
The Extended Global Cardinality Constraint:
An Empirical Survey: Extended Abstract
Peter Nightingale

Introduction

The Extended Global Cardinality Constraint (EGCC) is an important
component of constraint solving systems, since it is very widely
used to model diverse problems. The literature contains many
different versions of this constraint, which trade strength of
inference against computational cost. In this paper, I focus on the
highest strength of inference usually considered, enforcing
generalised arc consistency (GAC) on the target variables.

EGCC(X, V, C)
X is a vector of target variables
V is a vector of domain values of interest
C is a vector of cardinality variables

For each value Vi with cardinality variable Ci, there are Ci
occurrences of Vi in X

Quimper’s vs. Régin’s algorithm

Motivation
Paper is partly empirical survey of existing algorithms....

Quimper’s algorithm vs Régin’s algorithm
Three algorithms for cardinality variables
Many more

... And partly new optimisations for EGCC
Dynamic partitioning
Dynamic triggers

Help future solver implementors
Simple algorithms better than complex ones, despite big-O

complexity
Insight into which parts of code to optimise, despite big-O

complexity, again
How to prune cardinality variables

Techniques for EGCC might apply elsewhere
Dynamic partitioning for graph/network constraints

There are two algorithms for enforcing GAC on the target variables:

Régin (1996) – Finds one maximal flow, SCC analysis once. Based
on network flow, O(n2d)
Quimper et al (2004) – Divides the EGCC into two constraints for
the lower and upper bounds (on cardinality), Finds two matchings
and runs SCC analysis twice. Based on bipartite matching, O(n1.5d)

Against the big-O analysis, Régin’s algorithm is much better:

Spends most time in SCC analysis not finding the matching/flow.

The idea is simple: when the network of the EGCC constraint
partitions into two pieces, split the constraint accordingly.

Dynamic Partitioning

x1,x2,x3

1,2
x4

3,4

This makes the SCC analysis
incremental and can make it more than
5 times faster (plot below compares
whole solver time).

Dynamic Partitioning also works well
for the AllDifferent constraint and
could be promising for other graph or
network based constraints.

Pruning the Cardinality Variables
I surveyed three methods:
Simple – for each value, count occurrences in the domains of the
target variables (upper bound), count target variables assigned to
the value (lower bound)
Sum – simple plus implied sum constraint
Flow – for each value, find maximal flows that maximise and
minimise occurrences of the value. Much more expensive than
Sum.

Simple vs. Sum – The sum constraint is often worthwhile and
usually does not have a high cost..

Sum vs. Flow – The plot below shows that on some instances the
Flow method can be 50 times slower, but also can solve two more
instances within the time limit.

Summary
The paper is an extensive empirical survey of algorithms and
optimizations, considering both GAC on the target variables, and
tightening the bounds of the cardinality variables. I also report
important implementation details of those techniques, which have
often not been described in published papers. As well as a survey,
two new optimizations are proposed for EGCC. Overall, the best
combination of optimizations gives a mean speedup of 4.11 times,
taking the whole time of the solver.

