a fixable value was introduced by Bordeaux et al. [20]. If

assignment xi 7→ a is fixable, for all solutions to the CSP there is another solution which is

identical except that xi takes value a. This is a global condition, but Bordeaux et al. observe that

it is sound to compute the condition locally (for each constraint xi is in), giving a sufficient (but

not necessary) condition for fixability of a value, which can be computed in polynomial time.

The same authors defined fixability for QCSP in two different ways: d-fixability and s-

fixability [21] (standing for deep and shallow fixability, where shallow is the more widely ap-

plicable property). d- and s-fixability are defined as follows.

DEFINITION 3.2.15. d-fixability of xi 7→ a in the QCSP instance P = 〈X ,D, C,Q〉

d-fixable(xi, a,P) ≡ ∀t ∈ sce(WINP) : ∃t′ ∈ sce(WINP) ∧ t′i = a ∧ ∀j 6= i, t′j = tj

In words, for all scenarios t of winning strategies of P , there exists another scenario t′ in the

same set which is identical except that t′i = a. Therefore, for any winning strategy, xi 7→ a can

take the place of any other value for xi. If xi is universal, a can be subsumed with any other value.

If xi is existential, all other values can be subsumed by a.

DEFINITION 3.2.16. s-fixability of xi 7→ a in the QCSP P = 〈X ,D, C,Q〉

s-fixable(xi, a,P) ≡ ∀t ∈ sce(WINP) : ∃t′ ∈ sce(WINP) ∧ t′i = a ∧ ∀j < i, t′j = tj

This definition is identical to the one above except that only the first part (tj where j < i) of the

scenarios t and t′ must match. This is a more widely applicable property (d-fixable(xi, a,P) ⇒

s-fixable(xi, a,P)).

For both these definitions, Bordeaux et al. have proven that if the condition holds locally

for all constraints containing xi, then it holds globally. To do this, they defined a local problem

containing only one constraint Ck: Pk = 〈X ,D, {Ck},Q〉 but with the same variables, domains

and quantifier sequence as the global problem P . Bordeaux et al. do not prove that if some value is

80

Chapter 3. A search framework for QCSP

fixable, it can be removed or instantiated, therefore I will argue it here for d-fixability. I will argue

it separately for universal and existential variables. In the context of QCSP P = 〈X ,D, C,Q〉 and

for variable xi, value a is d-fixable. I also assume that there exists some other value b 6= a where

a, b ∈ Di.

• xi is universal. The set of scenarios of winning strategies, containing xi 7→ b is called B:

B = {t | t ∈ sce(WINP) ∧ ti = b}. The same set for xi 7→ a is called A: A = {t | t ∈

sce(WINP) ∧ ti = a}. By the definition of d-fixability, for each element of B there is

an element of A which is equal except at index i. In the definition of QCSP semantics

(definition 3.2.3), when all variables xj<i are instantiated (when firstx(P) = xi), both

simplified problems A = P[xi 7→ a] and B = P[xi 7→ b] (and those for other values in

Di) must be satisfiable for P to be satisfiable. From the sets A and B, it can be seen that

if B is satisfiable, then A is also. Therefore the conjunction A ∧ B can be simplified to

B, and to remove value a from Di in P is a satisfiability-preserving simplification.

• xi is existential. The argument proceeds the same way, except that the semantics of

QCSP require (when firstx(P) = xi) P[Di = {a}] ∨ P[Di = {b}] ∨ . . . Therefore it is

sound to prune xi 7→ b since if P[Di = {b}] is satisfiable then so is P[Di = {a}]. Note

that this means all values b 6= a can be pruned.

I will call domain removals pruning, whether the reason for the removal is to establish consistency,

or to exploit d-fixability. With the proof above and the fact that these conditions can be computed

locally, we have a scheme that is similar to the pure literal rule in QBF, for pruning both universal

and existential variables.

Next I define purity in the context of non-binary QCSP. Purity is not a new concept, having

been invented for binary QCSP [54]. The concept extends trivially to QCSP. Purity is sufficient

but not necessary for d-fixability, which I will prove below. Purity is defined over an arbitrary

QCSP instance P , but the definition is used later on instances Pk containing only the constraint

Ck. The property is quite useless applied to the entire instance P , but when it is applied to Pk it

can be used to prove that values are d-fixable in P .

DEFINITION 3.2.17. Purity of xi → a in the QCSP P = 〈X ,D, C,Q〉
81

Chapter 3. A search framework for QCSP

pure(xi, a,P) ≡ (D1 × · · · ×Di−1 × {a} ×Di+1 × · · · ×Dn) ⊆ solP

In words, if all possible solutions including value xi 7→ a are indeed solutions to P , then xi 7→

a is a pure value. The definition of purity is equivalent to the valid values property of Bacchus and

Walsh [7]. It is simply restated here in a more precise way, and following the terminology of Gent

et al. [54] rather than Bacchus and Walsh.

I will now prove that purity is a sufficient condition for d-fixability.

THEOREM 3.2.18. pure(xi, a,P)⇒ d-fixable(xi, a,P)

PROOF. Where xi is existential, for any winning strategy S ∈WINP , another strategy S′ can

be constructed by substituting xi 7→ a into S (in the notation of the family of functions, this means

∀j 6= i : s′j = sj and ∀t : s′i(t) = a). This new strategy is a winning strategy because (by

the definition of purity) its scenarios are all in solP . Therefore for any tuple t ∈ sce(S), there is

a second tuple t′ ∈ sce(S′) such that t′i = a ∧ ∀j 6= i : t′j = tj . Since this is true for all winning

strategies, this meets the definition of d-fixability.

Where xi is universal, for any winning strategy S ∈ WINP , other winning strategies S′ can

be constructed by observing that, when xi 7→ a, the values of inner existential variables xj>i

are only restricted by their domains Dj , because all valid tuples containing xi 7→ a are in solP .

Therefore for any tuple t ∈ sce(S), there exists some winning strategy S′ where t′ ∈ sce(S′) and

t′i = a ∧ ∀j 6= i : t′j = tj . �

Since local d-fixability for each constraint implies global d-fixability [21], if xi 7→ a is pure

for all constraints Ck ∈ C where xi ∈ Xk, then xi 7→ a is d-fixable in P . Therefore, local purity

can be used for pruning universal and existential variables.

The potential of the pure value rule was identified by Gent, Nightingale and Rowley when

working on encodings of binary QCSP to QBF [52] (section 3.8). We observed that the pure

literal rule was very effective on the encoded problems.

Notice that the pure value rule is a form of dual, somewhat similar to that proposed by Bor-

deaux and Monfroy [22], but without the difficulty (discussed in chapter 2 section 2.3.1.4) that all

82

Chapter 3. A search framework for QCSP

but one of the constraints of the primal problem must be trivially true before any useful computa-

tion occurs in the dual problem.

From the definitions, the pure value rule is considerably weaker than d- or s-fixability, so why

would it be used? The advantage of the pure value rule is that local purity can be detected cheaply

by re-using propagation algorithms, whereas (to the best of my knowledge) d- and s-fixability

would require new algorithms to be developed. Also, the pure value rule seems to be sufficient for

solving real problems, such as Connect 4 and contingent job-shop scheduling, which I model and

solve in the following chapters. The algorithms to enforce the pure value rule are given in section

3.5.

3.3. Search algorithms

Both the algorithms presented in this section have some relation to the corresponding algo-

rithms for ordinary CSP, which are reviewed in chapter 2 section 2.1.1. The search algorithm

presented below is very similar conceptually to the QCSP algorithms presented by Gent, Nightin-

gale and Stergiou [54] (reviewed in chapter 2 section 2.3.4.1) even though the presentation is very

different, so I do not claim novelty for this algorithm.

The terms branching and backtracking are used in the same sense as in the literature review.

More formally, to branch on value a of variable xi, the problem is simplified by reducing the

domain of xi: Di ← {a}, as in definition 3.2.3, then attempting to solve the simplified problem.

Normally the first step in solving the simplified problem is to simplify it further using local rea-

soning algorithms. This is combined with backtracking. For example, after branching for value

a and performing Di ← {a}, it is usually necessary to restore the state of the problem to before

Di ← {a} was performed, so that it is possible to branch for other values.

Also, the notation xi for the greatest value in Di, and xi for the least value in Di is used. This

assumes a total ordering on the elements of Di. Di ⊂ Z so I use the < ordering.

3.3.1. Search without optimization. The search procedure (algorithm 3) is recursive, closely

following the definition of QCSP semantics (definition 3.2.3), and also following search for QBF

83

Chapter 3. A search framework for QCSP

(chapter 2 section 2.2.3). It is called with i = 1 and returns whether the QCSP is satisfiable. It has

the following basic structure:

(1) The consequences of domain removals are propagated (with procedure propagate). If

this procedure infers there can be no winning strategy, then false is returned.

(2) If all variables have been instantiated (i > n where n is the number of variables) then

we have reached a satisfying scenario.

(3) There is no need to search over variables with only one value remaining, so jump to the

first variable with more than one value in its domain.

(4) The procedure recurses for each value of the current variable xi:

(a) If xi is universal, and one of the recursive calls returns false, then we return false,

otherwise true. This matches the universal part of the definition of QCSP semantics.

(b) If xi is existential, and one of the recursive calls returns true, then we can return

true, otherwise false. This matches the existential part of the definition.

The domains and any other important state are managed by addBacktrackLevel and backtrack.

The procedure addBacktrackLevel pushes a record on a stack for the purpose of backtracking. The

procedure backtrack pops a record from the top of the stack and returns the domains Di to their

state when the record was made. Also, some constraints have internal state which must be restored

at this point.

Definition 3.2.3 would suggest an algorithm that recursively constructs a complete scenario t

and then tests it against the constraints. This is modified for efficiency by simplifying the problem

(by calling propagate) at each step of the recursion.

Contract with propagate: Propagate returns false iff the problem simplifies to false, oth-

erwise it returns true whether or not the problem was simplified. When all variables are

instantiated (all domains are of size one), propagate is able to decide the problem (i.e.

propagate returns true iff the problem is satisfiable). To simplify the problem, propagate

removes values from the domains. I assume here that these removals are sound.

Whenever propagate returns false, the procedure returns false and backtracks. At the leaves of

the recursion, the search procedure matches the definition closely because propagate can decide

84

Chapter 3. A search framework for QCSP

Algorithm 3 Search for finite QCSP
(1) procedure search(i: variable index): Boolean
(2) if ¬propagate():
(3) return false
(4) if i > n: {base case}
(5) return true
(6) while Di = {a}: {One value left in domain}
(7) i← i + 1
(8) if i > n then: return true
(9) {recursive cases}

(10) if Qi = ∀: {variable xi is universal}
(11) while true:
(12) a←pickValue(xi) {choose a value heuristically}
(13) addBacktrackLevel()
(14) Di ← {a}
(15) b←search(i + 1)
(16) backtrack()
(17) if ¬b then: return false
(18) else:
(19) Di ← Di \ {a}
(20) if Di = ∅ then: return true
(21) if ¬propagate() then: return false
(22) else: {variable xi is existential}
(23) while true:
(24) a←pickValue(xi) {choose a value heuristically}
(25) addBacktrackLevel()
(26) Di ← {a}
(27) b←search(i + 1)
(28) backtrack()
(29) if b then: return true
(30) else:
(31) Di ← Di \ {a}
(32) if Di = ∅ then: return false
(33) if ¬propagate() then: return false

the fully instantiated problem. Therefore, assuming that propagate performs only sound simplifi-

cations, search is correct.

Space and time complexity. The search algorithm implicitly stores the domain of each vari-

able, and for backtracking purposes it is possible to use a stack of domain removals, which are re-

stored on backtracking. The maximum height of the stack is nd, and each entry takes logn + logd

85

Chapter 3. A search framework for QCSP

space. Current domains can be represented as an array of Booleans, with size nd. Overall, this

gives O(nd) (ignoring logs) plus the space complexity of the constraint propagation algorithms.

The algorithm can explore nd leaf nodes in the worst case. It is not clear what the complexity

of performing propagation is. The algorithm will perform propagation O(nd) times.

3.3.2. Search with optimization. The optimization algorithm is based on branch and bound

[6]. Briefly, solving a CSP with branch and bound involves finding a solution, scoring it, then

modifying the CSP such that any further solutions are better, then continuing search. This is

repeated until the CSP is no longer satisfiable. The last solution found is in the set of highest

scoring solutions.

To the best of my knowledge, this is the first optimization algorithm for QCSP. It is based

on the intuition that a strategy represents a branching plan, and the appropriate branches will

be selected at execution time. Only one scenario of the strategy will be used when the plan is

executed, so an optimal strategy is one made up of optimal scenarios.

The optimization algorithm maximizes the value of an existential variable xopt. Ordinarily,

xopt would be quantified in the innermost block, and linked to some other variables with con-

straints representing the optimization function. I assume that xopt ∈ Z, but it would be trivial to

generalize this.

Procedure branchBound (algorithm 4) is very similar to algorithm 3. The main difference is

that when recursing for values of an existential variable, all values are tried, and the one with the

highest score is taken. Similarly to traditional branch and bound, the domain of xopt is modified

based on the highest score seen so far at this level of the recursion. The process that happens

globally in traditional branch and bound happens locally here, when branching on an existential

variable.

When branching on a universal variable, the procedure is very similar to search, however in

the case where all values return a score (rather than false), the score for each value is stored and

the minimum is returned.

86

Chapter 3. A search framework for QCSP

Algorithm 4 Branch and bound for finite QCSP

(1) procedure branchBound(i: variable index, xopt: variable): R ∪ {false}
(2) if ¬propagate() then: return false
(3) if i > n: {base case}
(4) return xopt {return the upper bound of xopt}
(5) while Di = {a}: {One value left in domain}
(6) i← i + 1
(7) if i > n then: return xopt

(8) {recursive cases}
(9) if Qi = ∀: {variable xi is universal}

(10) while true:
(11) a←pickValue(xi) {choose a value heuristically}
(12) addBacktrackLevel()
(13) Di ← {a}
(14) ba ←branchBound(i + 1, xopt) {record score for value a}
(15) backtrack()
(16) if ba = false then: return false
(17) else:
(18) Di ← Di \ {a}
(19) if Di = ∅ then: return min(b∗)
(20) if ¬propagate() then: return false
(21) else: {variable xi is existential}
(22) m← false {m ∈ R ∪ false}
(23) while true:
(24) a←pickValue(xi) {choose a value heuristically}
(25) addBacktrackLevel()
(26) Di ← {a}
(27) b←branchBound(i + 1, xopt)
(28) backtrack()
(29) if b 6= false and [m = false or b > m]:
(30) Dopt ← Dopt \ {c|c ≤ bbc} {raise the lower bound of xopt to dbe}
(31) m← b
(32) Di ← Di \ {a}
(33) if Di = ∅ then: return m
(34) if ¬propagate() then: return m

The only other difference between branchBound and search is the base case, where branch-

Bound returns the maximum value of xopt. If i > n then all variables are instantiated so the

maximum value is also the minimum.

3.3.2.1. Optimizing for the average case. In many cases, optimizing for the worst-case is

too pessimistic. It assumes that the situation is adversarial. In other words, that QCSP is like a

87

Chapter 3. A search framework for QCSP

game (between an existential player and universal player [46]) where your opponent (the universal

player) plays to reduce your utility as much as possible. In planning with uncertainty, the source

of uncertainty may be passive (for example, weather conditions), so it would be more appropriate

to optimize a weighted average over the values of a universal variable. The values are weighted

according to their probabilities. The weighted mean average of the score xopt is assumed to be

meaningful. (In Stevens’s taxonomy of scales of measurement [95], the score should be a ratio

scale, meaning that for example 100 is twice as good as 50. This is required for the weighted

average to be meaningful.) It is assumed that probability distributions for each universal variable

are independent.

As a planning example, consider the problem of delivering some packages by road and dirt

track. We can choose one of two vehicles, a car and a 4 × 4 truck. We must be able to tolerate

both types of weather w ∈ {sun, rain}. The route R accomplishes goals C, with score xopt. This

is expressed in the QCSP below. There is a weather forecast predicting a 0.3 probability of sun

and 0.7 probability of rain. When it is raining, the car is much slower than the 4× 4 on the tracks.

The car performs slightly better on roads. The scores for the two vehicles in both situations are in

the table below.

∃v ∈ {car,4× 4},∀w ∈ {sun,rain}∃R, xopt : C

Scores car 4× 4

sun 10 8

rain 5 6

Unmodified branchBound would select the 4× 4 because its minimum score is better, in line

with simple maximin. Optimizing the unweighted mean score would select the car with a mean of

7.5. Optimizing the mean weighted with the probabilities from the weather forecast would select

the 4× 4 with a weighted mean of 3.3, over the car with a weighted mean of 3.25.

Modifying branchBound to use this scheme requires two changes: on line 19 the function

min(b∗) is replaced with weighted-mean(i, b∗). The weighted-mean function uses static weights

associated with variable xi. The second change is to remove line 30. When using min, it is sound

88

Chapter 3. A search framework for QCSP

to restrict the search to areas with a better score than the one already found. However, with the

weighted mean, a poor score for one value of a universal can be counteracted by a good score for

another value, so it is no longer sound to restrict the value of xopt in this way.

Tarim, Manandhar and Walsh [75,96] proposed an optimization algorithm for stochastic CSP,

which is able to minimize (maximize) the expected value of some variable. However, the algorithm

expands out the stochastic CSP into a CSP, thereby potentially using a large amount of space.

3.3.2.2. Time behaviour. The algorithm branchBound (for both minimum and average case

optimization) takes O(dn) time, which is the same worst case time as the search algorithm. How-

ever, it will explore more nodes in the average case.

If the outermost block of variables are existential, then after finding the first winning strategy

branchBound has an anytime behaviour: it can be interrupted and will provide a winning strat-

egy that is locally optimized over existential variables other than those in the outermost block.

However, to find this first solution is more expensive than using the search algorithm, because it

optimizes for each existential variable not in the outermost block. The difference can be seen on

line 29 of search, where the search algorithm returns as soon as it finds a value of an existential

variable which extends to a solution. In contrast branchBound does not return, but continues to

search for the optimal value of the variable.

3.3.3. An example of search. To illustrate how search and branchBound work on a simple

example, consider the trivial game of noughts and crosses (tic-tac-toe), played on a 2 × 2 board

with the aim of making a line of 2. The first player can clearly always win. The board spaces

are numbered as shown below. The structure of the QCSP is also shown below. The variables

x1 . . . x3 have domain sizes decreasing from 4 to 2, representing the free spaces on the board. The

fourth move is omitted because there is only one space left on the board. xopt is included if we are

using branchBound. In figure 13, these values are represented using the number of the space on

the board. A single constraint C1 is used for both examples. For search, C1 has scope {x1, x2, x3}

and is satisfied iff player 1 wins the game. For branchBound, the scope of C1 is {x1, x2, x3, xopt}

and C1 is satisfied iff player 1 wins the game and xopt equals the score according to the type of

line player 1 has constructed: xopt is 3 for a vertical line, 2 for a diagonal and 1 for a horizontal.

89

Chapter 3. A search framework for QCSP

∃ x1

∀ x2

∃ x3

 1

2

x3 x3

3 4

true true true

3 2 2

(a) (b)

∃ x1

∀ x2

∃ x3

1

2

x3 x3

3 4

true true true

3 2 2

3 2

true

4

3

2

∀ x2

∃ x3

1

x3

3 4

true

4

3 3

true

4

2 3

false

FIGURE 13. Search performed by (a) search and (b) branchBound

In both cases, SQGAC was applied to the constraint.

1 2

3 4

∃x1∀x2∃x3(∃xopt) : C1

For both methods, the values of variables are tried in number order. The second player can

always prevent the first player from getting a vertical line (which has the highest score), but not

also prevent the first player from getting a diagonal. Hence the highest score is 2, associated with

value 1 of variable x1. After exploring x1 7→ 1, xopt = 3 hence the subtree beneath x1 7→ 2 is

considerably smaller because of pruning.

3.3.4. Recording a winning strategy. In many cases (such as planning with uncertainty) it

is essential to record a winning strategy. Both algorithms presented above lend themselves to

recording a winning strategy in a form similar to the solution tree (definition 3.2.10).

Consider the following rooted tree T = 〈V,E, r, L〉: the set of vertices V is the set of calls to

search or branchBound (including recursive calls). The root node r is the initial call. Two vertices

a and b have an edge between them if one instance of the procedure called the other. The vertices

are labelled with a function L : V \ {r} → {xi 7→ a|a ∈ Di} such that the child b is labelled with

90

Chapter 3. A search framework for QCSP

the assignment made just before b was called. For the search algorithm, when making a recursive

call the following is executed: Di ← {a}; b←search(i + 1). The child created by this call would

be labelled xi 7→ a. The recursive call is almost identical for branchBound. We will call this tree

T the search tree.

The record of a winning strategy is a subtree T ′ = 〈V ′ ⊆ V,E′ ⊆ E, r, L′ ⊆ L〉 of the search

tree T . For the search algorithm, for each vertex in V , it is also in V ′ iff the recursive call that it

represents returns true, and it is connected to r in T ′. Hence as the search algorithm runs, it can

create new vertices and edges as if building T , and also cut off any vertex v and all its descendents

when a recursive call returns false. (In the Queso implementation, both these operations take

approximately constant time.)

For branchBound, we only store the optimal strategy. Similarly to search, branchBound cre-

ates new vertices and edges as if building T , and cuts off any vertex (and its descendents) which

does not satisfy the following rule. A vertex v ∈ V is also in V ′ iff:

• the call that it represents does not return false, and

• where L(v) = xi 7→ a, if xi is existential, and v returned a higher score than its siblings

(or if equal, a is less than the label of the sibling), and

• v is connected to r in T ′.

Finally, both algorithms use the pure value rule thus they do not necessarily branch for each value

in the initial domain of a universal variable. Without this feature, T ′ would be a solution tree,

but with it some vertices are omitted. It is straightforward to construct a third tree T ′′ which is a

solution tree, but often T ′ is sufficient because we do not care about the missing areas of the tree.

For example if the QCSP models a game, the pure values may be cheating moves. T ′ can also be

much smaller than T ′′.

3.4. Managing domains and the constraint queue

The search algorithms above both call procedure propagate, which enforces local consistency.

Section 3.2.4 defined the notion of local consistency. For the problem P to be locally consistent,

all constraints Ck ∈ C must be consistent. The system Queso uses to achieve this is similar to most

91

Chapter 3. A search framework for QCSP

recent constraint solvers. Events (such as removal of a value from a domain) cause constraints to

be ‘woken up’ because they may no longer be consistent. These constraints are added to a queue

for propagation1. When the queue is empty, all constraints are consistent.

3.4.1. Constraint queue. I accommodate both the major types of constraint propagation al-

gorithm: fine-grained and coarse-grained as discussed in the literature review. For a fine-grained

algorithm, the declaration looks like the following.

procedure propagateConstraint(Ck: constraint, xki
: variable, a: value): Boolean

The propagator must be called for each value a removed from the domain Dki
of some variable

xki
∈ Xk.

For propagateConstraint to interact correctly with the queue, it must fulfil the following con-

tract. Suppose Ck is consistent with domains D1, then values V = {xki
7→ a, . . .} are removed

from the domains (possibly by other constraint propagators) to formD2. The algorithm propagate-

Constraint is called for all values in V in any order. If the constraint cannot be made consistent,

one of those calls will return false, otherwise the unique minimal set of values will be removed

from the domains to construct D3, and Ck will be consistent with D3.

The queue for fine-grained constraints consists of two stacks (last-in-first-out) of records of

the form 〈Ck, xi, a〉. The two stacks HPropagateStack and LPropagateStack are for high and low

priority constraints respectively: the high priority stack is emptied first. The exact behaviour is

given in algorithm 5.

The interface for coarse-grained constraint propagators is simpler.

procedure propagateConstraint(Ck: constraint): Boolean

The queue for coarse-grained constraints is a single stack CoarsePropagateStack of constraints

Ck, containing no duplicates. A constraint Ck is only added to the stack if it is not already there.

An array of Boolean variables (named present) is used to keep track of which constraints are on

the stack s.t. present(Ck) ∈ {false, true}.

1The phrase ‘constraint queue’ is used in the literature and I use it here without implying that it is a first-in-first-out
queue.

92

Chapter 3. A search framework for QCSP

Algorithm 5 processQueue procedure to establish consistency for all constraints
procedure processQueue(): Boolean
{HPropagateStack, LPropagateStack, CoarsePropagateStack, present are available as global
variables}
C ←Pop()
while C 6=nil:

{C may be of the form 〈Ck〉 or 〈Ck, xi, a〉. The appropriate propagateConstraint procedure
is called in each case.}

b←propagateConstraint(C)
if ¬b: return false
C ←Pop()

return true

procedure Pop(): 〈. . .〉
{The Stack.pop procedure removes and returns the top item on Stack.}
p←CoarsePropagateStack.pop()
if p 6=nil:

present(p)←false
return p

p←HPropagateStack.pop()
if p 6=nil: return p
p← LPropagateStack.pop()
if p 6=nil: return p
return nil

The set of coarse-grained propagators can be further divided into one-pass and multi-pass

algorithms. A one-pass propagator makes the constraint consistent (or returns false if this is not

possible) when it is called. Therefore it is inefficient to have more than one reference to Ck on the

queue.

Multi-pass propagators may need to be called several times before the constraint becomes

consistent. If some constraint Ck with a multi-pass propagator is added to the queue, there are

three cases:

(1) Ck is consistent. The propagator should be called once, and it does not change the

domains.

(2) Ck is inconsistent, the propagator is called and it returns false.

(3) Ck is inconsistent, the propagator is called and it reduces the domains. Now Ck is not

guaranteed to be consistent.

93

Chapter 3. A search framework for QCSP

To behave correctly for the first case, the queue does not allow more than one reference to Ck, but

Ck is re-queued if the propagator changes the domains. This takes care of case 3.

One-pass and multi-pass propagators are also known as idempotent and non-idempotent re-

spectively. Most constraint programming systems support both ([85], chapter 14).

3.4.2. Wake up lists. Queso has a list of constraints wakeUp(xi) for each variable. Con-

straints register themselves when they are initialized, and whenever xi is pruned the constraints in

wakeUp(xi) are added to a global queue of constraints which may be inconsistent. All propagation

algorithms use the exclude procedure (algorithm 6) to prune individual values, or excludeUpper

and excludeLower to move the bounds. These procedures deal with queueing other constraints

appropriately.

3.4.3. Exclude procedures. All three types of constraint propagator may perform some prun-

ing, and then deduce that the constraint has no winning strategies, WINCk = ∅ and return false.

The propagator could deduce failure directly, or by pruning a variable. Pruning any value from a

universal variable, or pruning the final value from an existential variable both imply failure. The

exclude procedure (algorithm 6) for removing a value from some domain Di returns a Boolean,

which is false iff the variable is a universal or a is the last value.

Exclude can be called without a constraint Ck, using nil in its place. In this case, all constraints

on the wakeUp lists, including the calling constraint, are queued. This is important for multi-pass

constraints, which need to be re-queued whenever one of their variables is changed.

The excludeUpper procedure (algorithm 7) is very similar, with the only differences being

the removal of all values above a from Di. ExcludeLower is also provided. It is symmetric to

excludeUpper.

Exclude and excludeUpper both run in time proportional to the size of wakeUp(xi). It is not

clear how this could be improved. In Minion [50], the equivalent procedures take constant time,

but duplicates are allowed on CoarsePropagateStack and fine-grained constraints are implemented

through the entirely separate watched literals mechanism.

94

Chapter 3. A search framework for QCSP

Algorithm 6 exclude procedure to prune a value from a variable
procedure exclude(Ck, xi, a): Boolean
{Assumes all stacks and wake up lists are global variables}
if Qi = ∀: return false
Di ← Di \ {a}
if Di = ∅: return false
W ←wakeUp(xi)
W ←W \ {Ck} {Do not re-queue Ck}
for Cl ∈W :

{queue according to type and priority}
if Cl is coarse-grained and present(Cl)=false:

CoarsePropagateStack.push(〈Cl〉)
present(Cl)←true

else:
HPropagateStack.push(〈Cl, xi, a〉) or LPropagateStack.push(〈Cl, xi, a〉)

return true

Algorithm 7 excludeUpper procedure to reduce the upper bound of a variable
procedure excludeUpper(Ck, xi, a): Boolean
{Assumes all stacks and wake up lists are global variables}
if Qi = ∀: return false
Di ← {b|b ∈ Di ∧ b ≤ a}
if Di = ∅: return false
W ←wakeUp(xi)
W ←W \ Ck {Do not re-queue Ck}
for Cl ∈W :

{queue according to type and priority}
if Cl is coarse-grained and present(Cl)=false:

CoarsePropagateStack.push(〈Cl〉)
present(Cl)←true

else:
HPropagateStack.push(〈Cl, xi, a〉) or LPropagateStack.push(〈Cl, xi, a〉)

return true

3.4.4. Fixed point behaviour. The various propagation algorithms should move the problem

from an initial set of domains D1 to a set of smaller domains D2, regardless of the order in which

they are called by processQueue, i.e. they should converge to a single fixed point. Assuming

each propagation algorithm correctly implements its consistency, the definitions of consistency

determine whether there is a single fixed point. Apt proves this condition for GAC [6]. I conjecture

it is also true for SQGAC and WQGAC because they are similar in style to GAC: for all three

definitions the constraint is consistent iff for each value xki
7→ a, there exists an object (a tuple,

95

Chapter 3. A search framework for QCSP

a set of tuples or a winning strategy) which somehow matches xki
7→ a and is composed of other

values s.t. if any of the other values are pruned, the object becomes invalid.

The single fixed point condition is not required for correctness, but if there are multiple fixed

points, the number of nodes in the search tree could vary depending on which fixed point is reached

at each node.

3.4.5. A small example of propagation. Suppose we have the following CSP.

∃x1, x2, x3 ∈ {1, 2, 3} :

C1 : allDifferent(x1, x2, x3)

C2 : x1 + x2 + x3 = 5

C3 : x1 < x2

The consistency for all constraints is GAC. The allDifferent constraint is satisfied iff the

variables take three different values. For simplicity, all propagators are one-pass and coarse-

grained. The wake up lists are wakeUp(x1) = 〈C1, C2, C3〉, wakeUp(x2) = 〈C1, C2, C3〉,

wakeUp(x3) = 〈C1, C2〉. Initially, C1 and C2 are consistent, but C3 is not. With initial queue

CoarsePropagateStack= 〈C3〉, propagation could proceed as follows. The exact order of propaga-

tion depends on the order that members of the wake up lists are added to the stack. The example

shows that propagating the constraints to exhaustion with a queue can achieve much more than

propagating each constraint once.

Propagator Domains CoarsePropagateStack

C3 D1 = {1, 2}, D2 = {2, 3}, D3 = {1, 2, 3} 〈C1, C2〉

C2 D1 = {1, 2}, D2 = {2, 3}, D3 = {1, 2} 〈C1〉

C1 D1 = {1, 2}, D2 = {3}, D3 = {1, 2} 〈C2, C3〉

C3 D1 = {1, 2}, D2 = {3}, D3 = {1, 2} 〈C2〉

C2 D1 = {1}, D2 = {3}, D3 = {1} 〈C1, C3〉

C3 D1 = {1}, D2 = {3}, D3 = {1} 〈C1〉

C1 Failed 〈〉

96

Chapter 3. A search framework for QCSP

3.5. The pure value rule

In classical constraint programming, all variables can be pruned during search using propa-

gation algorithms, which can make the search efficient. Values which cannot be extended to a

solution are removed. Universal variables cannot be pruned in this way. In QCSP, if a value

of a universal variable is inconsistent, then the QCSP is false and the search backtracks. How-

ever universal variables can be pruned using the pure value rule, defined in section 3.2.6. In this

section I give two variants of a scheme for implementing the pure value rule. Both variants are

experimentally evaluated in the following chapters.

The previous work on the pure value rule is in the context of binary QCSP [54]. The algorithm

by Kostas Stergiou is given in the literature review (chapter 2 section 2.3.1.3). It iterates through

CS
k , which for non-binary constraints can be very large. Therefore I propose this new scheme,

which uses propagation algorithms, therefore CS
k need not be explicitly represented and searched.

However, there must be a propagator for ¬C in this scheme.

Consider constraint Ck with scope Xk = 〈xk1 , . . . , xkr〉 and value xki
7→ a where a ∈ Dki

. A

CSP PVk is constructed with the variables Xk and their domains, and only one constraint, which

is the negation of Ck.

PVk = 〈Xk,Dk = 〈Dk1 , . . . , Dkr〉, {¬Ck}〉

The negated constraint ¬Ck is constructed with ¬CS
k = (Dk1 × · · · × Dkr) \ CS

k . The

negated constraint is solved iff Ck is failed. xki
7→ a is pure w.r.t. Ck iff xki

7→ a is inconsistent

in PVk. This is because xki
7→ a is consistent in ¬Ck iff there exists a supporting tuple (by

definition 3.2.12). If there is no supporting tuple in ¬Ck then there must be a complete set of

tuples containing xki
7→ a in Ck (i.e. Dk1 × · · · × Dki−1

× {a} × Dki+1
× · · · × Dkr ⊆ CS

k),

which is the definition of purity. A value xi 7→ a must be pure for all constraints Ck where xi is

in the scope, xi ∈ Xk, for xi 7→ a to be pure in P .

3.5.1. Pure value rule for one variable. Figure 14 illustrates the proposed scheme to enforce

the pure value rule on xi only. The three boxed areas with a negated constraint in them are three

97

Chapter 3. A search framework for QCSP

pm1
1

pm2
1

pm1
2

pm3
2 pm4

2

pm1
3

pm5
3

¬C 1 ¬C 2
¬C 3

x1x2

x3 x4

x5

PL

FIGURE 14. Implementation of pure value rule for one variable xi

side CSPs PV1, PV2 and PV3. The area at the top represents the problem P , with variables

x1, x2, x3, x4, x5. I have called the variables in the side problems pm. One side problem PVk is

constructed for each constraint Ck in P , and it contains the single negated constraint ¬Ck. If Ck

has scope Xk = 〈xk1 , . . . , xkr〉 then ¬Ck has scope 〈pmk
k1

, . . . , pmk
kr
〉. (The superscript matches

the constraint, and the subscript is the same as the subscript of the xki
variable in Xk.)

The dashed arrows indicate that values that are pruned in P are also pruned from the pm vari-

ables, but not vice versa. The dotted area marked PL (for pure link) represents the algorithm for

removing values of xi when they are subsumed. The algorithm resembles a fine-grained constraint

propagation algorithm, and it is called by the constraint queue as needed. It is given in algorithm

8. For value xi 7→ a, the main idea is to watch a pmi variable which contains a. At least one such

variable must exist if a is not pure. A watching algorithm maintains a reference to an object which

has a specific property, only changing the reference when the watched object loses its property. In

98

Chapter 3. A search framework for QCSP

Algorithm 8 Pure link algorithm

(1) procedure pureLink(v: variable, a: value): Boolean
(2) {xi is the variable in P , pm1

i , . . . pmm
i belong to side problems}

(3) {∀a ∈ Di : wa is the superscript 1 . . .m of a pmi variable which contains value a}
(4) if v = xi:
(5) for j ∈ {1 . . .m}:
(6) exclude(nil, pmj

i , a)
(7) else:
(8) v = pmj

i {find the index j}
(9) if wa = j: {pmj

i no longer contains a, watch invalidated}
(10) for k in j + 1, . . . ,m, 1, . . . , j − 1:
(11) if a ∈ Dpmk

i
:

(12) wa ← k
(13) return true
(14) pure(PLi, xi, a)
(15) return true

this case, the property is simply containing value a. The index of a pmi variable is stored in wa

between calls to pureLink, and it is not backtracked when the search procedure backtracks.

If pmj
i 7→ a is pruned and wa = j, the algorithm searches (cyclically) for a new pmi variable

to watch. If none is found, xi 7→ a is pure. The pure procedure that is called on line 14 deals with

the quantification of xi. If xi is universal, and ∃b 6= a : b ∈ Di, then a is subsumed by b and is

removed. If xi is existential, all other values b 6= a are subsumed by a.

The pureLink algorithm calls pure when it discovers that some value is pure. The logic of

pure is similar to exclude (algorithm 6). Pure for universal variables is given in algorithm 9. If

there exists some value b 6= a, then a is subsumed by b. a is removed from Di and constraints are

queued appropriately. For an existential variable, the pure procedure (algorithm 10) removes all

values other than a, and queues constraints appropriately.

Integration with the solver. To integrate this efficiently with the constraint queue and search

procedure, I have blurred the distinction between the problem P and the CSP side problems PV .

The pm variables of the side problems are separate and are invisible to the search procedure but not

to the queue. The constraints ¬Ck in side problems are added to, and called from, the queue like

any constraint in P . A pureLink constraint is queued whenever any of its variables are changed,

and is called like any fine-grained constraint.

99

Chapter 3. A search framework for QCSP

Algorithm 9 pure procedure for universal variables
procedure pure(Ck, xi, a)
{Assumes all stacks and wake up lists are global variables}
if @b 6= a : b ∈ Di: return
Di ← Di \ {a}
W ←wakeUp(xi)
if Ck is not multi-pass: W ←W \ Ck {Do not re-queue Ck}
for Cl ∈W :

{queue according to type and priority}
if Cl is coarse-grained and ¬present(Cj):

CoarsePropagateStack.push(〈Cl〉)
present(Cl)←true

else:
HPropagateStack.push(〈Cl, xi, a〉) or LPropagateStack.push(〈Cl, xi, a〉)

Algorithm 10 pure procedure for existential variables
procedure pure(Ck, xi, a)
{Assumes all stacks and wake up lists are global variables}
if @b 6= a : b ∈ Di then: return
W ←wakeUp(xi)
if Ck is not multi-pass: W ←W \ Ck {Do not re-queue Ck}
for Cl ∈W :

{queue according to type and priority}
if Cl is coarse-grained and ¬present(Cl):

CoarsePropagateStack.push(〈Cl〉)
present(Cl)←true

else:
for all b 6= a : b ∈ Di:

HPropagateStack.push(〈Cl, xi, b〉) or LPropagateStack.push(〈Cl, xi, b〉)
Di ← {a}

A second fine-grained algorithm pureCopy is used to link xi with all pmi variables. This

simply prunes values from all pmi variables as they are pruned from xi, but not vice versa. This is

not a constraint, because it cannot be expressed as a set of satisfying tuples, but it interacts with the

constraint queue in the same way as a constraint. It is only queued for removals from xi. Instances

of this algorithm are shown in figure 14 as dashed arrows.

The failure of a constraint in a side problem PV does not imply failure in P . Therefore, if

a constraint ¬Ck from a side problem is queued in P , the propagation algorithm must not return

false. In the case where the ¬Ck propagation algorithm would return false, the algorithm is altered

to empty the domains of all variables in the scope of ¬Ck, then return true. (This is achieved

100

Chapter 3. A search framework for QCSP

with another procedure which calls the propagation algorithm, then checks its return value.) The

pureLink and pureCopy algorithms also never return false.

If the domain of a pm variable becomes empty, this does not signify failure in P because the

pm variables are not part of the original QCSP instance. Fortunately, the measures taken with

¬Ck constraints are sufficient to isolate the pm variables from P , so that empty pm variables do

not cause failure in P .

3.5.2. Pure value rule for all variables. If the pure value rule is required for all variables,

the scheme can be optimized. For each constraint Ck ∈ C, one side CSP PVk is constructed with

the single constraint ¬Ck and a set of pmk variables, as above. The same pureLink algorithm is

used to link variables pm∗
i = {pmk

i |1 ≤ k ≤ e} with xi, with one instance of pureLink for each

variable xi. The pureLink algorithm keeps pm∗
i synchronized with xi as well as detecting when

some value of xi is pure. The scheme is illustrated in figure 15, for a QCSP with four variables

and four constraints. Each instance of pureLink is shown with a dotted line.

The implementation details are similar to the single-variable scheme. Negated constraints

and instances of pureLink are called from the constraint queue of P . Once again the propagation

algorithms of the negated constraints are changed so that they do not return false, but empty the

domains of all variables in their scope.

The time and space complexities of these schemes are not straightforward to derive, because

they depend on the propagation algorithms used.

3.5.3. Propagation algorithms in these schemes. The schemes are both very general, be-

cause they work for different definitions of consistency, although if the consistency is not equiva-

lent to GAC, then it only approximates the pure value rule. Any CSP propagation algorithm can be

used for the negated constraint. It is also possible to decompose the negated constraint into mul-

tiple constraints when convenient. For example, if Ck is allDifferent(x1,x2,x3), which is satisfied

iff the variables take three different values, ¬Ck could be written as

pmk
1 = pmk

2 ∨ pmk
1 = pmk

3 ∨ pmk
2 = pmk

3

101

Chapter 3. A search framework for QCSP

pm1
1

pm2
1

pm1
2

pm3
2 pm4

2

pm1
3

pm4
3

¬C1 ¬C 2
¬C 3

x1

x2

x3

x4

PL1

pm2
4 pm3

4¬C 4

PL3

PL2

PL4

FIGURE 15. Implementation of pure value rule for all variables

(any pair are equal) then decomposed to four constraints,

(pmk
1 = pmk

2)⇔ b1, (pmk
1 = pmk

3)⇔ b2, (pmk
2 = pmk

3)⇔ b3, b1 ∨ b2 ∨ b3

The propagation algorithms in the next chapter process arbitrary constraints, specified by a set

of tuples, so generating the negated constraint is as simple as taking the complement of the set.

In chapter 5, a reified disjunction constraint is described, for expressions of the form (¬)xk1 ∨

(¬)xk2 ∨ · · · ⇔ (¬)xki
. To negate these constraints, the right hand side is negated.

3.6. Backjumping and learning

In the literature review (chapter 2 section 2.3.4.1) I mentioned the QCSP-Solve algorithm by

Kostas Stergiou. This is a backtracking search algorithm for binary QCSP (i.e. QCSPs where all

constraints contain two variables) with a form of consistency (forward checking), conflict directed

backjumping and solution directed pruning. The search-based QBF solvers have features such

102

Chapter 3. A search framework for QCSP

as conflict learning and solution learning alongside their form of consistency (an extended unit

propagation). All these techniques are potentially useful for general QCSP, but they are outside

the scope of this thesis because I focus on consistency.

3.7. Queso solver implementation

The QCSP solver Queso was created from scratch for this thesis. Queso is implemented

in an object-oriented style, in Java 1.5. The main class is called QCSP, with other classes for

constraints (all derived from the class Constraint), variables and the constraint queue. Figure

16 shows a simplified UML diagram of Queso, to give an overview of the design. Most of the

constraint subclasses have been omitted, and some complications due to the pure value rule have

been removed.

The main design goal is flexibility for experimentation. A secondary goal is efficiency, which

centres around how the domains of variables are represented. Using an object-oriented program-

ming language helps with the first goal, because classes can be easily subclassed and their be-

haviour changed without changing their relationship with other classes.

All experiments were performed on a 3.06 GHz Pentium 4 PC with 1 GB of RAM, running

linux 2.4, with the Java 1.5 runtime environment in server mode. Since the runtime environment

optimizes the program as it runs (for the first few seconds), experiments are repeated two or three

times to get a reliable CPU timing.

3.7.1. Representing variable domains. The variable domains are a finite subset of the inte-

gers. There are two variable representations in Queso: the Boolean array and the bounds repre-

sentation. In all experiments, the Boolean array representation is used unless stated otherwise.

3.7.1.1. Boolean array representation. If the initial domain of xi is D0
i , it is desirable to be

able to represent every subset of D0
i . A Boolean array (called hash) is used, with one entry for

every integer between min(D0
i) to max(D0

i), where hash(a) is true iff a ∈ Di. The upper and

lower bounds are also maintained and updated with every domain removal. This representation

provides an O(1) implementation of the most common operations: testing whether some value

103

Chapter 3. A search framework for QCSP

Q
C

S
P

+
v
a
r
i
a
b
l
e
s
:

A
r
r
a
y
L
i
s
t

+
c
o
n
s
t
r
a
i
n
t
s
:

A
r
r
a
y
L
i
s
t

+
q
u
e
u
e
:

C
Q
u
e
u
e

+
s
e
a
r
c
h
(
)

+
b
r
a
n
c
h
B
o
u
n
d
(
)

+
a
d
d
B
a
c
k
t
r
a
c
k
L
e
v
e
l
(
)

+
b
a
c
k
t
r
a
c
k
(
)

C
Q

u
eu

e

+
C
o
a
r
s
e
P
r
o
p
a
g
a
t
e
S
t
a
c
k

+
H
P
r
o
p
a
g
a
t
e
S
t
a
c
k

+
L
P
r
o
p
a
g
a
t
e
S
t
a
c
k

+
p
r
o
c
e
s
s
Q
u
e
u
e
(
)

+
c
l
e
a
r
(
)

C
o

n
st

ra
in

t

+
v
a
r
i
a
b
l
e
s

+
p
r
o
p
a
g
a
t
e
C
o
n
s
t
r
a
i
n
t
(
[
x
i
,
a
]
)

W
Q

G
A

C
-S

ch
em

a

1
1

1

n

e

r

...
..

1

e

1

*

V
ar

B
ac

kt
ra

ck

+
r
e
m
o
v
a
l
S
t
a
c
k

+
a
d
d
B
a
c
k
t
r
a
c
k
L
e
v
e
l
(
)

+
b
a
c
k
t
r
a
c
k
(
)

1

1

B
o

u
n

d
s

va
ri

ab
le

B
o

o
le

an
 a

rr
ay

 v
ar

ia
b

le

V
ar

ia
b

le

+
u
p
p
e
r
B
o
u
n
d
(
)

+
l
o
w
e
r
B
o
u
n
d
(
)

+
i
s
P
r
e
s
e
n
t
(
)

+
e
x
c
l
u
d
e
(
)

+
p
u
r
e
(
)

FIGURE 16. Simplified UML model of Queso

104

Chapter 3. A search framework for QCSP

is in the domain (isPresent), finding the lower bound (lowerBound) and the upper bound (upper-

Bound). Assuming that isPresent is inlined by the Java runtime, the cost should be the same as

performing three additions and two pointer dereferences. The operations which remove values

from the domain are unavoidably less efficient, since they iterate through the wakeUp lists.

This representation is used in all experiments unless stated otherwise.

3.7.1.2. Bounds representation. If the initial domain is very large, the bounds representation

can be used. The upper and lower bounds are stored as integers whose size is bounded only by

available memory. Clearly in this representation values can only be excluded from the top or bot-

tom of the domain, so the exclude procedure is not available. Other procedures (excludeLower,

excludeUpper, isPresent, lowerBound, upperBound) are available as variants which accept or re-

turn unlimited integers. Currently the bounds representation does not support pure values, and

cannot be used for universal variables.

3.7.2. Backtracking. The two methods addBacktrackLevel and backtrack of class QCSP are

called from the search and branchBound procedures. They call the methods of the same name in

class VarBacktrack and on all constraints which have backtracking internal state.

The VarBacktrack class manages backtracking the domains of all the variables. Whenever

some value a ∈ Di is removed, the index i and value a are pushed onto the removalStack. The

addBacktrackLevel method pushes a marker onto the stack. The backtrack method pops elements

off the stack and restores them to their respective domains, until it reaches a level marker or the

stack is empty.

This backtracking mechanism minimizes the amount of memory that is restored when back-

tracking. Recent research has shown that it may be more efficient to arrange all the backtracking

state into a single static block of memory and simply copy the whole block to save or restore the

state of the solver [50]. Unfortunately this is difficult to do in Java because the language does

not allow arbitrary copying of memory. Queso is not designed for the set of constraints to change

during search, because I had no need to add constraints during search. The backtracking mecha-

nism cannot currently undo a change to the set of constraints, or to the wakeUp lists, although this

facility could be easily added.

105

Chapter 3. A search framework for QCSP

3.8. Encodings

For the purpose of comparing Queso with other QCSP solvers and QBF solvers, various en-

codings are presented here.

3.8.1. Arbitrary QCSP to binary QCSP. The binary solver QCSP-Solve is quite sophisti-

cated, so it is important to compare Queso with QCSP-Solve. In CSP binary arc-consistency (AC)

combined with the hidden variable encoding [84] of an arbitrary non-binary constraint Ck simu-

lates GAC on Ck. It is reasonable to ask whether QAC on the hidden variable encoding simulates

SQGAC or WQGAC on Ck, in the presence of universal variables.

DEFINITION 3.8.1. Hidden variable encoding for QCSP P and constraint Ck

Given a constraint Ck ∈ C with set CS
k of satisfying tuples and variables Xk = 〈xk1 , . . . , xkr〉,

it is encoded as an additional existential variable h ∈ CS
k and r binary constraints ck1(xk1 , h) up

to ckr(xkr , h) such that cki
(xki

, h) has a satisfying tuple 〈a, t〉 for each t, containing assignment

xki
7→ a and h 7→ t iff ti = a. h is existentially quantified after each of Xk.

This encoding is novel, but the difference from the CSP case is quite small.

If the encoded QCSP is QAC, h mirrors CS
k because invalid tuples are removed by QAC

on ck1 . . . ckr . Also, if some assignment xki
7→ a has no valid supporting tuple in h = CS

k ,

then xi 7→ a will be removed to maintain QAC on cki
. Assuming the hidden variable is never

instantiated by the search procedure, this is equivalent to GAC on Ck. The proof lifts from that of

Stergiou and Walsh [94].

THEOREM 3.8.2. GAC on a constraint Ck and QAC on the hidden variable encoding of Ck

are equivalent.

PROOF. The proof is by lifting the property from CSP to QCSP. The constraints ck1 . . . ckn

in the hidden variable encoding all have quantification pattern ∀xki
∃h or ∃xki

, h. For these types

of binary constraint, when propagating from xi to h, the propagation rule is the same as in AC.

When propagating from h to xki
, the propagation rule for type ∃xki

, h is the same as in AC. For

type ∀xki
∃h, the constraint cki

is inconsistent iff some value of xki
conflicts with all remaining

106

Chapter 3. A search framework for QCSP

values of h. Equivalently, enforcing GAC would attempt to remove the value of xki
which is

not contained in any remaining tuple in CS
k . Since xki

is universal, Ck would also be found

inconsistent. �

Therefore the hidden variable encoding for QCSP is quite weak. The obvious way of gen-

eralising it is to represent winning strategies in the domain of h. Now cki
(xki

, h) has a conflict

between assignment xki
7→ a and h 7→ S iff ∀t ∈ sce(S) : ti 6= a (xki

7→ a is not supported

by the strategy S). Unfortunately the number of winning strategies can grow exponentially in the

number of tuples in CS
k , which itself can be exponential in the arity of the constraint. Therefore I

think this approach would be impractical.

There may be some other encoding which is practical and which enforces some consistency

greater than GAC on Ck, but it is not clear, therefore I will use the hidden variable encoding.

3.8.2. Encoding binary QCSP to QBF. In this section I first briefly elaborate on the diffi-

culties in encoding QCSP into QBF. Then I present the previous best encoding of binary QCSP

into QBF (the adapted log encoding) which was developed together with Ian Gent and and Andrew

Rowley, and finally I introduce a new encoding (the enhanced log encoding) which was developed

alone and which improves on the adapted log, both in simplicity and performance.

3.8.2.1. The difficulty in encoding QCSP to QBF. Gent, Nightingale and Rowley introduced

a number of different ways to encode a QCSP instance into QBF [52]. To encode an existential

QCSP variable to a set of QBF variables, some assignments to the QBF variables represent values

in the original variable, and other assignments are ruled out by imposing clauses. For example, if

an assignment indicates that the original QCSP variable has no values in its domain, the assignment

is invalid and is ruled out with a clause. However this approach is not possible for a universal

QCSP variable.

To see why, consider the QBF encoding as a game between existential and universal players,

where the existential player aims to make the formula true and the universal player aims to make

it false. The players set their own variables in quantification order. If clauses are imposed to

rule out illegal assignments of universal variables, the universal player simply wins the game by

107

Chapter 3. A search framework for QCSP

unsatisfying the clauses. From the definition of QCSP semantics (definition 3.2.3), this is not the

required behavior.

The encodings introduced in [52] were able to overcome this difficulty. However, the global

acceptability encoding and the local acceptability encoding were very inefficient compared to

direct QCSP algorithms. In contrast, the adapted log encoding, which I describe below, turned out

to be very efficient.

3.8.2.2. Adapted log encoding. In order to deal with the difficulty described above, the adapted

log encoding (by Gent, Nightingale and Rowley [52]) uses indicator variables (first described by

Gent and Rowley [46]) to indicate when a universal assignment is not valid. There is one indicator

variable zxi for each of the original universal QCSP variables xi. zxi is existentially quantified

in a final block at the end of the quantifier sequence. If zxi is set true, then all remaining clauses

representing constraints (conflict clauses) are satisfied.

In SAT, it has often been noted that just three variables are needed to encode 8 values of a CSP

variable, instead of the 8 in the direct encoding [43, 98], reducing the branching factor from 256

to 8. This is known as the log encoding. However, since only one value is allowed by at-least-one

(ALO) and at-most-one (AMO) clauses, there is no real reduction, and the use of three variables in

clauses for one CSP variable reduces the effect of propagation [98]. For QCSPs Gent et al. show

that the log encoding can be very effective when applied to universal variables only.

Each variable in a QCSP is encoded to a set of variables in QBF, with these sets quantified in

the same way and in the same order as in the QCSP. Additional existential variables are added to

the end of the quantifier sequence. For an existential variable, each QBF variable represents one

value. For a universal, each value is represented by a unique assignment of the QBF variables,

and also each value is represented by an existential QBF variable quantified at the end. There

are channelling clauses which maintain correspondence between these two representations. The

existential QBF variables are used in the conflict clauses to avoid having a conjunction of literals,

therefore to avoid distributing conjunction over disjunction.

The quantifier sequence for the encoding is summarized below.

• To encode some existential variable xi ∈ {1 . . . d}:
108

Chapter 3. A search framework for QCSP

∃bxi
1 , . . . , bxi

d

• To encode some universal variable xj ∈ {1 . . . d}:

∀wxj

1 , . . . , w
xj

dlog2de

• Finally, for all universal variables xj ∈ {1 . . . d} there is a set of existential variables

representing each value:

∃bxj

1 , . . . , b
xj

d

• Also there are indicator variables for each invalid assignment to w
xj
∗ , and one overall

indicator variable:

∃ixj
∗ , zxj

Suppose there is a universal variable xj , where xk is also universal and precedes xj in the QCSP

quantifier sequence, s.t. there is no other universal variable between them. The following clauses

map assignments of w
xj
∗ to b

xj
∗ and i

xj
∗ . The nature of these channelling clauses ensures that at

least one of the latter variables is set to true. This is given as an example for d = 5, but the general

form is easy to infer from the example.

• Channelling clauses

zxk ∨ b
xj

1 ∨ w
xj

3 ∨ w
xj

2 ∨ w
xj

1

zxk ∨ b
xj

2 ∨ w
xj

3 ∨ w
xj

2 ∨ ¬w
xj

1

zxk ∨ b
xj

3 ∨ w
xj

3 ∨ ¬w
xj

2 ∨ w
xj

1

zxk ∨ b
xj

4 ∨ w
xj

3 ∨ ¬w
xj

2 ∨ ¬w
xj

1

zxk ∨ b
xj

5 ∨ ¬w
xj

3 ∨ w
xj

2 ∨ w
xj

1

zxk ∨
(
i
xj

6 ⇐⇒ (wxj

3 ∨ ¬w
xj

2 ∨ w
xj

1)
)

zxk ∨
(
i
xj

7 ⇐⇒ (wxj

3 ∨ w
xj

2 ∨ ¬w
xj

1)
)

zxk ∨
(
i
xj

8 ⇐⇒ (wxj

3 ∨ w
xj

2 ∨ w
xj

1)
)

The variables i
xj
∗ indicate when the assignment is invalid. The overall indicator variable is set

from i
xj
∗ and also the previous overall indicator variable zxk . Hence they cascade forward.

• Indicator collector clauses

zxj ⇐⇒ i
xj

6 ∨ i
xj

7 ∨ i
xj

8 ∨ zxk

109

Chapter 3. A search framework for QCSP

For each existential variable xi, at least one of the QBF variables bxi
∗ must be set to true. This

is accomplished with an at-least-one clause.

• ALO clause

∨
a∈{1...d} bxi

a

Constraints are represented as follows. Consider a constraint Ck between any variables xi and

xj . A pair of values 〈c, d〉, where c ∈ Di and d ∈ Dj , that do not satisfy the constraint (i.e. 〈c, d〉 /∈

CS
k) is represented with a single clause in the QBF. xi precedes xj in the variable sequence, and

variable xl is universally quantified and directly precedes xj in the variable sequence. Note that

xl may be the same as xi. The indicator variable for xl is used, so that if a preceding universal

variable is set in an invalid way, the conflict clause is satisfied. (When a universal is set invalidly,

the remaining part of the QBF must be satisfiable.)

• Conflict clauses

∀〈c, d〉 /∈ CS
k : zxl ∨ ¬bxi

c ∨ ¬b
xj

d

For channelling and conflict clauses, if there is no preceding universal variable in the QCSP,

the indicator variable is omitted. To illustrate the encoding, I encode the following simple QCSP.

• QCSP:

∀x1∃x2 : x1 6= x2 where D1 = D2 = {1, . . . , 5}

• QBF quantifier sequence:

∀wx1
3 , wx1

2 , wx1
1 ,∃bx2

1 , bx2
2 , bx2

3 , bx2
4 , bx2

5 ,∃bx1
1 , bx1

2 , bx1
3 , bx1

4 , bx1
5 ,∃zx1 , ix1

6 , ix1
7 , ix1

8

• Channelling clauses for x1:

110

Chapter 3. A search framework for QCSP

bx1
1 ∨ wx1

3 ∨ wx1
2 ∨ wx1

1

bx1
2 ∨ wx1

3 ∨ wx1
2 ∨ ¬wx1

1

bx1
3 ∨ wx1

3 ∨ ¬wx1
2 ∨ wx1

1

bx1
4 ∨ wx1

3 ∨ ¬wx1
2 ∨ ¬wx1

1

bx1
5 ∨ ¬wx1

3 ∨ wx1
2 ∨ wx1

1

¬ix1
6 ⇐⇒ (¬wx1

3 ∨ wx1
2 ∨ ¬wx1

1)

¬ix1
7 ⇐⇒ (¬wx1

3 ∨ ¬wx1
2 ∨ wx1

1)

¬ix1
8 ⇐⇒ (¬wx1

3 ∨ ¬wx1
2 ∨ ¬wx1

1)

• Indicator collector clauses for x1:

zx1 ⇐⇒ ix1
6 ∨ ix1

7 ∨ ix1
8

• At-least-one clause for x2:

bx2
1 ∨ bx2

2 ∨ bx2
3 ∨ bx2

4 ∨ bx2
5

• Conflict clauses representing x1 6= x2:

zx1 ∨ ¬bx1
1 ∨ ¬bx2

1

zx1 ∨ ¬bx1
2 ∨ ¬bx2

2

zx1 ∨ ¬bx1
3 ∨ ¬bx2

3

zx1 ∨ ¬bx1
4 ∨ ¬bx2

4

zx1 ∨ ¬bx1
5 ∨ ¬bx2

5

Unit propagation on the encoding is equivalent to forward checking on the QCSP, modulo

differences in branching during search.

The subtlety of this encoding is that clauses which force equivalence between bxi
a and the

corresponding values of wxi
∗ are omitted. So clauses such as zx1 ∨¬bx2

1 ∨¬wx2
2 , where x1 and x2

are universal, are omitted. It might seem that this is erroneous, as it allows a universal to take two

values, if bx2
1 and bx2

2 are both true. But there is no way that setting of the universals wx2
∗ can force

more than one bx2
∗ to be true. On the other hand, consider the extreme case where all bx2

∗ can be

set true, as for example can happen if x2 occurs in no constraints. This makes all log value clauses

satisfied by bx2
∗ . The benefit of this is that the pure literal rule for existential variables does some

work. If bx2
a only occurs positively, it can be set to true. If this is the case for all values a ∈ D2,

111

Chapter 3. A search framework for QCSP

the wx2
∗ variables will be instantiated, greatly reducing the need for search. So, with sufficient

care, the pure literal rule included in our QBF solver can do useful simplifications. This property

carries over to the enhanced log encoding, described below.

3.8.2.3. Enhanced log encoding. The enhanced log encoding is a refinement of adapted log.

Each universal variable xi is encoded by dlog2de variables wxi which are universally quantified

together. The order of variables is preserved in the quantifier sequence. I also introduce bxi
1 . . . bxi

d

variables for each universal QCSP variable xi, which are existentially quantified at the end of the

quantifier sequence. These bxi variables are used in the conflict clauses, to avoid having several

wxi literals in conjunction to represent a value, therefore to avoid distributing conjunction over

disjunction. The wxi
∗ variables are channelled to the bxi variables with a set of d clauses. For the

following example d = 5.

• Log value clauses

bxi
1 ∨ wxi

3 ∨ wxi
2 ∨ wxi

1

bxi
2 ∨ wxi

3 ∨ wxi
2 ∨ ¬wxi

1

bxi
3 ∨ wxi

3 ∨ ¬wxi
2

bxi
4 ∨ ¬wxi

3 ∨ wxi
2

bxi
5 ∨ ¬wxi

3 ∨ ¬wxi
2

There are 8 possible assignments to the wxi variables, and 5 values, so for the values 3, 4 and

5 there are two wxi assignments mapped onto each, hence all 8 assignments are valid. In contrast

to adapted log, no local acceptability variable (zxk above) is present, because no assignments to

previous universal variables can be invalid.

To state this formally, I represent a QBF with the tuple P ′ = 〈X ′, C′,Q′〉 where Q′ is the

quantifier sequence, X ′ is the set of Boolean variables and C′ is the set of disjunctive clauses, to

mirror the QCSP P = 〈X ,D, C,Q〉.

The quantifier sequence Q for the QCSP is encoded as shown by the following two recursive

rules. This also implies the set of variables in the encoding. Q′ = translate(Q).

translate(∃xi ∈ {1 . . . d},Q1) = ∃bxi
1 . . . bxi

d , translate(Q1)

translate(∀xi ∈ {1 . . . d},Q2) = ∀wxi
1 . . . wxi

dlog2de, translate(Q2),∃bxi
1 . . . bxi

d

112

Chapter 3. A search framework for QCSP

Existential variable xi in the QCSP is mapped to d existential variables bxi
1 . . . bxi

d representing

the presence of each value in the domain, with one clause (known as at-least one, ALO): bxi
1 ∨

bxi
2 ∨ · · · ∨ bxi

d , which guarantees one or more of the variables will be set to true in a solution.

Universal variable xi in the QCSP is mapped to dlog2de variables wxi . Every complete as-

signment A to variables wxi (of which there are 2dlog2 de) is mapped to a value a ∈ Di. All values

a map to one assignment, or two assignments with only one literal different. 2dlog2 de − d values

must map to two assignments. An assignment A is represented as a conjunction of literals (e.g.

wxi
1 ∧¬wxi

2). For some value a ∈ Di which maps to just one assignment A, the channelling clause

is as follows.

¬bxi
a ∨ ¬A

The negated conjunction ¬A is converted to a disjunction in the usual way. For some other

value c which maps to two assignments A1 and A2, the channelling clause is given below.

¬bxi
a ∨ ¬(A1 ∧A2)

The simplification of ¬(A1 ∧A2) ends with a disjunction of dlog2 de − 1 literals.

For a constraint Ck with Xk = 〈xi, xj〉 and satisfying tuples CS
k the conflict clauses are:

• Conflict clauses For all tuples 〈c, d〉 /∈ CS
k ,

(¬bxi
c ∨ ¬b

xj

d)

To illustrate the encoding, I use the same example as in the previous section.

• QCSP:

∀x1∃x2 : x1 6= x2 where D1 = D2 = {1, . . . , 5}

• QBF quantifier sequence:

∀wx1
3 , wx1

2 , wx1
1 ,∃bx2

1 , bx2
2 , bx2

3 , bx2
4 , bx2

5 ,∃bx1
1 , bx1

2 , bx1
3 , bx1

4 , bx1
5

• Channelling clauses for x1:

113

Chapter 3. A search framework for QCSP

bx1
1 ∨ wx1

3 ∨ wx1
2 ∨ wx1

1

bx1
2 ∨ wx1

3 ∨ wx1
2 ∨ ¬wx1

1

bx1
3 ∨ wx1

3 ∨ ¬wx1
2

bx1
4 ∨ ¬wx1

3 ∨ wx1
2

bx1
5 ∨ ¬wx1

3 ∨ ¬wx1
2

• At-least-one clause for x2:

bx2
1 ∨ bx2

2 ∨ bx2
3 ∨ bx2

4 ∨ bx2
5

• Conflict clauses representing x1 6= x2:

¬bx1
1 ∨ ¬bx2

1

¬bx1
2 ∨ ¬bx2

2

¬bx1
3 ∨ ¬bx2

3

¬bx1
4 ∨ ¬bx2

4

¬bx1
5 ∨ ¬bx2

5

To prove the correctness of the encoding, I’ll slightly abuse the notation of simplification by

assuming the quantifier for an instantiated variable is removed, and that xi 7→ a is equivalent to

Di = {a}.

THEOREM 3.8.3. A QCSP is true if and only if the encoded QBF is true, for the enhanced log

encoding.

PROOF. The proof is recursive and closely follows the definition of QCSP semantics (defini-

tion 3.2.3). A QCSPP = 〈X ,D, C,Q〉 represents the logical formula φ = Q1x1 ∈ D1, . . . , Qnxn ∈

Dn : (C) which is encoded as a QBFP ′ = 〈X ′, C′,Q′〉 representing φ′ = Q′
1x

′
1, . . . , Q

′
nx′n : (C′).

The encoding of the empty QCSP (containing no variables or constraints) is the empty QBF which

is vacuously true.

Existential case:

• Q is of the form ∃x1Q2x2 . . .

• Q′ is of the form ∃bx1
1 . . . bx1

d Q2 . . .

• P is satisfiable iff there exists some value a ∈ D1 such that P[D1 = {a}] is satisfiable.

114

Chapter 3. A search framework for QCSP

• P ′ is satisfiable iff there exists an assignment A = (¬)bx1
1 ∧ · · · ∧ (¬)bx1

d such that the

ALO clause is satisfied and P ′[A] is satisfiable.

The QCSP value a can be any value such that bx1
a 7→ 1. If there is more than one a s.t. bx1

a 7→ 1,

then all these values can be extended to a winning strategy.

Universal case:

• Q is of the form ∀x1Q2x2 . . .

• Q′ is of the form ∀wx1
1 . . . wx1

dlog2 deQ2 . . .

• P is satisfiable iff for all values a ∈ D1, P[D1 = {a}] is satisfiable

• P ′ is satisfiable iff for all assignments A = (¬)wx1
1 . . . (¬)wx1

dlog2 de P
′[A] is satisfiable.

Note that each value a is covered by some assignment A. �

The problem with this encoding is that the QBF solver can search two equivalent subtrees in

some cases. In the example above, when wx1
3 7→ true and wx1

2 7→ true, the solver can branch on

wx1
1 which is not contained in any clause.

After setting wx1
3 and wx1

2 , if either is set to true then the first two clauses above are satisfied

and in the reduced set of clauses wx1
1 does not exist. Both wx1

1 and ¬wx1
1 are pure, so if the solver

implements the pure literal rule then it will not branch on this variable. This solves the repeated

subtree problem mentioned above, on the condition that wx1
1 is set last. Also, in common with the

adapted log encoding, the channelling works only from wxi to bxi variables, so only positive bxi

literals are included in the clause set above, therefore the pure literal rule can detect cases where

the bxi
a is involved in no conflicts. In some circumstances, this can also lead to the elimination of

wxi variables. For example, if bx1
4 and bx1

5 become pure, then wx1
3 becomes pure as well and the

search is reduced accordingly.

There is no reason that the adapted log encoding might be more efficient than enhanced log

on any instance. Experiments show the enhanced log, combined with the search-based solver

CSBJ [47], to be much more efficient on a range of random instances [53].

3.8.3. Summary of empirical results. In [53], we describe a random binary QCSP generator.

We discuss the issue of flaws and ensure that the generator controls the probability of flaws. The

115

Chapter 3. A search framework for QCSP

 10

 100

 1000

 10000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(m
s)

q_ee

QCSP-Solve median
Adapted log median

Enhanced log median

FIGURE 17. Comparison of the enhanced log encoding with adapted log and
QCSP-Solve

adapted and enhanced log encodings are compared using random binary QCSP instances, along

with QCSP-Solve. CSBJ was used to solve the encoded instances. Figure 17 shows the results of

the experiment, where qee is a constraint looseness parameter. The graph plots the median of CPU

time over 100 instances. The enhanced log encoding significantly outperforms adapted log, and

also competes well with QCSP-Solve, particularly when the constraints are loose.

3.9. Summary

This chapter has provided the context for the following chapters about propagation algorithms,

including the theoretical background and search and pure value algorithms, as well as some mate-

rial used for experiments, and some other contributions.

116

CHAPTER 4

Strong consistency for arbitrary constraints

4.1. Introduction

The practice in constraint programming of expressing arbitrary constraints as a list of satisfy-

ing tuples has been around for some time, and many non-binary constraint propagation algorithms

exist. Some of the literature about arbitrary non-binary constraints in CSP is reviewed in chap-

ter 2 section 2.1.2.2. These constraints are actively used [49, 90]. This is the main motivation

for developing similar techniques in QCSP. A secondary motivation is that any constraint with

reasonable parameters (i.e. such that the propagation algorithm performs well) can be expressed,

and propagated strongly using the algorithms developed in this chapter. This eases the problem of

modelling in QCSP, by increasing the expressiveness of the language relative to the existing work

in the field.

This chapter addresses the need for propagation of arbitrary constraints in QCSP, by devel-

oping two new propagation algorithms. The algorithms presented here are the first practical al-

gorithms for arbitrary constraints in QCSP, therefore no direct comparison with other work is

possible. They are compared using encodings to QBF solvers and binary QCSP solvers. The new

algorithms are also applied to two games.

The existing literature on consistency algorithms for QCSP is reviewed in chapter 2 section

2.3.1.

4.2. Motivating examples

This section presents various examples where propagation of arbitrary non-binary constraints

is stronger (i.e. able to make more removals) than the scheme proposed by Bordeaux and Mon-

froy, or the binary arc-consistency proposed by Mamoulis and Stergiou combined with the hidden

variable encoding.

117

Chapter 4. Strong consistency for arbitrary constraints

Consider the expression below. This expression evaluates to false, because of the case where

x1 = x2 = x3 = true.

(2) ∀x1, x2, x3 : ¬x1 ∨ ¬x2 ∨ ¬x3

In Bordeaux and Monfroy’s scheme, this is broken down into 5 primitive constraints, with 4

additional variables, as follows.

(3) ∀x1, x2, x3∃t1, t2, t3, t4 : t1 = ¬x1, t2 = ¬x2, t3 = ¬x3, t4 = t1 ∨ t2, t3 ∨ t4 = true

The disjunction primitives are now operating on existentially quantified variables, so they are

consistent. (Other decompositions are possible, but the same property holds.) Applying the hidden

variable encoding to expression (2) yields the following decomposition:

(4) ∀x1, x2, x3∃h ∈ {1..7} : r1(x1, h) ∧ r2(x2, h) ∧ r3(x3, h)

In this expression the domain of h and the relations r1, r2 and r3 are defined according to

definition 3.8.1 in chapter 3. No propagation is possible on the binary constraints r1, r2 and r3,

because they are already consistent according to the definition of QAC.

In contrast, applying SQGAC or WQGAC directly to expression (2) detects inconsistency.

Therefore the algorithms in this chapter could detect inconsistency, but their worst-case running

time is exponential in the arity. The next chapter (chapter 5) describes an algorithm specifically

for reified disjunction constraints of any arity, which maintains SQGAC and can therefore detect

inconsistency of expression (2). It has a linear worst-case running time, so it is preferable for this

particular example.

Constructing a similar example with arithmetic is trivial. Consider the expression below. This

is also false (because x1 = 4, x2 = 3 cannot be extended to a satisfying tuple), and not WQGAC

or SQGAC. However it is GAC, so the hidden variable encoding is ineffective.

118

Chapter 4. Strong consistency for arbitrary constraints

(5) ∀x1, x2 ∈ {3, 4},∃x3 ∈ {3, 4} : x1 − x2 + x3 = 3

In Bordeaux and Monfroy’s scheme, this can be decomposed in three ways. These are shown

below, after the domain of t2 is reduced.

∀x1, x2 ∈ {3, 4},∃x3 ∈ {3, 4},∃t1 ∈ {−3,−4},∃t2 ∈ {−1, 0} :

t1 = −x2, t2 = x1 + t1, t2 + x3 = 3(6)

∀x1, x2 ∈ {3, 4},∃x3 ∈ {3, 4},∃t1 ∈ {−3,−4},∃t2 ∈ {−1, 0} :

t1 = −x2, t2 = x3 + t1, t2 + x1 = 3(7)

∀x1, x2 ∈ {3, 4},∃x3 ∈ {3, 4},∃t1 ∈ {−3,−4},∃t2 ∈ {6, 7} :

t1 = −x2, t2 = x1 + x3, t2 + t1 = 3(8)

The addition primitives are consistent in all of these decompositions, so the scheme does

not detect inconsistency. Applying SQGAC or WQGAC directly to (5) detects inconsistency,

therefore the algorithms in this chapter are useful on this example. In chapter 6 I give an algorithm

for long sum constraints which has a linear worst-case running time, and which can also detect

inconsistency on this example.

The final example Ck is expressed over four Boolean variables ∀x1,∃x2,∀x3,∃x4. The set

CS
k of five tuples t1..5 is given below.

119

Chapter 4. Strong consistency for arbitrary constraints

∀x1 ∃x2 ∀x3 ∃x4

t1 = 0 0 0 1

t2 = 0 1 1 0

t3 = 1 0 1 0

t4 = 1 0 1 1

t5 = 1 1 0 1

If this constraint can be reformulated as a logic constraint of the form
∨

li ⇐⇒ lj (where

li = xi or li = ¬xi, and lj can be xj , ¬xj , or a constant 0 or 1), then SQGAC can be enforced in

linear time by the algorithm described in chapter 5. I will briefly show this is not possible. If lj is

not a constant (i.e. it represents a variable, negated or otherwise), the number of satisfying tuples

(over four variables) is 8. If lj = 1, only one tuple is disallowed, so it is 15. If lj = 0, only one

tuple is satisfying. None of these matches the five satisfying tuples we have here, so Ck cannot be

expressed as a single logic constraint. It could be expressed with several logic constraints, but in

this form it is not possible to enforce SQGAC using the algorithm in chapter 5.

For the original constraint to be WQGAC, for the assignment x1 7→ 0, a tuple is required

for each value of x3. t1 and t2 meet the requirement. However, the value for x2 is different, so

these two tuples could not form part of the same winning strategy for the constraint. Assignment

x1 7→ 1 is similar. There does not exist a value of x2 such that all values of x3 can be extended to

a satisfying assignment. GAC (or QAC on the hidden variable encoding) and WQGAC can make

no inferences, but SQGAC determines falsity.

It is not clear if Ck could be expressed as a single sum constraint. Assuming it cannot, the

algorithm to enforce SQGAC for arbitrary constraints (section 4.3) is the most suitable in this

thesis (and most suitable in general, to the best of my knowledge) for a constraint such as this.

4.3. An algorithm for enforcing SQGAC

This section and the next section describe the primary contribution of this chapter: algo-

rithms for enforcing consistency on arbitrary non-binary constraints. In this section, the SQGAC-

propagate algorithm is described.

120

Chapter 4. Strong consistency for arbitrary constraints

Algorithm 11 high level description of SQGAC-propagate
procedure SQGAC-propagate(xi, a): Boolean
Consider MWST T = 〈V,E, r, L〉:

(1) Remove all vertices labelled xki
7→ a from V and all edges including a vertex labelled

xki
7→ a from E, and remove all subtrees which become disconnected from the root, r.

(2) Repeat the following to exhaustion:
(a) Remove all vertices b with no children if b is not labelled with the final variable

xkr .
(b) For all universal variables ∀xkj

in the scope of Ck, a vertex b labelled xkj
7→ vj

must have siblings for all other values in Dj (by the definition of MWST, definition
3.2.11 in chapter 3). If not, b is removed.

(3) Any assignment no longer contained in the tree is pruned. If any domain is emptied or
universal is pruned, return false, otherwise true.

First I describe the algorithm at a very high level. For some constraint Ck and subproblem

Pk, a multiple winning strategy tree (MWST) containing all winning strategies is maintained. If

some assignment xki
7→ vi is not contained in the tree, it is inconsistent (by the definition of

SQGAC, definition 3.2.13). When an assignment is removed (perhaps by some other constraint),

the tree must be updated as shown in algorithm 11. When an assignment is removed, some winning

strategies are no longer valid, so the set sce(S) changes, and the corresponding MWST changes.

On backtracking, the tree is restored.

Beginning with tree T , if algorithm 11 is called for all domain removals, then no nodes labelled

xki
7→ a where a /∈ Dki

remain in the tree, by rule 1. I refer to the derived tree as T ′. Any value not

in T ′ is pruned from the relevant domain. Therefore it is necessary to prove that the transformation

from T to T ′ is correct.

THEOREM 4.3.1. Soundness and completeness of SQGAC-propagate to enforce SQGAC (or

return false if that is impossible) when called for all domain removals.

PROOF. I assume that T is an MWST before the procedure is applied. I prove that rules 2

(a) and 2 (b) are sound, and therefore that no unsound removals were made from T to form T ′.

This is followed by a proof that T ′ is indeed an MWST, therefore the transformation is sound and

complete.

121

Chapter 4. Strong consistency for arbitrary constraints

Rule 2 (a) is sound since a vertex a with no descendents, where a is not labelled with variable

xkr , cannot be part of an MWST, because all leaf nodes are labelled xkr in such a tree. For rule 2

(b), any MWST has the appropriate siblings, hence a cannot be part of such a tree, therefore rule

2 (b) is also sound.

The proof of completeness appeals to the fact that an MWST represents one or more solution

trees (definition 3.2.10 in chapter 3), which are in turn isomorphic to winning strategies. To

extract a solution tree from an MWST, wherever a node has more than one child, and the children

are labelled with xki
where Qki

= ∃, select one child and delete all others (and their descendents).

This forms ST . ST is a solution tree: each node in ST is labelled correctly; each node has the

correct number of descendents; each path from r to a leaf node in ST represents a scenario of

a winning strategy of Pk (because ST is a subtree of T ′). Therefore ST is isomorphic to some

winning strategy of Pk.

For all leaf nodes u in T ′, it is possible to construct a solution tree ST which contains u,

simply by not making a choice that excludes u when constructing ST . ST is isomorphic to a

winning strategy, therefore u corresponds to a scenario of a winning strategy, as required by the

definition of MWST. �

4.3.1. Implementation. First the tree data structure is defined. Initially, a vertex (other than

r) has the following data associated with it:

• Label (variable and value) var and val (equivalent to xvar 7→ val)

• Reference to parent, p

• References to |Di+1| children, if xki
is not the final variable: cj∈Di+1

• The number of children, nc

• Two references to vertices with the same label, left and right.

The root r has only the references to children. There is a double-linked list header list(xki
7→ a)

for each label xki
7→ a. The list contains all vertices labelled xki

7→ a. list(xki
7→ a).right is

the reference to a vertex. The purpose of list(xki
7→ a) is to detect when all the relevant vertices

have been removed, allowing the algorithm to remove a from the domain of xki
. It also allows the

algorithm to locate all vertices with a particular label.

122

Chapter 4. Strong consistency for arbitrary constraints

Algorithm 12 removeVertex(vertex: ver)
procedure removeVertex(vertex: ver, in out list: removeList):
ver.p.cval ← nil {disconnect from the parent}
ver.p.nc← ver.p.nc− 1
if ver.right = nil and ver.left = list(xver.var 7→ ver.val): {ver is the last vertex with ver.var
and ver.val}

Add xver.var 7→ ver.val to removeList {therefore add to removeList}
if ver.right 6= nil: {disconnect ver from the list}

ver.right.left← ver.left
if ver.left 6= nil:

ver.left.right← ver.right
for all children ver.cj : {remove all children as well}

removeVertex(ver.cj , removeList)

Algorithm 13 restoreVertex(vertex: ver)
procedure restoreVertex(vertex: ver):
ver.p.cver.val ← ver {reattach to parent}
ver.p.nc← ver.p.nc + 1
if ver.right 6= nil: {reconnect ver to the list}

ver.right.left← ver
if ver.left 6= nil:

ver.left.right← ver

All the algorithms focus on a single constraint Ck, with no reference to any variables not

contained in Ck. Therefore to simplify the presentation slightly I refer to xki
as xi from here.

Algorithm 12 is used by the propagation algorithm to remove a vertex from the tree. When

removing a vertex, all its children become disconnected from the root so they must also be re-

moved. The procedure removeVertex also checks if the vertex is the final one in its list, and if so

schedules the appropriate value ver.val for pruning. When backtracking, restoreVertex (algorithm

13) is called for all vertices that were removed. The method of removing and restoring elements

in a double-linked list is by Hitotumatu and Noshita [62], and popularized by Knuth [66].

Algorithm 14 shows a more concrete version of the SQGAC-propagate algorithm. For each

vertex labelled xi 7→ a, it is removed. However, to implement rules 2 (a) and 2 (b) from algorithm

11, before removing a vertex, the algorithm checks if its parent also needs to be removed. For rule 2

(a), this occurs if the parent has no other children. For 2 (b), if the vertex to be removed represents

some value in the domain of a universal variable, then all its siblings need to be removed, and

therefore by 2 (a) its parent as well. It is sufficient to remove the parent. Hence the vertex to

123

Chapter 4. Strong consistency for arbitrary constraints

Algorithm 14 SQGAC-propagate(xi, a)
procedure SQGAC-propagate(xi, a): Boolean
removeList← ∅
for all ver ∈ list(xi 7→ a) {iterate through the list}

while ver.p.nc = 1 or [∀(ver.var) and ver.val ∈ Dver.var]:
if ver.p.nc = 1: {this vertex has no siblings, 2 (a)}

ver ← ver.p
if ∀(ver.var) and ver.val ∈ Dver.var: {universal, 2 (b)}

ver ← ver.p
removeVertex(ver, removeList)

for all xj 7→ b ∈ removeList:
if not exclude(xj , b): return false

return true

be removed iteratively climbs the tree. This is done to exhaustion, then the appropriate vertex is

removed by calling removeVertex.

Once all vertices in the list have been processed, removeList contains a list of domain re-

movals. These are performed using the exclude procedure (which is assumed to return false if

there is a domain wipe out, or a universal variable is pruned).

4.4. A general schema for enforcing WQGAC

This section describes the proposed WQGAC-Schema algorithm, derived from GAC-Schema

[13], a successful framework for GAC by Bessière and Régin. In this section most attention will

be given to the differences between WQGAC-Schema and GAC-Schema. On constraints with no

universal variables, the behaviour of WQGAC-Schema is identical to GAC-Schema.

The key feature of GAC-Schema is multidirectionality, defined below.

DEFINITION 4.4.1. Multidirectionality

(1) The algorithm never looks for a support for a partial assignment p on a constraint Ck

when a tuple supporting p has already been found, and

(2) it never checks whether a tuple is a support for a value when it has already been checked

for another value [14].

124

Chapter 4. Strong consistency for arbitrary constraints

Algorithm 15 procedure establishWQGAC
procedure establishWQGAC(): Boolean
SC = ∅, S = ∅, lastC = ∅
for each variable xi:

for each value a ∈ Di:
if not findSupport(xi, {〈xi, a〉}):

if not exclude(xi, a): return false
return true

The main change to GAC-Schema is to replace the notion of support to match the definition

of WQGAC: that a value of some variable must be supported for all sequences of values of inner

universal variables. The modified data structures SC , S and lastC are described below.

• SC(p) contains tuples that have been found to satisfy C and which include the partial

assignment p. Each tuple supports n partial assignments, so when a tuple is found, it is

added to all n relevant sets in SC . The current support τ for p is included, and is removed

when it is invalidated. Domain removals may invalidate other tuples λ 6= τ contained in

SC , but λ may not be removed immediately, so when searching for a new current support

for p, SC(p) may contain invalid tuples.

• S(τ) contains the set of partial assignments for which τ is the current support.

• lastC(p) is the last tuple returned by seekNextSupport as a support for the partial assign-

ment p; nil otherwise. This is used to allow seekNextSupport to continue searching at

the point where it left off in the lexicographic ordering of tuples.

Point (1) of multidirectionality is taken into account with the SC data structure. The seekInferable-

Support procedure (algorithm 18) ensures that a new support is not sought if one is already stored

in SC . Point (2) is dealt with by the individual constraint representations described in section

4.4.1.

Initialization. To initialize the above data structures, the required supports must be found for

all pairs 〈xi, a〉, and recorded appropriately (or the value a must be removed from Di). This

is achieved with establishWQGAC (algorithm 15), which calls findSupport for each pair 〈xi, a〉

(algorithm 16). If findSupport cannot find all supports for 〈xi, a〉, establishWQGAC calls ex-

clude(xi, a), which returns false if the removal falsifies the QCSP (possibly by domain wipeout

125

Chapter 4. Strong consistency for arbitrary constraints

Algorithm 16 procedure findSupport
procedure findSupport(xi: variable, p: partial assignment): Boolean
if i = r: {base case: if we have reached the last variable}

if SC(p) 6= ∅:
return true {already supported}

τ=seekNextSupport(p, nil)
if τ = nil: return false
lastC(p) = τ
Q=findSupportedPA(τ)
for q in Q:

if SC(q) = nil:
add q to S(τ) {i.e. τ is the first support}

add τ to SC(q)
return true

else: {recursive case}
if ∀(xi+1):

for value v ∈ Di+1:
p = p ∪ {〈xi+1, v〉} {add xi+1 = v to the partial assignment}
if not findSupport(xi+1, p): return false

return true
else:

return findSupport(xi+1, p)

of an existential or pruning a universal). The Boolean returned by establishWQGAC represents

whether the constraint is WQGAC at the point of return.

The procedure findSupport is recursive. The first parameter is a variable xi, which is in-

cremented to xi+1 for the recursive calls. A partial assignment p is recursively built up, for all

combinations of values of inner (xj>i) universal variables. For universal variables, a recursive call

is made for each value in the current domain, hence all possible sequences are built.

When the last variable in the constraint is reached, if p is not already supported a support τ

is sought. If found, the findSupportedPA(τ) procedure is called which returns the set Q of all

n partial assignments that τ supports. For each variable xi, τ supports the partial assignment q

including xi and all inner universal values: q = {〈xi, τi〉}∪
⋃

j>i∧∀(xj)
{〈xj , τj〉}. τ is then added

to SC(q). If τ is the first support for q, q is added to S(τ).

Propagation. After initialization, removing an element from a domain may result in one or

more supports becoming invalid. The procedure WQGAC-propagate(xi, a) (algorithm 17) re-

places the invalid supports if possible, otherwise prunes the unsupported values. The procedure

126

Chapter 4. Strong consistency for arbitrary constraints

Algorithm 17 procedure WQGAC-propagate
procedure WQGAC-propagate(xi: variable, a: value): Boolean
P =generatePA(xi, a)
for each partial assignment p ∈ P :

for each tuple τ ∈ SC(p)
χ =findSupportedPA(τ)
for each partial assignment q ∈ χ: remove τ from SC(q)
for each partial assignment u ∈ S(τ):

if u valid given current domains:
σ =seekInferableSupport(u)
if σ 6= nil:

add u in S(σ)
else:

σ=seekNextSupport(u, lastC(u))
if σ 6= nil:

add u in S(σ)
lastC(u) = σ
α =findSupportedPA(σ)
for each partial assignment s ∈ α:

add σ in SC(s)
else:

(xj , b)=outermost literal of r
if not exclude(xj , b): return false

return true

generatePA generates the set of partial assignments containing (xi, a) for all possible sequences

of inner universal assignments. More precisely, where Ui = {xkj
∈ Xk|j > i, Qkj

= ∀} (Ui is

the set of universals quantified after xki
), generatePA returns the set below.

PAi =
{
{xki

7→ τi, xkj
7→ vj , xkl

7→ vl, . . .}|Ui = {xkj
, xkl

, . . .}, vj ∈ D0
kj

, vl ∈ D0
kl

, . . .
}

Note that the original domains D0 are used. This means the algorithm still behaves correctly

when universal values have been pruned.

PAi is the set whose supports are invalidated by the removal. For each of these partial assign-

ments p, SC(p) contains all the tuples τ containing p which were previously supporting something

and are now invalid. τ is removed from SC , then all the partial assignments u which are currently

supported by τ are processed: if u is still valid, a new support is required. SC(u) may contain

127

Chapter 4. Strong consistency for arbitrary constraints

Algorithm 18 procedure seekInferableSupport
procedure seekInferableSupport(p: partial assignment): tuple
for σ ∈ SC(p):

if ∃k σk /∈ Dk: remove σ from SC(p)
else: return σ

return nil

another valid support: this would be discovered by seekInferableSupport. If not, seekNextSupport

is called to find the next support in lexicographic order. If one is found, it is added to the relevant

sets in SC and S, and lastC is updated. If no support for u is found, the appropriate value is

pruned.

The procedure seekInferableSupport (algorithm 18) searches the set SC(p) to find a valid

support for p which was found earlier to support some other partial assignment. It clears invalid

tuples from the set as they are found. This satisfies part 1 of the the definition of multidirectionality

(definition 4.4.1).

These procedures make up the general WQGAC-Schema. The procedure seekNextSupport,

called in findSupport and WQGAC-propagate, is instantiated differently to deal with different

types of constraint.

4.4.1. How to deal with specific constraint representations. WQGAC-Schema can be in-

stantiated to deal with predicates (arbitrary expressions) and with lists of allowed tuples.

4.4.1.1. Predicates. The constraint is defined by an arbitrary expression. The user provides a

black box function fCk
(τ), which returns true iff the tuple τ satisfies the constraint, false other-

wise. This is used in the seekNextSupport procedure shown in algorithm 19. seekNextSupport(p:

partial assignment, τ : tuple) returns the smallest (in lexicographic order) tuple greater than τ

which is checked to be allowed by Ck. The only change from the GAC-Schema version in [13] is

that the variable y and value b have been replaced everywhere with p.

The procedure seekCandidateTuple (algorithm 20) uses the lastC data structure to jump for-

ward, skipping tuples which have already been checked and found not to satisfy Ck. This satisfies

part 2 of multidirectionality (definition 4.4.1). Together with the other part of the definition, a

128

Chapter 4. Strong consistency for arbitrary constraints

Algorithm 19 procedure seekNextSupport for the predicate instantiation
procedure seekNextSupportPredicate(p: partial assignment, τ : tuple): tuple
if τ 6= nil:

(τ, dummy)← nextTuple(p, τ, |τ |)
else:

{generate the lex-least tuple containing p, valid w.r.t. current domains}
τ ← smallest valid tuple containing p

τ ← seekCandidateTuple(p, τ, 1)
while τ 6= nil:

if fCk
(τ):

return τ
else:

(τ, k)← nextTuple(p, τ, |Xk|)
τ ← seekCandidateTuple(p, τ, k)

return nil

tuple will not be checked (i.e. passed to fCk
for evaluation) more than once, therefore limiting the

total number of checks to dr.

In GAC-Schema, a candidate is a valid tuple which has not been checked. Therefore, we

want to find the smallest (in lexicographic order) candidate. In WQGAC-Schema+predicate this

is approximated: the procedure seekCandidateTuple(p, τ, i) returns a tuple which is less than or

equal to the smallest candidate. The procedure seekCandidateTuple(p, τ, i) returns a tuple greater

than or equal to τ , assuming τ is valid and includes p and the prefix τ1..i−1 is a possible prefix for

a candidate.

In GAC-Schema+predicate, for each iteration of the main while loop in seekCandidateTuple,

one tuple γ is retrieved from lastC and used to jump forward, with the intuition that the algorithm

has already checked all the relevant tuples τ ≤lex γ. Here, a lower bound on γ is used. For all the

partial assignments p which assign xki
to τi, and xki

is the outermost variable assigned by p, the

tuple is retrieved from lastC . The lower bound λ is the least of these tuples (line 8). The reason is

that the algorithm must have checked all tuples containing xki
7→ τi which are less than or equal

to λ. Apart from this change, the algorithm is very similar to the original presented by Bessière

and Régin [13].

If the difference between λ and τ occurs before k, nextTuple(p, τ, k) is called which ensures

that the prefix τ1..k is increased while respecting p. Otherwise, nextTuple(p, τ, |τ |) is called to get

129

Chapter 4. Strong consistency for arbitrary constraints

Algorithm 20 procedure seekCandidateTuple

(1) procedure seekCandidateTuple(p: partial assignment, τ : tuple, i: index): (tuple, index)
(2) while τ 6= nil and i ≤ |τ |:
(3) Ui ← {xkj

∈ Xk|j > i, Qkj
= ∀} {Ui is the set of universals quantified after xki

}

(4) UAi ←
{

xkj
7→ vj , xkl

7→ vl, . . . |Ui = {xkj
, xkl

, . . .}, vj ∈ D0
kj

, vl ∈ D0
kl

, . . .
}

(5) PAi ← {{xki
7→ τi} ∪A|A ∈ UAi}

(6) {PAi is the set of all partial assignments which assign xki
to τi, }

(7) {and assign each variable in Ui some value from its original domain D0
k.}

(8) λ← minlex({lastC(q)|q ∈ PAi})
(9) {λ is minimum under lexicographic order, where nil is least}

(10) if λ 6= nil:
(11) split← 1
(12) while τsplit = λsplit: split← split + 1
(13) if split > |τ | or τsplit < λsplit:
(14) if split < i:
(15) (τ, i′)← nextTuple(p, τ, i)
(16) i← i′ − 1
(17) else:
(18) (τ, i′)← nextTuple(p, τ, |τ |)
(19) i← min(i, i′ − 1)
(20) i← i + 1
(21) return τ

the valid tuple following λ. i decreases to the smallest index where the value of τ has changed.

Bessière and Régin give a sketch proof which shows that seekCandidateTuple cannot miss any

candidates when jumping forwards with the calls to nextTuple [13]. This applies here unchanged,

apart from the substitution of p for the variable and value y, b.

The procedure nextTuple(p, τ, i) finds the next valid tuple τ ′ >lex τ where τ ′ includes p and

has the property τ ′1..i 6= τ1..i. The returned i′ is the position of the first difference between τ ′ and

τ : τ ′1..i′−1 = τ1..i′−1 and τ ′i′ 6= τi′ .

4.4.1.2. Positive constraints. Here the set of satisfying tuples (CS
k) is given explicitly. Again,

this is generalized from the algorithm given by Bessière and Régin [13], with the data structure

from Mohr and Masini [78]. In practice this will only be practical for tight constraints, but it can

sometimes outperform the predicate instantiation despite being much less sophisticated. The set

CS is sorted by partial assignment, to match the requirements of supporting a value. For each

pair 〈xi, a〉, the tuples matching 〈xi, a〉 are divided into each possible sequence of inner universal

130

Chapter 4. Strong consistency for arbitrary constraints

Algorithm 21 procedure seekNextSupport for the positive instantiation
procedure seekNextSupportPositive(p: partial assignment, dummy): tuple
i← CS(p) {current support}
l← tupleLists(p) {retrieve the appropriate list to search}
while i ≤ length(l):

σ ← l(i)
if ∀j : σj ∈ Dkj

:
CS(p)← i
return σ

i← i + 1
return nil {no valid tuple found}

assignments. (This does not increase the asymptotic space consumption because each tuple of

length n has n references to it, both in GAC-Schema+positive and here.) The seekNextSupport

procedure is given in algorithm 21. This instantiation is referred to as WQGAC-Schema+positive.

4.4.1.3. Next-Difference lists. Next-Difference lists are very similar to the positive instantia-

tion. The change is that the algorithm is able to jump forward in the list of satisfying tuples, by

jumping tuples which are known to be invalid. The existing work on this is reviewed in chapter 2

section 2.1.2.2. The data structure and algorithm are novel to the best of my knowledge. I invented

them for use in CSP [51] and then modified the algorithm slightly to work for QCSP.

Each item in the list is a record containing the tuple t, and a precomputed array of list indices

called ND. ND(xki
) is the index of the next tuple which contains a different value for variable

xki
. Therefore, if the current tuple contains value a for variable xki

, then ND(xki
) has the index

of the next tuple to contain b 6= a at position i. If value xki
7→ a has been pruned, it is sound to

skip to the next tuple not containing xki
7→ a.

To illustrate, consider Figure 18, which shows the Next-Difference list corresponding to a

ternary constraint with scope 〈x, y, z〉, and four allowed tuples. If value 0 is pruned from variable

x, when searching for a support for z 7→ 0, it is possible to jump from tuple 1 to tuple 3 in one

step.

The procedure for searching this data structure is given in algorithm 22. The new algorithm

can be used with one list containing all tuples, or with lists containing supporting tuples for each

variable and value (xki
, a). The flag OneList, used on line 3 of algorithm 22 determines if one

131

Chapter 4. Strong consistency for arbitrary constraints

x

tuple

NextDifferent
 array

<0 0 0>

y z

3 23

<0 0 1>

3 33

<1 1 0>

◊ ◊◊

<1 1 1>

◊ ◊◊

1

2

3

4

tuple
index

FIGURE 18. Next-Difference list for tuples {〈0, 0, 0〉, 〈0, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉}

Algorithm 22 procedure seekNextSupport for Next-Difference lists

(1) procedure seekNextSupportND(p: partial assignment, dummy): tuple
(2) i← CS(p) {current support}
(3) if OneList: l is the global tuple list
(4) else: l← tupleLists(p)
(5) for pass ∈ {1, 2} {search from CS(p) to end (pass 1) then beginning to CS(p) (pass

2)}
(6) while i ≤ length(l) and (pass = 2)⇒ i < CS(p):
(7) t← l(i).t {retrieve the current tuple}
(8) j ← 1 {j indexes into a tuple}
(9) while j ≤ r and tj ∈ Dkj

and (xkj
7→ a) ∈ p⇒ (tj = a):

(10) j ← j + 1 {increment j until tj is not in the domain,}
(11) {or tj does not match the partial assignment}
(12) if j = r + 1:
(13) CS(p)← i
(14) return t
(15) else:
(16) i← l(i).ND(j) {jump to the next tuple with value j different}
(17) i← 1 {restart for pass 2}
(18) return nil {no tuple found}

list is used. The lists are sorted in lexicographic order, with the leftmost value in the tuple as the

most significant. Therefore it is likely that finding the leftmost invalid value would allow to jump

forward the furthest, so we iterate from the left when checking the validity of the tuple. Towards

132

Chapter 4. Strong consistency for arbitrary constraints

the end of the list, ND(j) is likely to contain � indicating that there is no subsequent tuple with a

different value for t(j). � is considered greater than length(l).

There are three differences between Next-Difference and the naive positive algorithm. Firstly

the CS data structure is not backtracked when the search backtracks, therefore seekNextSup-

portND must wrap around when it reaches the end of the list. This avoids backtracking an in-

teger for every partial assignment. Secondly seekNextSupportND checks if a tuple matches the

partial assignment, as well as checking if it is valid. This allows the use of a single list for all

partial assignments. Thirdly seekNextSupportND jumps forward on line 16 — if this line were

replaced with i ← i + 1, and the algorithm adapted to make one pass, it would be the same as

seekNextSupportPositive.

In the degenerate case where the first tuple examined is valid there is no significant extra over-

head. seekNextSupportND (with a list for each partial assignment) makes two passes of the tuple

list, therefore it could perform worse than seekNextSupportPositive, but it has potential to perform

much better. This instantiation with one list is referred to as WQGAC-Schema+NDOnelist and

with multiple lists as WQGAC-Schema+NDlists.

4.4.1.4. Other instantiations. If the list of disallowed tuples is supplied, Bessière and Régin

give an efficient method based on hashing which uses the predicate instantiation and can be used

without any modification [13]. They also instantiate GAC-Schema to process a conjunction of

constraints (a subproblem) [14], which gives the same capabilities as the predicate instantiation

but with greater efficiency — the subproblem instantiation uses CSP propagation algorithms to

prune the inner search space when searching for a support. Adapting this remains for future work.

4.4.2. Implementation notes. It is vital that the core data structures SC , S and lastC are

implemented efficiently, along with the elt data structure in the positive instantiation.

SC and S contain lists (of tuples and partial assignments respectively) which must be back-

tracked. It must be efficient to remove and restore elements from the list, in any position. A

doubly-linked list is used so that objects can be removed and restored in constant time by doing

two pointer operations, with the dancing links method [66], the same method used for the lists in

SQGAC-propagate. For backtracking, the index into SC or S is kept along with the list element,

133

Chapter 4. Strong consistency for arbitrary constraints

and when backtracking the elements are restored or removed in reverse order to the original oper-

ations. For S, the list elements cannot be restored using the dancing links method because the list

pointers can be overwritten before backtracking, but the order of the lists in S is not important so

elements can be inserted at the head.

SC and lastC map a partial assignment to some other object. An obvious choice would be

a hash table. Hash tables have approximately constant time access, but their performance is not

very satisfactory in practice in this case. This appears to be caused by the overhead of executing

the hash function. The trick used here is to attach a unique number to each partial assignment

object. SC and lastC (and the elt structure in the positive instantiation) are represented as arrays,

indexed by the number. An informal experiment was performed with Noughts and Crosses model

A (described in section 4.6.2.1) with all constraints processed by WQGAC-Schema+predicate.

The experiment compares a hash table implementation of SC , S and lastC with a hash table for

S and the proposed arrays for SC and lastC . The experiment showed a 24% reduction in run time

for the entire search process (which is dominated by the run time of WQGAC-Schema).

S maps tuples to lists of partial assignments, and is implemented with a hash table. The trick

of assigning unique numbers to tuples would not be suitable here because the array (size O(dr))

would be too large in some cases. It is not clear if the implementation of S could be improved.

4.5. Space and time complexities

For SQGAC, the multiple strategy tree occupies O(dr) space, and when embedded in a search

procedure, O(dr) nodes can be removed from the tree when descending one branch of the search

tree. Because of the lists denoted list(xi 7→ a) detecting values which have lost support can be

done in constant time. Also, the lists make it trivial to find the vertices which need to be removed

when SQGAC-propagate is called, so the dominant cost is removing vertices. Therefore the time

complexity for one branch of the search tree is O(dr).

The space and time properties of WQGAC-Schema+predicate are compared against GAC-

Schema+predicate. Let Ck have arity r and contain variables with domain size d. GAC-Schema

134

Chapter 4. Strong consistency for arbitrary constraints

requires O(r2d) space, with the greatest cost being the SC data structure. WQGAC-Schema main-

tains more supports: for a constraint with u ≤ r universal variables, WQGAC-Schema maintains

support for O(rdu+1) partial assignments compared to rd values for GAC-Schema. Therefore

there are potentially O(rdu+1) tuples stored. Since each tuple supports r partial assignments,

SC contains r references to it, giving a space requirement of O(r2du+1). However, there can be

no more than dr tuples, so if dr < rdu+1 then the space requirement is O(rdr) for SC . In the

other instantiations where there are lists of tuples, these occupy O(rdr) space, except the NDlists

instantiation which occupies O(r2dr).

To obtain an upper bound for the time, consider some tuple τ . Because of multidirectionality,

τ will only be processed once. If fC(τ) =false, the cost of processing τ is the same as the cost

of running fC which I assume will be O(r). If fC(τ) =true then a reference to τ is added to r

sets in SC and to one set in S and one entry in lastC . τ can be processed up to r times by the

seekInferableSupport procedure, which verifies τ against current domains, taking r time. When

τ is invalidated by a domain removal, it is removed from r sets in SC (taking constant time per

removal). For dr tuples, this gives an upper bound of O(r2dr). However, since falsified tuples are

removed from SC by propagate, seekInferableSupport is likely to find the first tuple in the list is a

valid one, so the cost is close to rdr.

The other cost of enforcing multidirectionality is in seekNextSupport and seekCandidateTuple.

For each variable xi and each value a, the space of assignments to other variables (size dr−1) is

divided up among the partial assignments supporting (xi, a), but the whole space is covered. I

assume no jumping forward is possible. Finding the lexicographically next tuple takes constant

time on average1, so the total time taken is O(rd× dr−1) = O(rdr).

The same line of reasoning can be followed for GAC-Schema+predicate. Bessière and Régin

claim an upper bound of O(dr), presumably assuming some O(r) operations to be constant time

for any reasonable r.

In summary, SQGAC-propagate takes O(dr) time and space. WQGAC-Schema takes O(rdr)

time and for positive and NDOnelist instantiations, O(rdr) space to store the tuples. For the

1Average symbol changes required to increment a tuple: α =
Pr

i=1(d − 1)i/di (sum of number of symbol changes
times their probability). As r →∞, α→ 1 + 1/(d− 1). As d→∞, α→ 1.

135

Chapter 4. Strong consistency for arbitrary constraints

NDlists instantiation, O(r2dr) space is required for the Next-Difference lists. For the predicate

instantiation the space requirement is lowest: O(r2du+1).

4.6. Empirical evaluation

First I use random QCSP instances to investigate whether the proposed algorithms are com-

petitive with QBF and binary (r = 2) QCSP solvers. Then I model two games, Noughts and

Crosses (tic-tac-toe) and Connect 4, which have a variety of constraints

4.6.1. Random problems. In this section I compare the new algorithms introduced in this

chapter against QBF solvers and binary QCSP solvers. All these experiments use random QCSPs

so I will first describe the model I used to generate these QCSP instances.

The generator takes a tuple of parameters 〈Q, d, e, p2, r〉where the quantifier sequenceQ cov-

ers all variables, so that |Q| = n. d is the size of each domain, e is the number of constraints, r is

the arity of the constraints, and p2 is the proportion of satisfying tuples a constraint has. The num-

ber of satisfying tuples is p2d
r, and these are chosen with uniform probability for each constraint

independently. The meaning of each parameter is similar to those for model B random binary

CSPs [2]. Constraint scopes are chosen with uniform probability from among the variables. There

is no check for connectedness of the constraint hypergraph, or for consistency. The generation

model is likely to be susceptible to flaws. However, with the parameters I use below, a phase

transition emerges therefore flaws are not apparent.

4.6.1.1. Comparing SQGAC and WQGAC with QBF.

Hypothesis. When the constraint arity is high, SQGAC and WQGAC are stronger in practice

than QBF techniques.

Method. I generate random QCSP problems with parameters d = 2, arity r ∈ {8, 9, 10},

constraint tightness p2 ∈ {0.2, 0.5, 0.8}. If p2 = 0.2, n = 30 otherwise n = 25. If p2 = 0.2

then e ∈ {1 . . . 20} otherwise e ∈ {1 . . . 30}. In the quantifier sequence, every 6th quantifier is

universal and all others are existential (starting ∃x1, x2, x3, x4, x5∀x6∃x7, . . .). This is chosen to

be similar to some structured instances (e.g. those in section 4.6.2 below) where there are many

more existentials and the universals are equally spaced. The instances are quite small because

136

Chapter 4. Strong consistency for arbitrary constraints

some of the techniques do not scale well. For each parameter set, a suite of 10 QCSP instances

were generated. The figures reported below are all sums over the suite.

QCSP P = 〈X ,D, C,Q〉 is encoded to the QBF P ′ = 〈X , C′,Q〉 where C′ is the conjunction

of clauses representing the constraints. The variables and quantifier sequence is the same in the

QBF and the QCSP because d = 2. Each constraint Ck ∈ C is encoded as a set of clauses

representing each non-satisfying tuple t /∈ CS
k . Each clause c ∈ C′ directly forbids one non-

satisfying tuple. For all i, if ti = 1, then ¬xki
is in c, otherwise xki

is in c.

For solving the QCSPs directly, I used Queso with the search algorithm (chapter 3, algo-

rithm 3), without the pure value rule. Therefore the only simplification at each search node

is by consistency. The variable and value ordering is static. The following propagation algo-

rithms were used: SQGAC, WQGAC-Schema+predicate, WQGAC-Schema+positive, WQGAC-

Schema+NDlists, WQGAC-Schema+NDOnelist. For QBF, I chose a variety of solvers which are

freely available, and which are competitive according to recent competitions in the QBF commu-

nity. In each case I used the most recent publicly available version at the time of writing.

• CSBJ, a DPLL-based solver with conflict and solution backjumping [47].

• Quberel, another DPLL-based solver with relevance-bounded conflict learning [56].

• Quantor 2.11, a resolution-based solver [18].

• Skizzo 0.8.2, a solver which performs both search and resolution on a skolemized form

of the QBF [10].

In all cases, the CPU times reported are for a Pentium 4 machine running at 3.06GHz with 1GB

of RAM. Queso was executed with the Sun Java 1.5 runtime, in server mode and each experiment

was executed twice. This gives the Java virtual machine the opportunity to perform optimizations

on the program during the first run. Although some attention was paid to efficiency in the imple-

mentation of SQGAC and WQGAC-Schema, this was not the main concern and the CPU times

could be improved. For SQGAC and WQGAC-Schema, time to set up data structures is included

in the reported time. For the QBF solvers, the time to read the file and set up data structures is

included.

137

Chapter 4. Strong consistency for arbitrary constraints

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
CSBJ

Quantor
Quberel

Skizzo
#Sat

FIGURE 19. Run times for p2 = 0.2, r = 8 for various solvers and values of e

Results. For instances with constraint looseness p2 = 0.2, where n = 30, figure 19 shows

the sums of runtimes for r = 8 and e ∈ {1 . . . 20}. Even with these very small problems, the

QBF solvers are starting to show poor scaling behaviour as the number of constraints is increased.

The satisfiability phase transition is around e = 5, and this coincides with the difficulty peak for

SQGAC and WQGAC-Schema. To the right of the phase transition, the QBF solvers perform

between 10 times and 1000 times worse than SQGAC. Where e is 16, 17 and 19, all instances in

the suite are solved without search by SQGAC, but not by WQGAC. The results for r = 9 are

similar.

The data for r = 10 are plotted in figure 20. Again, there is a region where the SQGAC

and WQGAC compare very well with the QBF solvers. Where e > 12, Skizzo exceeds the

1GB memory limit. Quantor and Skizzo in particular scale badly as the number of constraints is

increased. This suggests that they are less able to deal with large numbers of clauses than Quberel.

Quberel performs better than CSBJ, probably because Quberel has conflict learning.

Where p2 = 0.5 and r = 8 (figure 21) the picture is not so clear. SQGAC still performs

best overall with a margin of one to two orders of magnitude compared to the QBF solvers, but

the WQGAC algorithms do not perform so well. With p2 = 0.5 and r = 10 (figure 22) it is

significantly clearer that the QBF solvers are scaling badly as e is increased.

138

Chapter 4. Strong consistency for arbitrary constraints

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
CSBJ

Quantor
Quberel

Skizzo
#Sat

FIGURE 20. Run times for p2 = 0.2, r = 10 for various solvers and values of e

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30 35 40 45

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
CSBJ

Quantor
Quberel

Skizzo
#Sat

FIGURE 21. Run times for p2 = 0.5, r = 8 for various solvers and values of e

When the constraints are loose (p2 = 0.8), the phase transition shifts significantly. Figures

23 and 24 show results which are not favourable for SQGAC and WQGAC. When there are many

satisfying tuples, SQGAC and WQGAC are not able to do much pruning, and they are likely to

take more time because the tree or list of tuples is larger. This suggests that (if the hypothesis is

true) the arity is not high enough to see the advantage of SQGAC or WQGAC.

139

Chapter 4. Strong consistency for arbitrary constraints

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30 35 40 45

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
CSBJ

Quantor
Quberel

Skizzo
#Sat

FIGURE 22. Run times for p2 = 0.5, r = 10 for various solvers and values of e

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40 45

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
CSBJ

Quantor
Quberel

Skizzo
#Sat

FIGURE 23. Run times for p2 = 0.8, r = 8 for various solvers and values of e

At arity 10, for the hardest instances, SQGAC is the best QCSP method and Skizzo is the best

QBF solver. Therefore I ran these two methods for r = 11 and r = 12, and these are plotted

together in figure 25. For both r = 11 and r = 12, SQGAC is significantly faster for the range

e ∈ {1 . . . 30}, which supports the hypothesis. I have no explanation for the spikes in the Skizzo

r = 11 line. They are not due to memory paging, because Skizzo is using less than 1MB of

140

Chapter 4. Strong consistency for arbitrary constraints

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30 35 40 45

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
CSBJ

Quantor
Quberel

Skizzo
#Sat

FIGURE 24. Run times for p2 = 0.8, r = 10 for various solvers and values of e

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30 35 40 45

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC r=11
Skizzo r=11

#Sat r=11
SQGAC r=12

Skizzo r=12
#Sat r=12

FIGURE 25. Run times for p2 = 0.8, r = 11 and r = 12 for SQGAC and Skizzo

memory on these instances. Skizzo uses a mixture of resolution rules combined with search, with

heuristics to select the algorithm used at each step. These spikes could therefore indicate thrashing

or a failure of the heuristics.

To give an overview of the data (300 suites of 10 instances), figure 26 shows the time taken

by the QBF solvers as a ratio to the time taken by SQGAC. This is plotted against the time taken

141

Chapter 4. Strong consistency for arbitrary constraints

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

T
im

e
ra

tio
 fo

r
Q

B
F

 s
ol

ve
r

Time for SQGAC (microseconds)

1
CSBJ p2=0.2

Quantor p2=0.2
Quberel p2=0.2

Skizzo p2=0.2
CSBJ p2=0.5

Quantor p2=0.5
Quberel p2=0.5

Skizzo p2=0.5
CSBJ p2=0.8

Quantor p2=0.8
Quberel p2=0.8

Skizzo p2=0.8
Skizzo p2=0.8 r=11,12

FIGURE 26. Ratio of times for QBF solvers to SQGAC for all suites

by SQGAC. For most suites, this is plotted for all four QBF solvers. However for the extra data

where p2 = 0.8 and r = {11, 12}, the experiment was only run for Skizzo. The graph shows that

most suites can be solved faster with SQGAC than with any of the four QBF solvers. Nearly all

the suites which cannot are where p2 = 0.8 and r ≤ 10.

Conclusion. The results partly support the hypothesis, showing the SQGAC-propagate algo-

rithm to be faster than the QBF solvers on a range of random QCSPs. This is not the case for

WQGAC-Schema though.

4.6.1.2. Comparing SQGAC and WQGAC with binary QCSP solvers. The literature about the

binary QCSP solvers QCSP-Solve and Blocksolve is reviewed in chapter 2 sections 2.3.4.1 and

2.3.4.3. In this section I compare SQGAC and WQGAC against the solver QCSP-Solve, with the

hidden variable encoding into binary QCSP. I also briefly discuss Blocksolve.

Hypothesis. When the constraint arity is high, SQGAC and WQGAC are stronger in practice

than binary QCSP techniques.

Method. The random QCSP model described above is used again here. Similarly to the pre-

vious experiment, these are solved directly using search and nothing but consistency at each node.

The hidden variable encoding (chapter 3 section 3.8.1) is used to encode the problem into binary

QCSP, resulting in a QCSP instance with er binary constraints and 10 + e variables.

142

Chapter 4. Strong consistency for arbitrary constraints

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
QCSP-Solve

#Sat

FIGURE 27. Run times for p2 = 0.2, r = 8 for various solvers and values of e

For one set of instances I use the same parameters as above (d = 2, p2 ∈ {0.2, 0.5, 0.8},

r ∈ {8, 9, 10}, if p2 = 0.2 then e ∈ {1 . . . 20} otherwise e ∈ {1 . . . 30} and the same quantifier

sequence). To generate a second set I use the parameters d = 6, n = 10 and r = 5, with various e

and the same quantifier sequence (i.e. ∃x1, x2, x3, x4, x5∀x6∃x7, x8, x9, x10).

The same machine was used as for the previous experiment, and Queso was run in the same

way. For the binary QCSP solver, the time to read the file and set up data structures is included in

the reported time.

Results. Figures 27, 28, 29, 30, 31 and 32 show the results for d = 2, where p2 ∈ {0.2, 0.5, 0.8},

r ∈ {8, 10} for various e. There is no point on any of these graphs where QCSP-Solve is compet-

itive with SQGAC, although it is sometimes competitive with the WQGAC-Schema algorithms.

SQGAC is typically an order of magnitude faster, despite the features of QCSP-Solve such as

conflict backjumping and solution directed pruning. The results for r = 9, p2 ∈ {0.2, 0.5, 0.8}

are very similar, with no suite where QCSP-Solve outperforms SQGAC.

Similarly, for the other set of instances where d = 6 and r = 5, there is no suite where

QCSP-Solve outperforms SQGAC. Figures 33, 34 and 35 show the data for p2 = 0.2, 0.5 and 0.8

respectively, and in each case the range of e was chosen to cover the phase transition. Typically

SQGAC is an order of magnitude faster.

143

Chapter 4. Strong consistency for arbitrary constraints

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
QCSP-Solve

#Sat

FIGURE 28. Run times for p2 = 0.2, r = 10 for various solvers and values of e

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40 45

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
QCSP-Solve

#Sat

FIGURE 29. Run times for p2 = 0.5, r = 8 for various solvers and values of e

Conclusion. For all suites, SQGAC is significantly faster than QCSP-Solve. The various in-

stantiations of WQGAC-Schema are faster than QCSP-Solve for most suites, but there are a few

suites (particularly where d = 2 and p2 = 0.2) where this is not the case.

Blocksolve. Verger and Bessière’s Blocksolve [97] is reported to be faster on some random

binary instances. The Blocksolve implementation was kindly provided to me by Guillaume Verger.

144

Chapter 4. Strong consistency for arbitrary constraints

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30 35 40 45

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
QCSP-Solve

#Sat

FIGURE 30. Run times for p2 = 0.5, r = 10 for various solvers and values of e

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30 35 40 45

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
QCSP-Solve

#Sat

FIGURE 31. Run times for p2 = 0.8, r = 8 for various solvers and values of e

Unfortunately it proved to be considerably slower than QCSP-Solve on all the instances I used,

and it does not always report the same truth value as Queso and QCSP-Solve. Since Queso and

QCSP-Solve report the same value for all instances, I assume that the Blocksolve algorithm or

implementation is incorrect2.

2I supplied bug reports to Guillaume Verger several times, and he did provide improved versions of Blocksolve in
response, but he was not able to provide a completely bug free version.

145

Chapter 4. Strong consistency for arbitrary constraints

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 5 10 15 20 25 30 35 40 45

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
QCSP-Solve

#Sat

FIGURE 32. Run times for p2 = 0.8, r = 10 for various solvers and values of e

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
QCSP-Solve

#Sat

FIGURE 33. Run times for d = 6, p2 = 0.2, r = 5 for QCSP-Solve

Figure 36 shows CPU times for SQGAC and Blocksolve where d = 2, p2 = 0.2 and r =

8. QCSP-Solve never takes more than 2s on these suites, whereas Blocksolve takes over 1000s

for some suites. Figure 37 shows the same data for arity 10. After solving the first four suites

with Blocksolve, the experiment was halted because the suite for e = 4 took over 2 hours, and

Blocksolve was reporting an unexpected truth value for over 10% of these instances.

146

Chapter 4. Strong consistency for arbitrary constraints

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 5 10 15 20 25 30 35 40 45

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
QCSP-Solve

#Sat

FIGURE 34. Run times for d = 6, p2 = 0.5, r = 5 for QCSP-Solve

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 25 30 35 40 45 50 55 60

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
WQGAC+predicate

WQGAC+NDlists
WQGAC+NDOnelist

WQGAC+positive
QCSP-Solve

#Sat

FIGURE 35. Run times for d = 6, p2 = 0.8, r = 5 for QCSP-Solve

4.6.2. Structured problems. Two games were chosen for their simplicity and ability to dis-

play the comparative strengths and weaknesses of the algorithms. The same machine was used

as in the previous two experiments, and Queso was run in the same way. When counting search

nodes, only the nodes where branching occurs were counted, therefore leaf nodes were excluded.

147

Chapter 4. Strong consistency for arbitrary constraints

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 5 10 15 20 25 30

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
Blocksolve

#Sat

FIGURE 36. Run times for d = 2, p2 = 0.2, r = 8 for Blocksolve and SQGAC

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 5 10 15 20 25 30

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

e (number of constraints)

SQGAC
Blocksolve

#Sat

FIGURE 37. Run times for d = 2, p2 = 0.2, r = 10 for Blocksolve and SQGAC

4.6.2.1. Noughts and Crosses. Noughts and Crosses (tic-tac-toe) is played on a 3× 3 board.

The aim is to make a line of three counters, including diagonal lines. The two players take turns

to place a counter on any free slot. The first player is crosses (×), followed by noughts (◦). The

aim is to find if crosses can win however noughts defends, therefore the constraints are all satisfied

if crosses wins the game, and some constraint is unsatisfied if crosses cheats or noughts wins or

148

Chapter 4. Strong consistency for arbitrary constraints

draws. The case where noughts cheats is discussed after describing the constraints. To test the

benefit of high-arity constraints, I compare two models.

Model A. The game is modelled with 9 move variables mi each with domain size 9. The

moves are represented by i ∈ {1 . . . 9}. The state of the board is represented with 9 variables

per move, bi
pos ∈ {×, ◦, nil} where pos ∈ {1 . . . 9}. wi ∈ {×, ◦, nil} indicates the winner at

move i, and Boolean variables xli and oli indicate if a player has a line at move i. For ◦ moves,

there is an additional smi variable with domain size 9 (the shadow move variable). It is used

with the shadow constraint to ensure that the pure value rule is applied to the move variable mi

at the appropriate time. The quantifier sequence is Qimi∃smi, bi
1..9, w

i, (x or o)li where Qi = ∃

for × moves (where smi is also omitted) and Qi = ∀ for ◦ moves. For × moves, there are 11

constraints:

• ∀pos : mapmove1(bi−1
pos ,mi, bi

pos) which expresses that if bi−1
pos 6= nil then mi 6= pos and

bi
pos = bi−1

pos , and also that (mi = pos) ⇒ (bi
pos = ×). mapmove1 is satisfied iff both

these conditions hold.

• findline1(bi
1..9, xli) where xli is 1 iff player × has a line on the board bi

1..9, otherwise

xli = 0. This constraint is present for i ∈ {5, 7, 9} because these are the moves where

× can win the game. For other values of i, xli = 0.

• wins1(wi−1, xli, wi) which constrains wi according to whether a player has already won

at move i − 1, and whether there is a line at move i (xli = 1). If wi−1 6= nil then

wi = wi−1, else if xli = 1 then wi = ×, otherwise wi = nil.

For ◦ moves, we have:

• ∀pos : shadow(bi−1
pos ,mi, smi) which expresses (bi−1

pos = nil) ⇒ ((mi = pos) ⇒

(smi = pos)). In words, if a board position is free, the value representing that position

is mapped from mi to smi. This ensures that when a board position is occupied, the

corresponding mi value is pure, and is therefore pruned by the pure value rule.

• ∀pos : mapmove2(bi−1
pos , smi, bi

pos) which expresses that if bi−1
pos 6= nil then smi 6= pos

and bi
pos = bi−1

pos , and also that (smi = pos)⇒ (bi
pos = ◦).

149

Chapter 4. Strong consistency for arbitrary constraints

• findline2(bi
1..9, ol

i) which is very similar to findline1. This constraint is present for i ∈

{6, 8}, and otherwise oli = 0.

• wins2(wi−1, oli, wi) is the ◦ equivalent of wins1.

Additionally, w1..4 = nil and w5 6= ◦. For ◦ moves, for values a of mi where the corresponding

board position is already filled (i.e. cheating moves), a is not contained in any unsatisfying tuples

of the shadow constraints. Such values are dynamically pruned by the pure value rule (defined in

chapter 3 section 3.2.6).

Model B. This is very similar, with the final three moves represented with a single constraint,

over variables w6, b6
1..9,m

7,m8. All other variables and constraints for these moves are eliminated.

The variable m9 is removed, because only one move is possible at this stage of the game. The

initial domain of m7 is now {0, 1, 2} which maps onto the remaining three spaces on the board,

wherever those spaces are located. Similarly, for m8 the initial domain is {0, 1}. The constraint is

satisfied iff crosses wins the game, either before move 7 (i.e. w6 = ×), or w6 = nil and crosses

wins the game at move 7 or 9.

Empirical comparison of the models. For both models, the pure value rule is applied to all

variables using the scheme presented in chapter 3 section 3.5. The implementation of the pure

value rule for all variables requires that a negated version of each constraint is also present in the

problem. Although somewhat inefficient, this ensures a good mix of tight and loose constraints.

There is no symmetry breaking. The reasoning at each node of the search is applying propagation

and the pure value rule to exhaustion.

The search algorithm presented in the previous chapter is used, with a static value order which

is shown below.

1 2 3

4 5 6

7 8 9

These models are designed to take advantage of the pure value rule to prune the universal

variables. In a similar way, efficient models of problems in CSP are designed to take advantage

of propagation algorithms to minimize the number of search nodes. Exploiting the pure value rule

150

Chapter 4. Strong consistency for arbitrary constraints

Model A Nodes Search Setup
(s) (s)

WQGAC, predicate 4107 27.126 0.030
WQGAC, positive 4107 80.036 0.016
WQGAC, NDlist 4107 27.561 0.156
WQGAC, NDOnelist 4107 26.035 0.014
SQGAC 4107 10.788 0.479
Model B Nodes Search Setup

(s) (s)
WQGAC, predicate 999 5.818 0.378
WQGAC, positive 999 87.543 0.094
WQGAC, NDlist 999 6.540 0.254
WQGAC, NDOnelist 999 5.151 0.583
SQGAC 961 8.978 0.470

TABLE 3. Noughts and Crosses results

(or some other rule for pruning universal variables) seems to be crucial to modelling problems in

QCSP.

In Noughts and Crosses, the second player can always force a draw. Therefore both models are

unsatisfiable. Table 3 shows results for the two models: for model A, all constraints are processed

using the specified algorithm. For model B, all constraints are processed using SQGAC, apart

from the long constraint (and its negation which is required for the pure value rule), which is

processed using the specified algorithm. The results show SQGAC to be faster on the shorter

constraints, and WQGAC-Schema+NDOnelist to be most effective on the longer constraint in

model B. In model A, the constraint with the largest space of tuples is findline, with 39×2 = 39366

assignments, half of which (19683) are satisfying tuples. In model B, the long constraint has

311 × 2 = 354294 assignments, 160958 of which are satisfying tuples (just under half). The

negated long constraint has 193336 satisfying tuples. The node counts for model B show that

SQGAC is slightly stronger in practice on the long constraint, but this does not affect the outcome,

that WQGAC-Schema+predicate, +NDlist and +NDOnelist are more effective.

151

Chapter 4. Strong consistency for arbitrary constraints

For both models, the ranking of the four instantiations of WQGAC-Schema is the same:

NDOnelist is most effective, followed by predicate then NDlist then the naive positive instantia-

tion. Also, the performance of the three instantiations which perform intelligent jumping forward

is quite similar, and much better than positive.

NDlist has to search fewer tuples than NDOnelist, and the search loop is identical in the

implementation. However, NDOnelist performs better than NDlist for Noughts and Crosses, and

for 3 out of 4 instances of Connect 4, presented below. I suspect this is because the tuple list

is much smaller for NDOnelist, and it is shared for all partial instantiations, therefore its cache

behaviour is better.

The CPU time taken per node is poor (> 2.5ms), but the number of nodes explored does show

the potential of propagation algorithms for arbitrary constraints. Compared to model A, model

B shows a fourfold decrease in the number of nodes, because of strong propagation on the large

constraint in model B. By comparison, simply searching over the move variables (with the same

value order, and without cheating moves) and backtracking when one or other player wins (or they

draw) explores 16159 nodes.

4.6.2.2. Connect 4. Connect 4 is usually played on a board with 7 columns and 6 rows. The

aim is to form a line (diagonally, vertically or horizontally) of four counters. Counters can only

be placed in the lowermost empty position in each unfilled column. The model given here can

be used for any number of rows and columns, and the aim is to find if the first player (red) can

win however the second player (black) plays. The model has two parameters, row and col for the

numbers of rows and columns. row ≥ 4 and col ≥ 4. This problem has also been attacked with

QBF [46], however the encoding is flawed (it does not forbid placing counters in full columns [4]).

The game is modelled with the following variables, given in quantification order for a single

move i. This sequence is then repeated row × col times for i ∈ {1 . . . row × col}.

• If i is even, move variable ∀ui ∈ {1 . . . col}.

• Move variable ∃mi ∈ {1 . . . col}. If i is even, this variable shadows the one above.

152

Chapter 4. Strong consistency for arbitrary constraints

• row × col variables ∃bi
r,c where r ∈ {1 . . . row} and c ∈ {1 . . . col}, each with domain

{red, black, nil} representing the state of the board after the move. bi
1,c represents the

piece at the base of column c.

• col variables ∃hi
c, representing the height of column c after move i.

• ∃gamestatei with domain {red, black, nil} representing the winner at move i.

• Boolean (0,1) variable ∃linei representing the presence of a line at move i.

• Boolean variable ∃liz indicating the presence of a line in each row, column or diagonal

(numbered z) on the board.

The constraints for a single move i ∈ {1 . . . row×col} are given below, numbered for comparison

with another Connect 4 model in chapter 5.

(1) If i is even, for each column c, shadow(gamestatei−1, hi−1
c , ui, mi) is satisfied iff

gamestatei−1 6= nil or hi−1
c = row (i.e. column full) or ui = c⇒ mi = c.

(2) If i is even, a black counter is placed on the board: for all columns c, constraint black-

move (linei−1, hi−1
c , mi, bi

1,c . . . bi
rows,c), arity row + 3, is satisfied iff linei−1 = 1 or

mi = c ⇒ bi
hi−1

c ,c
= black ∧ bi

r>hi−1
c ,c

= nil (i.e. a black piece is placed at the appro-

priate height and all spaces above are nil) and mi 6= c ⇒ bi
r≥hi−1

c ,c
= nil. Note that a

full column c implies mi 6= c.

If i is odd, a similar constraint is posted for all columns c, redmove (linei−1, hi−1
c ,

mi, bi
1,c . . . bi

row,c), which is the same as the one above but placing a red counter.

(3) Map pieces from the board at i−1 to the board at move i: for all r, c, boardstate(bi−1
r,c , bi

r,c)

is satisfied iff bi−1
r,c = red⇒ bi

r,c = red and bi−1
r,c = black ⇒ bi

r,c = black.

(4) Link height and board state: for each column c, linkheight(bi
1,c . . . bi

row,c, hi
c) is satisfied

iff hi
c equals the number of pieces in the column.

(5) Detect lines: for each column c and some unique number z, findline(bi
1,c . . . bi

row,c, liz)

is satisfied iff liz represents the presence of a sequence of 4 pieces the same (of either

colour) in bi
1,c . . . bi

row,c. Similar constraints are posted for all rows and diagonals.

(6) Connect the main line variable linei with the liz variables, where y = max(z) = row +

col+2(row−3)+2(col−3)−2: li−1∨li1∨li2∨· · ·∨liy ⇔ linei. This is decomposed into

153

Chapter 4. Strong consistency for arbitrary constraints

y ternary constraints (with additional existential variables t which are quantified with liz)

of the form li−1 ∧ li1 ⇔ t1, t1 ∨ li2 ⇔ t2, . . . , ty−1 ∨ liy ⇔ linei.

(7) If i is odd, gamestatered(gamestatei−1, linei, gamestatei) is satisfied if and only if

gamestatei−1 = red⇒ gamestatei = red and

gamestatei−1 = black ⇒ gamestatei = black and

gamestatei−1 = nil ∧ linei ⇒ gamestatei = red and

gamestatei−1 = nil ∧ ¬linei ⇒ gamestatei = nil.

If i is even, gamestateblack(gamestatei−1, linei, gamestatei) is posted with the

same meaning as above, except that gamestatei−1 = nil ∧ linei ⇒ gamestatei =

black.

Some variables are referred to with indices which are out of range, for example gamestate0.

These are set as follows. gamestate0 = nil, l0 = nil, h0
c = 0. The red player must win,

so gamestaterow×col = red. For the first move, symmetry is broken by removing the leftmost

(lower)
⌊

col
2

⌋
values, because they are equivalent to the higher values.

To attack this problem, the pure value rule is applied to universal variables only, using the

scheme in chapter 3 section 3.5. Search is performed in quantification order, which in practice

means that only move variables are searched over, and all others are set by propagation. The value

order for search is determined by a heuristic: maximize the number of lines of 3 that the player

has, breaking ties in favour of the leftmost move. The same heuristic is used for both players.

The constraints present in this model of Connect 4 are typically smaller than the largest con-

straint in model A for Noughts and Crosses. In model A, the constraint with the largest space of

assignments is findline, with 39×2 = 39366 possible assignments to its variables. For Connect 4,

the constraints with the largest space of assignments (for 5×5 board) are redmove and blackmove,

with 2× 6× 5× 35 = 14580 assignments.

The results are shown in table 4. For all four board sizes, the QCSP is unsatisfiable. SQGAC

is significantly faster than WQGAC-Schema for all board sizes. NDlist and NDOnelist perform

better than the other instantiations of WQGAC-Schema. Interestingly, the consistencies SQGAC

154

Chapter 4. Strong consistency for arbitrary constraints

Board size Nodes and time (s)
col row Method Nodes Setup time Search time
4 4 SQGAC 1692 0.395 5.812

WQGAC, predicate 1692 0.211 13.916
WQGAC, positive 1692 0.044 15.090
WQGAC, NDlist 1692 0.375 12.808
WQGAC, NDOnelist 1692 0.034 12.608

4 5 SQGAC 7744 0.794 41.104
WQGAC, predicate 7744 0.363 92.343
WQGAC, positive 7744 0.061 101.605
WQGAC, NDlist 7744 0.716 78.002
WQGAC, NDOnelist 7744 0.044 77.460

5 4 SQGAC 47712 0.324 243.709
WQGAC, predicate 47712 0.185 519.686
WQGAC, positive 47712 0.121 580.938
WQGAC, NDlist 47712 0.047 493.246
WQGAC, NDOnelist 47712 0.047 493.990

5 5 SQGAC 1027266 1.221 6204.549
WQGAC, predicate 1027266 0.822 13955.849
WQGAC, positive 1027266 0.079 17437.103
WQGAC, NDlist 1027266 1.062 13225.556
WQGAC, NDOnelist 1027266 0.519 13217.466

TABLE 4. Connect 4 results

and WQGAC appear to be equivalent on this problem, because the node counts are the same for

all methods. The time taken per node is poor (> 3ms per node in all cases).

4.7. Summary

Generalized arc-consistency has been well studied and is very important in CSP. To my knowl-

edge, this is the first time practical algorithms have been developed for arbitrary constraints in

QCSP. The work in this chapter is the foundational work on arbitrary constraints for QCSP. I have

developed two new algorithms, one of which is instantiated in four different ways. These are

compared on various problems.

The empirical results show the strengths of the two algorithms WQGAC-Schema and SQGAC.

For most situations, the simpler SQGAC is preferable, but for the long constraint in model B

of Noughts and Crosses, WQGAC-Schema+(predicate, NDlist, NDOnelist) is considerably more

efficient.

155

Chapter 4. Strong consistency for arbitrary constraints

For both the games, the time taken at each node is poor. The algorithms for logic and sum

constraints in chapters 5 and 6 address the need for greater efficiency at each node, since they run

in linear time and have no backtracking state.

156

CHAPTER 5

Logical constraints

5.1. Introduction

Logical constraints, such as conjunction, disjunction and implication (for example, (x1 =

5) ∨ (x2 = 3) ⇒ (x3 6= 7)), are commonplace in classical constraint programming. Constraints

like these have received some attention in QCSP as well. The main motivation is efficiency.

The algorithms for arbitrary non-binary constraints presented in chapter 4 can process logical

constraints, but it is possible to improve performance significantly by developing a specialized

constraint propagation algorithm.

Existing CSP solvers offer facilities for logical constraints such as the example above. In

QCSP, Bordeaux and Monfroy have developed various ternary primitive constraints for logical

constraints, and a method of decomposing a complex expression into their primitives [19, 22].

This is discussed in chapter 2 section 2.3.3. QBF solvers also deal with quantified disjunction

constraints (chapter 2 section 2.2.1). Any new approach should compare well (in efficiency, ex-

pressiveness or strength of consistency) to both these items of work.

In this chapter I present a new algorithm to process reified disjunction constraints (e.g. ¬x1 ∨

x2 ∨ ¬x4 ⇔ ¬x3). This form of constraint is sufficient for a wide variety of logical expressions.

The algorithm is instantiated in two different ways, and I show that it maintains SQGAC and exe-

cutes in linear time, with no backtracking state. The time complexity is the same as for Bordeaux

and Monfroy’s existing work, and the level of consistency is stronger. The new constraint can

also enforce the same level of consistency as unit propagation on a QBF clause, but it is more

expressive.

Finally, the efficiency of the new primitive is evaluated with some experiments on Connect

4. These show its effectiveness against the approach of Bordeaux and Monfroy, and against the

157

Chapter 5. Logical constraints

SQGAC and WQGAC propagation algorithms in chapter 4. A further experiment shows that the

pure value rule is very useful with Connect 4.

5.1.1. Motivating examples. This section contains some examples demonstrating that ternary

primitives and decomposition is weak. The algorithms given later solve all the difficulties identi-

fied here.

Consider expression (9), which can break down into the two constraints shown in (10), accord-

ing to the decomposition rules. In this example, enforcing SQGAC on expression (9) determines

falsity, because there is no assignment for x1, x2 and x3 which is compatible with all values of

x4. In the decomposition, enforcing SQGAC on both constraints is able to determine x3 6= 1 but

it is not able to determine falsity. Returning to the intuitive understanding, some of the interaction

between x4 and the set of outer variables x1, x2 and x3 has been lost. The other two minimum

decompositions (by first factoring out x1∨x3 or x2∨x3 rather than x1∨x2) have the same weak-

ness because x1, x2 and x3 are symmetric. Also, the primitive (x3 ∨ x5 ⇔ x4) in equation (10) is

not allowed in Bordeaux and Monfroy’s scheme, because x4 is not quantified last.

(9) ∃x1, x2, x3∀x4 : x1 ∨ x2 ∨ x3 ⇔ x4

(10) ∃x1, x2, x3∀x4∃x5 : (x1 ∨ x2 ⇔ x5) ∧ (x3 ∨ x5 ⇔ x4)

As a second example, consider expression (11). Enforcing SQGAC on this expression deter-

mines falsity. The expression breaks down into two constraints shown in (12). Enforcing SQGAC

on the constraints does not remove any values or determine falsity. In this particular case, if the

primitive constraint could handle negation of its variables, then the problem would be avoided.

(11) ∃x1, x2∀x3 : x1 ∨ x2 ⇔ ¬x3

158

Chapter 5. Logical constraints

(12) ∃x1, x2∀x3∃x4 : (x1 ∨ x2 ⇔ x4) ∧ (¬x3 ⇔ x4)

If the QCSP instance includes operators on integers such as = or 6= with Boolean connectors,

a further problem arises. Consider expression (13). Applying SQGAC directly to this expression

determines falsity because x1 7→ 5, x2 7→ 3 conflicts with x3 7→ 7. Bordeaux et al. provide a

primitive for integer equality: (x1 = x2) ⇔ x3 where x1 and x2 are integers and x3 is Boolean.

Decomposing expression (13) yields expression (14). Enforcing SQGAC on each of the conjuncts

of expression (14) does nothing.

∀x1 ∈ {1 . . . 10}, ∀x2 ∈ {1 . . . 10}, ∀x3 ∈ {1 . . . 10} :

(x1 6= 5) ∨ (x2 6= 3) ∨ (x3 6= 7)(13)

∀x1 ∈ {1 . . . 10}, ∀x2 ∈ {1 . . . 10}, ∀x3 ∈ {1 . . . 10},∃x4, x5, x6, x7, x8, x9, x10 :

(x1 = 5⇔ x4) ∧ (x2 = 3⇔ x5) ∧ (x3 = 7⇔ x6) ∧ (x7 ⇔ ¬x4)

∧(x8 ⇔ ¬x5) ∧ (x9 ⇔ ¬x6) ∧ (x7 ∨ x8 ⇔ x10) ∧ (x10 ∨ x9 ⇔ 1)(14)

5.1.2. Proposed logical primitive constraints. To solve all of the difficulties illustrated above,

I propose two variants of a reified disjunction constraint. The simpler one (Boolean reified disjunc-

tion) acts on Boolean variables and can handle negation of any of its variables. The other variant

acts on integer variables. An algorithm to enforce SQGAC in linear time (time O(n) where n is

the number of variables) for either form is given in section 5.2.

A Boolean literal is a positive or negated instance of a variable, represented by li for some

variable xi. Boolean reified disjunction is shown in formula 15 below.

159

Chapter 5. Logical constraints

(15) Q1x1 . . . Qrxr : l1 ∨ · · · ∨ li−1 ∨ li+1 ∨ · · · ∨ lr ⇔ li

The other variant is a reified disjunction of comparisons xi = vi or xi 6= vi, where xi is an

integer variable and vi is a constant. I will call xi = vi and xi 6= vi integer literals. Integer reified

disjunction is shown in formula 16, where (=, 6=) represents either = or 6=. If ∀i : vi = 1 and the

variables are all Boolean, then this primitive simulates the other. For a negated literal, the operator

is 6= and for a positive literal, the operator is =.

Q1x1 . . . Qrxr :(16)

x1(=, 6=)v1 ∨ · · · ∨ xi−1(=, 6=)vi−1 ∨ xi+1(=, 6=)vi+1 ∨ · · · ∨ xr(=, 6=)vr ⇔ xi(=, 6=)vi

By using the De Morgan law1, the same primitives can be used for reified conjunction with

the same level of consistency, for both Boolean and integer literals. Therefore there is no need

to develop a separate algorithm for reified conjunction. For example, x1 ∧ x2 ∧ ¬x3 ⇔ x4 is

transformed to ¬x1 ∨ ¬x2 ∨ x3 ⇔ ¬x4.

A straightforward disjunction l1∨· · ·∨li−1∨li+1∨· · ·∨ln can be represented as l1∨· · ·∨li−1∨

li+1∨· · ·∨ln ⇔ 1. Straightforward conjunctions l1∧· · ·∧li−1∧li+1∧· · ·∧ln can be represented as

l1∧· · ·∧li−1∧li+1∧· · ·∧ln ⇔ 1, which is transformed to ¬l1∨· · ·∨¬li−1∨¬li+1∨· · ·∨¬ln ⇔ 0

by the De Morgan law. (Disjunction and conjunction of integer literals can be handled in exactly

the same way.)

The Boolean reified disjunction primitive can be used in place of x1 ⇔ ¬x2, by having a

single disjunct l1 on the left hand side. However the need for the x1 ⇔ ¬x2 primitive has been

mostly removed by handling negation within the reified disjunction primitive.

To represent an expression with mixed ∧ and ∨ connectors, where the expression cannot

be rearranged into one which matches the primitive, additional existential variables may need

to be introduced, and more than one primitive may be needed. For some logical expression E ,

1De Morgan’s law in propositional logic: ¬(P ∧Q) ≡ ¬P ∨ ¬Q where P and Q are arbitrary propositions.

160

Chapter 5. Logical constraints

decomposing for Bordeaux and Monfroy’s primitives gives a set of constraints C and a set of

additional existential variables V . Decomposing for reified disjunction gives a set of constraints

C ′ and a set of additional existential variables V ′. For all valid E , |C| ≥ |C ′| and |V | ≥ |V ′| if C

and C ′ are the shortest possible decompositions. Apart from the higher level of consistency, this

has advantages for the implementation of a QCSP solver: it is potentially more efficient to handle

fewer variables and fewer constraints.

As an example, formula (13) in the previous section is decomposed to 8 primitive constraints

and 7 additional variables under the Bordeaux et al. scheme. With the reified disjunction, it can be

expressed with one constraint, as shown in in formula (17). Enforcing SQGAC on this constraint

determines failure.

∀x1 ∈ {1 . . . 10}, ∀x2 ∈ {1 . . . 10}, ∀x3 ∈ {1 . . . 10} :

(x1 6= 5) ∨ (x2 6= 3) ∨ (x3 6= 7)⇔ 1(17)

Also, equations (9) and (11) can be expressed with one reified disjunction.

Not all expressions E can be represented with a single reified disjunction constraint, so some

expressions must be decomposed. However, since these constraints are much more expressive and

therefore easier to use, I leave it to the modeller to decompose expressions manually, rather than

provide an automated decomposition.

5.1.3. Other possible primitives. Boolean disjunction contains two connectors: ∨ and ¬. It

may be possible to add other connectors to create a more powerful primitive, without compro-

mising the linear time SQGAC propagation. However, if a primitive represents a computationally

difficult problem, then to achieve SQGAC is also computationally difficult. This is because decid-

ing the consistency of some value xk1 7→ a with respect to a constraint Ck is the same as deciding

the satisfiability of the local problem Pk with xk1 instantiated to a.

For example in a primitive representing general quantified boolean formulae (QBF), a PSPACE-

complete problem, achieving SQGAC is PSPACE-hard. Conjunctive normal form (CNF) QBF is

161

Chapter 5. Logical constraints

also known to be PSPACE-complete. Therefore, for a CNF primitive, which is a conjunction of

disjunctions of literals
∧ ∨

lj ⇔ li, for example (x1 ∨¬x5)∧ (x2 ∨¬x3 ∨ x6)⇔ x4, it would be

PSPACE-hard to achieve SQGAC if li is set to 1.

Another possibility would be to use disjunctive normal form (DNF), which is a disjunction of

conjunctions of literals,
∨ ∧

lj ⇔ li for example (x1 ∧ ¬x5) ∨ (x2 ∧ ¬x3 ∧ x6) ⇔ x4. This is

a dual problem to CNF QBF, in the sense that proving the falsity of a DNF QBF is as difficult as

proving the truth of a CNF QBF. Therefore if li is set to 0, it would be PSPACE-hard to achieve

SQGAC over the other variables.

To summarize, propagating a general expression with any nesting of ∧, ∨ and ¬ is PSPACE-

hard, and so are reified CNF and DNF expressions, which are expressions containing ∧, ∨ and ¬

but with the nesting restricted to two levels: specifically ∨ nested within ∧ or vice versa. If such

strong propagation is required, the general SQGAC algorithm given in chapter 4 can be used, or

one of the WQGAC algorithms in the same chapter.

5.2. A propagation algorithm for reified disjunction

5.2.1. Introduction. In this section I give a coarse-grained, one pass propagation algorithm

to achieve SQGAC on the constraints given in formulas (15) and (16), with an argument of cor-

rectness for each case. The algorithm works on literals (¬)xi or xi(=, 6=)vi, where the literals

take values 0 or 1 representing the truth of the literal, depending on the domain of xi. The useful

information about a literal is its index i, quantification Qi, and whether or not it is fixed to either

0 or 1.

If a literal containing xi is assigned to 0 or 1, the quantification of the variable becomes

irrelevant in the context of the reified disjunction constraint Ck. The appropriate value can be

substituted for the literal and the constraint simplified to one which does not contain xi. Although

the algorithm does not dynamically simplify the constraint during search, it does use this fact.

162

Chapter 5. Logical constraints

Both the algorithm and the proof that it establishes SQGAC are split into four independent

parts. These are based on the value and quantification of li, since the value of this literal deter-

mines the truth or falsity of the disjunction. Each of the four subsections 5.2.4 to 5.2.7 contain an

algorithm alongside its soundness and completeness argument. The four parts are outlined below.

Disjunction false: The literal li = 0 therefore the disjunction must be false. This is the

simplest case.

Disjunction true: The literal li = 1 therefore the disjunction is true. This case is equiva-

lent to a QBF clause.

xi is universal: li does not have a set value and xi is universally quantified. In this case,

the sets of literals {l1 . . . li−1} and {li+1 . . . lr} must be treated differently because of

their quantification relative to li.

xi is existential: li is not set and xi is existential. In this case, the disjunction is examined

to see if li must be set to 0 or 1.

Note that in the definition of constraint (definition 3.2.2 in chapter 3) it is not allowed to have

more than one instance of a variable in a constraint. This fact is required for the proof that the

algorithm establishes SQGAC. If an existential variable is repeated, the algorithm will be sound

but not complete. For example, establishing SQGAC on ∃x1, x2 : x1 ∨ ¬x1 ⇔ x2 would set x2

to 1, but the reified disjunction algorithm is unable to do so. If a universal variable is repeated, the

algorithm is unsound. For example, applied to ∀x1 : x1 ∨ ¬x1 ⇔ 1 the algorithm would return

false, when the constraint is a tautology. (Queso checks for repeated universals.)

5.2.2. Handling literals. Literals can only take two values 0 and 1, however many values are

in the domain of the variable. Therefore if a literal is not fixed to 0 or 1, then the only information

needed is the quantifier Qi and i. Since i is a constant, this leaves four states that a literal can be

in: 0, 1, unassigned (universal), and unassigned (existential). The procedure literalState abstracts

away the quantification and negation or comparison, returning one of the set {0, 1,∀,∃} when

called for some variable xi. Notice that (with literals of the form xj(=, 6=)vj) the literal may

take the value 0 or 1 even when xj is not instantiated. For example, if the literal is xj = 4 and

Dj = {1, 2, 5}, then the literal takes value 0. This is handled correctly by literalState (algorithm

163

Chapter 5. Logical constraints

Algorithm 23 propagateOr
procedure propagateOr(): Boolean
{Achieve consistency for the constraint Q1x1 . . . Qrxr : l1 ∨ · · · ∨ li−1 ∨ li+1 ∨ · · · ∨ lr ⇔ li or
Q1x1 . . . Qrxr :
x1(=, 6=)v1 ∨ · · · ∨ xi−1(=, 6=)vi−1 ∨ xi+1(=, 6=)vi+1 ∨ · · · ∨ xr(=, 6=)vr ⇔ xi(=, 6=)vi}
a←literalState(xi)
if a = 0 then: return disjunctionFalse()
if a = 1 then: return disjunctionTrue()
if a = ∀ then: return xiUniversal()
if a = ∃ then: return xiExistential()

30). To handle the two different types of literal, two versions of literalState are given in section

5.2.9. This gives a simple interface between the variables in the problem and the propagation

algorithm.

The procedure removeValue is used to ‘prune’ a literal: this involves removing one or more

values from the domain of xi to force the literal to be either 0 or 1. The value to be removed (0

or 1) is passed in as a parameter. Again, to handle the two different types of literal, there are two

versions of removeValue described in section 5.2.9.

5.2.3. The central procedure. The algorithm stores no state, and therefore nothing needs

to be backtracked. The procedure propagateOr (algorithm 23) does a case-split on the literal li,

since the four cases require significantly different propagation. In the following sections, I give the

algorithm for each of the four cases and argue its correctness. I refer to the definition of SQGAC

(definition 3.2.13 in chapter 3). The algorithms return false when it would be necessary to empty

a domain or prune a universal to make the constraint consistent. This is a minor simplification,

since in this case the simplified problem P would be false. They return true when the constraint is

consistent.

For each of the four cases, the time taken is O(r), disregarding the cost of waking up other

constraints.

5.2.4. Case disjunctionFalse. Procedure disjunctionFalse (algorithm 24) simply sets all the

literals in the disjunction to 0. This is linear time for Boolean literals. The constraint propagator

164

Chapter 5. Logical constraints

Algorithm 24 disjunctionFalse
procedure disjunctionFalse(): Boolean
{Achieve consistency for the simplified constraint
Q1x1 . . . Qrxr : l1 ∨ · · · ∨ li−1 ∨ li+1 ∨ · · · ∨ lr ⇔ 0}
{This is done by setting each literal to 0}
for each lj where j 6= i:

if not removeValue(j, 1) then: return false
return true

will not be called again in the current branch of the search, because all its variables have been

instantiated.

LEMMA 5.2.1. disjunctionFalse is sound and complete

PROOF. There are two cases, corresponding to the two return statements in the algorithm.

In the first case, if there is a literal in the set {l1 . . . li−1, li+1 . . . lr} which cannot be set to 0

(i.e. it is 1 or universal) then there can be no winning strategy for Ck since there is a contradiction.

Establishing SQGAC would empty all domains, therefore algorithm 24 returns false. In the second

case, all literals in {l1 . . . li−1, li+1 . . . lr} can be set to 0. There is exactly one winning strategy S

for Ck with exactly one scenario τ ∈ sce(S), which sets all literals to 0. Therefore algorithm 24

establishes SQGAC before returning true. �

The proof that disjunctionFalse establishes SQGAC for integer reified disjunction is very sim-

ilar, but there may be more than one winning strategy in the second case. All scenarios of all

winning strategies set all literals to value 0.

5.2.5. Case disjunctionTrue. Procedure disjunctionTrue (algorithm 25) is called when the

disjunction must be satisfied. The disjunction (when applied to Boolean literals) is identical to a

QBF clause [24]. The unit propagation algorithm, either with backtracking lists, or with watched

literals (by Gent et al. [47]) takes O(r) amortized down a branch of the search. The algorithm

presented here is simpler and takes O(r) time each time it is called. The main reason for this

decision is that nearly all of the reified disjunction constraints used for Connect 4 (section 5.3) and

for job shop scheduling (chapter 7) are short (with typically 5 or fewer literals in the disjunction).

165

Chapter 5. Logical constraints

Algorithm 25 disjunctionTrue

(1) procedure disjunctionTrue(): Boolean
(2) {Achieve consistency for the reduced constraint Q1x1 . . . Qrxr : l1 ∨ · · · ∨ li−1 ∨ li+1 ∨
· · · ∨ lr}

(3) ui← nil {store indices of a universal and existential literal respectively.}
(4) ei← nil
(5) for j ← 1..i− 1, i + 1..r in ascending order:
(6) a←literalState(j)
(7) if a = 1 then: return true {The disjunction is satisfied}
(8) if a = ∀ and ui = nil then: ui← j
(9) if a = ∃ then:

(10) if ei 6= nil or ui 6= nil then: return true {If there is an existential and an
outer existential or universal, therefore no work can be done}

(11) ei← j
(12) {ui contains the outermost universal literal, if one exists}
(13) {ei contains the outermost existential literal, if one exists}
(14) if ei = nil then: return false {No way to satisfy the disjunction}
(15) return removeValue(ei, 0) {Just one existential literal, with no outer universal, so set it

to 1}

The decision was made on the intuition that watched literals would be of no benefit [47] and the

overhead of backtracking lists should be avoided.

The strategy to prove that algorithm 25 is sound and complete is to observe that it terminates,

and there are four exit points on lines 7, 10, 14 and 15. For each one I show that Ck is SQGAC (if

true is returned) or that establishing SQGAC would empty a domain or prune a universal (if false

is returned).

In algorithm 25 the for loop (lines 5-11) collects some information, and returns if no removals

can be made. The leftmost universal and existential literals are stored in ui and ei respectively.

The stopping conditions where no removals can be made are listed below:

(1) There is a 1 in the disjunction so the constraint is satisfied (line 7), or

(2) there are two or more existential literals, therefore it is not clear which literal will end up

set to 1 (line 10), or

(3) there are one or more universals with an inner existential, . . .∀xj . . .∃xm . . . : lj ∨· · ·∨

lm, in which case we cannot set xk because xm may satisfy the disjunction (line 10).

166

Chapter 5. Logical constraints

These are all the conditions which cause the procedure to return true without performing any

pruning. I will show that in each of these cases the constraint Ck is SQGAC.

LEMMA 5.2.2. If disjunctionTrue returns true without pruning, then Ck is SQGAC

PROOF. (Stopping condition 1) The disjunction is satisfied, therefore CS
k contains every valid

tuple: CS
k = {Dk1 ×Dk2 × · · · ×Dkr}. Therefore for each value xki

7→ a it is trivial to construct

a winning strategy containing xki
7→ a, because all strategies are winning strategies. Therefore

Ck is SQGAC.

(Stopping condition 2) For any literal lj and existential literal lm6=j in the disjunction, both

truth values of lj are supported by a winning strategy containing lm = 1. Similarly to stopping

condition 1, it is trivial to construct such a winning strategy because the disjunction is satisfied by

lm. Therefore all values of all literals are supported and Ck is SQGAC.

(Stopping condition 3) The existential literal is lm. Construct a strategy S such that when all

outer universals lj<m = 0 then lm = 1, and otherwise lm = 0, and any other existential literals

take the same value as lm. S is a winning strategy which supports both values of lm and both

values of any other literal lp6=m. �

If none of the three stopping conditions apply, then the algorithm either returns false, or prunes

a domain then returns true. Cadoli et al. give consistency rules for QBF clauses, and prove their

soundness [25], but not their completeness. I will show that algorithm 25 implements the rules,

and that they are complete.

(1) If any literal is 1 then the disjunction simplifies to 1.

(2) Any literal which is 0 can be removed.

(3) If the disjunction is empty, then it is false.

(4) If all literals in the disjunction are universal, then the disjunction simplifies to 0 (lemma

2.1 of [25]). The disjunction cannot be a tautology because no variable is allowed to

occur more than once.

167

Chapter 5. Logical constraints

(5) For a disjunction of the form ∃x1,∀x2, x3, . . . : l1 ∨ l2 ∨ l3 ∨ · · · (where there exists a

single existential literal with a set of universal literals quantified inside), l1 is instantiated

to 1 (lemma 2.6 of [25]).

The first two of these rules correspond directly to the algorithm — it ignores literals which are set

to 0 and if it finds a 1 it returns true (line 7). To implement rules 3 and 4, if the algorithm finds no

existential or 1 literals, it returns false on line 14. Cadoli et al. have proven that rules 3 and 4 are

sound.

Rule 5 corresponds to the final return statement on line 15. After completing the loop, ei

contains the index of the outermost existential literal, if there is one. If there were two existential

literals, the procedure would already have returned true (line 10). Also if there were a universal

with an existential quantified inside, the procedure would have returned true (line 10). Therefore

any universal literals are quantified inside lei. Literal lei is set to 1 on line 15, and removeValue

returns true therefore disjunctionTrue returns true on line 15. Again, Cadoli et al. have proven that

rule 5 is sound.

LEMMA 5.2.3. disjunctionTrue is sound and complete

PROOF. Between the rules of Cadoli et al. and lemma 5.2.2, it is proven that at all four exit

points of the algorithm, either the constraint is SQGAC (and true is returned) or it cannot be made

SQGAC (and false is returned). The one instance of pruning is sound [24], and the algorithm

terminates. Therefore it is sound and complete. �

5.2.6. Case xiUniversal. Procedure xiUniversal (algorithm 26) is called when Qi = ∀ and li

is not set to 0 or 1. To prove it is sound and complete, I show at each exit point (of three) that the

constraint is SQGAC or cannot be made SQGAC, and that the call to removeValue is sound.

The literals lj where j < i must be set to 0 because value 1 for lj conflicts with li = 0. If a

literal cannot be set to 0 (i.e. it is universal or 1) then Pk has no winning strategy, so to make Ck

SQGAC would falsify P . Therefore the algorithm either sets the literal to 0 or returns false on line

4.

168

Chapter 5. Logical constraints

Algorithm 26 xiUniversal
(1) procedure xiUniversal(): Boolean
(2) {The outer set of literals lj where j < i must evaluate to 0, because 1 is not consistent

with li = 0}
(3) for j ← 1 . . . i− 1:
(4) if not removeValue(j, 1) then: return false {Set lj = 0}
(5) {The inner set of literals lj where j > i must be free i.e. no universals, no 1’s and at

least one existential.}
(6) e← 0 {Whether an existential has been found}
(7) for j = i + 1 . . . r:
(8) a=literalState(j)
(9) if a = 1 or a = ∀ then: return false

(10) if a = ∃ then: e← 1
(11) return e

The truth of the second part of the disjunction
∨

lj where j > i must match li in any winning

strategy, for both values of li. If any literal lj = 1, then the disjunction evaluates to 1, which is

not compatible with li = 0. Also, if any literal lj is universal, then lj = 1 is not compatible with

li = 0 and there can be no winning strategy for Pk. Therefore it is sound to return false on line 9.

The only case remaining is to find at least one existential literal lj>i. If such a literal exists it

is straightforward to construct a winning strategy S, where all lj>i are 0 when li = 0, and lj = 1

when li = 1. To implement this, the algorithm (lines 6-10) checks if there is an existential literal.

After completing the loop, it returns true if there is an existential literal and 0 otherwise. Return-

ing true corresponds to the existence of S, and returning false corresponds to its non-existence,

therefore the algorithm is sound.

LEMMA 5.2.4. xiUniversal is sound and complete

PROOF. By the case analysis above, any domain removals are sound, and Ck is SQGAC

whenever true is returned. Also, Ck cannot be made SQGAC whenever false is returned. The

algorithm clearly terminates, therefore it is sound and complete. �

5.2.7. Case xiExistential. Procedure xiExistential (algorithm 27) checks for the conditions

that would lead to pruning li:

(1) Some literal lj 6=i set to 1, which implies that li = 1, or

169

Chapter 5. Logical constraints

Algorithm 27 xiExistential
(1) procedure xiExistential(): Boolean
(2) {xi may need to be pruned}
(3) {Check for the two conditions which would lead to pruning xi}
(4) allFalse←true
(5) for j = 0 . . . i− 1, i + 1 . . . r:
(6) a = literalState(j)
(7) if a = 1 then: return removeValue(i, 0)
(8) if (a = ∀ and j > i) then:
(9) if not removeValue(i, 0): return false {Set li = 1 or return false}

(10) return disjunctionTrue() {Now li = 1, call the appropriate procedure to prop-
agate the consequences}

(11) if a = ∃ or (a = ∀ and j < i) then: allFalse←false
(12) if allFalse then: return removeValue(i, 1)
(13) return true

(2) some inner literal lj>i is universal, which implies that li = 1, which must be propagated

further by calling disjunctionTrue, or

(3) all literals lj 6=i are 0, so li = 0.

I will argue that these three rules are sound and complete, and implemented by algorithm 27.

Firstly, if there is some literal lj 6=i = 1 then there is no winning strategy containing li = 0, so

rule 1 is sound. Similarly, if there is a literal lj>i which is universal, then li = 0 is not compatible

with both values of lj , therefore there is no winning strategy containing li = 0, therefore rule 2

is sound. Also, if all literals lj 6=i = 0 then there is no winning strategy where li = 1, so rule 3 is

sound.

If no literal lj 6=i is universal, and none of the three rules apply, then there must be some literal

lj 6=i which is existential. In this case two strategies can be constructed. S1 has (for all j 6= i where

lj is existential) lj = 0 and li = 0, and S2 has lj = 1 and li = 1. Both S1 and S2 are winning

strategies, and together they support all values for all variables, so Ck is SQGAC. Therefore the

rules are sound and complete if there are no universal variables.

As always, it is more tricky with universal variables. Assuming rules 1 and 3 do not apply, if

there is some universal literal lj<i and no universal literal lj>i then we have that . . .∀xj . . .∃xi . . . :

· · · ∨ lj ∨ · · · ⇔ li and we can construct a winning strategy S1 which supports li = 0 when lj = 0,

and supports li = 1 when lj = 1. Other existential literals are set to 0 in S1. We can construct a

170

Chapter 5. Logical constraints

second winning strategy S2 where all existential literals (including li) are set to 1. Therefore all

values are supported and Ck is SQGAC. Therefore the rules are sound and complete when there

are universal literals lj<i.

Now I will briefly argue that algorithm 27 exactly implements rules 1, 2 and 3. Line 7 im-

plements rule 1, since the algorithm iterates through all literals lj 6=i. Lines 8-10 implement rule

2, and return the outcome of disjunctionTrue. For rule 3, the Boolean variable allFalse represents

whether all literals seen so far are 0. It is maintainted on line 11. If the algorithm examines all

literals and all are 0, then the rule fires (line 12). Finally, the algorithm returns true if no rule fires.

LEMMA 5.2.5. xiExistential is sound and complete

PROOF. The three rules are both sound and complete, and the algorithm exactly implements

them, therefore the algorithm must be sound and complete. �

5.2.8. Proof of soundness and completeness. The central algorithm propagateOr (algo-

rithm 23) just finds the state of literal li, then calls one of the four algorithms above. Therefore the

proof follows from the lemmas for each case.

THEOREM 5.2.6. propagateOr is sound and complete

PROOF. By lemmas 5.2.1, 5.2.3, 5.2.4 and 5.2.5, each of the four cases of propagateOr is

sound and complete, therefore propagateOr is sound and complete. �

5.2.9. Instantiating for different types of literals. Two procedures (literalState and remove-

Value) were left undefined in the algorithm above, because they depend on the type of literal. They

are given here for Boolean literals and integer literals.

5.2.9.1. Boolean literals. For literals of the form (¬)xi, the two procedures are given in al-

gorithms 28 and 29.

Algorithm 28 (literalState) examines the domain of variable xi and its quantification, and re-

turns its state. Algorithm 29 (removeValue) simply checks whether the variable occurs negatively

171

Chapter 5. Logical constraints

Algorithm 28 literalState for (¬)xi

procedure literalState(i: variable index): {0, 1,∀,∃}
if 0 ∈ Di:

if 1 ∈ Di then:
return Qi

else:
if li = ¬xi then: return 1 else: return 0

else:
if li = ¬xi then: return 0 else: return 1

Algorithm 29 removeValue for (¬)xi

procedure removeValue(i: variable index, b: Boolean): Boolean
if (b = 0 ∧ li = ¬xi) ∨ (b = 1 ∧ li = xi) then:

return exclude(Ck, xi, 1)
else:

return exclude(Ck, xi, 0)

Algorithm 30 literalState for xi(=, 6=)vi

procedure literalState(i: variable index): {0, 1,∀,∃}
if Di = {vi} then:

if li = (xi 6= vi) then: return 0 else: return 1
else:

if vi ∈ Di then:
return Qi

else:
if li = (xi 6= vi) then: return 1 else: return 0

Algorithm 31 removeValue for xi(=, 6=)vi

procedure removeValue(i: variable index, b: Boolean): Boolean
if (b = 0 ∧ li = (xi 6= vi)) ∨ (b = 1 ∧ li = (xi = vi)) then:

return exclude(Ck, xi, vi)
else:

for all a ∈ Dki
where a 6= vi then:

if not exclude(Ck, xi, a) then: return false
return true

(li = ¬xi) or positively in the constraint, and removes the appropriate value using the exclude pro-

cedure which is assumed to be part of the constraint solver infrastructure. The exclude procedure

returns false if the domain is emptied or a universal is pruned.

5.2.9.2. Integer literals. For literals of the form xi(=, 6=)vi, the two procedures are given in

algorithms 30 and 31. These are very similar to the above.

172

Chapter 5. Logical constraints

Other instantiations. The Boolean and integer literals were chosen because of the require-

ments for modelling Connect 4 (section 5.3 below). However, other types of literal such as xi ≤ vi

or xi ≥ vi may be useful in other circumstances. The most general form of literal would be set

membership, xi ∈ Ai where Ai is a set of elements from the original domain: Ai ⊆ D0
i . The NB-

SAT formalism (Frisch and Peugniez [43], and developed further by Frisch, Peugniez, Doggett

and Nightingale [44]) uses set membership literals. Each constraint in an NB-SAT instance is a

disjunction of set membership literals.

5.3. Empirical evaluation

The proposed algorithm could be compared with the propagation algorithms in the previous

chapter, the decomposition approach, QBF, and binary QCSP.

First I compare the proposed algorithm against SQGAC using Connect 4, finding that the new

algorithm can be significantly more efficient. Second, I use Connect 4 again to compare against

the decomposition approach. In this case the new algorithm can be hugely more efficient.

I did not compare the proposed algorithm against QBF solvers, although this would be inter-

esting. The QBF solvers are very efficient at handling this type of relation, so I would expect them

to perform very well. Also they have features such as clause learning which should allow them

to outperform the plain search algorithm of Queso. However, the aim of the reified disjunction

algorithm is to bring strong reasoning on such constraints to QCSP, where the algorithm can be

used with other constraint propagators to solve complex problems, such as the job shop scheduling

problem in chapter 7.

I also did not compare against binary QCSP solvers, but in chapter 4 it was shown that binary

QCSP solvers are very poor with long constraints, when using the hidden variable encoding. There

may be a better encoding specifically for reified disjunction, but it is not clear that any encoding

could achieve a high level of consistency (approaching SQGAC).

5.3.1. Connect 4 experiments. To compare the proposed algorithm with the general SQGAC

algorithm in chapter 4, I have constructed a second model of Connect 4 using the disjunction

primitive. The previous model will be referred to as the arbitrary constraint model, and the one

173

Chapter 5. Logical constraints

presented here as the disjunction model. Recall that SQGAC was most effective of the algorithms

in chapter 4.

The set of variables is a superset of those of the arbitrary constraint model. There are some

additional variables for each move, and they are existentially quantified directly after mi. They are

listed below. Also there are more liz variables in this model than previously, one for each possible

line whereas previously there was one for each row, column and diagonal on the board.

• Boolean variables ∃mhi
c (move-here) representing whether the move i was made in col-

umn c.

• Boolean variables ∃posi
r,c representing the position of the empty slots in the column.

posi
r,c is 1 if slot r is free in column c.

Again the constraints are given for a single move i ∈ {1 . . . row×col}. They are grouped together

into seven sets, each of which is interchangeable with the appropriate set from the other model. An

implication A∧B ∧ · · · ⇒ C is rearranged as [¬A∨¬B ∨ · · · ∨C]⇔ 1 to match the primitives.

Also, conjunction A∧B∧· · · ⇔ C is rearranged as ¬A∨¬B∨· · · ⇔ ¬C to match the primitives.

(1) If i is even, for each column c, [gamestatei−1 = nil∧hi−1
c 6= row∧ui = col]⇒ mi =

col.

(2) If i is even, a black counter is placed on the board: for all columns c, variable mhi
c

(move-here) is set according to whether the move is in this column: linei−1 = 1∨hi−1
c =

row ∨mi 6= c⇔ mhi
c 6= 1

Also, for all columns c and rows r, the following four constraints are posted. If the

column height at move i − 1 is r, then the rest of the column is filled appropriately:

hi−1
c = r − 1⇒ posi

r,c = 1 and

posi
r,c = 1 ⇔ [bi

r,c 6= red ∧ bi
r+1,c = nil ∧ bi

r+2,c = nil ∧ · · · ∧ bi
row,c = nil]. The

move variable mi is connected to bi
r,c: [mhi

c = 1 ∧ hi−1
c = r − 1] ⇒ bi

r,c = black and

[mhi
c 6= 1 ∧ hi−1

c = r − 1]⇒ bi
r,c = nil.

If i is odd, a similar set of constraints is posted with red and black substituted for

each other.

174

Chapter 5. Logical constraints

(3) Map pieces from the board at i− 1 to the board at move i: for all rows and columns r, c,

bi−1
r,c = red⇒ bi

r,c = red and bi−1
r,c = black ⇒ bi

r,c = black.

(4) Link height and board state: for each column c and r ∈ 1 . . . (row + 1), bi
r−1,c 6=

nil ∧ bi
r,c = nil⇒ hi

c = r − 1.

(5) Detect lines: each set of four board variables that form a line (such as bi
1,1, b

i
2,1, b

i
3,1, b

i
4,1)

is given a unique number z and I refer to them as bz
1...4. If i is odd, for all z, linei−1 =

1 ∨ bz
1 6= red ∨ bz

2 6= red ∨ bz
3 6= red ∨ bz

4 6= red ⇔ liz 6= 1. In words, liz = 1 iff bz
1...4

are all red, and there is no line at the previous move. linei−1 is included so that when a

line is found, all future lz variables are set to 0 and cannot be branched.

If i is even, similar constraints are posted with black substituted for red.

(6) Connect the main line variable linei with the liz variables, where y = max(z): linei−1 ∨

li1 ∨ li2 ∨ · · · ∨ liy ⇔ linei.

(7) Set the gamestate variables: if i is odd, the following four constraints are posted.

gamestatei−1 = red⇒ gamestatei = red,

gamestatei−1 = black ⇒ gamestatei = black,

gamestatei−1 = nil ∧ linei = 1⇒ gamestatei = red,

gamestatei−1 = nil ∧ linei = 0⇒ gamestatei = nil.

If i is even, similar constraints are posted with black and red substituted for each

other.

In some of these constraints, variables are referred to with indices which are out of range, for

example gamestate0. These are set as follows. gamestate0 = nil, l0 = nil, b0
r,c = nil,

bi
0,c = red (chosen arbitrarily, cannot be nil), bi

row+1,c = nil, h0
c = 0. The red player must win,

so gamestaterow×col = red. Symmetry is broken as in the arbitrary constraint model.

5.3.1.1. Comparing efficiency using Connect 4. For each of the 7 sets of constraints, I investi-

gate how the level of consistency achieved, and the overall performance, differs from the arbitrary

constraint model. Stronger consistency implies a smaller (or equal) number of nodes in the search

tree. Efficiency is measured by time to solve the instance.

175

Chapter 5. Logical constraints

Hypothesis. For each set of constraints, the new model is more efficient, despite any differ-

ences in the level of consistency.

Method. I take the arbitrary constraint model and construct seven hybrid models by substi-

tuting each set of constraints by the corresponding set from the disjunction model. These are

compared with the arbitrary constraint model and disjunction model, using the search algorithm

in chapter 3 and the pure value rule applied to universal variables only. For the arbitrary con-

straints, the SQGAC algorithm was used. The same value selection heuristic was applied as in

chapter 4.

I chose the parameters col = 5 and row = 4. The arbitrary constraint model takes approx-

imately 4 minutes to solve with SQGAC with these parameters. The machine and other experi-

mental details are the same as in chapter 4.

Results. Table 5 contains node counts and run times for the arbitrary constraint model, the

seven hybrid models and the disjunction model. For constraint set 5 (detect lines), the disjunction

model is unambiguously better since it has a lower node count and lower time per node. For sets

1, 3, 4 and 6, the disjunction model is better in terms of the time per search node, although for

set 4 the search time difference is unlikely to be significant. This leaves sets 2 and 7 (place pieces

on board, and constrain gamestate variables). For both of these, they are weaker in terms of

consistency but more efficient per node. In line with these results, the disjunction model explores

more nodes than the arbitrary constraint model, but is more than an order of magnitude faster per

node, and takes around a quarter of the time to solve overall. In the trade-off between propagation

strength and efficiency, the disjunction model wins because its greater efficiency outweighs the

effect of its weaker propagation.

The results do not support the hypothesis because of constraint sets 2 and 7.

5.3.1.2. Scaling behaviour with Connect 4. I informally investigate whether the disjunction

model scales better than the arbitrary constraint model. Table 6 shows (in order of increasing

search time) four sets of parameters, the search time and number of nodes for both models, and

the ratios between the models. The disjunction model is faster for all five parameter sets, but the

search time ratio is increasing, suggesting that the arbitrary constraint model may be faster at some

176

Chapter 5. Logical constraints

Set of constraints Nodes and time
substituted Nodes Setup time (s) Search time (s) Search time

per node (ms)
None 47712 0.324 243.709 5.107

1 47712 0.529 238.306 4.994
2 121739 0.447 457.507 3.758
3 47712 0.478 209.293 4.387
4 47712 0.467 243.135 5.095
5 46557 0.393 168.260 3.614
6 47712 0.569 223.023 4.674
7 62258 0.561 284.760 4.574

All 168485 0.004 63.573 0.377
TABLE 5. Comparison of Connect 4 models where row = 4, col = 5

Board size Nodes and time (s)
col row Model Nodes Setup Search Search time Nodes

time time ratio ratio
4 4 Arbitrary 1692 0.395 5.812

Disjunction 4196 0.008 1.054 0.181 2.480
4 5 Arbitrary 7744 0.794 41.104

Disjunction 20856 0.004 9.130 0.222 2.693
5 4 Arbitrary 47712 0.324 243.709

Disjunction 168485 0.004 63.573 0.261 3.531
5 5 Arbitrary 1027266 1.221 6204.549

Disjunction 2689288 0.006 1749.937 0.282 2.618
5 6 Arbitrary 4874626 12.805 54606.482

Disjunction 22197560 0.016 16012.498 0.293 4.554
TABLE 6. Comparison of Connect 4 models for various parameters

point. The nodes ratio does not show a clear pattern. Connect 4 is unsatisfiable for all five sets of

parameters.

5.3.1.3. Comparing reified disjunction with Bordeaux’s primitives. The hypothesis is that the

reified disjunction provides significantly stronger consistency than Bordeaux’s primitives. Various

examples of this were given in section 5.1.1. The aim here is to see if this also applies in the

context of the Connect 4 model.

I will assume that when all variables represented in an expression E are existential, the consis-

tency achieved on the decomposition is equivalent to applying SQGAC to the expression directly.

177

Chapter 5. Logical constraints

(This only applies when the expression contains no repeated variables.) There is only one expres-

sion in the Connect 4 disjunction model which contains a universal variable. This is the expression

connecting the universal move variable ui to the existential move variable for the same move, mi.

In the disjunction model, this is expressed with a single reified disjunction. The original expression

followed by its expression as a reified disjunction (equation (18)) and the decomposition (equation

(19)) is shown below.

∃gamestatei−1, hi−1
c ,∀ui,∃mi :

[gamestatei−1 = nil ∧ hi−1
c 6= row ∧ ui = col]⇒ mi = col

∃gamestatei−1, hi−1
c ,∀ui,∃mi :

[gamestatei−1 6= nil ∨ hi−1
c = row ∨ ui 6= col ∨mi = col⇔ 1(18)

∃gamestatei−1, hi−1
c ,∀ui,∃mi, t1, t2, t3, t4, t5, t6 :

(gamestatei−1 6= nil⇔ t1) ∧ (hi−1
c = row ⇔ t2) ∧ (ui 6= col⇔ t3)(19)

∧(mi = col⇔ t4) ∧ (t1 ∨ t2 ⇔ t5) ∧ (t3 ∨ t5 ⇔ t6) ∧ (t4 ∨ t6 ⇔ 1)

Hypothesis. When solving Connect 4 with the decomposition, the solver will explore more

nodes and take more time than with the integer reified disjunction primitive.

Method. I used the disjunction model, and simply replaced constraint set 1 with the decom-

position in equation (19). SQGAC is enforced on the ternary primitive constraints using the reified

disjunction algorithm. All experimental details are the same as for the previous experiments. As

before, the pure value rule is applied to universal variables only.

178

Chapter 5. Logical constraints

Board size Nodes and time (s)
col row Model Nodes Setup time Search time
4 4 Disjunction 4196 0.008 1.054

Disjunction+Bordeaux 26359046 0.007 6213.737
TABLE 7. Comparison of reified disjunction with Bordeaux’s decomposition on
Connect 4

Results. Table 7 shows the search time and number of nodes for the two models, for a 4 × 4

board. The experiment took so long for this board size that I did not run it for larger sizes. The

decomposition gives surprisingly bad results at this size.

The disjunction model is set up so that the pure value rule can work, but this does not carry

through to the decomposition. Whenever the column is full or the game is over, the constraint

(equation (18)) in the disjunction model becomes trivially true and all values of ui become pure

with respect to the constraint. In the decomposition, t1 or t2 is set to 1 and hence t5 and t6 are set

to 1. t3 and t4 remain uninstantiated, and none of the values of ui become pure. I can see no way

of avoiding this problem within Bordeaux’s method.

Without the effect of the pure value rule, the search algorithm will assign ui a cheating move,

then explore a subtree where mi is assigned a legal move and then the search proceeds as usual,

from move i+1. The size of the subtree can be very large, depending on the number of remaining

moves and the size of the board. The size of the subtree scales up exponentially as the board size

is increased, therefore the problem worsens.

The other possible problem is that consistency is weaker in the decomposition. For example

this could arise if gamestatei−1 = nil and mi 6= col, in which case hi−1
c = row is inferred by

the reified disjunction, and nothing is inferred by the decomposition. However I do not know if a

situation like this occurs during search.

5.3.1.4. The effect of the pure value rule. The disjunction model is designed such that the

pure value rule can prune certain values (corresponding to invalid moves) of universal variables.

Disabling the pure value rule causes Queso to explore a much larger search tree, as shown in table

8. Experimental details are the same as for the previous experiments.

179

Chapter 5. Logical constraints

Board size Nodes and time (s)
col row Model Nodes Setup time Search time
4 4 Disjunction with PV 4196 0.008 1.054

Disjunction without PV 92213 0.014 22.066
4 5 Disjunction with PV 20856 0.004 9.130

Disjunction without PV 1042992 0.010 355.298
5 4 Disjunction with PV 168485 0.004 63.573

Disjunction without PV 28179488 0.017 9425.100
TABLE 8. The effect of the pure value rule with Connect 4

5.4. Summary

The aim of this chapter is to bring strong reasoning on logic constraints (such as QBF clauses)

to QCSP. I have presented a new algorithm for logic constraints in QCSP, and evaluated it on

a game, showing that there are QCSP instances where the new algorithm performs significantly

better than the SQGAC algorithm in chapter 4. I have also shown that the new algorithm performs

significantly better than the decomposition approach of Bordeaux et al. [19], when used on the

game of Connect 4.

180

CHAPTER 6

Bounds consistency and the sum constraint

6.1. Introduction

In classical CSP, numerical constraints and bounds consistency are commonplace. In section

2.1.2.3 of the literature review I cover three notions of bounds consistency for CSP [30], and show

the derivation of a simple propagation algorithm which enforces one of the notions of bounds

consistency [76].

The presence of quantifiers gives an opportunity to strengthen the definition of bounds con-

sistency. In this chapter I define a new bounds consistency notion for QCSP, and propose a prop-

agation algorithm for the sum constraint, proving that the algorithm enforces the new consistency

notion. This is compared with the existing work in QCSP by Bordeaux [19].

6.1.1. Motivating examples. The only other work on numerical constraints in QCSP is Bor-

deaux et al. [19, 22] (reviewed in chapter 2 section 2.3.3). In chapter 4, the following example is

given.

∀x1, x2 ∈ {3, 4},∃x3 ∈ {3, 4} : x1 − x2 + x3 = 3

It is false because x1 = 4, x2 = 3 cannot be extended to a satisfying tuple. In chapter

4 section 4.2, it is shown that this expression can be decomposed in three ways in Bordeaux’s

framework, but the propagation rules are unable to detect the inconsistency [19].

When the only available primitives are a+b = c and a = −b, the variables x1 and x2 cannot be

contained in the same primitive constraint. This difficulty could be solved by introducing negation

to the addition primitive.

The following example (equation (20)) is trivially false since all three variables are universal.

Since the three variables are interchangeable, all three decompositions are equivalent. When the

181

Chapter 6. Bounds consistency and the sum constraint

expression is decomposed (as in equation (21)), the propagation rules are insufficient to detect the

inconsistency.

(20) ∀x1, x2, x3 ∈ {0, 1} : x1 + x2 + x3 = 2

∀x1, x2, x3 ∈ {0, 1}∃t1 ∈ {0, 1, 2} :(21)

x1 + x2 = t1, t1 + x3 = 2

A sum primitive with unlimited length would resolve this problem.

6.1.2. Proposed sum primitive. The proposed primitive, shown below, introduces constants

ci ∈ Z \ {0} and can be of any length. This allows it to be applied directly to both the examples

above.

i=1∑
r

cixki
= 0

I refer to this as a sum of terms cixki
, and each term as being universal or existential depending

on the quantification of the variable in the term. As in definition 3.2.2 in chapter 3, for constraint

Ck the sequence of variables Xk = 〈xk1 , . . . , xkr〉 is a subsequence of the variables X in the

QCSP instance, and therefore the numbering 1 . . . r is consistent with the quantifier sequence.

6.2. Definition of bounds consistency

Three definitions of bounds consistency in CSP are given by Choi et al. [30] and reviewed

in chapter 2 section 2.1.2.3. I generalize bounds(R) consistency for QCSP. Briefly, a constraint

Ck is bounds(R) consistent iff a real-valued solution to the constraint can be constructed for each

bound of each variable, where the solution contains only values within the existing bounds of the

variables.

182

Chapter 6. Bounds consistency and the sum constraint

The definition of Qbounds(R) consistency depends on relaxing some properties of the con-

straint. The local instance Pk containing just the constraint Ck and its variables Xk (defined in

chapter 3 section 3.2.4) is relaxed in three ways, to form r relaxed instances, one for each variable,

referred to as Pk1 . . .Pkr . The idea is that new bounds for xki
will be found by a computation on

the instance Pki
. The reason to have a relaxed instance for each variable xki

is that the relationship

between xki
and outer universals is different to that with inner universals.

DEFINITION 6.2.1. Relaxed QCSP instance Pki
derived from Pk w.r.t. variable xki

.

For Pki
= 〈Xk,Dki

, {Ck},Qki
〉, the set of variables Xk is shared with Pk. Some of the

quantifiers are changed: Qki
= 〈∃xk1 . . .∃xki−1

Qki
xki

. . . Qkrxkr〉 and the individual quanti-

fier symbols are referred to as Qki

1 . . . Qki

r . The domains of Pki
are derived from the bounds of

the variables: Dki
= 〈Dki

1 . . . Dki

r 〉. Existential variables can take any real value between their

bounds: ∀j : (Qki

j = ∃) ⇒ (Dki

j = {z|z ∈ R ∧ xki
≤ z ≤ xki

}), and universal variables can

only take their two bounds: ∀j : (Qki

j = ∀)⇒ (Dki

j = {xki
, xki
}).

In words, the following three relaxations are applied.

• For each variable xki
, all outer universals Qkj

= ∀ where j < i are changed to existen-

tials to form the instance Pki
.

• Existential variables in Pki
may take any real value between their upper and lower

bounds.

• Universal variables in Pki
are relaxed by discarding all values except the upper and lower

bounds.

In the context of bounds consistency, set CS
k includes all real-valued solutions to the constraint

which are within the bounds of the variables. This is in contrast to the use of CS
k in other chapters

where it only contains solutions which are within the domains of the variables (i.e. CS
k ⊆ Dk1 ×

· · · ×Dkr).

The definition of winning strategy (definition 3.2.8 in chapter 3) is central to the definition of

Qbounds(R) consistency. I will call a winning strategy for Pki
a real-valued partial winning strat-

egy to avoid confusion with a winning strategy for Pk. The definition of Qbounds(R) consistency

183

Chapter 6. Bounds consistency and the sum constraint

depends on the existence of real-valued partial winning strategies containing each bound of each

variable.

DEFINITION 6.2.2. Qbounds(R) consistency of constraint Ck

A constraint Ck with variables Xk = 〈xk1 , . . . , xkr〉 is Qbounds(R) consistent iff for each

variable xki
and each bound bi ∈ {xki

, xki
} there exists a real-valued partial winning strategy for

Pki
, S = {sj |Qki

j = ∃} such that S contains the bound: ∃τ : τ ∈ sce(S) ∧ τi = bi.

For example, the constraint below is Qbounds(R) consistent but not SQGAC.

∀xk1 ∈ {−10, 2, 10}∃xk2 ∈ {−10,−4, 10} : xk1 + xk2 = 0

Consider the real-valued partial winning strategy for Pk1 , S = {s2} where s2(〈−10〉) =

10, s2(〈10〉) = −10. S supports both bounds of xk1 because sce(S) = {〈−10, 10〉, 〈10,−10〉}.

For xk2 , in the relaxed problem Pk2 both variables are existential. To support the lower bound

of xk2 , a winning strategy can be constructed with one scenario: 〈10,−10〉, and similarly for the

upper bound.

The following constraint is not Qbounds(R) consistent but it is bounds(R) consistent.

∃xk1 ∈ {1, 2}∀xk2 ∈ {1, 2}∃xk3 ∈ {1, 2} : xk1 + xk2 + xk3 = 5

The lower bound of xk1 is not supported by a real-valued partial winning strategy for Pk1 ,

because xk1 7→ 1 and xk2 7→ 1 are not compatible, and in Pk1 , xk2 is universal. To establish

Qbounds(R) consistency, value 1 is removed from xk1 .

In the case where all variables in the constraint are existential, Qbounds(R) consistency is

equivalent to bounds(R) consistency. All variables of all relaxed instances Pki
are existential,

therefore a winning strategy for Pki
can be constructed from a single solution τ ∈ CS

k where

∀j : τj ∈ R, xkj
≤ τj ≤ xkj

. Therefore the definition of Qbounds(R) consistency requires a real-

valued solution for each bound of each variable. This is identical to the definition of bounds(R)

consistency in chapter 2 section 2.1.2.3.

184

Chapter 6. Bounds consistency and the sum constraint

Finally, it is straightforward to define Qbounds(Z) and Qbounds(D) consistency in a similar

way to Qbounds(R) consistency. This is done by adapting the definition of Pki
such that for

Qbounds(Z) consistency each domain is a subset of the integers, ∀j : Dki

j ⊆ Z, or for Qbounds(D)

consistency each domain is a subset of the equivalent domain in P , ∀j : Dki

j ⊆ Dkj
.

6.3. Propagation rules

Rearranging the sum expression for a variable xki
gives the following.

(22) cixki
= −

∑
{cjxkj

|j 6= i}

In CSP, the maximum and minimum values of the right-hand side of this expression could be

used to compute new bounds for xki
. A derivation of bounds consistency rules in CSP is shown in

chapter 2 section 2.1.2.3. However in QCSP it is slightly more complex.

For each variable xki
∈ Xk, there are two rules to update the upper and lower bounds. In

these, the function max(cjxkj
) is cjxkj

if cj is positive, and cjxkj
if cj is negative. min is defined

similarly. The two rules below compute new bounds on cixki
. The first provides a lower bound

for cixki
, which is a lower bound on xki

if ci is positive, and an upper bound if ci is negative. This

is referred to as rule 1, shown in equation (23).

cixki
≥ −

∑
{max(cjxkj

)|(j < i) ∨ (Qj = ∃)}

−
∑
{min(cjxkj

)|(j > i) ∧ (Qj = ∀)}(23)

The only difference between this and the equivalent CSP rule is when dealing with variables

xkj
which are universal, and quantified inside xki

(j > i). In this case, the new bound of xki
must

be consistent with all values of xkj
. Because of the nature of the sum constraint, it suffices to use

a single value for xkj
. The value is the one which most restricts cixki

, which in this case is the

value which minimizes cjxkj
.

185

Chapter 6. Bounds consistency and the sum constraint

The rule to compute the new upper bound of cixki
is very similar to equation (23), with min

and max transposed (rule 2).

cixki
≤ −

∑
{min(cjxkj

)|(j < i) ∨ (Qj = ∃)}

−
∑
{max(cjxkj

)|(j > i) ∧ (Qj = ∀)}(24)

From these two rules, new bounds of xki
are computed by dividing by ci. The pairs of new

bounds are referred to as bi and bi where bi ≤ bi. If ci < 0 then bi is derived from cixki
, and bi is

derived from cixki
. These two rules are applied to all variables regardless of quantification.

For each universal variable there is a single rule. To illustrate this rule, consider the expression

below.

∃xk1 , xk2 , xk3 ∈ {−2,−1, 0, 1, 2}∀xk4 ∈ {0, 1, 2}∃xk5 ∈ {−1, 0} :

xk1 + xk2 + xk3 + xk4 + xk5 = 0

This expression is false because (whatever the instantiation of xk1 , xk2 and xk3) xk4 has a

wider interval than xk5 , so there can not exist a value in Dk5 for each value in Dk4 . Rules 1

and 2 applied to all variables do nothing, so a third rule is required. In more general terms,

the range of a universal term must be smaller or equal to the combined range of all terms of

variables quantified inside it. A sum constraint is false if the range of any universal variable is

too great given the ranges of variables quantified inside. The range is defined on terms, rather

than variables: range(cjxkj
) = max(cjxkj

) − min(cjxkj
). If the universal variable in question

is xki
, the combined range of all variables xkj>i

must be calculated. If xkj
is existential, their

range is summed, but if it is universal, range(cjxkj
) is subtracted because the values of xki

must

be compatible with both bounds of xkj
. This is illustrated with the following example.

186

Chapter 6. Bounds consistency and the sum constraint

∃xk1 , xk2 , xk3 ∈ {−2,−1, 0, 1, 2}∀xk4 ∈ {0, 1, 2}∃xk5 ∈ {−1, 0}

∀xk6 ∈ {0, 1}∃xk7 ∈ {−1, 0} : xk1 + xk2 + xk3 + xk4 + xk5 + xk6 + xk7 = 0

Working from the innermost variable outwards, xk7 and xk6 both have a range of 1. In any win-

ning strategy, when xk6 is set to 1 then xk7 must be set to -1, and when xk6 is set to 0 then xk7 must

be set to 0 since other variables are fixed by the winning strategy. Therefore the sub-expression

xk6 +xk7 always takes value 0 and has range 0 since the universal variable counteracts the existen-

tial. Therefore the range of xk5 + xk6 + xk7 is range(c5xk5)− range(c6xk6) + range(c7xk7) = 1.

The complete rule for universal variable xki
is given below (rule 3).

∑
{range(cjxkj

)|(j > i) ∧ (Qkj
= ∃)}

−
∑
{range(cjxkj

)|(j ≥ i) ∧ (Qkj
= ∀)} ≥ 0(25)

Rule 3 only ever fails or succeeds, never leads to pruning. If the inequality is not true, then the

constraint is false.

6.3.1. Proof of correctness. I claim that applying the three rules in equations (23), (24) and

(25) either detects falsity or enforces exactly Qbounds(R) consistency. The rules are applied to

exhaustion, with the computed bounds rounded to an integer (the upper bound rounded down, and

the lower bound rounded up), before being applied to variable domains.

The proof is by constructing sets of scenarios with certain properties, such that they corre-

spond to real-valued partial winning strategies for Pki
. First, for each variable xki

, two sets are

constructed. In the first set each tuple contains the most recently computed lower bound bi, and

similarly for the second set and bi. Second, xki
≥ bi and xki

≤ bi (the new bounds are not neces-

sarily tight), so a further two sets are constructed where the tuples contain xki
and xki

respectively.

It is shown that these sets have the necessary properties to be sets of scenarios of real-valued partial

187

Chapter 6. Bounds consistency and the sum constraint

winning strategies of Pki
, and hence the definition of Qbounds(R) consistency is met. (Hence-

forth real-valued partial winning strategies for Pki
will be referred to as winning strategies for Pki

for brevity.)

The proof below assumes that the constants ci are positive, for simplicity. For terms with

negative constants, all references to upper and lower bounds, and increasing or decreasing, are

simply reversed.

For the following proof, I observe that the set of scenarios sce(S) of a winning strategy S

for Pki
has the following properties, following directly from the definitions in chapter 3. These

properties are complete in the sense that a set of scenarios meeting these properties can be com-

bined into a winning strategy. This follows by examination of the properties and the definitions of

winning strategy and scenario (definitions 3.2.8 and 3.2.7 in chapter 3).

(1) ∀τ : τ ∈ sce(S)⇒ τ ∈ CS
k (definition 3.2.8 in chapter 3).

(2) For any two distinct tuples τ and τ ′ in sce(S), the leftmost value to differ corresponds

to a universal variable: ∀j : τj 6= τ ′j ⇒ [∃l : (l ≤ j) ∧ (Qki

l = ∀) ∧ (τl 6= τ ′l)]. This

follows from the definition of strategy as a family of functions determining the values for

existential variables from those for outer universals (definition 3.2.6 in chapter 3).

(3) There is a tuple in sce(S) for each combination of values of universal variables (definition

3.2.7 in chapter 3).

The following proof constructs sets of scenarios with the three properties, and as part of this

construction it is required to construct a tuple by adapting another tuple. The proof requires

adapting a tuple τ to σ by increasing one value at position i, and decreasing others to restore

the sum. The lex-least adapted tuple σ is required, and for indices j ∈ {1 . . . α}, σj = τj . In

the following, set realsolk contains all real solutions to the constraint, regardless of the domains,

therefore CS
k ⊂ realsolk. Lex-least refers to the least tuple in the lexicographic ordering. The

lex-least adapted tuple is defined below (definition 6.3.1).

DEFINITION 6.3.1. Lex-least adapted tuple σ from τ with parameters α, i and vi.

The tuple σ is the lex-least tuple subject to the following:

188

Chapter 6. Bounds consistency and the sum constraint

Algorithm 32 Algorithm to construct the lexicographically least adapted tuple
procedure lexLeastAdapted(tuple τ , value vi, index i, index α): tuple σ
Construct σ by adapting τ , using value vi at index i and changing no other values in the range
τ1 . . . τα. The values of σ are bounded as follows:
σi = vi where vi ≥ τi,
∀j : (Qki

j = ∀ ∨ j ≤ α)⇒ (σj = τj),
∀j : (Qki

j = ∃)⇒ (xkj
≤ σj ≤ τj).

Within these bounds, values for existential variables are set as follows. For each j ∈ {α + 1 . . . r}
and where Qki

j = ∃ in ascending order: there is a sequence of 0 or more indices where σj = xkj
,

followed by one where xkj
≤ σj ≤ τj , followed by 0 or more σj = τj such that σ ∈ realsolk.

• ∀j : (Qki

j = ∀ ∨ j ≤ α)⇒ (σj = τj),

• ∀j : (Qki

j = ∃)⇒ (xkj
≤ σj ≤ τj),

• σi = vi,

• σ ∈ realsolk.

A procedure for constructing σ in the context of Pki
is given in algorithm 32. An important

property of algorithm 32 is that the changes between σ and τ are concentrated to the left of the

tuple (except for those positions which must be equal). For any two indices j, l where i 6= j, i 6= l,

j < l, σj 6= τj and σl 6= τl, then σj = xkj
. In words, the value at index j is reduced as far as

possible before changing the value at index l.

THEOREM 6.3.2. A sum primitive constraint Ck is Qbounds(R) consistent after applying the

propagation rules to exhaustion.

PROOF. For each variable xki
, two non-integral bounds bi and bi are computed by the final

applications of rules 1 and 2. The lower bound rule (rule 1, equation (23)) implicitly constructs

a tuple τ ∈ realsolk. In the context of Pki
, τi = bi, ∀j : (Qki

j = ∀) ⇒ (τj = xkj
) and

∀j : (Qki

j = ∃)⇒ (τj = xkj
). τ is adapted to form a set of scenarios S1 as follows.

For the outermost universal xkj
where j > i in Pki

, by rule 3 (equation (25)) xkj
can be

replaced with xkj
in τ . Algorithm 32 is used to construct a new tuple τ ′ where τ ′j = xkj

, with

parameter α = j, with the result that τ ′ ∈ realsolk. Rule 3 guarantees that it is possible to restore

the sum to 0 when α = j, while allowing the same to be done for all other universal variables

189

Chapter 6. Bounds consistency and the sum constraint

quantified after xkj
(since the range of all such variables is subtracted). Using the lex-least tuple

τ ′ ensures that the leftmost values after j are changed to restore the sum. This ensures that the

procedure can be repeated for other universal variables quantified after xkj
.

This procedure is repeated on both τ and τ ′ for the next universal after xkj
in the quantifier

sequence, producing four tuples, and so on to the final universal in the quantifier sequence. This

yields a set of scenarios S1 where τi = bi. By symmetry there exists a second set S2 of scenarios

where τi = bi, derived from the upper bound rule (equation 24). Now it can be seen that both S1

and S2 each satisfy property 2 but not necessarily 1 and 3.

It is possible to construct a third set of scenarios S3 each containing some intermediate value

vi (bi ≤ vi ≤ bi) at position i. This is done by adapting all the tuples in set S1. For each tuple

τ ∈ S1, there exists σ ∈ S3 with following properties. All values for universal variables are the

same: ∀j : (Qki

j = ∀ ∧ j 6= i) ⇒ (τj = σj), σi = vi, and since σi ≥ τi, other values in σ must

be adjusted downwards such that σ ∈ realsolk. This must be possible since there is a tuple γ ∈ S2

such that γi ≥ σi and values for universal variables are the same in γ and τ . The lex-least σ is

constructed by algorithm 32 using α = 0 such that σi = vi. For any two tuples τ and τ ′ in S1,

which first differ at position j, two tuples σ and σ′ are constructed with σi = σ′i = vi. From the

algorithm, σ and σ′ also first differ at position j, therefore set S3 must have property 2. S3 also

has property 1 iff xki
≤ vi ≤ xki

.

If xki
is existential (Qki

i = ∃), S3 is constructed where vi = xki
, and S3 where vi = xki

, and

both these sets have the required three properties, and therefore winning strategies exist containing

each bound.

If xki
is universal (Qki

i = ∀), then S3 is constructed where vi = xki
and S3 where vi = xki

.

S3 ∪ S3 has the three required properties, proving that a winning strategy exists containing both

bounds of xki
. �

6.3.2. Comparison with previous work. In section 6.1.1 two examples were given where

the propagation rules and decomposition of Bordeaux [19] are inadequate. They are reproduced

below.

190

Chapter 6. Bounds consistency and the sum constraint

∀x1, x2 ∈ {3, 4},∃x3 ∈ {3, 4} : x1 − x2 + x3 = 3

∀x1, x2, x3 ∈ {0, 1} : x1 + x2 + x3 = 2

Applying the new rules to these examples detects falsity for both. Applying rule 3 to x1 in

both examples is sufficient. These examples illustrate that decomposition damages propagation.

Bordeaux gives specialized propagation rules for the ternary sum primitive x1 + x2 = x3

for eight different quantifier sequences. By inspection, none of Bordeaux’s rules are individu-

ally stronger than the equivalent new rules. Therefore, even without the problems introduced by

decomposition, Bordeaux’s scheme must be equivalent or weaker than the new scheme.

The only advantage of Bordeaux’s scheme is that it is potentially faster, since the rules are

specialized and the propagator does no multiplication or division.

Benedetti et al. [11] described four ways of adapting an existing CSP propagation algorithm

for QCSP (reviewed in chapter 2 section 2.3.2). If we had a bounds(R) propagator for long sum,

this could be adapted as follows.

Existential analysis: This just applies bounds(R) consistency, and if a universal variable is

pruned, it fails, hence existential analysis is much weaker than Qbounds(R) consistency.

Functional analysis: The long sum is not necessarily functional on any of its variables, so

this cannot be applied.

Look-ahead analysis: Performing look-ahead analysis for all universal variables yields a

propagator which takes exponential time.

Dual analysis: This form of analysis negates the constraint and inverts each quantifier

without changing the order. The long sum becomes
∑

cixki
6= 0. Some form of prop-

agation is performed on the negated constraint. Existential analysis with bounds(R)

consistency could be applied, but the negated constraint is such that no values could be

pruned.

191

Chapter 6. Bounds consistency and the sum constraint

The only form of analysis that can be usefully applied, look-ahead analysis, is comparable to

the SQGAC and WQGAC-Schema algorithms in chapter 4. It is much more expensive than the

Qbounds(R) algorithm presented here.

6.4. Implementation

The three rules can be implemented in a coarse-grained multi-pass propagator such that the

propagator runs in O(r) time, assuming arithmetic operations take constant time, and also dis-

counting the effect of waking up other constraints when bounds are changed.

Algorithm 33 applies rules 1 and 2 once to each variable, in reverse quantification order. If the

upper total, ut (i.e. the negative of the right hand side of equation 23) and lower total, lt (equation

24) were calculated individually for each variable, the result would be a O(r2) algorithm. Instead

the ut and lt for variable xkj
are computed from the values for xkj+1

. ut and lt for xkr are

computed on the second and third line in O(r) time. By factoring out a common subformula

between two formulas, a time factor of r is saved.

For each variable, reviseBounds is called to perform the division by ci, rounding and applying

to the variable. If this causes a domain to become empty or a universal to be pruned, reviseBounds

returns false, therefore so does propagateSum.

In the same way, rule 3 is applied once to each universal variable, in reverse quantification

order. The innerRange quantity (i.e. the right hand side of equation 25) for variable xkj
is com-

puted from the same quantity for xkj+1
. If the inequality does not hold, the constraint is false so

propagateSum returns false.

The procedure reviseBounds (algorithm 34) performs the division and rounding necessary to

apply the new bounds to a variable. The upper total, lower total and variable index are passed in.

For the upper bound ub, if it is less than xki
then the excludeUpper procedure is called to reduce

xki
. If this empties the domain, or if xki

is universal, then excludeUpper returns false, therefore

reviseBounds returns false. The same is done for the lower bound lb.

192

Chapter 6. Bounds consistency and the sum constraint

Algorithm 33 Propagation algorithm for sum constraint
procedure propagateSum(): Boolean
ut←

∑r−1
j=1 max(cjxkj

) {Upper total, excluding max(crxkr)}
lt←

∑r−1
j=1 min(cjxkj

) {Lower total, excluding min(crxkr)}
if ¬reviseBounds(lt, ut, r): return false {Apply rules 1 and 2 to xkr }
for j in (r − 1) . . . 1:

if Qkj+1
= ∀:

ut← ut + min(cj+1xkj+1
)−max(cjxkj

)
lt← lt + max(cj+1xkj+1

)−min(cjxkj
)

else:
ut← ut + max(cj+1xkj+1

)−max(cjxkj
)

lt← lt + min(cj+1xkj+1
)−min(cjxkj

)
if ¬reviseBounds(lt, ut, j): return false {Apply rules 1 and 2 to xkj

}
{Apply rule 3 to all universal variables}
innerRange← 0
for j in r . . . 1:

if Qkj
= ∀:

innerRange← innerRange− range(cjxkj
)

if innerRange < 0: return false
else:

innerRange← innerRange + range(cjxkj
)

return true

Algorithm 34 reviseBounds procedure
procedure reviseBounds(lt, ut, i): Boolean
{Revise the bounds for variable xki

using lt and ut}
if ci > 0:

ub←
⌊
−lt
ci

⌋
lb←

⌈
−ut
ci

⌉
else:

ub←
⌊
−ut
ci

⌋
lb←

⌈
−lt
ci

⌉
if ub < xki

:
if ¬excludeUpper(nil, xki

, ub): return false
if lb > xki

:
if ¬excludeLower(nil, xki

, ub): return false
return true

Assuming that the division and rounding take constant time, the time complexity of revise-

Bounds is the same as that for excludeUpper (algorithm 7), which is proportional to the size of the

wakeUp(xki
) set.

193

Chapter 6. Bounds consistency and the sum constraint

6.4.1. Implementation decisions. The algorithm above is coarse-grained and non-incremental

(i.e. it stores no state between invocations). The alternative here is to build a fine-grained algorithm

which is notified of each change to the bound of a variable, and which stores the ut and lt values

between invocations. Considering each variable separately, each variable has a ut and lt value,

as well as innerRange for universal variables. These 3 values would be maintained incrementally,

and backtracked when the search backtracks. Unfortunately, a change in either bound of any other

variable would require updates to ut or lt at least. It seems likely that maintaining all these values

incrementally would be very inefficient.

The proposed algorithm is multi-pass rather than one-pass. When a bound is changed by

reviseBounds, the long sum is re-queued so that it will be called again later, possibly after other

constraints have been called. The alternative here is to repeat the entire contents of propagateSum

until a fixed point is reached, avoiding the need to re-queue the constraint. It is difficult to say

which alternative would be more efficient without experimentation.

6.4.2. Comparison with SQGAC. As a proof of concept, the algorithm described has been

implemented and compared with the SQGAC propagation algorithm in chapter 4. The QCSP

instances used contain one sum constraint, with six variables. For each variable, its quantifier

is chosen randomly, with probability 0.8 for the existential quantifier. The domain of each vari-

able is chosen with uniform probability from the following five: {3 . . . 12}, {0 . . . 9}, {−3 . . . 6},

{−9 . . . 0} and {−12 . . . − 3}. The constants c1 to c6 for the constraint are non-zero integers

chosen with uniform probability in the range −10 . . . 10. 10,000 such instances were generated.

SQGAC propagation is able to determine the satisfiability of each instance at the root node, so

no search is required. 4412 instances are satisfiable, and SQGAC propagation took 1045 seconds

to decide all 10,000 instances. The bounds consistency algorithm was able to solve 4800 at the

root node, and the remainder required search (algorithm 3). For the instances that required search,

249,763 nodes were explored in total. 7.86 seconds were required to decide all 10,000 instances.

This is 0.8% of the time required by SQGAC propagation.

194

Chapter 6. Bounds consistency and the sum constraint

6.5. Summary

In this chapter I have defined a form of bounds consistency for quantified constraints. This is

similar to bounds(R) consistency in that both definitions require an object to exist for each bound

of each variable. In bounds(R) consistency, the object is a satisfying tuple, and in Qbounds(R)

consistency it is a winning strategy. Both objects pertain to a relaxed form of the constraint,

where some variables may take any real value between their bounds. This similarity suggests that

Qbounds(R) consistency, or a close variant, may be as widely applicable as bounds(R) consis-

tency is.

The propagation algorithm for long sum is significantly stronger than the existing ternary sum

predicate, as well as being designed with efficiency in mind. It extends the input language of

Queso significantly. The brief experiment shows that the bounds propagation algorithm can be

much more efficient than the general SQGAC propagation algorithm. The work in this chapter

could serve as a proof of concept for further arithmetic constraints.

195

CHAPTER 7

Application of QCSP to factory scheduling

7.1. Introduction

Scheduling is an important application of constraint programming. I use the well-studied job

shop scheduling problem because of its simplicity. The aims are as follows:

• to advance the art of modelling problems in QCSP;

• to show that a moderately sophisticated problem can be modelled and solved with Queso;

• to evaluate some of the QCSP algorithms in this thesis on a realistic problem;

• and to briefly compare the schedule length of a contingent scheduling approach with a

non-contingent approach.

The work in this chapter is intended as a proof of concept, rather than as a contribution to sched-

uling. Job shop scheduling is very well studied, so I will not be able to compete in terms of

optimizing large instances.

In general, scheduling is applying resources to tasks over a period of time, respecting con-

straints such as task order and resource capacity. It is often framed as an optimization problem,

with the aim of minimizing the total length of the schedule (the makespan). In this chapter I con-

sider problems with uncertainty (particularly machine servicing at unpredictable times), where the

uncertainty is modelled using universally quantified variables.

Constraint programming is a leading technique for scheduling, with a great deal of research

on the subject. One important technique is edge finding constraint propagation algorithms (in-

troduced by Carlier and Pinson [26]). Edge finding propagation algorithms perform powerful

propagation on the resources by exploiting rules about start and end times for tasks. While I do

not use these algorithms here, the models presented in section 7.2 could be trivially adapted by

197

Chapter 7. Application of QCSP to factory scheduling

Job number machine/duration
1 1/3 2/3 3/3
2 3/4 2/4 1/4
3 2/3 3/3 1/3

machine

1

3

2

1

3 1

2

3 2

0 5 10 14

2:

1:

3:

time

job allocation

TABLE 9. Simple job shop scheduling problem and solution with optimal makespan

adding edge finding constraints over the start time variables of the tasks. The start time variables

are all existential, so the existing edge finding algorithm can be used without alteration.

7.1.1. Job shop scheduling. The job shop scheduling problem (JSSP) is a simple and well-

studied form of factory scheduling, with n jobs and m machines. A job consists of a chain of m

tasks, each assigned to a distinct machine. Each task has two constants associated with it:

• the constant tm(i, j) is an integer from 1 . . .m representing the machine that is required

for task i of job j;

• d(M, j) is an integral constant representing the duration of the task in job j which runs

on machineM.

The symbols tm and d are indexed differently for convenience in writing out the constraints, but

since every job has exactly one task on each machine, the duration of task i of job j is simply

d(tm(i, j), j). The tasks cannot be interrupted, and must be executed in order. All tasks must be

completed within a time bound maxmakespan.

A schedule is found which maps each task of each job to a starting time, such that no two

tasks are running on the same machine at the same time. The duration (makespan) of the schedule

is often optimized or approximately optimized.

198

Chapter 7. Application of QCSP to factory scheduling

Staff absences

Machine downtime

Order changesImmediate effect Delayed or
schedulable effect

FIGURE 38. Sources of uncertainty

I will refer to the basic time units as slots, numbered from 1 to maxmakespan. Table 9 shows

a simple example of a job shop problem, and an optimal solution with a makespan of 14.

7.1.2. Uncertainty in factory scheduling. Factory scheduling can have various sources of

uncertainty, such as the ones listed below. Each one can have immediate effect or a delayed or

schedulable effect (figure 38).

• Staff absences

• Order changes

• Machine faults or servicing

• Early or late delivery of raw materials

• Uncertainty in task durations

Davenport and Beck survey approaches to scheduling with uncertainty, with the following broad

divisions [33].

• Redundancy-based techniques (which typically reserve time to re-execute tasks that fail).

• Probabilistic techniques, where the aim is to maximize the probability that a schedule

will be able to execute.

• Contingent scheduling, where multiple schedules or schedule fragments are generated

which optimally respond to anticipated events.

199

Chapter 7. Application of QCSP to factory scheduling

In this chapter I model a contingent scheduling problem with QCSP. One of the aims is to show

that QCSP has potential in the area of contingent scheduling.

Faults. For simplicity I will focus on machine faults and ignore other sources of uncertainty.

It is possible to broadly divide machine faults into two sets as shown in figure 38: faults which

have an immediate effect; and faults which have a delayed or schedulable effect. I focus on faults

with a delayed or schedulable effect.

Various types of machine fault may allow the machine to continue running for a period of

time. For example, if a machine is running low on oil and needs to be refilled, or it is becoming

less accurate and needs to be calibrated but the accuracy is still within acceptable bounds. In these

situations it is desirable to have an optimal schedule whether the fault occurs or not. If the fault

occurs, the schedule includes some servicing time but not otherwise. Contingent scheduling is

ideal for this situation because a contingent schedule can be optimal or close to optimal whether a

fault occurs or not. It can be sensibly modelled as a QCSP with universal variables representing

faults.

7.1.3. Robust vs. contingent schedules. QCSP is well suited to generating contingent sched-

ules. The advantage is that the schedule can be optimal in different circumstances. However such

schedules can be large and take a long time to generate. Another approach is to generate robust

schedules which are intelligently padded to guarantee certain conditions. Both these approaches

have been investigated with various optimization techniques [33] but I will focus on constraint-

based techniques here.

One type of robust solution is a supersolution. Hebrard et al. [61] develop the concept of an

(a,b)-supersolution, which is a solution to a CSP such that if the values assigned to a variables are

no longer available, the solution can be repaired by assigning these variables with a new values

and also changing the value for b other variables. They develop a solver based on constraint

propagation and search, which produces a supersolution in the form of a solution and a table of

O(na) repairs containing a + b new values each. Deciding the existence of a supersolution is

NP-complete, assuming a is fixed.

200

Chapter 7. Application of QCSP to factory scheduling

Hebrard et al. [60] go on to extend the framework, to allow restrictions on the set of variables

which can be repaired, and on the new values that they will take. These restrictions make the

framework much more attractive for factory scheduling. If a fault occurs on a machine part way

through executing the schedule, the schedule modifications must be restricted to the part of the

schedule that has not yet been executed. This means certain variables may not be changed. Others

can be changed in a restricted way (the new value is restricted).

Finding supersolutions is a general technique, suitable for many types of problems, but it is

less general than QCSP since it focusses on finding a single robust solution rather than a winning

strategy. Since the two approaches address different problems, I do not compare them further.

Developing a comprehensive solution to scheduling with faults might require a hybrid ap-

proach where the schedule is padded intelligently, and also the schedule is contingent for certain

situations. However, constructing a hybrid solver is beyond the scope of this thesis.

7.1.4. Faulty job shop scheduling. Recall that the basic unit of time in the JSSP is the slot.

The slots are grouped into a number of periods of equal size, in order to deal with machine testing

and servicing. For example, slots could be hours, and periods days.

To introduce faults to the JSSP, each machine M is tested at the beginning of each period

a, and if servicing is required it is scheduled entirely within period a, and cannot be interrupted.

The amount of time required to service a machine is servicetime. There are 2m×periods possible

subsets of faults, but I will not define how many subsets must be covered by a schedule. I refer to

this problem as the faulty job shop scheduling problem (FJSSP). I am not aware of this problem

in the literature. It would be excessively difficult to schedule for every scenario, so to reduce the

number of scenarios I use a simple probability-based approach.

More formally, an instance of FJSSP is an instance of JSSP with the following additional

information:

• an integral constant periods which divides maxmakespan;

• a positive integer servicetime which defines the number of slots required for servicing

when a fault occurs. servicetime must be less than maxmakespan/periods.

201

Chapter 7. Application of QCSP to factory scheduling

The problem of FJSSP is that of finding a set of schedules, each with a different subset of all pos-

sible faults. Each individual schedule meets the requirements of JSSP, and schedules contiguous

servicing time for each occurring fault, within the period of the fault. For any pair of schedules,

if they have the same fault configuration until period a, then the schedules must be equal until the

beginning of period a. This set of schedules is hereafter referred to as a contingent schedule.

7.1.5. Probability bounding. When dealing with large numbers of possible faults in any

scheduling problem, it would be very difficult (and unnecessary) to schedule for every possible

combination of faults. To avoid this, I assign a probability to each fault, and a probability threshold

φ to the whole problem. Only combinations of faults which are sufficiently likely (i.e. with

probability ≥ φ) are considered. The faults are assumed to be independent, which makes the

probability calculation straightforward. This assumption could be relaxed if necessary.

In the models presented in section 7.2, the probability of each fault is represented as a constant

but it could trivially be a variable, whose value is a function of previous faults, machine workload,

or other factors. In these models, the probability threshold can be used to control the amount of

time it takes to generate the contingent schedule, since it controls how many scenarios are covered

by the contingent schedule.

Since we are dealing with probabilities, it is reasonable to ask whether Stochastic CSP [8,

75, 96, 99] (reviewed in chapter 2 section 2.4.1) would be more suitable. The treatment of proba-

bility is somewhat different in Stochastic CSP: when following a policy (analogous to a winning

strategy), the probability of satisfying certain constraints (chance constraints, as opposed to hard

constraints) exceeds some threshold. This is distinct from only considering scenarios whose prob-

ability exceeds a threshold.

One approach to Stochastic CSP has been to encode it into CSP. This approach can generate

an exponentially large CSP instance, so it may not always be feasible. Since the QCSP algorithms

used in this chapter scale polynomially in space, they can potentially be applied to larger prob-

lems. However, applying the CSP encoding approach can potentially yield stronger constraint

propagation. I discuss this further in section 7.2.2.3 below.

202

Chapter 7. Application of QCSP to factory scheduling

The other approach of Balafoutis and Stergiou [8] is similar to top-down search for QCSP, but

only arbitrary constraints are supported at present, with a propagation algorithm generalized from

GAC2001/3.1.

7.2. Modelling Faulty Job Shop Scheduling in QCSP

First I will describe a model of JSSP in CSP, then develop a QCSP model of FJSSP with

probability bounding which is closely related to the CSP model. When I refer to the CSP model

this is the CSP model of JSSP, and the QCSP models A and B are of FJSSP with probability

bounding.

7.2.1. CSP model. The model of job shop scheduling used by Lecoutre and Prosser [69] is

presented here. n refers to the number of jobs, and m is the number of machines. The model has

three sets of variables, and one optimization variable:

• mn(n − 1)/2 Boolean variables bMj1,j2
representing the order of two tasks, belonging to

jobs j1 and j2 where j1 < j2, which both contend for machineM.

• mn integer variables startMj representing the start time of the task from job j which runs

on machineM.

• mn integer variables endMj representing the end time of each task. Since the duration is

a constant, this is simply the start time plus the duration.

• One integer variable opt, to be minimized, representing the maximum end time of all

tasks.

The integer variables are all initially bounded between 1 and maxmakespan. The start time of a

task may be equal to the end time of the previous task on the same machine.

The constraints are given below. Recall (from section 7.1.1) that the duration of a task in job j,

which runs on machineM, is d(M, j). The task in position i for job j runs on machine tm(i, j).

(1) ∀M, j : startMj + d(M, j) = endMj

(2) ∀M, j1, j2 > j1 : bMj1,j2
⇔ [endMj1 ≤ startMj2] ∧ ¬bMj1,j2

⇔ startMj1 ≥ endMj2

(3) ∀i ∈ {1 . . .m− 1}, j : endtm(i,j)
j ≤ starttm(i+1,j)

j

(4) max({endtm(m,j)
j |j ∈ {1 . . . n}}) = opt

203

Chapter 7. Application of QCSP to factory scheduling

A reasonable static variable ordering for this model would be to branch on b variables first, using

0 as the first value, then branch on the start variables using the smallest remaining value first.

Once all the start variables have been instantiated, the end and opt variables are set by constraint

propagation.

Another possibility would be to omit the b variables and replace constraint type 2 with a binary

constraint between the start variables of any two tasks which run on the same machine. The new

type 2 constraints are shown below.

• ∀M, j1, j2 > j1 : startMj1 + d(M, j1) ≤ startMj2 ∨ startMj1 ≥ startMj2 + d(M, j2)

This would halve the number of constraints of type 2, and potentially allow more propagation.

The end variables, and constraint type 1 can also be removed, and constraint types 3 and 4 re-

stated in terms of start variables. This model is also seen in the literature [9, 87], combined with

sophisticated branching schemes.

Branching on the start variables using a simple numerically ascending value ordering results

in far more search than branching on b variables in the reified model. Queso does support dynamic

value ordering heuristics, so it would be possible to use the binary constraint model, but I have

chosen to use the reified model and branch on the b variables, using value 0 first.

More advanced models. Job shop scheduling is very well studied and there are various more

advanced models, with specialized non-binary constraints such as edge finding [26] (first applied

in the constraints context by Caseau and Laburthe [27]), and other specialized approaches such as

shaving [77].

The aim of this chapter is not to re-implement all this work in the context of QCSP, but to

demonstrate that a contingent QCSP variant of a CSP model can be constructed, while preserving

the important features of the CSP model, such as constraint propagators and variable and value

ordering heuristics.

7.2.2. QCSP model. Some properties of a good contingent model for job shop scheduling

are the following. It should:

• be not much larger than the CSP model;

204

Chapter 7. Application of QCSP to factory scheduling

• allow similar propagation to the CSP model among variables that are common to the two

models;

• allow similar variable and value orderings as successful CSP models;

• and allow edge finding constraints. This implies that there are variables representing the

starting time of each task.

The QCSP model must not be exponentially larger than the CSP model.

7.2.2.1. Modelling faults and probability bounding. First I will describe how the faults and

probability bounding are modelled. The aim is to find a contingent schedule for all combinations

of faults with probability greater than or equal to the threshold φ.

A fault with machineM in period a is modelled with a universal Boolean variable faultMa . The

constant p(M, a) represents the estimated probability of the fault. It is assumed that p(M, a) <

0.5 (because of the form of constraints linking p(M, a) with faultpMa), and that all faults are

independent. A total ordering ≺ is imposed on the faults (specified by the pair 〈M, a〉) and this

ordering is the same as the ordering of the faultMa variables in the quantifier sequence. Variable

precpMa is the probability of all events 〈M′, a′〉 that preceed 〈M, a〉: 〈M′, a′〉 ≺ 〈M, a〉. This is

the product of the probabilities p(M′, a′) of those faults which did occur (faultM
′

a′ = 1) with the

complement 1− p(M′, a′) for those faults which did not occur (faultM
′

a′ = 0).

A constant succpMa is calculated for each fault, which is the product of the probabilities of the

complement of all succeeding faults 〈M′, a′〉 � 〈M, a〉. In words, we assume that all later faults

do not occur and compute a probability for them all based on this.

thispMa is the probability of the scenario where fault 〈M, a〉 does occur, all succeeding faults

do not occur and the occurrence of preceding faults is decided by their respective fault variables.

thispMa is computed as follows: thispMa = precpMa × succpMa × p(M, a). There is a Boolean

variable availableMa which indicates whether the probability of the scenario is above or equal to

the threshold. Finally, if availableMa = 1 then the value of faultMa is copied to a second variable

shadowMa . shadowMa determines whether servicing takes place for machineM during period a.

The constraints linking thispMa , precpMa , availableMa , faultMa and shadowMa are shown here.

205

Chapter 7. Application of QCSP to factory scheduling

thispMa = precpMa × (succpMa × p(M, a))

availableMa ⇔ thispMa ≥ φ

¬shadowMa ⇔ ¬availableMa ∨ ¬faultMa

precpMa must be linked to the previous precp in the ordering ≺. This is done by introducing

another variable faultpMa which is the probability of the event which occurred (i.e. if the fault

occurred then faultpMa = p(M, a) and if not then faultpMa = 1− p(M, a)). The three constraints

to achieve this are shown below.

shadowMa ⇔ (faultpMa = p(M, a))

¬shadowMa ⇔ (faultpMa = 1− p(M, a))

ifM = 1 : precpMa = precpm
a−1 × faultpm

a−1

ifM 6= 1 : precpMa = precpM−1
a × faultpM−1

a

The quantifier subsequence for these variables is shown below.

∃precpMa , thispMa , availableMa ,∀faultMa ,∃shadowMa , faultpMa

The faultMa variable is included in only one constraint. If availableMa is set to 0, then shadowMa

is set to 0 by propagation and both values of faultMa become pure. One value will be removed by

the pure value rule. This avoids unnecessary search. The pure value rule is very significant because

without it 2periods×m scenarios would be explored.

206

Chapter 7. Application of QCSP to factory scheduling

The variables thisp, precp and faultp are represented using only their upper and lower bounds,

as described in chapter 3 section 3.7.1.2. The multiplication constraint enforces bounds(R) con-

sistency, which is sufficient since it is only used on existential variables.

All the above variables and constraints are shared by model A and model B below.

7.2.2.2. Model A. Model A is naive and ineffective, but since it is more obvious than model

B I will describe it and explain why it is ineffective. This motivates the more complex model B.

For each time slot s and each machineM, there is a variable ∃tMs ∈ {1, 2, . . . , n, idle, servicing}.

tMs represents the job thatM is running at time s, or whether it is being serviced or is idle. startMj ,

endMj and opt variables are copied from the CSP model in section 7.2.1. Constraint types 1, 3 and

4 are copied from the CSP model. One other type of constraint (equation 26) referred to as the

channelling constraint is required to channel between the tMs variables and the start and end vari-

ables. This is assumed to be a single constraint for simplicity.

(26) ∀M, j, s :
[
startMj ≤ s ∧ endMj > s

]
⇔ tMs = j

The tMs variables and the startMj and endMj variables are two representations of the job shop

scheduling problem. The reason for having both is that the tMs variables can be quantified in

chronological order and they enforce mutual exclusion of tasks on machines, and the other repre-

sentation enforces that the tasks occur in order on the appropriate machines.

Each period has length plen and periods = maxmakespan/plen. For a machineM and period

a, the variable shadowMa must be connected to the appropriate time slots. This is done with

variables servicestartMa ∈ {((a − 1) × plen + 1) . . . a × plen} and serviceendMa with the same

domain, and the constraints below. The time required for servicing a machine is servicetime. If

shadowMa is 0, then servicestartMa (and serviceendMa) are fixed, to avoid the search algorithm

branching for each of its values.

∀M, a : servicestartMa + servicetime = serviceendMa

207

Chapter 7. Application of QCSP to factory scheduling

∀M, a : shadowMa = 0⇒ servicestartMa = (a× plen + 1)

∀M, a,∀s ∈ {((a− 1)× plen + 1) . . . a× plen} :[
shadowMa = 1 ∧ servicestartMa ≤ s ∧ serviceendMa > s

]
⇔ tMs = servicing

To implement the constraints with ≤ and >, a GAC reified comparison constraint is used. For

each ≤ or > symbol, an additional existential variable is introduced. A single reified disjunction

constraint is used to link the additional variables with shadowMa and tMs .

The quantifier sequence is given below. The variables associated with each period are quanti-

fied, in chronological order. Within each period, the variables associated with faults are quantified

first, then the time slot variables for the period. The other variables are existentially quantified at

the end of the quantifier sequence.

(1) For each period a in ascending order, the following two groups of variables are quanti-

fied:

(a) First, the following sequence is repeated for each machineM:

∃precpMa , thispMa , availableMa ,∀faultMa ,∃shadowMa , faultpMa

(b) This is followed by: ∃t1...m
(a−1)×plen+1...a×plen

(2) ∃servicestart1...m
1...periods, serviceend1...m

1...periods

(3) ∃start1...m
1...n , end1...m

1...n , opt

There are two main reasons that model A is problematic. Firstly, the model is not compact enough

for propagation to be efficient. There are O(mn × maxmakespan) channelling constraints, and

the maxmakespan can be large. As an example, if variable t11 is set to 1 by the search proce-

dure, and d(1, 1) = 10, then t12...10 are all set to 1 by propagation, which causes 10n channelling

constraints to be woken up by changes to t11...10 variables, and nm channelling constraints (and

various others) to be woken up by bound changes on the start11 and end1
1 variables. In addition,

variables t111...makespan may have value 1 removed, which could potentially wake up a further

208

Chapter 7. Application of QCSP to factory scheduling

(maxmakespan− 10)n channelling constraints. The maxmakespan and the durations can be large,

so model A is highly inefficient for propagation.

The other reason is search. To make intelligent branching decisions for the tMs variables would

require a variable and value ordering heuristic which is aware of the start and end times of tasks.

This is not currently implemented in Queso, although it would not be difficult.

7.2.2.3. Model B. Model B is much more compact, and preserves the CSP model structure

much better. The trick here is to duplicate the whole CSP model once for each period, and post

constraints to copy forward the relevant values from period a to a + 1. If a fault occurs in period

a + 1, then only tasks which started before the beginning of period a + 1 are copied forward. The

rest may have to be scheduled differently, with servicing time included. If no fault occurs in period

a + 1, the whole schedule is copied forward.

Operationally, this means Queso solves the whole job shop instance for period 1, assuming no

faults occur for periods 2 . . . periods. If no faults occur, then the whole schedule is copied forward

and there is no more work to do. If a fault occurs in period 2, then the section of the schedule

before the start of period 2 is copied forward, and the rest is rescheduled. The b variables are

preserved, and are searched on.

For each period a, an extra existential variable nofaulta ∈ {0, 1} is introduced which is used

for copying forward the entire schedule when no faults occur. The following constraints are intro-

duced.

∀a : nofaulta ⇔ ¬shadow1
a ∧ · · · ∧ ¬shadowm

a

Copies of the CSP model are introduced for each period, with each variable superscripted with

the period number. For example, startM,a
j is the starting time of the task from job j which requires

machineM from period a. Constraint types 1,2 and 3 are used for all periods. Constraint type 4

and the opt variable are only present for the last period.

For each period, additional variables servicestartMa and serviceendMa are introduced with the

same meaning and domain as in model A. They are linked to the CSP model with the following

constraints. The τM,a
j,1 , τM,a

j,2 variables represent task ordering, and are existentially quantified.

209

Chapter 7. Application of QCSP to factory scheduling

∀M, a : servicestartMa + servicetime = serviceendMa

∀M, a : shadowMa = 0⇒ servicestartMa = (a× plen + 1)

∀M, a, j :

¬shadowMa ∨ τM,a
j,1 ∨ τM,a

j,2

endM,a
j ≤ servicestartMa ⇔ τM,a

j,1

serviceendMa ≤ startM,a
j ⇔ τM,a

j,2

Adjacent periods are connected with the following constraints. The σ variables are local and

are existentially quantified at the end of the period set. σ1 and σ2 are both Boolean variables. σ1

indicates whether the value of startM,a
j lies within periods 1 . . . a (i.e. startM,a

j ≤ a × plen). σ2

indicates whether startM,a
j is copied to the next period. startM,a

j must be copied forward if there

are no faults in period a + 1 (therefore nofaulta+1 ⇒ σ2) or the task started within periods 1 . . . a

(therefore σ1 ⇒ σ2).

∀a ∈ {1 . . . periods− 1},M, j :

¬σ1 ∨ σ2

¬nofaulta+1 ∨ σ2

[startM,a
j ≤ a× plen]⇔ σ1

[startM,a
j = startM,a+1

j]⇔ σ2

GAC is applied to the reified ≤ constraints. All others are implemented using reified disjunc-

tion. The quantification sequence is given below.

210

Chapter 7. Application of QCSP to factory scheduling

(1) For each period a in ascending order:

(a) For each machineM: ∃precpMa , thispMa , availableMa ,∀faultMa ,∃shadowMa , faultpMa

(b) ∃nofaulta

(c) For each pair of jobs j1, j2 and each machineM, ∃bM,a
j1,j2

(d) For each machineM and job j, ∃τM,a
j,1 , τM,a

j,2

(e) For each machineM and job j, ∃startM,a
j , endM,a

j

(f) For each machineM, ∃servicestartMa , serviceendMa

(g) For all pairs of σ variables for this period, ∃σ1, σ2

(2) ∃opt

This model is much more compact than model A, and allows branching on b and τ variables

first, thus deciding the ordering of tasks before setting the start variables to their lowest values.

Edge-finding constraints could be trivially added to this model, over the start variables. If an

edge-finding constraint supported variable durations, it could also be used on servicestart where

the duration would be 0 if no servicing is required, and servicetime if it is required.

Search on model B. Unfortunately, when searching on model B (with either search or branch-

Bound, algorithm 3 or 4), if schedule infeasibility is discovered when branching on variables

representing period a > 1, then the solver backtracks to period a− 1 and typically tries a different

value for a servicestart or start variable. This leads to fruitless search, because the ordering of

tasks on each machine is not changed. After setting b and τ variables, and after propagation, in-

stantiating servicestart and start variables to their lowest value will certainly find a minimal length

solution if a solution exists, therefore there is no reason to try other values for these variables.

To solve this difficulty, the search procedure was altered to branch for only the lowest value of

servicestart and start variables. Thus the values of servicestart and start variables are a function

of the values of b and τ variables. This new procedure is referred to as search2.

A second difficulty arises when applying the branchBound algorithm to model B. Consider the

situation where the algorithm makes a decision for period 1 which does not extend to a winning

strategy. After making this decision, and before detecting the conflict, optimization is performed,

making branchBound considerably slower than search to detect a conflict.

211

Chapter 7. Application of QCSP to factory scheduling

To solve this difficulty, the search2 algorithm is used instead of branchBound, and optimiza-

tion is performed as follows. Search2 is called to find a winning strategy S within maxmakespan.

S has length len, and the end variables (for all periods) are all given a new upper bound of len−1,

and search2 is called again. When search2 fails to find a winning strategy, the winning strat-

egy from the previous iteration is an optimal one. This new procedure is called searchOpt. The

experiment in section 7.3 uses searchOpt.

Notice that both of these difficulties are caused by late detection of conflicts. In the first

case, the algorithm performs branches which lead to a conflict that has already been discovered

in another branch, and in the second case work is done on optimization in areas of the search

tree which cannot be part of a winning strategy. searchOpt also suffers from this issue to a lesser

extent. This is discussed in section 7.3.2.

7.2.3. Why use SQGAC. Why use quantified notions of consistency such as SQGAC to solve

this problem, instead of simply branching both ways on universal variables, and using CSP con-

straint propagation? Constraint Logic Programming solvers such as Eclipse [3] would allow the

programmer to construct an ad-hoc solution using GAC or weaker consistency, where the solver

branches for those combinations of faults which are within the probability threshold. However,

maintaining SQGAC can be useful.

If the servicing time for machineM cannot be scheduled in period a, then shadowMa is set

to 0 by propagation on other constraints (which are specific to models A and B). At this point, if

availableMa is set to 1, then the faultMa variable is pruned, the simplified QCSP is false, and the

solver backtracks. In this way the solver checks forward for the universal variables, and should

outperform a solver which simply branches for all values on a universal variable. Stronger local

reasoning over the start variables would potentially increase this effect as well.

A second alternative would be to expand out the QCSP model for all scenarios within the

probability bound, creating a CSP. This is very similar to the approach used by Tarim, Manandhar

and Walsh to solve Stochastic CSP [75, 96]. The size of the resultant CSP is the size of the QCSP

212

Chapter 7. Application of QCSP to factory scheduling

model multiplied by the number of scenarios. There can be exponentially many scenarios. How-

ever, in the experiments below, there are 215 scenarios but only 16 scenarios within the probability

bound, therefore this approach is possible if we only consider the 16 scenarios.

This approach would probably yield more powerful propagation. Search decisions would

be propagated for every scenario. If the decision is incompatible with any sufficiently probable

combination of future faults, then the propagation would determine failure. This is not the case

when applying SQGAC to QCSP model B. However, propagation would be more expensive in this

scheme, and the set of scenarios must be small.

7.3. Empirical evaluation

The aim of this section is to show that applying QCSP to job shop scheduling can be useful,

compared to simpler approaches, when dealing with machine faults and servicing.

I use model B for all experiments. To optimize schedules, searchOpt is used. The variable opt

is minimized. When applying a new upper bound, all end variables for all periods are pruned with

the new upper bound.

The ten problem instances used here have n = m = 5 and are derived from the ORLIB

instances LA01 to LA101. LA01 to LA10 have five machines but ten or fifteen jobs. I used only

the first five jobs and deleted the others. The instances are small for non-contingent scheduling, but

become challenging for Queso when contingency is introduced. The number of Boolean variables

b in the CSP model would be mn(n− 1)/2 = 50, so the space of assignments to them is 250.

7.3.1. Comparing non-contingent with contingent scheduling. A typical approach to ma-

chine breakdown is to add extra time to a schedule [33]. Therefore I compare the length of the

schedules generated by the two approaches.

The performance of the QCSP algorithms on model B is likely to degrade as the disruption

caused by servicing increases. This is because the schedule for each period is constructed assum-

ing that no further faults will occur, so if a very disruptive fault does occur in a later period, the

solver is likely to search extensively.

1Available from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/

213

Chapter 7. Application of QCSP to factory scheduling

Hypothesis 1. Contingent scheduling will generate schedules with significantly shorter makespans

and similar robustness to a non-contingent approach.

Hypothesis 2. The performance of the QCSP algorithms will degrade as servicetime is in-

creased, all else remaining the same.

Method. The ten instances derived from LA01 to LA10 are used. The maxmakespan is 600 in

all cases. The schedule is divided into three periods of 200 time units, and for each period, each

machine has a fault probability of 0.05. The threshold probability is 0.01. The effect of this is

that every scenario of a winning strategy contains at most one fault. With five machines and three

periods, there are fifteen scenarios where some machine has a fault, and one scenario where no

machine has a fault.

The searchOpt algorithm was used to generate contingent schedules. In these schedules, the

parameter which is minimized is the maximum of the schedule length for each scenario.

Results. Table 10 shows the makespan for each instance and each servicing time. Figure

39 plots the ratio between the worst-case makespan with contingency and the makespan with no

contingency. The makespan often increases as servicetime is increased, but the makespan is clearly

not exactly proportional to servicetime. The lowest value (across the 10 instances) of Pearson’s

correlation coefficient between servicetime and makespan is 0.8025 (instance LA01-5×5) and the

highest is 0.9995 (for LA09-5× 5). Therefore the two are highly correlated.

In some cases, increasing the servicing time by 10 results in an increase of more than 10

in the makespan. For example, for instance LA01-5 × 5 between servicetime = 70 and 80

the makespan increases by 37. This is counterintuitive, and could not happen in non-contingent

scheduling. In this example, a particular partial schedule (which is associated with a low worst-

case makespan) becomes infeasible for some scenario as servicetime is increased, so the schedule

where servicetime = 80 is significantly different to the one where servicetime = 70.

In this experiment, every scenario of a winning strategy contains at most one fault. To generate

a non-contingent schedule with similar robustness, I assume that a single fault occurs on machine

M during a period a whenM is constantly in use, and that the fault increases the makespan by

214

Chapter 7. Application of QCSP to factory scheduling

Servicing Optimal worst-case makespan per instance
time per fault 1 2 3 4 5 6 7 8 9 10

0 444 450 407 365 381 401 433 380 455 517
10 444 451 407 365 381 401 433 380 462 517
20 444 451 407 373 387 401 433 380 472 517
30 448 455 414 383 396 407 434 410 482 523
40 449 465 414 393 396 407 444 413 492 533
50 454 475 414 415 406 416 454 420 502 543
60 459 485 423 425 416 431 462 425 512 553
70 459 495 433 435 418 432 462 432 522 555
80 496 505 456 445 426 442 474 442 532 573

TABLE 10. The optimal makespan for each instance and each servicing time

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 20 40 60 80 100

co
nt

in
ge

nt
 m

ak
es

pa
n

/ n
on

-c
on

tin
ge

nt
 m

ak
es

pa
n

Servicing time

LA01-5x5
LA02-5x5
LA03-5x5
LA04-5x5
LA05-5x5
LA06-5x5
LA07-5x5
LA08-5x5
LA09-5x5
LA10-5x5

FIGURE 39. Worst-case makespan as servicing time is increased

servicetime time units. Therefore the non-contingent approach is to generate an optimal schedule

and add servicetime to the makespan.

This approach may seem to be too pessimistic. However, for the instance LA01-5 × 5, for

the optimal non-contingent schedule generated by Queso (with makespan 444), there is a machine

M = 1 and period a = 1 where the machine is constantly in use, and adding servicing to this

215

Chapter 7. Application of QCSP to factory scheduling

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 20 40 60 80 100

co
nt

in
ge

nt
 m

ak
es

pa
n

/ p
ad

de
d

m
ak

es
pa

n

Servicing time

LA01-5x5
LA02-5x5
LA03-5x5
LA04-5x5
LA05-5x5
LA06-5x5
LA07-5x5
LA08-5x5
LA09-5x5
LA10-5x5

1

FIGURE 40. Comparing contingent and non-contingent schedules

period does increase the makespan by servicetime time units. I did not inspect the schedules for

the other instances for this property.

Figure 40 plots the ratio between the worst-case makespan with contingency and the makespan

of a padded non-contingent schedule. At almost all points, the contingent schedules have a shorter

makespan. The improvement is up to 10%. This is evidence in favour of the first hypothesis.

Unfortunately the QCSP algorithms do not scale well as servicetime is increased. Tables 11

and 12 show search nodes explored and search time. These are plotted in figures 41 and 42(a),

with figure 42(b) showing the number of nodes explored per millisecond. The experiment was run

on a P4 3.06GHz with 1GB of RAM, using Sun Java 1.5 in server mode. Note that the search

time includes all setup processes. Therefore for short searches, the number of nodes explored per

millisecond can be low. This quantity varies in the range 0.17 to 2.55.

The number of nodes does not scale well for some instances. The time spent at each node

decreases for long searches, but the overall effect is that search time does not scale well. This is

evidence in favour of the second hypothesis.

216

Chapter 7. Application of QCSP to factory scheduling

Servicing Total search nodes per instance
time per fault 1 2 3 4 5

0 493 720 909 619 1027
10 13563 85103 11590 11261 19324
20 14083 178815 12890 13018 15377
30 11365 1494159 11114 310903 19422
40 13130 1183084 42673 1437076 31957
50 16177 2101186 43539 1043067 120872
60 12896 3778879 297610 1815212 98949
70 19547 1953620 270144 4267905 1336178
80 1122100 17333478 860395 8507842 2611152

Servicing Total search nodes per instance
time per fault 6 7 8 9 10

0 931 485 735 384 355
10 17348 8342 10946 9296 4689
20 22571 10778 9357 33090 21482
30 27344 25443 275270 116424 40153
40 62555 13309 412352 221565 65323
50 127142 16432 1458357 402092 124348
60 493937 18832 9462189 722570 206244
70 2409509 32666 3712182 1738985 566648
80 3291325 126681 7967568 2277102 691551

TABLE 11. Number of search nodes for each instance and servicing time

7.3.2. Observations. In some cases, Queso scales very poorly when servicing time is in-

creased. This is most dramatic on instance 2, where the number of nodes increases from 720 to 17

million as the servicing time is increased from 0 to 80.

Queso schedules the periods in order. Consider the situation where the first period is sched-

uled, and a set of decisions made in period 1 are incompatible with all valid schedules for the final

period. Assume intermediate periods can be scheduled. Queso will reach the final period, detect

the conflict, and backtrack. However, because of chronological backtracking, it will explore every

possibility for periods between the first and the last, before backtracking to the first period. It

will thrash, detecting the same conflict many times. Situations like this are impossible when the

servicing time is 0, but as servicing time is increased, the disruption caused by faults is increased

so I believe it is more likely that this type of thrashing will occur.

This issue is discussed further in the future work section of chapter 8.

217

Chapter 7. Application of QCSP to factory scheduling

Servicing Total search time per instance
time per fault 1 2 3 4 5

0 1899 2708 5383 1231 1027
10 23642 74941 23997 16201 19594
20 17941 162070 24570 16172 15983
30 14712 1013624 19569 151221 17970
40 15746 833299 40663 710142 24658
50 19369 1644480 43241 535671 59414
60 17099 2687633 152972 922112 54205
70 25887 1556651 161298 2054317 524124
80 526963 13346121 462707 4123366 1151898

Servicing Total search time per instance
time per fault 6 7 8 9 10

0 2479 851 1256 1006 1209
10 28453 8844 12322 9718 7065
20 33993 12373 10034 20639 34869
30 36649 20133 159587 57353 69440
40 57729 14189 214746 116706 89916
50 92003 23329 845631 234751 132137
60 257263 25828 4975136 472589 191211
70 1095927 42241 1923378 974972 464795
80 1570807 98908 3497858 1416355 480744

TABLE 12. Total search time for each instance and servicing time

7.4. Summary

I have demonstrated the applicability of QCSP by modelling a real and well studied scheduling

problem in it, using the SQGAC reified disjunction constraint, and applying the pure value rule

to universal variables. The searchOpt algorithm was used to solve this problem. The algorithm

rapidly finds the first winning strategy, and can be stopped at any time after that, giving an anytime

behaviour. If the algorithm is allowed more time, the makespan can be reduced.

Applying contingent scheduling via QCSP can yield schedules with a shorter makespan than

a naive padding approach, since it can optimize the schedule separately for each scenario. Unsur-

prisingly, the computational cost is higher. The search time grows with the servicing time required

for each fault, all else being equal.

218

Chapter 7. Application of QCSP to factory scheduling

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100

S
ea

rc
h

no
de

s

Servicing time

LA01-5x5
LA02-5x5
LA03-5x5
LA04-5x5
LA05-5x5
LA06-5x5
LA07-5x5
LA08-5x5
LA09-5x5
LA10-5x5

FIGURE 41. Search nodes against servicetime

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100

S
ea

rc
h

tim
e

(m
s)

Servicing time

LA01-5x5
LA02-5x5
LA03-5x5
LA04-5x5
LA05-5x5
LA06-5x5
LA07-5x5
LA08-5x5
LA09-5x5
LA10-5x5

(a) Search time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

N
od

es
 p

er
 m

ill
is

ec
on

d

Servicing time

LA01-5x5
LA02-5x5
LA03-5x5
LA04-5x5
LA05-5x5
LA06-5x5
LA07-5x5
LA08-5x5
LA09-5x5
LA10-5x5

(b) Nodes per millisecond

FIGURE 42. Search time and nodes per millisecond plotted against servicetime

As discussed in the introduction, real-world factory scheduling problems have many sources of

uncertainty. Contingent scheduling with QCSP could be an interesting approach to these problems,

combining the efficiency of CSP with contingency.

219

CHAPTER 8

Conclusion

As stated in the introduction, the aim of this thesis is to investigate the usefulness of QCSP as

a formalism for reasoning with uncertainty. This breaks down into two main questions: can QCSP

be solved efficiently, and can problems containing uncertainty be modelled effectively in QCSP?

All the work in this thesis addresses one or other of these questions.

This chapter begins by summarizing the work reported within this thesis. This is followed

by suggestions of future work and how these may be executed. This is divided into improving

the techniques developed in this thesis, and developing new modelling ideas and conventions, to

improve the applicability of QCSP.

8.1. Summary

The major items of work in this thesis are summarized here.

8.1.1. Definitions of consistency. The definitions of WQGAC and Qbounds(R) consistency

are novel, and have allowed the development of new constraint propagation algorithms. It is hoped

that these definitions are a useful contribution to the field.

8.1.2. Constraint propagators. The bulk of the work in this thesis is about constraint prop-

agation. Table 13 summarizes the algorithms. Initially I considered propagation algorithms for

arbitrary constraints.

Constraint form Consistency Time per node
Arbitrary (set of tuples) SQGAC O(dn)

Arbitrary (set of tuples or predicate) WQGAC O(ndn)
Reified disjunction SQGAC O(r)

Long sum Qbounds(R) O(r)
TABLE 13. Constraint propagators

221

Chapter 8. Conclusion

In chapter 4, the algorithm SQGAC-propagate was developed, which is fine-grained and in-

crementally maintains a multiple winning strategy tree. Following this, WQGAC-Schema was

developed from GAC-Schema [13]. WQGAC-Schema is also fine-grained and incremental, but

enforces WQGAC, and is able to share its large data structure among many constraints, thereby

reducing memory usage. WQGAC-Schema is instantiated for predicates, and three types of lists

of satisfying tuples.

These five algorithms compared favourably against QBF and binary QCSP solvers, on random

instances. They were also compared together on structured instances (Noughts and Crosses and

Connect 4). The results of this comparison favour SQGAC-propagate in most cases, but on one

model of Noughts and Crosses with an arity 12 constraint, WQGAC-Schema proves to be more

efficient.

Unfortunately, both SQGAC-propagate and WQGAC-Schema take O(dr) time, and their eval-

uation on Connect 4 shows them to be less useful than reified disjunction. Also, neither algorithm

found a use in solving the faulty job shop scheduling problem. However, these are the only algo-

rithms for arbitrary constraints in QCSP and they may prove very useful in some other context.

Indeed both algorithms compared very favourably against QBF and binary QCSP solvers.

One of the instantiations of WQGAC-Schema (the Next-Difference list) is also applicable to

CSP, and has been shown experimentally to be very competitive in that context [51].

In chapter 5, two variants of the reified disjunction constraint were presented. This constraint

is coarse-grained and runs in O(r) time. It proves to be much more efficient for Connect 4 than

either SQGAC-propagate or WQGAC-Schema. It is also shown (analytically and experimentally

on Connect 4) to dominate the logic constraints of Bordeaux et al. [19, 22].

Finally, in chapter 6 the long sum constraint is proposed. This is significantly stronger than

the existing ternary sum predicate [19], and a brief experiment shows it to be much more efficient

than SQGAC-propagate on some arity 6 constraints.

8.1.3. Pure value rule. In chapter 3, the pure value rule was defined for non-binary con-

straints, and two schemes were given to efficiently implement it by re-using constraint propagation

algorithms. It finds an important use pruning universal variables in all the experiments involving

222

Chapter 8. Conclusion

Connect 4, Noughts and Crosses, and faulty job shop scheduling. The pure value rule is shown to

make a huge difference to the size of the search tree. With Connect 4, the difference can be several

orders of magnitude. With job shop scheduling, the pure value rule is shown analytically to be of

huge benefit in terms of the size of the search tree.

8.1.4. Search and optimization. The pure value rule and the propagation algorithms are

embedded into search and optimization algorithms. While similar search algorithms have been

published in various papers, optimization has never been addressed to my knowledge, even though

it is likely to be very important for real-world problems expressed in QCSP.

8.1.5. Application of QCSP. Connect 4 was proposed by Walsh as a challenge for QBF, at

the SAT 2003 conference [100]. Walsh claims that it is natural to express Connect 4 in QBF, but

an attempt at this yielded a very complicated encoding [46]. The encoding into QCSP is simpler,

and was solved with some success with board sizes up to 5 columns and 6 rows. Solving the full

board size (7 columns and 6 rows) instance of Connect 4 remains a significant challenge in QCSP.

In modelling Connect 4, it was necessary to ensure that certain values of universal variables

became pure during search. Those values represent cheating moves. A second, existential variable

was used, which takes the same value as the universal if that value is not a cheating move. This

simple pattern allows the pure value rule to prune universal variables effectively.

Job shop scheduling with faults serves as evidence that a complex, realistic scheduling prob-

lem can be modelled in QCSP and solved. This is a proof of concept, and the QCSP model shows

potential to be developed much further by incorporating CSP scheduling techniques. The aims

of this work were to advance the art of modelling problems in QCSP, to evaluate the algorithms

proposed in this thesis, and to compare lengths of contingent schedules with non-contingent robust

schedules.

In modelling job shop scheduling with faults, it is possible to adapt a simple CSP model. The

CSP model is duplicated for each period, and some constraints and variables pertaining to faults

are added. The pure value rule is exploited in the same way as for Connect 4. It may be possible

to use this approach with other problems where a CSP model already exists.

223

Chapter 8. Conclusion

8.2. Future work

There are many opportunities for development of the QCSP formalism, both in terms of al-

gorithms and in modelling and application. In constraint programming, there is a large body of

research on solving CSP instances, but also a great deal of research on modelling problems effec-

tively and selecting appropriate propagation algorithms. Both these strands of research are in their

infancy in QCSP.

The following items of future work concentrate on solving QCSP more effectively, rather

than modelling, because modelling is dependent on the constraints available in the solver, and

reasoning techniques employed by the solver. The suggestions are sorted into order of decreasing

importance, in my opinion.

8.2.1. Conflict and solution learning. In QBF, conflict learning [56] and solution backjump-

ing [57] are very effective. Several variants of solution learning [55, 56] have been proposed, but

none have been shown to be always beneficial. (The overheads of solution learning can often

outweigh the gains.) Also, in constraint programming, conflict learning is beginning to attract

interest.

It is reasonable to expect that conflict learning would be effective in QCSP, since it has been

in QBF. Combined with strong propagation, conflict learning should be able to derive short rea-

sons for each conflict. Similarly, some kind of solution learning or backjumping could be very

beneficial, and I believe it would be worth investigating.

It may be easier to develop learning or backjumping algorithms if all constraints are table

constraints. This would be a high price to pay for learning or backjumping. Ideally, the algorithms

would work with any kind of constraint, thus enabling efficient propagation as well as the learning

or backjumping. I do not know if this will be possible, but I believe it is worth investigation.

Since conflict learning is very successful in SAT and QBF, I have placed this item first among

the items of future work.

8.2.2. Incorporating CSP techniques. With faulty job shop scheduling, it was observed that

CSP edge finding constraints could be incorporated without change, because they would contain

224

Chapter 8. Conclusion

only existential variables. Also, variable and value ordering heuristics could be used without

change within each period. It would be useful to have the full range of CSP propagation algo-

rithms available. The most straightforward way to do this may be to incorporate some quantified

constraints and the pure value rule into a CSP solver such as Minion or Gecode. Indeed Benedetti

et al. take this approach by adapting Gecode [11]. (However, they have no way of pruning univer-

sal variables.)

8.2.3. Stronger reasoning. It was observed with faulty job shop scheduling that the consis-

tency reasoning was not adequate in some cases, despite using SQGAC. Edge finding constraints

would probably be useful, improving propagation within each period. However, propagation to

future periods is limited since the solver does not know the value of the fault variables.

Debruyne and Bessière first proposed singleton arc-consistency (SAC) [37], where an assign-

ment xi 7→ a is consistent iff the constraint network can be made arc-consistent with xi instantiated

to a. Assuming SAC could be adapted to QCSP, it would be possible to apply SAC to the fault

variables during search, and hence have a much stronger look-ahead from one period to the next.

In CSP Lecoutre and Prosser apply SAC during search with some success [69].

8.2.4. Automated modelling. Modelling in QCSP is difficult. It would be interesting to

explore the possibility of automating some aspects of modelling. For example, ensuring that

values of universal variables become pure at the appropriate time is not straightforward. Ideally,

one would develop a framework which takes an abstract specification and creates a QCSP model

which can be efficiently solved. In constraint programming, the equivalent effort is underway, for

example the Essence/Conjure system [41] and G12 [36].

8.3. Final words

Is QCSP a practical, useful formalism? My answer to this question is a tentative yes. In this

section I summarize the lessons learned while doing this work, and evidence in favour of the thesis,

as well as the points against.

225

Chapter 8. Conclusion

8.3.1. Two key lessons. I have assumed a top-down search framework, and have devoted

most of this thesis to local reasoning. Within this framework, the first key lesson I have learned is

that strong reasoning is essential for constraints which contain universal variables. This is shown

most strikingly with Connect 4 (section 5.3.1.3).

I found no way of decomposing such non-binary constraints into binary constraints without

losing propagation — the straightforward adaptation of the hidden variable encoding proved inef-

fective. Also, decomposing constraints into the logical and arithmetic primitives of Bordeaux et

al. [19] was shown to be ineffective with many examples.

Searching over each value of each universal variable would yield an exponential explosion of

the search space. The second key lesson is that this combinatorial explosion must be avoided in

some way. In this thesis, the non-binary pure value rule is used to prune subsumed values from

the universal domains. It performs the function adequately and with little overhead.

Benedetti et al. [12] identified the same difficulty and solved it in an almost identical way

with QCSP+. Both approaches allow the modeller to specify (using constraints) which values of a

universal variable are valid and which are not, as a function of the values of outer variables. This

allows the user to arbitrarily specify which scenarios are important and should be included in a

winning strategy.

Other solutions to this difficulty alter the search framework (Blocksolve [97] for binary QCSP,

and the method of Ansótegui et al. [5] for QBF).

8.3.2. Modelling in QCSP. The model B of faulty job shop scheduling provides a proof

of concept for modelling optimization problems in QCSP. There are two main modelling tricks:

the shadow variable, which is used so that the pure value rule can be effective; and the device

of duplicating the entire schedule once for each period. It is possible to adapt the model to any

scheduling problem, with any kind of resource, or any timetabling problem. It is also possible to

add edge-finding and other state of the art constraint propagation algorithms to the model without

modifying the propagation algorithms.

On the other hand, the optimization algorithm I proposed in chapter 3 is not suitable for this

model. This fragility is a sign of the immaturity of QCSP algorithms. To avoid this problem I

226

Chapter 8. Conclusion

proposed another optimization algorithm. There was a second difficulty with branching on start

and end variables, where equivalent solutions were discovered many times. This was avoided by

defining start and end variables as functions of the Boolean variables.

Finally, and perhaps most seriously, at each period the scheduling instance is solved assuming

no future faults. This assumption may lead to inappropriate schedules which cannot cope with

future faults, and therefore excessive backtracking to repair the schedule. This suggests that the

propagation is not strong enough, despite an effort throughout the thesis to develop strong algo-

rithms. This difficulty led me to suggest singleton consistency as an item of future work.

These three difficulties in solving faulty job shop scheduling illustrate the relative immatu-

rity of QCSP algorithms at present, however they are not fatal to the thesis because each can be

addressed.

8.3.3. The state of QCSP. The main point in favour of the thesis is that it has been possible

to model and solve a realistic contingent scheduling problem in QCSP. This is only a prototype,

but it shows in principle that QCSP can be applied to contingent scheduling.

The model is fragile, and was constructed carefully with the reasoning algorithms of the solver

in mind. This is far from the declarative aspiration of traditional constraint programming. Sim-

ilarly, algorithms were changed specifically to fit the model, because the unmodified algorithms

were not suitable. Therefore, Queso is not robust to any QCSP instance you give to it, but careful

modelling is required to take advantage of the algorithms. I believe that the problem is fragility of

the solver rather than a basic unsuitability of QCSP.

The original DPLL algorithm [34, 35] for SAT has proven very useful for solving various

interesting problems for many years. However, the development of conflict learning [79] and its

related heuristics were very important in the evolution of robust and powerful solvers, with a much

greater reach than plain DPLL. QCSP still requires a breakthrough of this kind.

As stated above, conflict learning has been very effective in SAT and QBF, and solution back-

jumping has been very useful in QBF. I would expect these techniques to be successful in QCSP as

well, and to contribute to the robustness of a solver. I believe that solution learning is worth inves-

tigation as well, although the picture is somewhat less promising at the moment. It could be that

227

Chapter 8. Conclusion

solution backjumping would be preferable to solution learning. All techniques of this type have

the potential to improve robustness because they can substantially reduce the size of the search

tree based on similarities between branches. I think that learning and backjumping is the most

promising avenue of further research in QCSP.

Overall, I expect the following elements to make up a robust QCSP solver: strong propagation

algorithms for non-table constraints; some way of pruning universals; conflict learning; solution

learning or backjumping; and a heuristic to order variables within blocks.

In summary, I believe the case for QCSP is reasonably strong, although there is still much

work to be done. I hope that the material presented in this thesis will be a useful contribution to

the field.

228

Bibliography

[1] ILOG solver 6.0 user manual, 2003.

[2] Dimitris Achlioptas, Michael S. O. Molloy, Lefteris M. Kirousis, Yannis C. Stamatiou, Evangelos Kranakis, and

Danny Krizanc. Random constraint satisfaction: A more accurate picture. Constraints, 6(4):329–344, 2001.

[3] Abderrahamane Aggoun, David Chan, Pierre Dufresne, Eamon Falvey, Hugh Grant, Warwick Harvey, Alexander

Herold, Geoffrey Macartney, Micha Meier, David Miller, Shyam Mudambi, Stefano Novello, Bruno Perez, Em-

manuel van Rossum, Joachim Schimpf, Kish Shen, Periklis Andreas Tsahageas, and Dominique Henry de Vil-

leneuve. Eclipse user manual release 5.10, 2006. http://eclipse-clp.org/.

[4] Carlos Ansótegui. Personal communication.

[5] Carlos Ansótegui, Carla P. Gomes, and Bart Selman. The achilles’ heel of QBF. In Proceedings 20th National

Conference on Artificial Intelligence (AAAI 2005), pages 275–281, 2005.

[6] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[7] Fahiem Bacchus and Toby Walsh. A constraint algebra. Technical Report APES-77-2004, APES Research

Group, 2004. Available from http://www.dcs.st-and.ac.uk/˜apes/apesreports.html.

[8] Thanasis Balafoutis and Kostas Stergiou. Algorithms for stochastic CSPs. In Proceedings 12th International

Conference on the Principles and Practice of Constraint Programming (CP 2006), pages 44–58, 2006.

[9] J. Christopher Beck and Mark S. Fox. Dynamic problem structure analysis as a basis for constraint-directed

scheduling heuristics. Artificial Intelligence, 117:31–81, 2000.

[10] Marco Benedetti. sKizzo: a suite to evaluate and certify QBFs. In Proceedings 20th International Conference on

Automated Deduction (CADE 2005), pages 369–376, 2005.

[11] Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard. Reasoning on quantified constraints. In Rappresen-

tazione Della Conoscenza e Ragionamento Automatico, 2006.

[12] Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard. Qcsp made practical by virtue of restricted quantifica-

tion. In Proceedings 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pages 38–43,

2007.

[13] Christian Bessière and Jean-Charles Régin. Arc consistency for general constraint networks: preliminary results.

In Proceedings 15th International Joint Conference on Artificial Intelligence (IJCAI 97), pages 398–404, 1997.

229

Bibliography

[14] Christian Bessière and Jean-Charles Régin. Enforcing arc consistency on global constraints by solving sub-

problems on the fly. In Proceedings 5th International Conference on the Principles and Practice of Constraint

Programming (CP 99), pages 103–117, 1999.

[15] Christian Bessière and Jean-Charles Régin. Refining the basic constraint propagation algorithm. In Proceedings

17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pages 309–315, 2001.

[16] Christian Bessière, Jean-Charles Régin, Roland Yap, and Yuanlin Zhang. An optimal coarse-grained arc consis-

tency algorithm. Artificial Intelligence, 165:165–185, 2005.

[17] Christian Bessière and Guillaume Verger. Strategic constraint satisfaction problems. In Proceedings 5th Interna-

tional Workshop on Constraint Modelling and Reformulation (at CP 2006), 2006.

[18] Armin Biere. Resolve and expand. In Proceedings 7th International Conference on Theory and Applications of

Satisfiability Testing (SAT 2004), pages 238–246, 2005.

[19] Lucas Bordeaux. Boolean and interval propagation for quantified constraints. In Proceedings 1st International

Workshop on Quantification in Constraint Programming (at CP 2005), 2005.

[20] Lucas Bordeaux, Marco Cadoli, and Toni Mancini. Exploiting fixable, substitutable and determined values in

constraint satisfaction problems. In Proceedings 11th International Conference on Logic for Programming Arti-

ficial Intelligence and Reasoning, pages 270–284, 2004.

[21] Lucas Bordeaux, Marco Cadoli, and Toni Mancini. CSP properties for quantified constraints: Definitions and

complexity. In Proceedings 20th National Conference on Artificial Intelligence (AAAI 2005), pages 360–365,

2005.

[22] Lucas Bordeaux and Eric Monfroy. Beyond NP: Arc-consistency for quantified constraints. In Proceedings 8th

International Conference on the Principles and Practice of Constraint Programming (CP 2002), pages 371–386,

2002.

[23] F Börner, A Bulatov, Peter Jeavons, and Andrei Krokhin. Quantified constraints: Algorithms and complexity. In

Proceedings 17th International Workshop on Computer Science Logic (CSL 2003), pages 58–70, 2003.

[24] Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An algorithm to evaluate quantified Boolean formulae.

In Proceedings 15th National Conference on Artificial Intelligence (AAAI 98), pages 262–267, 1998.

[25] Marco Cadoli, Marco Schaerf, Andrea Giovanardi, and Massimo Giovanardi. An algorithm to evaluate quantified

Boolean formulae and its experimental evaluation. Journal of Automated Reasoning, 28(2):101–142, 2002.

[26] Jacques Carlier and Eric Pinson. A practical use of Jackson’s preemptive schedule for solving the job-shop

problem. Annals of Operations Research, 26:269–287, 1990. Cited by [77].

[27] Yves Caseau and Francois Laburthe. Improved CLP Scheduling with Task Intervals. In Proceedings 11th Inter-

national Conference on Logic Programming (ICLP 94). The MIT press, 1994.

230

Bibliography

[28] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the Really Hard Problems Are. In Proceedings

12th International Joint Conference on Artificial Intelligence (IJCAI 91), pages 331–337, 1991.

[29] Hubie Chen and Víctor Dalmau. From pebble games to tractability: An ambidextrous consistency algorithm for

quantified constraint satisfaction. In Proceedings 19th International Workshop on Computer Science Logic (CSL

2005), pages 232–247, 2005.

[30] Chiu Wo Choi, Warwick Harvey, Jimmy Ho-Man Lee, and Peter J. Stuckey. Finite domain bounds consistency

revisited. In Proceedings 19th Australian Joint Conference on Artificial Intelligence (AI 2006), pages 49–58,

2006.

[31] Lecoutre Christophe and Szymanek Radoslaw. Generalized arc consistency for positive table constraints. In

Proceedings 12th International Conference on the Principles and Practice of Constraint Programming (CP

2006), pages 284–298, 2006.

[32] David Cohen, Peter Jeavons, Christopher Jefferson, Karen E. Petrie, and Barbara M. Smith. Symmetry definitions

for constraint programming. In Proceedings 11th International Conference on the Principles and Practice of

Constraint Programming (CP 2005), pages 17–31, 2005. Best Paper award.

[33] Andrew J. Davenport and J. Christopher Beck. A survey of techniques for scheduling with uncertainty. Unpub-

lished manuscript. Available from http://tidel.mie.utoronto.ca/publications.php.

[34] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving. Communica-

tions of the ACM, 5(7):394–397, 1962.

[35] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the ACM,

7(1):201–215, 1960.

[36] Maria Garcia de la Banda, Kim Marriott, Reza Rafeh, and Mark Wallace. The modelling language Zinc. In

Proceedings 12th International Conference on the Principles and Practice of Constraint Programming (CP

2006), pages 700–705, 2006.

[37] Romuald Debruyne and Christian Bessière. Some practicable filtering techniques for the constraint satisfaction

problem. In Proceedings 15th International Joint Conference on Artificial Intelligence (IJCAI 97), pages 412–

417, 1997.

[38] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[39] Hélène Fargier, Jérôme Lang, and Thomas Schiex. Mixed constraint satisfaction: A framework for decision

problems under incomplete knowledge. In Proceedings 13th National Conference on Artificial Intelligence (AAAI

96), pages 175–180, 1996.

[40] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

231

Bibliography

[41] Alan M. Frisch, Matthew Grum, Chris Jefferson, Bernadette Martínez Hernández, and Ian Miguel. The design

of ESSENCE: A constraint language for specifying combinatorial problems. In Proceedings 20th International

Joint Conference on Artificial Intelligence (IJCAI 2007), pages 80–87, 2007.

[42] Alan M. Frisch, Christopher Jefferson, and Ian Miguel. Symmetry-breaking as a prelude to implied constraints:

A constraint modelling pattern. In Proceedings 16th European Conference on Artificial Intelligence (ECAI 2004),

2004.

[43] Alan M. Frisch and Timothy J. Peugniez. Solving non-Boolean satisfiability problems with stochastic local

search. In Proceedings 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pages 282–

290, 2001.

[44] Alan M. Frisch, Timothy J. Peugniez, Anthony J. Doggett, and Peter Nightingale. Solving non-Boolean satis-

fiability problems with stochastic local search: A comparison of encodings. Journal of Automated Reasoning,

35(1-3):143–179, 2005.

[45] J. Gaschnig. A constraint satisfaction method for inference making. In Proceedings 12th Annual Allerton Con-

ference on Circuit and System Theory, pages 866–874, 1974. Cited by [85], chapter 3.

[46] Ian Gent and Andrew Rowley. Encoding Connect-4 using quantified Boolean formulae. Technical Report APES-

68-2003, APES research group, 2003.

[47] Ian P. Gent, Enrico Giunchiglia, Massimo Narizzano, Andrew G. D. Rowley, and Armando Tacchella. Watched

data structures for QBF solvers. In Proceedings 6th International Conference on Theory and Applications of

Satisfiability Testing (SAT 2003), pages 25–36, 2003.

[48] Ian P. Gent, Warwick Harvey, Tom Kelsey, and Steve Linton. Generic SBDD using computational group theory.

In Proceedings 9th International Conference on the Principles and Practice of Constraint Programming (CP

2003), pages 333–362, 2003.

[49] Ian P. Gent, Chris Jefferson, Tom Kelsey, Inês Lynce, Ian Miguel, Peter Nightingale, Barbara M. Smith, and

S. Armagan Tarim. Search in the patience game ‘black hole’. Technical Report CPPOD-21-2006, CPPOD re-

search group, 2006.

[50] Ian P. Gent, Chris Jefferson, and Ian Miguel. Minion: A fast, scalable, constraint solver. In Proceedings 17th

European Conference on Artificial Intelligence (ECAI 2006), pages 98–102, 2006.

[51] Ian P. Gent, Ian Miguel, and Peter Nightingale. Data structures for generalised arc consistency for extensional

constraints. Technical Report CPPOD-19-2006-A, CPPOD research group, 2006.

[52] Ian P. Gent, Peter Nightingale, and Andrew Rowley. Encoding quantified CSPs as quantified Boolean formulae.

In Proceedings 16th European Conference on Artificial Intelligence (ECAI 2004), pages 176–180, 2004.

[53] Ian P. Gent, Peter Nightingale, Andrew Rowley, and Kostas Stergiou. Solving quantified constraint satisfaction

problems. Artificial Intelligence, 2007. To appear.

232

Bibliography

[54] Ian P. Gent, Peter Nightingale, and Kostas Stergiou. QCSP-Solve: A solver for quantified constraint satisfaction

problems. In Proceedings 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pages

138–143, 2005.

[55] Ian P. Gent and Andrew G. D. Rowley. Local and global complete solution learning methods for QBF. In Pro-

ceedings 8th International Conference on Theory and Applications of Satisfiability Testing (SAT 2005), pages

91–106, 2005.

[56] E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/term resolution and learning in the evaluation of quanti-

fied Boolean formulas. Journal of Artificial Intelligence Research (JAIR), 26:371–417, 2006.

[57] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Backjumping for quantified Boolean logic

satisfiability. In Proceedings 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pages

275–281, 2001.

[58] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Learning for quantified Boolean logic satisfi-

ability. In Proceedings 18th National Conference on Artificial Intelligence (AAAI 2002), pages 649–654, 2002.

[59] Warwick Harvey. Symmetry breaking and the social golfer problem. In Proceedings SymCon-01: Symmetry in

Constraints, co-located with CP 2001, pages 9–16, 2001.

[60] Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. Robust solutions for constraint satisfaction and optimiza-

tion. In Proceedings 16th European Conference on Artificial Intelligence (ECAI 2004), 2004.

[61] Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. Super solutions in constraint programming. In Proceedings

1st International Conference on Integration of AI and OR Techniques in Constraint Programming for Combina-

torial Optimization Problems (CPAIOR 2004), pages 157–172, 2004.

[62] Hirosi Hitotumatu and Kohei Noshita. A technique for implementing backtrack algorithms and its application.

Information Processing Letters, 8(4):174–175, 1979. Cited by [66].

[63] Brahim Hnich, Ian Miguel, Ian P. Gent, and Toby Walsh. CSPLib: a problem library for constraints.

http://csplib.org/.

[64] Joey Hwang and David G. Mitchell. 2-way vs. d-way branching for CSP. In Proceedings 11th International

Conference on the Principles and Practice of Constraint Programming (CP 2005), pages 343–357, 2005.

[65] Claire Kenyon and Meinolf Sellmann. Plan B: Uncertainty/time trade-offs for linear and integer programming. In

Proceedings 3rd International Conference on Integration of AI and OR Techniques in Constraint Programming

for Combinatorial Optimization Problems (CPAIOR 2006), pages 126–138, 2006.

[66] Donald Knuth. Dancing links. In Millennial Perspectives in Computer Science, pages 187–214. Palgrave, 2000.

[67] Ludwig Krippahl and Pedro Barahona. Chemera: Constraints in protein structural problems. In Proceedings of

WCB06 Workshop on Constraint Based Methods for Bioinformatics, pages 30–45, 2006.

233

Bibliography

[68] Francoise Laburthe. Choco: a constraint programming kernel for solving combinatorial optimization problems.

http://choco.sourceforge.net/.

[69] Christophe Lecoutre and Patrick Prosser. Maintaining singleton arc-consistency. Technical Report CPPOD-14-

2006, CPPOD research group, 2006.

[70] Olivier Lhomme and Jean-Charles Régin. A fast arc consistency algorithm for n-ary constraints. In Proceedings

20th National Conference on Artificial Intelligence (AAAI 2005), pages 405–410, 2005.

[71] Alejandro López-Ortiz, Claude-Guy Quimper, John Tromp, and Peter van Beek. A fast and simple algorithm

for bounds consistency of the AllDifferent constraint. In Proceedings 18th International Joint Conference on

Artificial Intelligence (IJCAI 2003), pages 306–319, 2003.

[72] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99–118, 1977. Cited by [85],

chapter 3.

[73] A. K. Mackworth. On reading sketch maps. In Proceedings 5th International Joint Conference on Artificial

Intelligence (IJCAI 77), pages 598–606, 1977. Cited by [85], chapter 3.

[74] Nikos Mamoulis and Kostas Stergiou. Algorithms for quantified constraint satisfaction problems. In Proceedings

10th International Conference on the Principles and Practice of Constraint Programming (CP 2004), pages 752–

756, 2004.

[75] Suresh Manandhar, Armagan Tarim, and Toby Walsh. Scenario-based stochastic constraint programming. In

Proceedings 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pages 257–262, 2003.

[76] Kim Marriott and Peter J. Stuckey. Programming with constraints: an introduction. MIT Press, 1998.

[77] Paul Martin and David B. Shmoys. A new approach to computing optimal schedules for the job-shop scheduling

problem. In Proceedings 5th International Conference on Integer Programming and Combinatorial Optimization

(IPCO 96), pages 389–403, 1996.

[78] Roger Mohr and Gérald Masini. Good old discrete relaxation. In Proceedings 8th European Conference on

Artificial Intelligence (ECAI 88), pages 651–656, 1988.

[79] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering

an efficient SAT solver. In Proceedings 39th Design Automation Conference (DAC 2001), 2001.

[80] Les Proll and Barbara Smith. ILP and constraint programming approaches to a template design problem. IN-

FORMS Journal of Computing, 10:265–275, 1998.

[81] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intelligence, 9(3):268–

299, 1993.

[82] Stefan Ratschan. Continuous first-order constraint satisfaction. In Proceedings of Artificial Intelligence and Sym-

bolic Computation 2002, 2002.

234

Bibliography

[83] Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings 12th National

Conference on Artificial Intelligence (AAAI 94), pages 362–367, 1994.

[84] Francesca Rossi, Charles Petrie, and Vasant Dhar. On the equivalence of constraint satisfaction problems. In

Proceedings 9th European Conference on Artificial Intelligence (ECAI 90), pages 550–556, 1990.

[85] Francisco Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Programming. Elsevier,

2006.

[86] Stuart J. Russell and Peter Norvig. Artificial Intelligence A Modern Approach. Prentice Hall, 1995.

[87] Norman M. Sadeh, Katia P. Sycara, and Yalin Xiong. Backtracking techniques for the job shop scheduling

constraint satisfaction problem. Artificial Intelligence, 76(1-2):455–480, 1995.

[88] Christian Schulte and Guido Tack. Views and iterators for generic constraint implementations. In Recent Ad-

vances in Constraints (2005), volume 3978 of Lecture Notes in Artificial Intelligence, pages 118–132. Springer-

Verlag, 2006.

[89] Barbara Smith, Kostas Stergiou, and Toby Walsh. Modelling the Golomb Ruler problem. In Proceedings of

Workshop on Non Binary Constraints (at IJCAI 99), 1999.

[90] Barbara M. Smith. A dual graph translation of a problem in ‘Life’. In Proceedings 8th International Conference

on the Principles and Practice of Constraint Programming (CP 2002), pages 402–414, 2002.

[91] Barbara M. Smith. Constraint programming models for graceful graphs. In Proceedings 12th International Con-

ference on the Principles and Practice of Constraint Programming (CP 2006), pages 545–559, 2006.

[92] R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed backtracking in a system for

computer-aided circuit analysis. Artificial Intelligence, 9:135–196, 1977. Cited by [85] chapter 4.

[93] Kostas Stergiou. Repair-based methods for quantified CSPs. In Proceedings 11th International Conference on

the Principles and Practice of Constraint Programming (CP 2005), pages 652–666, 2005.

[94] Kostas Stergiou and Toby Walsh. Encodings of non-binary constraint satisfaction problems. In Proceedings 16th

National Conference on Artificial Intelligence (AAAI 99), pages 163–168, 1999.

[95] Stanley Smith Stevens. On the theory of scales of measurement. Science, 103:677–680, 1946.

[96] Armagan Tarim, Suresh Manandhar, and Toby Walsh. Stochastic constraint programming: A scenario-based

approach. Constraints, 11(1):53–80, 2006.

[97] Guillaume Verger and Christian Bessière. Blocksolve: a bottom-up approach for solving quantified CSPs. In

Proceedings 12th International Conference on the Principles and Practice of Constraint Programming (CP

2006), pages 635–649, Nantes, France, 2006.

[98] T. Walsh. SAT v CSP. In Proceedings 6th International Conference on the Principles and Practice of Constraint

Programming, number 1894 in LNCS, pages 441–456. Springer, 2000.

235

Bibliography

[99] Toby Walsh. Stochastic constraint programming. In Proceedings 15th European Conference on Artificial Intelli-

gence (ECAI 2002), pages 111–115, 2002.

[100] Toby Walsh. Challenges for SAT and QBF, 2003. Talk at SAT 2003 conference, slides available from

http://www.cse.unsw.edu.au/∼tw/sat2003.ppt.

[101] D. L. Waltz. Generating semantic descriptions from drawings of scenes with shadows. Technical Report MAC

AI-271, MIT, 1972. Cited by [85], chapter 3.

[102] Neil Yorke-Smith and Carmen Gervet. Closures of uncertain constraint satisfaction problems. In Proceedings 1st

International Workshop on Quantification in Constraint Programming (at CP 2005), 2005.

236

