
Extending Simple Tabular Reduction with
Short Supports
Christopher Jefferson and Peter Nightingale

Introduction – Supports
In Constraint Programming systems, constraint propagation
algorithms filter values out of variable domains when the values
cannot be part of a global solution. For example, consider the
following less-than constraint:

Because of the constraint, value 3 of x and value 0 of y cannot take
part in any solution, so they are deleted.
If a value is contained in a satisfying assignment for the constraint
(eg x=2, y=3 for <) then it is not deleted, and we call the satisfying
assignment a support for the value. This concept of support is
pervasive in propagation algorithms.

STR2+ and ShortSTR2

Short Supports

Simple Tabular Reduction algorithms maintain a sparse set of
supports. The supports are traditionally full-length tuples that
satisfy the constraint. An example of a sparse set is shown below.

In this sparse set, tuples 3,4,1,5 are in, and 6,2 are out.
In this paper, we adapt STR2+ to use short supports in place of full-
length supports. Short supports are an excellent fit for STR2+ and
the changes to STR2+ to accommodate short supports are very
minor. We call the resulting algorithm ShortSTR2.

Compared to STR2+, ShortSTR2 benefits from potentially very
large compression of the tuple sets so ShortSTR2 can be much
faster than STR2+. Even when the tuple set does not compress at
all, ShortSTR2 is almost as fast as STR2+.

Arbitrary constraints are typically given to a constraint solver as a
list of satisfying tuples. To automatically apply one of the ‘short’
algorithms, we need a procedure to compress the full-length tuples
into short supports. Finding the minimal set is NP-Hard. We
propose a fast greedy tuple compression algorithm.

The basic step of the algorithm is to take d (short) supports and
compress them into one short support. The d short supports must
be identical apart from one variable.

For example, suppose we have a constraint of arity 4, and all
domains are {1,2,3}. We use * to represent any-value (i.e. the
variable is not mentioned in the short support).

In this example, the short support set contains three tuples that are
identical apart from the last position. In the last position, all values
are represented – so we can replace this set with a single short
support. This step is iterated until it cannot be applied again.

This algorithm is used for some of the experiments presented in
the paper.

Compression of Tuple Sets

The key concept used in this paper is short supports.
Some constraints can be satisfied by assigning only a few of their
variables – after the assignment, the constraint doesn't care about
the values of the rest. A short assignment that satisfies the
constraint is called a short support.

A conventional support will only support the values contained in it.
A short support will support all values of any variable not
mentioned in it. For example:

Domains x1:{1,..,11}, x2, x3:{1,..,10}
Constraint: (x1 = x2 OR x1 = x3)
Short support S: (x1 → 1, x2 → 1)

S supports x1 → 1, x2 → 1 and all values of x3.
S supports x1 → 1, x2 → 1 explicitly
S supports all values of x3 implicitly

x y <

0

1

2

3

0

1

2

3

Before propagation:
x y <

0

1

2

3

0

1

2

3

After propagation:

1, 2, *, 1
1, 2, *, 2
1, 2, *, 3

1, 2, *, *

ShortSTR2 as a drop-in replacement
In one experiment we evaluated ShortSTR2 (with greedy tuple
compression) as a drop-in replacement for STR2+, using XCSP
benchmarks. Memory savings vary quite widely depending on
whether the constraints are amenable to short supports.

Timings are of the whole solver when only a subset of the
constraints may have been compressed, therefore they will
underestimate the speed-up of ShortSTR2 compared to STR2+.
Even so ShortSTR2 would be a worthwhile replacement for STR2+.

Problem class Compression ratio Speed-up ShortSTR2
compared to STR2+

Half 1.87 1.75

modifiedRenault 5.35 0.99

Rand-8-20-5 1.01 1.05

bddSmall 1.90 1.13

Renault 6.31 1.06

bddLarge 1.80 1.21

cril 1.19 1.11

Experiments
There are five experiments comparing ShortSTR2 against
HaggisGAC (an earlier short support algorithm) and STR2+.

In one experiment we compared ShortSTR2 with short supports
(obtained using the greedy compression algorithm (left)) against
ShortSTR2 with full-length supports, on some ‘oscillating life’
problems. Short supports give a speed improvement and also a
substantial memory saving – we were able to run the largest
problem (QuadLife) with short supports but not using full-length
supports because it exceeded 4GiB.

Problem ShortSTR2 node rate
Greedy compression

ShortSTR2 node rate
Full length supports

Life 4,970 3,960

Brian’s Brain 532 75

Immigration 4930 3590

QuadLife 483 >4GiB Memory

Tup Index Tuple

1 <1,2,3>

2 <1,3,2>

3 <2,1,3>

4 <2,3,1>

5 <3,1,2>

6 <3,2,1>

Set Index Tup Index

1 3

2 4

3 1

4 5

5 6

6 2

LIMIT

