
Non-binary Quantified CSP: Algorithms and
Modelling

Peter Nightingale

School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SX, Scotland.
email:pn@cs.st-and.ac.uk

Abstract

The Quantified Constraint Satisfaction Problem (QCSP) extends classical CSP
in a way which allows reasoning about uncertainty. In this paper I present novel
algorithms for solving QCSP. Firstly I present algorithms to perform constraint
propagation on reified disjunction constraints of any length. The algorithms make
full use of quantifier information to provide a high level of consistency. Secondly
I present a scheme to enforce the non-binary pure value rule. This rule is capable
of pruning universal variables.

Following this, two problems are modelled in non-binary QCSP: the game of
Connect 4, and a variant of job-shop scheduling with uncertainty, in the form of
machine faults. The job shop scheduling example incorporates probability bound-
ing of scenarios (such that only fault scenarios above a probability threshold are
considered) and optimization of the schedule makespan. These contribute to the
art of modelling in QCSP, and are a proof of concept for applying QCSP methods
to complex, realistic problems. Both models make use of the reified disjunction
constraint, and the non-binary pure value rule. The example problems are used
to evaluate the QCSP algorithms presented in this paper, identifying strengths and
weaknesses, and to compare them to other QCSP approaches.

1 Introduction
The Quantified Constraint Satisfaction Problem (QCSP) extends classical CSP by al-
lowing the quantification of each variable with the existential (∃) or universal (∀) quan-
tifiers over values. QCSP is PSPACE-complete [18]. QCSP can be used to model
various combinatorial problems such as planning or scheduling under uncertainty, de-
sign, adversary game playing and model checking. For example, in planning under
uncertainty we may want to determine if there exists a plan for all eventualities. In
game playing, we may wish to find a strategy which wins the game whatever moves
our opponent makes. The uncertainty or contingency in these examples is modelled
in QCSP using universal variables. In this way, QCSP extends classical constraint
programming in a way which allows reasoning about uncertainty or contingency.

As an example, consider the baker’s puzzle: a baker needs to purchase four weights
of different sizes in the range 1 . . .40, such that it is possible to weigh out all integral

1

quantities of flour in the range 1 . . .40, using a balance. To weigh out a quantity of
flour, each weight can be placed on either side of the balance, or not used. QCSP allows
quantifiers in prenex form, but not infinite domains. Each variable has an associated
initial domain. The puzzle can be expressed in QCSP as follows.

∃w1,w2,w3,w4 ∈ {1,2, . . . ,40},∀ f ∈ {1,2, . . . ,40},∃c1,c2,c3,c4 ∈ {−1,0,1} :
c1w1 + c2w2 + c3w3 + c4w4 = f

The puzzle could be expressed in CSP by duplicating the c variables, and the con-
straint, for each value of f . Even for this tiny example, the CSP representation would
be approximately 40 times larger than the QCSP representation. In the baker’s puzzle,
the universal variable f represents the fact that it must be possible to use the weights
to weigh out all 40 quantities of flour.

A winning strategy is a structure which specifies the value of existential variables
such that the constraints are satisfied, whatever values the universal variables take. The
value of each existential is a function of the universals which are quantified to the left
of it. In the example above, w variables take only one value in a winning strategy, but
c variables take different values depending on the value of f .

Contributions of this work The first part of the paper is concerned with solving
QCSP. The general approach taken is the same as many CSP and QCSP solvers: to in-
terleave reasoning and search. The focus of this work is on reasoning, including strong
propagation and the pure value rule. These are used with a simple search algorithm.
Sophisticated search algorithms which work with non-binary constraints are left for
future work. The contributions towards solving QCSP are as follows.

• The reified disjunction propagator, which enforces a high level of consistency on
reified disjunction constraints of unlimited length, making full use of quantifier
information. This algorithm is instantiated in two different ways, to work with
Boolean literals (i.e. xi or ¬xi for some Boolean variable xi) or to work with
literals of integer variables (i.e. xi = ci or xi 6= ci for some integer variable xi
and constant ci). x1 ∨¬x2 ∨ x4 ⇔ ¬x3 is an example of a reified disjunction
constraint with Boolean literals. This approach subsumes and improves upon the
logical primitives of Bordeaux and Monfroy [14, 16].

• The non-binary pure value rule, which allows the solver to identify values of
universal variables which are subsumed by another value, and therefore to safely
remove these values. Without some way of removing values from universal vari-
ables, a top-down search solver would branch exponentially on the universals.
The rule also allows existential variables to be assigned to a pure value. A
method is given to implement this rule by re-using constraint propagators. The
non-binary pure value rule generalizes both the binary pure value rule by Gent
et al. [27] and the monotone literal rule for QBF by Cadoli et al. [19].

The algorithms are implemented in a solver called Queso, which is described in section
3.4. It is available from the author on request.

2

The second part of the paper is concerned with modelling two quite different struc-
tured problems in QCSP. This is done for three reasons: to be a proof of concept that
complex structured problems can be modelled and solved in QCSP; to contribute to-
wards the art of modelling problems in QCSP; and to identify where improvements
might be made to QCSP solvers by analyzing their performance on these problems.
Previously, random binary problems have been commonly used [4, 27, 38, 41].

I chose to model the game of Connect 4 since it has received some attention in
the area of QBF [25]. It is generalized by parametrizing the width and height of the
board. The full size of 6 rows and 7 columns cannot be solved in reasonable time but
smaller games can. It is a challenging problem with a non-trivial quantifier structure
(with many quantifier alternations) and the model exploits both non-binary constraints
and the non-binary pure value rule. Connect 4 is used to compare Queso with QCSP-
Solve [27], BlockSolve [41] and Bordeaux’s propagators [14, 16]. It would also be
interesting to compare Queso with QeCode/QCSP+ [10] but we leave this for future
work.

Secondly I modelled a scheduling problem because scheduling is an important ap-
plication of constraint programming. I use the well-studied job shop scheduling prob-
lem because of its simplicity. In addition to the classical problem, machines are tested
periodically, and if servicing is required, it is scheduled before the next test. Fault sce-
narios are bounded according to their probability, to avoid excessive processing time.
This problem is modelled in QCSP, and solved with makespan optimization, demon-
strating in principle that a realistic contingent scheduling problem can be solved by
means of QCSP.

In summary, the contributions of this paper are as follows:

• to advance the art of modelling problems in QCSP;

• to advance algorithms for non-binary QCSP;

• to show that moderately sophisticated problems can be modelled and solved in
non-binary QCSP;

• to evaluate the QCSP algorithms presented here on a realistic problem, identify-
ing strengths and weaknesses; and

• to briefly compare the schedule length of a contingent scheduling approach with
a non-contingent approach.

The scheduling work in this paper is intended as a proof of concept, rather than as a
contribution to scheduling. Job shop scheduling is very well studied, so I will not be
able to compete in terms of optimizing large instances. Instead, the contribution is in
the QCSP algorithms and modelling.

2 QCSP Background
This section provides the definitions of concepts used in this paper, and a review of
previous work on QCSP.

3

2.1 Theoretical background
It is necessary to define QCSP and some related notions.

Definition 2.1 Finite Quantified Constraint Satisfaction Problem
A QCSP P = 〈X ,D ,C ,Q〉 is defined as a sequence of n variables X = 〈x1, . . . ,xn〉,

a sequence of domains D = 〈D1, . . . ,Dn〉 where Di (Z, |Di|< ∞ is the finite set of all
potential values of xi, a conjunction C =C1∧C2∧·· ·∧Ce of constraints, and a quanti-
fier sequence Q = 〈Q1x1, . . . ,Qnxn〉 where each Qi is a quantifier, ∃ (existential, ‘there
exists’) or ∀ (universal, ‘for all’).

I use n for the number of variables, e for the number of constraints, and for QCSPs
where all variables have the same domain, d for the cardinality of the domain. r is used
for the arity of a constraint.

Before defining the semantics of a QCSP, it is necessary to define constraints. I use
subsequence in the sense where 〈1,3〉 is a subsequence of 〈1,2,3,4〉.

Definition 2.2 Constraint
Within QCSP P = 〈X ,D ,C ,Q〉, a constraint Ck ∈ C consists of a sequence of

r > 0 variables Xk = 〈xk1 , . . . ,xkr〉 with respective domains Dk = 〈Dk1 , . . . ,Dkr〉 s.t.
Xk is a subsequence of X , Dk is a subsequence of D , and each variable xki and
domain Dki matches a variable x j and domain D j in P . Ck has an associated set
CS

k ⊆ Dk1 × ·· · ×Dkr of tuples which specify allowed combinations of values for the
variables in Xk.

The variables Xk are called the scope of the constraint. CS
k may be represented im-

plicitly, for example by an algebraic expression. Notice that the set CS
k depends on the

domains, hence in a QCSP solver which simplifies the problem P by removing values
from the domains to form a smaller problem P ′, CS

k in P ′ is reduced accordingly.
Once all variables are instantiated, if

∣∣CS
k

∣∣= 0 the constraint has failed and if
∣∣CS

k

∣∣= 1
the constraint is solved [3]. (For convenience, in the context of a single constraint Ck
the variable xki and domain Dki are referred to as xi and Di.)

In order to define the semantics of QCSP, function firstx(P) gives the first unin-
stantiated variable in the quantifier sequence, or ⊥ if no such variable exists.

Definition 2.3 Semantics of the QCSP P = 〈X ,D ,C ,Q〉

• In the case where firstx(P) = ⊥: If all constraints Ck ∈ C are solved, P is
satisfiable. If any constraint has failed, P is unsatisfiable.

• Otherwise, let firstx(P) = xi. If (∃xi) ∈Q then P is satisfiable iff there exists
a value a ∈ Di such that the simplified problem P[Di = {a}] is satisfiable. If
(∀xi) ∈Q then P is satisfiable iff for all values a ∈ Di the simplified problem
P[Di = {a}] is satisfiable.

A solution to the QCSP P is a tuple t of values for all variables, such that ti ∈ Di,
and in the simplified QCSP P ′ with domains Di = {ti}, all the constraints in C ′ are
solved. The set of all solutions of P is called solP .

4

Definition 2.4 Solution
A tuple t is a solution to QCSP P = 〈X ,D ,C ,Q〉 iff |t| = n and ∀i : ti ∈ Di

and in the simplified QCSP P ′ = 〈X ,D ′,C ′,Q〉 where D ′ = 〈{t1},{t2}, . . . ,{tn}〉,
all constraints C′k are solved.

The solution set solP (defined as the set of all solutions of P) is used later in the
definition of the pure value rule.

Bordeaux et al. [15] define strategies and winning strategies. A strategy S for P
is a family of functions which specify the values of existential variables as a function
of the values of outer universal variables, where the value of every existential variable
in P is specified for any valid tuple of values of outer universals. In this way, if all
universal variables are assigned, all existential variables have a unique value in the
functions. (The function for an existential variable with no outer universals has one
mapping from the empty tuple 〈〉 to some value.)

A winning strategy S′ is a strategy such that whenever all universal variables are
assigned, and existentials are assigned according to the functions in S′, the tuple of
assigned values is a solution in solP . Such tuples are scenarios of S′.

Bordeaux et al. [15] define inconsistency, a property of a variable and value pair
xi,a. Informally, a pair is inconsistent iff it is contained in no scenario of any winning
strategy.

Finally, Bordeaux et al. [15] show that the inconsistency property can be applied
to a single constraint Ck, rather than P , by constructing a QCSP instance Pk =
〈X ′,D ′,{Ck},Q′〉 containing just the one constraint Ck, where X ′,D ′,Q′ are re-
stricted to just the variables (or domains, quantifiers) that are in the scope of Ck. This
definition of inconsistency over a single constraint will be referred to as QGAC (Quan-
tified Generalized Arc-Consistency). It is QGAC which is enforced by the propagation
algorithm for reified disjunction, described below.

2.2 Previous work on QCSP
There have been a number of approaches to solving QCSP within the general scheme
of interleaving reasoning with search. Approaches to reasoning include:

• Forward checking on binary (arity two) constraints (employed by the QCSP-
Solve solver, primarily developed by Stergiou [27]). Forward checking is a stan-
dard technique in CSP [36], but is strengthened by making use of quantifier
information in QCSP-Solve.

• Maintain arc-consistency on binary constraints (Mamoulis and Stergiou [31]).
Again the definition of arc-consistency is strengthened for QCSP by making use
of quantifier information.

• Maintaining consistency of numerical and logical constraints (Bordeaux and
Monfroy [14, 16]). Propagation rules are given for short constraints such as
x1 + x2 = x3 and x1 ∨ x2 ⇔ x3 (over Boolean variables). Numerical and logi-
cal expressions can be built up from these short primitive constraints.

5

• Adapting CSP propagation algorithms to QCSP. Benedetti et al. [9] proposed
four methods for strengthening a conventional propagation algorithm to take ad-
vantage of quantifier information. This is distinct to QCSP+ by the same authors.

• The pure value rule, proposed for binary constraints by Gent et al. [27] and im-
plemented in QCSP-Solve. This identifies values which are not in conflict with
any other value via any constraint. For universal variables, a pure value is re-
moved from the domain unless it is the final value in the domain. For existential
variables, the variable is assigned to the pure value.

• The dual problem, proposed by Bordeaux and Zhang [17]. The negation (dual)
of the QCSP instance is constructed, where each quantifier is flipped from ∃ to
∀ and vice versa, and the constraint store is negated. Constraint propagation
is applied in the dual problem. Values of existentials which are inconsistent
in the dual correspond to values of universal variables in the primal problem
which satisfy all constraints. Such values can be removed in the primal problem,
providing a way of pruning universals.

There have also been innovations in search for QCSP. The simplest search algorithm is
a depth-first search where the variables are assigned in quantification order. This is a
straightforward generalization of the search procedure for quantified Boolean formulae
(QBF) by Cadoli et al. [19]. For an existential variable, values are assigned in turn
until the first value is found which allows the remainder of the QCSP to be solved.
For a universal variable, all values are assigned in turn. If any one does not allow
the remainder of the QCSP to be solved, the search backtracks with a failure. The
algorithm is given in section 2.3. It is extended in several ways in the literature:

• Conflict backjumping (CBJ) (by Stergiou [27]) identifies the search assignments
which are responsible for a failure, and backtracks directly to the most recent
one. In this way the search procedure avoids immediately revisiting the same
failure multiple times. The algorithm was specified in terms of binary constraints
and implemented in QCSP-Solve.

• Solution directed pruning (SDP) (by Stergiou [27]) avoids immediately re-discovering
the same solution multiple times. This is done by matching a solution to other
values of universal variables. The algorithm is not specific to binary constraints.
It is implemented in QCSP-Solve.

• Repair-based methods (Stergiou [38]) attempt to re-use a solution for different
values of universals, by making local repairs to the solution.

• Solution backjumping (SBJ) (Bacchus and Stergiou [4]) makes use of solutions
by backjumping in much the same way that CBJ exploits a failure. SBJ subsumes
and improves upon SDP.

There are other search algorithms which do not follow the quantifier order. For ex-
ample, BlockSolve [41] searches the rightmost variables first. A winning strategy is
constructed by synthesizing sub-strategies. This is an interesting approach, although
the current revision of BlockSolve did not perform well in the experiments reported
below.

6

2.2.1 QCSP+

Benedetti et al. claim that structured problems are difficult to model in QCSP [10]. To
illustrate the difficulty, consider an adversarial game where the number of legal moves
is not fixed. A move of the adversary would typically be modelled as a universal vari-
able xi, but the domain of xi is fixed before search begins. Therefore when branching on
xi it is necessary to ignore some values which correspond to illegal moves. (To disallow
illegal moves using a constraint is not correct: this merely falsifies the instance because
a winning strategy must satisfy all constraints for all values of universal variables.) The
solution proposed by Benedetti et al. is a new language: QCSP+, a generalization of
QCSP [10]. Written as first-order logic, a quantifier in QCSP+ has one of the following
two forms.

∃X1 : L1∧ [. . .] ∀X2 : L2⇒ [. . .]

In these expressions, X1 and X2 are sets of variables, and L1 and L2 are instances of
CSP. The ellipsis represents the rest of the QCSP+ instance, including other quantifiers
if necessary. QCSP+ also has free (unquantified) variables, and a set of constraints.

The CSPs L1 and L2 allows one to encode conditions on the quantifiers (e.g. rules of
a game) which rule out some combinations of values. Each CSP instance can contain
variables from the quantifier it is attached to, from quantifiers to the left, and from
the set of free variables. Therefore, the approved values of universal variables can
depend on the values of any variables quantified to the left. This solves the modelling
difficulty. When solving, the illegal values of universal variables are removed by a
form of propagation before the universal variable is branched.

QCSP+ has a practical advantage, which is that CSP propagation algorithms are
used without alteration, therefore a large library of constraints is available. Benedetti et
al. do not conclusively show that QCSP+ can be solved efficiently: the solver uses con-
ventional CSP propagation algorithms rather than the stronger quantified variants [10].
In our experiments with Connect-4, strong quantified consistency was vital (section 4).
However, experimental results are promising for QCSP+, and it has proved possible
to model a cumulative scheduling problem with an adversary which is able to disrupt
the schedule in a limited way [11]. (This scheduling problem is substantially different
to the one modelled below.) Benedetti et al. also recently proposed an optimization
scheme [12] for QCSP+.

2.3 Search algorithm
The search algorithm presented here is very similar conceptually to others in the liter-
ature (for example QCSP-Solve [27]), although the presentation is different, therefore
I do not claim novelty for this algorithm. The search procedure (algorithm 1) is recur-
sive, and has the following basic structure:

1. The consequences of domain removals are propagated (with procedure propa-
gate). If this procedure infers there can be no winning strategy, then false is
returned.

7

Algorithm 1 Search for finite QCSP
procedure search(i: variable index): Boolean
if ¬propagate():

return false
if i > n: {base case}

return true
while Di = {a}: {One value left in domain}

i← i+1
if i > n then: return true

{recursive cases}
while true:

a←pickValue(xi) {choose a value heuristically}
addBacktrackLevel()
Di←{a}
b←search(i+1)
backtrack()
if Qi = ∀: {variable xi is universal}

if ¬b then: return false
else:

Di← Di \{a}
if Di = /0 then: return true
if ¬propagate() then: return false

else: {variable xi is existential}
if b then: return true
else:

Di← Di \{a}
if Di = /0 then: return false
if ¬propagate() then: return false

2. If all variables have been instantiated (i > n where n is the number of variables)
then we have reached a satisfying scenario.

3. It is impossible to search over variables with only one value remaining, so jump
to the first variable with more than one value in its domain.

4. The procedure recurses for each value of the current variable xi:

(a) If xi is universal, and one of the recursive calls returns false, then we return
false, otherwise true. This matches the universal part of the definition of
QCSP semantics.

(b) If xi is existential, and one of the recursive calls returns true, then we can
return true, otherwise false. This matches the existential part of the defini-
tion.

Variables are searched in order x1 . . .xn which is the quantification order. (Algo-
rithm 1 would be called with value 1 initially.) The domains and any other important

8

state are managed by addBacktrackLevel and backtrack. The procedure addBacktrack-
Level pushes a record on a stack for the purpose of backtracking. The procedure back-
track pops a record from the top of the stack and returns the domains Di to their state
when the record was made. Also, some constraints have internal state which must be
restored at this point. Alterations to variable domains are denoted using the domain
directly (e.g. Di ← {a}) to distinguish them from pruning performed by constraint
propagators (which may cause failure, for example when pruning a universal variable).

Definition 2.3 would suggest an algorithm that recursively constructs a complete
scenario t and then tests it against the constraints. This is modified for efficiency by
simplifying the problem (by calling propagate) at each step of the recursion. The con-
tract with propagate is as follows. Propagate returns false iff the problem simplifies
to false, otherwise it returns true whether or not the problem was simplified. When all
variables are instantiated (all domains are of size one), propagate must decide the prob-
lem (i.e. propagate returns true iff the problem is satisfiable). To simplify the problem,
propagate removes values from the domains. I assume here that these removals are
sound.

Whenever propagate returns false, the procedure returns false and backtracks. At
the leaves of the recursion, the search procedure matches the definition closely because
propagate can decide the fully instantiated problem. Therefore, assuming that propa-
gate performs only sound simplifications, search is correct.

3 Solving QCSP
This section is concerned with new algorithms for solving non-binary QCSP. These in-
clude an optimization algorithm, but the main contributions are a propagation algorithm
for the reified disjunction constraint, and a scheme for implementing the non-binary
pure value rule by re-using constraint propagators.

3.1 Optimization
For many problem domains, it is necessary to minimize or maximize a value. For ex-
ample, when constructing a nurse rota it might be desirable to maximize the fairness
of the rota according to some numerical measure. In this section I describe an algo-
rithm to find a winning strategy which minimizes an existential variable. To perform
minimization, a winning strategy must be assigned a score. The score is defined as the
maximum across all scenarios of the value of the minimization variable.

Minimization for the QCSP instance P is performed as follows: search is called
to find a winning strategy S, which has score t. A new QCSP instance P ′ is con-
structed where the upper bound of the minimization variable is t−1, and a new search
is performed. This is iterated until search returns false. I refer to this procedure as
searchOpt.

SearchOpt performs restarts. It is conventional in constraint programming to back-
track rather than restart the search. However, in QCSP it is not clear how far to back-
track. Since the score is defined as a maximum across all scenarios, it would perhaps be
necessary to identify the set of scenarios which have the maximum score, and backtrack

9

to a node that dominates this set before recommencing search. This would require more
housekeeping than searchOpt but it may be worthwhile. I leave this for future work.

Another approach is to begin optimizing sub-strategies before completing a win-
ning strategy ([34] section 3.3.2). This algorithm finds a winning strategy which is
optimal for all scenarios. However the algorithm spends considerable time performing
optimization in branches of the search tree which may not be part of a winning strategy.
In informal experiments, it performed much worse than searchOpt on some faulty job
shop scheduling instances.

Benedetti et al. recently proposed an optimization algorithm for QCSP+ which
could be adapted to QCSP [12]. However it is much more complex than the algorithm
here, and the greater flexibility is not necessary for the purposes of this paper.

3.2 The quantified reified disjunction constraint
Logical constraints, such as conjunction, disjunction and implication (for example,
(x1 = 5)∨(x2 = 3)⇒ (x3 6= 7)), are commonplace in classical constraint programming.
Constraints like these have received some attention in QCSP as well. Existing CSP
solvers offer facilities for logical constraints such as the example above. In QCSP,
Bordeaux and Monfroy have developed various ternary primitive constraints for logical
constraints, and a method of decomposing a complex expression into their primitives
[14, 16]. Solvers for quantified Boolean formulae (QBF, a subset of QCSP) [20] also
deal with quantified disjunction constraints. Any new approach should compare well
(in efficiency, expressiveness or strength of consistency) to both these items of work.

In this section I present a new algorithm to process reified disjunction constraints
(e.g. ¬x1 ∨ x2 ∨¬x4 ⇔ ¬x3). This form of constraint is sufficient for a wide variety
of logical expressions. The algorithm is instantiated in two different ways, and I show
that it maintains QGAC and executes in linear time (in r), with no backtracking state.
The time complexity is the same as for Bordeaux and Monfroy’s existing work, and
the level of consistency is stronger. The new constraint can also enforce the same level
of consistency as unit propagation on a QBF clause, but the new constraint is more
expressive.

The constraint is defined in terms of literals. A literal l j is an expression con-
taining a single QCSP variable x j which evaluates to a Boolean value when x j is
assigned. A constraint Ck with scope Xk = 〈x1 . . .xr〉 is defined as a set of literals
L = {l1 . . . li−1, li+1 . . . lr} and a single literal li. A tuple τ ∈ D1× ·· ·×Dr solves the
constraint (i.e. τ ∈ CS

k) iff (x1 = τ1, . . . ,xr = τr)⇒ (
∨

L⇔ li). In any solution, the
disjunction of the values of the literals in L equals the value of li.

3.2.1 Motivating examples

In the following examples the variables are Boolean (i.e. with domain {0,1} where
0 represents false and 1 represents true), and literals are either positive (l j = x j) or
negative (l j = ¬x j). Consider expression (1), which can be broken down into the two
constraints shown in (2), by one application of the decomposition rule of Bordeaux and
Monfroy [14]. In this example, enforcing QGAC directly on expression (1) determines
falsity, because there is no assignment for x1, x2 and x3 which is compatible with all

10

values of x4. In the decomposition, enforcing QGAC on both constraints is able to
determine x3 6= 1 but it is not able to determine falsity. Returning to the intuitive under-
standing, some of the interaction between x4 and the set of outer variables x1, x2 and x3
has been lost. The other two minimum decompositions (by first factoring out x1∨x3 or
x2∨ x3 rather than x1∨ x2) have the same weakness because x1, x2 and x3 are symmet-
ric. Also, the primitive (x3 ∨ x5⇔ x4) in equation (2) is not allowed in Bordeaux and
Monfroy’s scheme, because x4 is not quantified last (further decomposition would be
required).

∃x1,x2,x3∀x4 : x1∨ x2∨ x3⇔ x4 (1)

∃x1,x2,x3∀x4∃x5 : (x1∨ x2⇔ x5)∧ (x3∨ x5⇔ x4) (2)

As a second example, consider expression (3). Enforcing QGAC on this expression
determines falsity. The expression breaks down into two constraints shown in (4).
Enforcing QGAC on the constraints does not remove any values or determine falsity.
In this particular case, if the primitive constraint could handle negation of its variables,
then the problem would be avoided.

∃x1,x2∀x3 : x1∨ x2⇔¬x3 (3)

∃x1,x2∀x3∃x4 : (x1∨ x2⇔ x4)∧ (¬x3⇔ x4) (4)

3.2.2 Proposed variants of reified disjunction

To solve all of the difficulties illustrated above, I propose two variants of a reified
disjunction constraint. The simpler one (Boolean reified disjunction) acts on Boolean
variables and can handle negation of any of its variables. The other variant acts on
integer variables. An algorithm to enforce QGAC in linear time (time O(r) where r is
the number of variables) for either form is given below.

A Boolean literal is a positive or negated instance of a variable, represented by l j
for some variable x j. Boolean reified disjunction is shown in formula 5 below.

Q1x1 . . .Qrxr : l1∨·· ·∨ li−1∨ li+1∨·· ·∨ lr⇔ li (5)

The other variant is a reified disjunction of comparisons x j = v j or x j 6= v j, where x j
is an integer variable and v j is a constant. I will call x j = v j and x j 6= v j integer literals.
Integer reified disjunction is shown in formula 6, where (=, 6=) represents either = or
6=. If ∀ j : v j = 1 and the variables are all Boolean, then this primitive simulates the
other. For a negated literal, the operator is 6= and for a positive literal, the operator is
=.

Q1x1 . . .Qrxr : (6)
x1(=, 6=)v1∨·· ·∨ xi−1(=, 6=)vi−1∨ xi+1(=, 6=)vi+1∨·· ·∨ xr(=, 6=)vr⇔ xi(=, 6=)vi

11

By using the De Morgan law1, the same primitives can be used for reified conjunc-
tion with the same level of consistency, for both Boolean and integer literals. Therefore
there is no need to develop a separate algorithm for reified conjunction. For example,
x1∧ x2∧¬x3⇔ x4 is transformed to ¬x1∨¬x2∨ x3⇔¬x4.

A straightforward disjunction l1 ∨ ·· · ∨ li−1 ∨ li+1 ∨ ·· · ∨ lr can be represented as
l1 ∨ ·· · ∨ li−1 ∨ li+1 ∨ ·· · ∨ lr ⇔ 1. Straightforward conjunctions l1 ∧ ·· · ∧ li−1 ∧ li+1 ∧
·· · ∧ lr can be represented as l1 ∧ ·· · ∧ li−1 ∧ li+1 ∧ ·· · ∧ lr ⇔ 1, which is transformed
to ¬l1 ∨ ·· · ∨¬li−1 ∨¬li+1 ∨ ·· · ∨¬lr ⇔ 0 by the De Morgan law. (Disjunction and
conjunction of integer literals can be handled in exactly the same way.) An implication
l1∧ l2∧·· · ⇒ lr is rearranged as [¬l1∨¬l2∨·· ·∨ lr]⇔ 1.

The Boolean reified disjunction primitive can be used in place of the x1 ⇔ ¬x2
primitive of Bordeaux and Monfroy, by having a single disjunct l1 on the left hand side.
However the need for the x1 ⇔ ¬x2 primitive has been mostly removed by handling
negation within the reified disjunction primitive.

3.2.3 Propagation algorithm structure

In the following sections I give a coarse-grained, one pass propagation algorithm to
achieve QGAC on the constraints given in formulas (5) and (6). The algorithm works
on literals (¬)x j or x j(=, 6=)v j, where the literals take values 0 or 1 representing the
truth of the literal, depending on the domain of x j. The useful information about a
literal is its index j, quantification Q j, and whether or not it is fixed to either 0 or 1.

If a literal containing x j is assigned to 0 or 1, the quantification of the variable be-
comes irrelevant in the context of the reified disjunction constraint Ck. The appropriate
value can be substituted for the literal and the constraint simplified to one which does
not contain x j. Although the algorithm does not dynamically simplify the constraint
during search, it does use this fact.

The algorithm is split into four independent parts. These are based on the value
and quantification of li (where the constraint is

∨
L⇔ li), since the value of this literal

determines the truth or falsity of the disjunction. Each of the four subsections 3.2.6 to
3.2.9 contain the relevant algorithm. The four parts are outlined below.

Disjunction false The literal li = 0 therefore the disjunction must be false. This is the
simplest case.

Disjunction true The literal li = 1 therefore the disjunction is true. This case is equiv-
alent to a QBF clause.

xi is universal li does not have a set value and xi is universally quantified. In this case,
the sets of literals {l1 . . . li−1} and {li+1 . . . lr}must be treated differently because
of their quantification relative to li.

xi is existential li is not set and xi is existential. In this case, the disjunction is exam-
ined to see if li must be set to 0 or 1.

1De Morgan’s law in propositional logic: ¬(P∧Q)≡¬P∨¬Q where P and Q are arbitrary propositions.

12

Normally a reified disjunction constraint would contain no more than one instance of
each variable. If an existential variable is repeated, the algorithm will be sound but
will not necessarily establish QGAC. For example, establishing QGAC on ∃x1,x2 :
x1∨¬x1⇔ x2 would set x2 to 1, but the reified disjunction algorithm is unable to do so.
If a universal variable is repeated, the algorithm is unsound. For example, applied to
∀x1 : x1∨¬x1⇔ 1 the algorithm would return false, when the constraint is a tautology.
(The implementation checks for repeated universals and prints a warning.)

The algorithm enforces QGAC as defined by Bordeaux et al. [15]. The proof of
correctness is given elsewhere [34].

3.2.4 Handling literals

Literals can only take two values 0 and 1, however many values are in the domain of the
variable. Therefore if a literal is not fixed to 0 or 1, then the only information needed
is the quantifier Qi and i. Since i is a constant, this leaves four states that a literal
can be in: 0, 1, unassigned (universal), and unassigned (existential). The procedure
literalState abstracts away the quantification and negation or comparison, returning one
of the set {0,1,∀,∃} when called for some variable xi. Notice that (with literals of the
form x j(=, 6=)v j) the literal may take the value 0 or 1 even when x j is not instantiated.
For example, if the literal is x j = 4 and D j = {1,2,5}, then the literal takes value 0.
This is handled correctly by literalState. To handle the two different types of literal,
two versions of literalState are given in section 3.2.10. This gives a simple interface
between the variables in the problem and the propagation algorithm.

The procedure removeValue is used to ‘prune’ a literal: this involves removing one
or more values from the domain of xi to force the literal to be either 0 or 1. The literal
value to be removed (0 or 1) is passed in as a parameter. Again, to handle the two
different types of literal, there are two versions of removeValue described in section
3.2.10.

3.2.5 The central procedure

The algorithm stores no state, and therefore nothing needs to be backtracked. The
procedure propagateOr (algorithm 2) does a case-split on the literal li, since the four
cases require significantly different propagation. In the following sections, I give the
algorithm for each of the four cases. The algorithms return false when it would be
necessary to empty a domain or prune a universal to make the constraint consistent.
This is a minor simplification, since in this case the simplified problem P would be
false. They return true when the constraint is consistent.

For each of the four cases, the time taken is O(r), disregarding the cost of waking
up other constraints.

3.2.6 Case disjunctionFalse

Procedure disjunctionFalse (algorithm 3) simply sets all the literals in the disjunction
to 0. This is linear time for Boolean literals. The constraint propagator will not be

13

Algorithm 2 propagateOr
procedure propagateOr(): Boolean
{Achieve consistency for the constraint
Q1x1 . . .Qrxr : l1∨·· ·∨ li−1∨ li+1∨·· ·∨ lr⇔ li or
Q1x1 . . .Qrxr :
x1(=, 6=)v1∨·· ·∨ xi−1(=, 6=)vi−1∨ xi+1(=, 6=)vi+1∨·· ·∨ xr(=, 6=)vr⇔ xi(=, 6=)vi}
a←literalState(xi)
if a = 0 then: return disjunctionFalse()
if a = 1 then: return disjunctionTrue()
if a = ∀ then: return xiUniversal()
if a = ∃ then: return xiExistential()

Algorithm 3 disjunctionFalse
procedure disjunctionFalse(): Boolean
{Achieve consistency for the simplified constraint
Q1x1 . . .Qrxr : l1∨·· ·∨ li−1∨ li+1∨·· ·∨ lr⇔ 0}
{This is done by setting each literal to 0}
for each l j where j 6= i:

if not removeValue(j, 1) then: return false
return true

called again in the current branch of the search, because all its variables have been
instantiated.

3.2.7 Case disjunctionTrue

Procedure disjunctionTrue (algorithm 4) is called when the disjunction must be satis-
fied. The disjunction (when applied to Boolean literals) is identical to a QBF clause
[19], therefore a unit propagation algorithm can be applied (the standard propagation
algorithm in QBF). Unit propagation, implemented with backtracking lists, or with
watched literals (by Gent et al. [26]) takes O(r) amortized down a branch of the search.
The algorithm presented here is simpler and takes O(r) time each time it is called. The
main reason for this decision is the observation that nearly all of the reified disjunc-
tion constraints used to model structured problems (such as Connect 4 [34] and job
shop scheduling, section 5) are short, with typically six or fewer literals in the dis-
junction. The decision was made on the intuition that watched literals would be of no
benefit [26] (since watched literals work best on long disjunctions) and the overhead of
backtracking lists should be avoided.

3.2.8 Case xiUniversal

Procedure xiUniversal (algorithm 5) is called when Qi = ∀ and li is not set to 0 or 1. In
this case the outer set of literals l j where j < i must not conflict with li = 0, therefore
l j is set to 0 for all j < i. Therefore the outer part of the disjunction evaluates to 0. The
inner set of literals l j where j > i must be such that the value of the disjunction can

14

Algorithm 4 disjunctionTrue
procedure disjunctionTrue(): Boolean
{Achieve consistency for the reduced constraint Q1x1 . . .Qrxr : l1 ∨ ·· · ∨ li−1 ∨ li+1 ∨
·· ·∨ lr}
ui← nil {store indices of a universal and existential literal respectively.}
ei← nil
for j← 1..i−1, i+1..r in ascending order:

a←literalState(j)
if a = 1 then: return true {The disjunction is satisfied}
if a = ∀ and ui = nil then: ui← j
if a = ∃ then:

if ei 6= nil or ui 6= nil then: return true
{If there is an existential and an outer existential or universal, then no work

can be done, because it cannot be known which literal will satisfy the disjunction}
ei← j

{ui contains the outermost universal literal, if one exists}
{ei contains the outermost existential literal, if one exists}
if ei = nil then: return false {No way to satisfy the disjunction}
return removeValue(ei, 0) {Just one existential literal, with no outer universal, so set
it to 1}

Algorithm 5 xiUniversal
procedure xiUniversal(): Boolean
{The outer set of literals l j where j < i must evaluate to 0, because 1 is not consistent
with li = 0}
for j← 1 . . . i−1:

if not removeValue(j, 1) then: return false {Set l j = 0}
{The inner set of literals l j where j > i must be free i.e. no universals, no 1’s and at
least one existential.}
e←false {Whether an existential has been found}
for j = i+1 . . .r:

a=literalState(j)
if a = 1 or a = ∀ then: return false
if a = ∃ then: e←true

return e

15

Algorithm 6 xiExistential
procedure xiExistential(): Boolean
{xi may need to be pruned}
{Check for the two conditions which would lead to pruning xi}
allFalse←true
for j = 0 . . . i−1, i+1 . . .r:

a = literalState(j)
if a = 1 then: return removeValue(i, 0)
if (a = ∀ and j > i) then:

if not removeValue(i, 0): return false {Set li = 1 or return false}
return disjunctionTrue() {Now li = 1, call the appropriate procedure to prop-

agate the consequences}
if a = ∃ or (a = ∀ and j < i) then: allFalse←false

if allFalse then: return removeValue(i, 1)
return true

match li in both cases. If any of the inner set of literals is universal, this will conflict
with li and the constraint fails. Also, l j>i = 1 conflicts with li = 0, so this case also
causes failure. Any number of 0 literals are allowed, and at least one ∃ literal must be
present, so that it can eventually take the same value as li to satisfy the constraint. The
constraint fails if there is no existential literal.

3.2.9 Case xiExistential

Procedure xiExistential (algorithm 6) checks for the conditions that would lead to prun-
ing li:

1. Some literal l j 6=i set to 1, which implies that li = 1, or

2. some inner literal l j>i is universal, which implies that li = 1, which must be
propagated further by calling disjunctionTrue, or

3. all literals l j 6=i are 0, so li = 0.

3.2.10 Instantiating for different types of literals

Two procedures (literalState and removeValue) were left undefined in the algorithm
above, because they depend on the type of literal. They are given here for integer
literals (i.e. of the form xi(=, 6=)vi). Algorithm 7 (literalState) examines the domain
of variable xi and its quantification, and returns its state. Algorithm 8 (removeValue)
checks the type of the literal (= or 6=) and removes the appropriate values using the
exclude procedure which is assumed to be part of the constraint solver infrastructure.
The exclude procedure returns false if the domain is emptied or a universal is pruned.

The Boolean literal xi is equivalent to xi = 1, and ¬xi to xi 6= 1. For Boolean literals
the procedures are simplified by assuming vi = 1 throughout and replacing the loop in
algorithm 8 with a single exclude statement: return exclude(Ck, xi, 0).

16

Algorithm 7 literalState for xi(=, 6=)vi

procedure literalState(i: variable index): {0,1,∀,∃}
if Di = {vi} then:

if li = (xi 6= vi) then: return 0 else: return 1
else:

if vi ∈ Di then:
return Qi

else:
if li = (xi 6= vi) then: return 1 else: return 0

Algorithm 8 removeValue for xi(=, 6=)vi

procedure removeValue(i: variable index, b: Boolean): Boolean
if (b = 0 ∧ li = (xi 6= vi))∨ (b = 1 ∧ li = (xi = vi)) then:

return exclude(Ck, xi, vi)
else:

for all a ∈ Dki where a 6= vi then:
if not exclude(Ck, xi, a) then: return false

return true

3.3 Pure value rule
The pure value rule for binary constraints is used in QCSP-Solve [27, 28], and the
(closely related) pure literal rule is used in many QBF solvers [19,29] (sometimes with
the name monotone). I re-define the pure value rule for non-binary constraints, and
give a scheme for implementing it.

Next I define purity in the context of non-binary QCSP. Purity is defined over an
arbitrary QCSP instance P , but the definition is used later on instances Pk containing
only the constraint Ck. The property is quite useless applied to the entire instance P ,
but when it is applied to Pk it can be used to prove that values are d-fixable in P .

Definition 3.1 Purity of xi→ a in the QCSP P = 〈X ,D ,C ,Q〉

pure(xi,a,P)≡ (D1×·· ·×Di−1×{a}×Di+1×·· ·×Dn)⊆ solP

In words, if all possible solutions including value xi 7→ a are indeed solutions to P ,
then xi 7→ a is a pure value. The definition of purity is equivalent to the valid values
property of Bacchus and Walsh [5]. It is simply restated here in a more precise way,
and following the terminology of Gent et al. [28] rather than Bacchus and Walsh.

Purity is a sufficient condition for d-fixability (pure(xi,a,P)⇒ d-fixable(xi,a,P)),
where d-fixability is defined by Bordeaux et al. [15]. This implication is proven else-
where [34]. Local d-fixability for all constraints (i.e. all restricted QCSP instances Pk)
implies d-fixability in P [15]. If a value xi 7→ a is d-fixable in P , then it can be fixed
(i.e. all values other than a can be removed from Di) when xi is existential. If xi is
universal, and a is not the final value in the domain, then a can be removed. In order to
remove a, there must be some other value b ∈Di,b 6= a, since a is subsumed by b [34].

17

The dual problem (proposed by Bordeaux and Zhang [17]) is also capable of re-
moving values from universal variables, on the basis that the value would satisfy all
constraints immediately, were it to be assigned. I suspect very few values would be
removed by this scheme, because the requirement for removing a value is too strong,
since it is global (all constraints satisfied by the value) whereas the pure value rule is
local (only depending on the constraints containing the variable in question). For this
reason, I chose to generalize the pure value rule rather than use a dual problem. In the
models of Connect 4 and faulty job shop scheduling, I exploit the fact that the pure
value rule is local. Constraints involving universal variables are stated such that values
become pure when they are no longer relevant (e.g. they correspond to a cheating move
in a game).

In the models below, the pure value rule is used to prune universal variables based
on the values of variables quantified to the left. An alternative would be to use QCSP+
(described in section 2.2.1). However, this alternative requires moving to a new lan-
guage, and the pure value rule is sufficient for the problems modelled below.

3.3.1 Implementing the pure value rule

I give a scheme for implementing the non-binary pure value rule. It re-uses constraint
propagation algorithms and avoids constructing the set CS

k (the satisfying tuples of con-
straint Ck). Avoiding constructing CS

k is highly important because CS
k could be very

large.
Consider constraint Ck with scope Xk = 〈xk1 , . . . ,xkr〉 and value xki 7→ a where

a ∈ Dki . A CSP PV k is constructed with the variables Xk and their domains, and
only one constraint, which is the negation of Ck.

PV k = 〈Xk,Dk = 〈Dk1 , . . . ,Dkr〉,{¬Ck}〉
The negated constraint ¬Ck is constructed with ¬CS

k = (Dk1 ×·· ·×Dkr)\CS
k . The

negated constraint is solved iff Ck has failed. xki 7→ a is pure w.r.t. Ck iff xki 7→ a is
inconsistent in PV k. This is because xki 7→ a is consistent in ¬Ck iff there exists a
supporting tuple (by the definition of GAC [13]). If there is no supporting tuple in ¬Ck
then there must be a complete set of tuples containing xki 7→ a in Ck (i.e. Dk1 ×·· ·×
Dki−1 ×{a}×Dki+1 ×·· ·×Dkr ⊆CS

k), which is the definition of purity. A value xi 7→ a
must be pure for all constraints Ck where xi is in the scope, xi ∈Xk, for xi 7→ a to be
pure in P .

Figure 1 illustrates the proposed scheme to enforce the pure value rule on xi only.
The three boxed areas with a negated constraint in them are three side CSPs PV 1,
PV 2 and PV 3. The area at the top represents the problem P , with variables x1,x2,x3,x4,x5.
I have called the variables in the side problems pm. One side problem PV k is con-
structed for each constraint Ck in P , and it contains the single negated constraint ¬Ck.
If Ck has scope Xk = 〈xk1 , . . . ,xkr〉 then ¬Ck has scope 〈pmk

k1
, . . . , pmk

kr
〉. (The super-

script matches the constraint, and the subscript is the same as the subscript of the xki

variable in Xk.)
The dashed arrows indicate that values that are pruned in P are also pruned from

the pm variables, but not vice versa. The dotted area marked PL (for pure link) repre-
sents the algorithm for removing values of xi when they are subsumed. The algorithm

18

��
�

�

��
�

�

��
�

�

��
�

�
��

�

�

��
�

�

��
�

�

��
� ��

�
��

�

�
��

�

�
� �

�

�
�

��

Figure 1: Implementation of pure value rule for one variable xi

resembles a fine-grained constraint propagation algorithm, and it is called by the con-
straint queue as needed. It is given in algorithm 9. For value xi 7→ a, the main idea is
to watch a pmi variable which contains a. At least one such variable must exist if a
is not pure. A watching algorithm maintains a reference to an object which has a spe-
cific property, only changing the reference when the watched object loses its property.
In this case, the property is simply containing value a. The index of a pmi variable
is stored in wa between calls to pureLink, and it is not backtracked when the search
procedure backtracks.

If pm j
i 7→ a is pruned and wa = j, the algorithm searches (cyclically) for a new pmi

variable to watch. If none is found, xi 7→ a is pure. The pure procedure that is called
in pureLink deals with the quantification of xi. Pure for universal variables does the
following: if there exists some value b 6= a where b ∈ Di, then a is subsumed by b. a
is removed from Di and constraints are queued appropriately. If there does not exist
another value b, the pure procedure does nothing. For an existential variable, the pure
procedure removes all values other than a, and queues constraints appropriately.

Integration with the solver

To integrate this efficiently with the constraint queue and search procedure, I have
blurred the distinction between the problem P and the CSP side problems PV . The
pm variables of the side problems are separate and are invisible to the search procedure
but not to the queue. The constraints ¬Ck in side problems are added to, and called
from, the queue like any constraint in P . A pureLink constraint is queued whenever
any of its variables are changed, and is called like any fine-grained constraint.

A second fine-grained algorithm pureCopy is used to link xi with all pmi variables.
This simply prunes values from all pmi variables as they are pruned from xi, but not
vice versa. This is not a constraint, because it cannot be expressed as a set of satisfying
tuples, but it interacts with the constraint queue in the same way as a constraint. It is
only queued for removals from xi. Instances of this algorithm are shown in figure 1 as

19

Algorithm 9 Pure link algorithm
procedure pureLink(v: variable, a: value): Boolean
{xi is the variable in P , pm1

i , . . . pmm
i belong to side problems}

{∀a ∈ Di : wa is the superscript 1 . . .m of a pmi variable which contains value a}
if v = xi:

for j ∈ {1 . . .m}:
exclude(nil, pm j

i , a)
else:

v = pm j
i {find the index j}

if wa = j: {pm j
i no longer contains a, watch invalidated}

for k in j +1, . . . ,m,1, . . . , j−1:
if a ∈ Dpmk

i
:

wa← k
return true

pure(PLi,xi,a)
return true

dashed arrows.
The failure of a constraint in a side problem PV does not imply failure in P .

Therefore, if a constraint ¬Ck from a side problem is queued in P , the propagation
algorithm must not return false. In the case where the ¬Ck propagation algorithm
would return false, the algorithm is altered to empty the domains of all variables in the
scope of ¬Ck, then return true. (This is achieved with another procedure which calls
the propagation algorithm, then checks its return value.) The pureLink and pureCopy
algorithms never return false. Also, if the domain of a pm variable becomes empty, this
does not signify failure in P .

3.4 Queso
The algorithms presented above are all implemented in the prototype solver Queso
(Quantified Satisfaction and Optimization). In addition, Queso supports non-binary
table constraints (enforcing QGAC or another, slightly weaker consistency) and sum
constraints (enforcing a quantified bounds consistency) [34], as well as reified compar-
ison (≤,< or 6=). It also has a number of constraints (e.g. max) which only work on
existential variables. Queso is able to output a winning strategy in the form of a tree,
however the default output is true or false (for the existence of a winning strategy).

Queso supports two types of variable: discrete variables with a small domain, and
interval variables whose bounds are represented using integers of arbitrary length2. It
implements the non-binary pure value rule for individual variables (as described above)
and also for all variables as an optimized specialization.

Queso is implemented in Java 1.5 and is heavily tested. The design emphasizes

2Discrete variables may be existential or universal. Interval variables may only be existential, and they
cannot be branched, they must be instantiated by propagation. There is no theoretical difficulty with interval
variables, they are simply not fully implemented at present.

20

flexibility over performance, making it easy to add new constraints. For details of the
design, see [34].

4 The game of Connect 4 in QCSP
In this section I present a model of the game of Connect 4. Connect 4 is usually played
on a board with 7 columns and 6 rows. The aim is to form a line (diagonally, vertically
or horizontally) of four counters. Counters can only be placed in the lowermost empty
position in each unfilled column. The model given here can be used for any number
of rows and columns, and the aim is to find if the first player (red) can win however
the second player (black) plays. The model has two parameters, row and col for the
numbers of rows and columns. row ≥ 4 and col ≥ 4. This problem has also been
attacked with QBF [25], however the encoding is flawed (it does not forbid placing
counters in full columns [2]).

The model is straightforward, with a set of variables representing the state of the
board after each move, a set of variables representing the moves taken, and variables to
track the state of the game after each move (i.e. if the game is finished, and which player
won). The one unusual part of the model is the handling of the universal variables to
exploit the pure value rule. This is discussed below the presentation of the constraints.
The game is modelled with the following variables, given in quantification order for a
single move i. This sequence is repeated row×col times for each i from 1 to row×col.

• If i is even, move-variable ∀ui ∈ {1 . . .col} represents the column into which the
token is placed.

• Move-variable ∃mi ∈ {1 . . .col} also represents the column into which the token
is placed. If i is even, this variable is related by constraints to the one above.

• row× col variables ∃bi
r,c where r ∈ {1 . . .row} and c ∈ {1 . . .col}, each with

domain {red,black,nil} representing the state of the board after the move. For
example bi

1,c represents the piece at the base of column c.

• col variables ∃hi
c (height), representing the number of tokens in column c after

move i.

• ∃gamestatei with domain {red,black,nil} representing the winner at move i.

• Boolean (0,1) variable ∃linei representing the presence of a line at move i.

• Boolean variable ∃li
z indicating the presence of a line in each row, column or

diagonal (numbered z) on the board.

• Boolean variable ∃mhi
c (move-here) representing whether the move i was made

in column c.

• Boolean variable ∃posi
r,c representing the position of the empty slots in the col-

umn. posi
r,c is 1 if slot r is free in column c prior to move i.

21

The constraints are given below for a single move i. The entire model is constructed
by duplicating the move layers for the required row× col moves. Constraints are rear-
ranged as reified disjunctions as shown in section 3.2.2.

1. If i is even, for each column c, connect ui and mi: [gamestatei−1 = nil∧hi−1
c 6=

row∧ ui = c]⇒ mi = c. If it is a legal move to place a token in column c, then
(ui = c)⇒ (mi = c).

2. If i is even, a black counter is placed on the board: for all columns c, variable mhi
c

(move-here) is set according to whether the move is in this column: linei−1 =
1∨hi−1

c = row∨mi 6= c⇔ mhi
c 6= 1

Also, for all columns c and rows r, the following four constraints are posted.
If the column height at move i− 1 is r, then the rest of the column is filled
appropriately: hi−1

c = r−1⇒ posi
r,c = 1 and

posi
r,c = 1⇔ [bi

r,c 6= red ∧ bi
r+1,c = nil ∧ bi

r+2,c = nil ∧ ·· · ∧ bi
row,c = nil]. The

move-variable mi is connected to bi
r,c: [mhi

c = 1∧ hi−1
c = r− 1]⇒ bi

r,c = black
and [mhi

c 6= 1∧hi−1
c = r−1]⇒ bi

r,c = nil.

If i is odd, a similar set of constraints is posted with red and black substituted
for each other.

3. Map pieces from the board at i− 1 to the board at move i: for all rows and
columns r,c, bi−1

r,c = red⇒ bi
r,c = red and bi−1

r,c = black⇒ bi
r,c = black.

4. Link height and board state: for each column c and r ∈ 1 . . .(row + 1), bi
r−1,c 6=

nil∧bi
r,c = nil⇒ hi

c = r−1.

5. Detect lines: each set of four board variables that form a line (such as bi
1,1,b

i
2,1,b

i
3,1,b

i
4,1)

is given a unique number z and I refer to them as bz
1...4. If i is odd, for all z,

linei−1 = 1∨ bz
1 6= red ∨ bz

2 6= red ∨ bz
3 6= red ∨ bz

4 6= red ⇔ li
z 6= 1. In words,

li
z = 1 iff bz

1...4 are all red, and there is no line at the previous move. linei−1 is in-
cluded so that when a line is found, all future lz variables are set to 0 and cannot
be branched.

If i is even, similar constraints are posted with black substituted for red.

6. Connect the main line variable linei with the li
z variables, where y = max(z):

linei−1∨ li
1∨ li

2∨·· ·∨ li
y⇔ linei.

7. Set the gamestate variables: if i is odd, the following four constraints are posted.
gamestatei−1 = red⇒ gamestatei = red,
gamestatei−1 = black⇒ gamestatei = black,
gamestatei−1 = nil∧ linei = 1⇒ gamestatei = red,
gamestatei−1 = nil∧ linei = 0⇒ gamestatei = nil.

If i is even, similar constraints are posted with black and red substituted for each
other.

22

Board size Nodes and time (s)
col row Model Nodes Setup Search

time time
4 4 Baseline 4196 0.008 1.054

Baseline+Bordeaux 26359046 0.007 6213.737
Baseline without PV 92213 0.014 22.066

QCSP-Solve 8235.647
BlockSolve >86400

4 5 Baseline 20856 0.004 9.130
Baseline without PV 1042992 0.010 355.298

5 4 Baseline 168485 0.004 63.573
Baseline without PV 28179488 0.017 9425.100

5 5 Baseline 2689288 0.006 1749.937
5 6 Baseline 22197560 0.016 16012.498

Table 1: Comparison of Connect 4 models and solvers for various parameters

In some of these constraints, variables are referred to with indices which are out of
range, for example gamestate0. These are set as follows. gamestate0 = nil, line0 = 0,
b0

r,c = nil, bi
0,c = red (chosen arbitrarily, cannot be nil), bi

row+1,c = nil, h0
c = 0. The

red player must win, so gamestaterow×col = red. For the first move (m1), symmetry is
broken by removing the leftmost (lower)

⌊ col
2

⌋
values, because they are equivalent to

the higher values.
Constraint type 1 connects ui to mi. For each possible move a, if the move is legal

and ui = a, then mi = a is implied. However if move a is not legal, the constraint has
no conflicts containing ui = a. Since there are no other constraints containing ui, a is a
pure value, and can be pruned by the pure value rule. This avoids searching a subtree
beneath an illegal move. There is always at least one legal move, so the corner case
where the final value of a universal variable is pure never arises.

This model is referred to as Baseline. It was solved using Queso for five different
board sizes, up to 5 columns and 6 rows. The pure value rule is applied to universal
variables, since it is expensive to apply it to all variables, and it does little useful work
on existentials. It is not yet feasible to solve the full size game using these methods in
a reasonable amount of time. The experiment was run on a Pentium 4 3.06GHz with
1GB of RAM. The solver was set to output only true or false. (All instances used here
are false.) The solution times are given in table 1, along with the number of nodes in
the search tree. (The node count excludes leaf nodes.)

The effect of the pure value rule

The disjunction model is designed such that the pure value rule can prune certain values
(corresponding to invalid moves) of universal variables. Disabling the pure value rule
causes the solver to explore a much larger search tree, as shown in table 1 denoted
Baseline without PV. Experimental details are the same as for the previous experiment.

23

Comparing reified disjunction with Bordeaux’s primitives

The reified disjunction constraint is intended to improve upon the primitives of Bor-
deaux and Monfroy [14, 16] by providing significantly stronger consistency.

I will assume that when all variables represented in an expression E are existen-
tial, the consistency achieved on the decomposition is equivalent to applying QGAC to
the expression directly. (This only applies when the expression contains no repeated
variables.) There is only one expression in the Connect 4 disjunction model which
contains a universal variable. This is the expression connecting the universal move-
variable ui to the existential move-variable for the same move, mi. In the disjunction
model, this is expressed with a single reified disjunction. The original constraint rear-
ranged as a reified disjunction (equation (7)) and the decomposition (equation (8)) are
shown below.

∃gamestatei−1,hi−1
c ,∀ui,∃mi :

[(gamestatei−1 6= nil)∨ (hi−1
c = row)∨ (ui 6= c)∨ (mi = c)⇔ 1 (7)

∃gamestatei−1,hi−1
c ,∀ui,∃mi, t1, t2, t3, t4, t5, t6 :

(gamestatei−1 6= nil⇔ t1)∧ (hi−1
c = row⇔ t2)∧ (ui 6= c⇔ t3) (8)

∧(mi = c⇔ t4)∧ (t1∨ t2⇔ t5)∧ (t3∨ t5⇔ t6)∧ (t4∨ t6⇔ 1)

The hypothesis is that when solving Connect 4 with Bordeaux’s decomposition,
the solver will explore more nodes and take more time than with the integer reified
disjunction primitive. I used the Baseline model, and simply replaced constraint set
1 with the decomposition in equation (8). QGAC is enforced on the ternary primitive
constraints using the reified disjunction algorithm. All experimental details are the
same as for the previous experiment. Table 1 shows the search time and number of
nodes for Baseline and Baseline+Bordeaux, for a 4× 4 board. The experiment took
so long for this board size that I did not run it for larger sizes. The decomposition
gives surprisingly bad results at this size. It is not clear whether there may be another
decomposition which performs better.

The Baseline model exploits the pure value rule and QGAC on constraint set 1.
Switching off the pure value rule increases the node count 22-fold to 92213. However,
using the decomposition gives a node count of 26 million. Consider the situations
where gamestatei−1 6= nil or hi−1

c = row. In the original formulation all values of ui

become pure, but in the decomposition t1 or t2 is set to 1 and hence t5 and t6 are set to 1.
t3 and t4 remain uninstantiated, and none of the values of ui become pure, therefore the
effect of the pure value rule is reduced by decomposition. However this is not sufficient
to explain the node count; losing QGAC must play a large part as well.

Comparing against binary QCSP solvers

In order to generate a binary QCSP representation of Connect 4, a table (extensional)
constraint model was encoded into binary QCSP. The table model is very similar to

24

Baseline in structure, sharing nearly all variables with Baseline. It is given elsewhere
([34], chapter 4). I do not reproduce it here because of space. Performing QGAC on
the table model is slightly stronger than QGAC on Baseline [34].

An encoding into binary QCSP is required. The hidden variable encoding [35] is
suitable, since it does not transform the variables (only adding some variables), there-
fore the quantifier sequence can be preserved (although with the addition of the hidden
variables). The hidden variables are all existentially quantified to the right of the other
variables. Also, binary constraints are passed through without any modification.

Both QCSP-Solve [27] and BlockSolve [41] have novel search algorithms which
are not present in Queso, so both are interesting as a comparison. Both were run on
Connect 4 4× 4 as shown in table 1. The results were surprisingly bad, with QCSP-
Solve taking more than two hours (as compared to 1s for Baseline) and reporting
27068010 search nodes, and BlockSolve running for more than 24 hours before the
run was abandoned. The search algorithm of QCSP-Solve is more powerful than that
of Queso, therefore the loss must be in reasoning at each node. This is not surpris-
ing since QCSP-Solve only implements forward checking. BlockSolve maintains arc-
consistency during search, but its approach of bottom-up search does not work well
on this instance. Also the pure value rule in QCSP-Solve does not function well on
this instance. Switching off the pure value rule increases the node count to 27166112,
therefore the rule is much less effective here than in Queso. However, even gaining the
22-fold improvement seen in Queso would not be sufficient for QCSP-Solve to com-
pete with Queso — propagation is also vital, and forward checking is not sufficiently
powerful.

It is likely that the problem could be re-modelled for QCSP-Solve or BlockSolve
to obtain better results. However, such results would be incomparable with those for
Queso, since the model would be significantly different. By using an encoding, I have
minimised the difference between Baseline and the experiments with QCSP-Solve and
BlockSolve.

5 Faulty Job Shop Scheduling in QCSP
Firstly I describe job shop scheduling, discuss sources of uncertainty in factory schedul-
ing, and introduce the faulty job shop scheduling problem (FJSSP). Secondly some
modelling issues are discussed, and FJSSP is modelled in QCSP in two different ways.

5.1 Job shop scheduling
The job shop scheduling problem (JSSP) is a simple and well-studied form of factory
scheduling, with n jobs and m machines. A job consists of a chain of m tasks, each
assigned to a distinct machine. Each task has two constants associated with it:

• the constant tm(i, j) is an integer from 1 . . .m representing the machine that is
required for task i of job j;

• d(M , j) is an integral constant representing the duration of the task in job j
which runs on machine M .

25

Job number machine/duration
1 1/3 2/3 3/3
2 3/4 2/4 1/4
3 2/3 3/3 1/3

�������

�

	

�

	 �

	

� � �� �

�

��

	�

����

��������������

Table 2: Simple job shop scheduling problem and solution with optimal makespan

The symbols tm and d are indexed differently for convenience in writing out the con-
straints, but since every job has no more than one task on each machine, the duration
of task i of job j is simply d(tm(i, j), j). The tasks cannot be interrupted, and must
be executed in order. All tasks must be completed within a time bound maxmakespan.
The time units are numbered from 1 to maxmakespan.

A schedule is found which maps each task of each job to a starting time, such that no
two tasks are running on the same machine at the same time. The duration (makespan)
of the schedule is often optimized or approximately optimized. The optimization cri-
terion for all experiments in this paper is to minimize the makespan. Table 2 shows a
simple example of a job shop problem, and an optimal solution with a makespan of 14.

The JSSP allows at most one task from each job to use a particular machine. This
simplifies presentation of the constraints, but the models presented below do not rely
on this assumption.

5.2 Uncertainty in factory scheduling
Factory scheduling can have various sources of uncertainty. Each one can have imme-
diate effect or a delayed or schedulable effect. Sources of uncertainty include: staff
absences; order changes; machine faults or servicing; early or late delivery of raw ma-
terials; and uncertainty in task durations. Davenport and Beck survey approaches to
scheduling with uncertainty, with the following broad divisions [24].

• Redundancy-based techniques (which typically reserve time to re-execute tasks
that fail).

• Probabilistic techniques, where the aim is to maximize the probability that a
schedule will be able to execute.

• Contingent scheduling, where multiple schedules or schedule fragments are gen-
erated which optimally respond to anticipated events.

I model a contingent scheduling problem with QCSP. One of the aims is to show that
QCSP has potential in the area of contingent scheduling.

For simplicity I will focus on machine faults and ignore other sources of uncer-
tainty. It is possible to broadly divide machine faults into two sets: faults which have

26

an immediate effect; and faults which have a delayed or schedulable effect. I focus on
faults with a delayed or schedulable effect.

Various types of machine fault may allow the machine to continue running for
a period of time. For example, if a machine is running low on oil and needs to be
refilled, or it is becoming less accurate and needs to be calibrated but the accuracy is
still within acceptable bounds. In these situations it is desirable to have an optimal
schedule whether the fault occurs or not. If the fault occurs, the schedule includes
some servicing time but not otherwise. Contingent scheduling is ideal for this situation
because a contingent schedule can be optimal (i.e. with minimal makespan) or close
to optimal whether a fault occurs or not. It can be sensibly modelled as a QCSP with
universal variables representing faults.

5.3 Faulty job shop scheduling
To introduce fault handling to the JSSP, the time units are grouped into a number of
periods of equal size, in order to deal with machine testing and servicing. Each machine
M is tested at the beginning of each period a, and if servicing is required it is scheduled
entirely within period a, and cannot be interrupted. The amount of time required to
service a machine is servicetime. There are 2m×periods possible subsets of faults, but I
will not define how many subsets must be covered by a schedule. I refer to this problem
as the faulty job shop scheduling problem (FJSSP). I am not aware of this problem in
the literature. It would be excessively difficult to schedule for every scenario, so to
reduce the number of scenarios I use a simple probability-based approach.

More formally, an instance of FJSSP is an instance of JSSP with the following
additional information:

• an integral constant periods which divides maxmakespan;

• a positive integer servicetime which defines the number of time units required for
servicing when a fault occurs. servicetime must be less than maxmakespan/periods.

The problem of FJSSP is that of finding a set of schedules, each with a different subset
of all possible faults. Each individual schedule meets the requirements of JSSP, and
schedules contiguous servicing time for each occurring fault, within the period of the
fault. For any pair of schedules, if they have the same fault configuration until period a,
then the schedules must be equal until the beginning of period a. This set of schedules
is hereafter referred to as a contingent schedule.

5.4 Probability bounding
When dealing with large numbers of possible faults in any scheduling problem, it
would be very difficult (and unnecessary) to schedule for every possible combination
of faults. To avoid this, I assign a (marginal) probability to each fault, and a probability
threshold φ to the whole problem. A formula is used to compute the joint probability
of a set of events (either faults or non-faults). Only combinations of events which are
sufficiently likely (i.e. with probability ≥ φ) are considered. For the purposes of this

27

paper, the faults are assumed to be independent, because this makes the joint probabil-
ity calculation straightforward. However this assumption can be relaxed by replacing
the formula which is used to compute the joint probability of the faults. Any formula
can be used as long as it can be represented with the constraints supplied by the QCSP
solver.

In the models presented in section 5.6, the probability of each fault is represented
as a constant. The models could be easily generalized by using a variable for the
probability, whose value is a function of previous faults, machine workload, or other
factors. In these models, the probability threshold can be used to control the amount of
time it takes to generate the contingent schedule, since it controls how many scenarios
are covered by the contingent schedule.

Since probabilities are involved, it is reasonable to ask whether Stochastic CSP [6,
32,39,42] would be more suitable than QCSP. The treatment of probability is somewhat
different in Stochastic CSP: when following a policy (analogous to a winning strategy),
the probability of satisfying certain constraints (chance constraints, as opposed to hard
constraints) exceeds some threshold. This is distinct from considering exactly the set
of scenarios whose probability exceeds a threshold. In a QCSP model the modeller can
control exactly the set of scenarios which are scheduled, whereas in Stochastic CSP
the set of scenarios is chosen by the solver such that the probability of satisfying the
chance constraints exceeds a threshold. The penalty for the greater control in QCSP is
that the model is likely to be more complex.

One approach to Stochastic CSP is to encode it into CSP. This approach can gen-
erate an exponentially large CSP instance, so it may not always be feasible. Since the
QCSP algorithms used in this paper scale polynomially in space, they can potentially
be applied to larger problems. However, applying the CSP encoding approach can po-
tentially yield stronger constraint propagation. I discuss this further in section 5.6.4
below. The other approach to Stochastic CSP, by Balafoutis and Stergiou [6], is similar
to top-down search for QCSP, but only table constraints are supported at present. Bal-
afoutis and Stergiou develop a propagation algorithm generalized from GAC2001/3.1.
It would be very difficult to compactly represent FJSSP using only stochastic table con-
straints, therefore I do not compare against this approach. In summary both approaches
to Stochastic CSP have significant disadvantages and I did not compare against them
empirically.

5.5 CSP model
Before considering FJSSP, I describe a model of JSSP as a constraint optimization
problem. This is referred to as the CSP model, and provides a basis for modelling
FJSSP in QCSP in later sections. The central part of this model (the disjunctive con-
straint) is given by Baptiste et al. [7] (section 2.1.2). n refers to the number of jobs,
and m is the number of machines. The model has three sets of variables, and one
optimization variable:

• mn(n−1)/2 Boolean variables bM
j1, j2 representing the order of two tasks, belong-

ing to distinct jobs j1 and j2, which both contend for machine M .

28

• mn integer variables startMj representing the start time of the task from job j
which runs on machine M .

• mn integer variables endM
j representing the end time of each task. Since the

duration is a constant, this is simply the start time plus the duration.

• One integer variable opt, to be minimized, representing the maximum end time
over all tasks.

The integer variables are all initially bounded between 0 and maxmakespan. The start
time of a task may be equal to the end time of the previous task on the same machine.

The constraints are given below. Recall (from section 5.1) that the duration of a
task in job j, which runs on machine M , is d(M , j). The task in position i for job j
runs on machine tm(i, j).

1. For each M , j : startMj +d(M , j) = endM
j

2. For each M , j1, j2 > j1 : bM
j1, j2⇔ [endM

j1 ≤ startMj2]∧¬bM
j1, j2⇔ [startMj1 ≥ endM

j2]

3. For each i ∈ {1 . . .m−1}, j : endtm(i, j)
j ≤ starttm(i+1, j)

j

4. max({endtm(m, j)
j | j ∈ {1 . . .n}}) = opt

The disjunctive constraint of Baptiste et al. [7] is represented as two reified comparisons
(constraint type 2). It ensures that two tasks which require the same machine do not
run at the same time. Also, the b variable represents the order of the two tasks. A
reasonable static variable ordering for this model would be to branch on b variables
first, using 0 as the first value, then branch on the start variables using the smallest
remaining value first. Once all the start variables have been instantiated, the end and
opt variables are set by constraint propagation.

Another possibility would be to omit the b variables and replace constraint type 2
with a binary constraint between the start variables of any two tasks which run on the
same machine. The new type 2 constraints are shown below.

• For each M , j1, j2 > j1 : startMj1 +d(M , j1)≤ startMj2 ∨startMj1 ≥ startMj2 +d(M , j2)

This would halve the number of constraints of type 2, and potentially allow more prop-
agation. The end variables, and constraint type 1 can also be removed, and constraint
types 3 and 4 re-stated in terms of start variables. Despite the availability of edge-
finding techniques, this simple model is seen in the literature [8, 37], combined with
sophisticated branching schemes.

Branching on the start variables using a simple numerically ascending value or-
dering results in far more search than branching on b variables in the reified model.
Queso does support dynamic value ordering heuristics, so it would be possible to use
the binary constraint model, but I have chosen to use the reified model and branch on
the b variables, using value 0 first.

29

More advanced models

Job shop scheduling is very well studied and there are various more advanced models,
with specialized non-binary constraints such as edge finding [21] (first applied in the
constraints context by Caseau and Laburthe [22]), and other specialized approaches
such as shaving [33]. Both shaving and specialized constraints are applied to a model
like the one above, where the start times of tasks are represented directly as variables.

The aim of this paper is not to re-implement all this work in the context of QCSP,
but to demonstrate that a contingent QCSP variant of a CSP model can be constructed,
while preserving the important features of the CSP model, such as constraint propaga-
tors and variable and value ordering heuristics.

5.6 QCSP model
Some properties of a good contingent model for job shop scheduling are the following.
It should: be not much larger than the CSP model; allow similar propagation to the CSP
model among variables that are common to the two models; allow similar variable and
value orderings as successful CSP models; and allow edge finding and other advanced
scheduling constraints. This implies that there are variables representing the starting
time of each task. The QCSP model of FJSSP must not be exponentially larger than the
CSP model of JSSP, because the additional uncertainty can be represented compactly
using universal variables.

5.6.1 Use of CSP constraints

In the models in this section, I use various constraint propagation algorithms without
change from CSP. These algorithms are applied to constraints which have no universal
variables in their scope. Bordeaux et al. [15] observe that their definition of quantified
inconsistency is equivalent to the classical CSP definition of inconsistency when all
quantifiers are existential, therefore there is no advantage in defining quantified propa-
gators for these constraints. I use the following CSP constraints: product (x1×x2 = x3),
comparison ((x1 < x2)⇔ x3), sum (∑r

i=0 cixi = 0) and max (max(x1 . . .xr−1) = xr), all
enforcing bounds(R)-consistency [23].

5.6.2 Modelling faults and probability bounding

First I will describe how the faults and probability bounding are modelled. The aim
is to find a contingent schedule for all combinations of faults with probability greater
than or equal to the threshold φ .

A potential fault with machine M in period a is modelled with a universal Boolean
variable unifaultMa . The constant p(M ,a) represents the estimated probability of the
fault. It is assumed that p(M ,a) ≤ 0.5 so that an additional fault will never increase
the probability of a scenario, hence it is possible to know that a scenario falls below
the probability threshold without examining all combinations of future faults. This as-
sumption simplifies the model considerably. It is also assumed that p(M ,a) is rational,
that all faults are independent, and that p(M ,a) 6= 0.5 (because of the form of the con-
straints containing p(M ,a); these could be reformulated if necessary). A total ordering

30

≺ is imposed on the faults (specified by the pair 〈M ,a〉) and this ordering is the same
as the ordering of the unifaultMa variables in the quantifier sequence. Variable precpM

a
is the probability of all events 〈M ′,a′〉 that preceed 〈M ,a〉: 〈M ′,a′〉≺ 〈M ,a〉. This is
the product of the probabilities p(M ′,a′) of those faults which did occur (faultM

′
a′ = 1)

with the complement 1− p(M ′,a′) for those faults which did not occur (faultM
′

a′ = 0).
A constant succpM

a is calculated for each fault, which is the product of the proba-
bilities of the complement of all succeeding faults 〈M ′,a′〉 � 〈M ,a〉. In words, it is
assumed that all later faults do not occur (the most probable outcome) and a probability
is calculated for them all based on this.

The variable thispM
a is the probability of the scenario where fault 〈M ,a〉 does

occur, all succeeding faults do not occur and the occurrence of preceding faults is
decided by their respective fault variables. thispM

a is computed as follows: thispM
a =

precpM
a ×succpM

a × p(M ,a). There is a Boolean variable availableM
a which indicates

whether the probability of the scenario is above or equal to the threshold. Finally, if
availableM

a = 1 then the value of unifaultMa is copied to a second variable faultMa .
faultMa determines whether servicing takes place for machine M during period a.

All variables in Queso are integral. The probabilities (which must be rational)
are each represented with an integer variable numerator and a constant denominator.
A rational variable q1 is represented as x1

c1
. The constants c are computed from the

constraints and fault probabilities during construction of the model. For example the
constraint q1 = q2 × q3 would be translated to x1

c1
= x2

c2
× x3

c3
then x1 = x2 × x3 and

c1 = c2×c3. The acyclic structure of the model allows all constants ci to be determined
as the model is constructed. This scheme is clearly not sufficient to represent any set
of constraints over the rationals, but it is sufficient for this model. All probability
variables (thispM

a , precpM
a and faultMa) have initial domain {0 . . .c} where c is the

constant denominator associated with the variable. (The other variables availableM
a ,

unifaultMa and faultMa are Boolean.)
The constraints linking thispM

a , precpM
a , availableM

a , unifaultMa and faultMa are
shown here.

thispM
a = precpM

a × (succpM
a × p(M ,a))

availableM
a ⇔ thispM

a ≥ φ

faultMa ⇔ availableM
a ∧unifaultMa

Notice that the only constraint containing a universal variable, the constraint link-
ing unifaultMa to faultMa , cannot be represented directly as either a binary constraint
or in Bordeaux and Monfroy’s framework [14, 16]. (Bordeaux does not give propa-
gation rules for conjunction [14].) It can be reformulated as a disjunction, with three
additional negation constraints as shown below.

∃t1, t2, t3 : (t1⇔ t2∨ t3), (t1⇔¬faultMa), (t2⇔¬availableM
a), (t3⇔¬unifaultMa)

31

If faultMa = 0, the reified disjunction constraint is able to infer availableM
a = 0,

whereas Bordeaux and Monfroy’s primitives are not able to make any inferences. This
provides evidence that the reified disjunction constraint is worthwhile.

The precpM
a variable must be linked to the previous precp in the ordering ≺. This

is done by introducing another variable faultpM
a which is the probability of the event

which occurred (i.e. if the fault occurred then faultpM
a = p(M ,a) and if not then

faultpM
a = 1− p(M ,a)). The three constraints to achieve this are shown below.

(faultpM
a = p(M ,a))⇔ faultMa

(faultpM
a = 1− p(M ,a))⇔¬faultMa

if M = 1 and a 6= 1 : precpM
a = precpM

a−1× faultpM
a−1

if M 6= 1 : precpM
a = precpM−1

a × faultpM−1
a

if M = 1 and a = 1 : precpM
a = 1

The quantifier subsequence for these variables is shown below.

∃precpM
a , thispM

a ,availableM
a ,∀unifaultMa ,∃faultMa , faultpM

a

The unifaultMa variable is included in only one constraint. If availableM
a is set to

0, then faultMa is set to 0 by propagation and both values of unifaultMa become pure.
One value will be removed by the pure value rule. This avoids unnecessary search.
The pure value rule is very significant because without it 2periods×m scenarios would be
explored.

The variables thisp, precp and faultp are interval variables, represented in the solver
with only their upper and lower bounds.

All the above variables and constraints are shared by model A and model B below.

5.6.3 Model A

Model A is naive and ineffective, but since it is more obvious than model B I will
describe it and explain why it is ineffective. This motivates the more complex model
B. Model A is somewhat similar to a time-indexed formulation of scheduling in integer
programming [40].

For each time unit s and each machine M , there is a variable ∃tMs ∈{1,2, . . . ,n, idle,servicing}.
tMs represents the job that M is running at time s, or whether it is being serviced or
is idle. startMj , endM

j and opt variables are copied from the CSP model in section
5.5. Constraint types 1, 3 and 4 are copied from the CSP model. One other type of
constraint (equation 9) referred to as the channelling constraint is required to channel
between the tMs variables and the start and end variables. This is assumed to be a single
constraint for simplicity.

32

For each M , j,s :
[
startMj ≤ s ∧ endM

j > s
]
⇔ tMs = j (9)

The tMs variables and the startMj and endM
j variables are two representations of

the job shop scheduling problem. The reason for having both is that the tMs variables
can be quantified in chronological order and they enforce mutual exclusion of tasks
on machines, and the startMj and endM

j representation enforces that the tasks have the
correct duration and occur in the order required for the job.

Each period has length plen and periods = maxmakespan/plen. The time required
for servicing a machine is servicetime. For a machine M and period a, the variable
faultMa must be connected to the appropriate time unit variables tM . If faultMa = 1, ser-
vicing must be scheduled on machine M during period a. This is done by introducing
variables servicestartMa ∈ {((a− 1)× plen) . . .(a× plen− 1)} and serviceendM

a with
the same domain, and the constraints below. If faultMa = 0, then servicestartMa (and
serviceendM

a) are fixed, to avoid the search algorithm branching for each of its values.

For each M ,a : servicestartMa + servicetime = serviceendM
a

For each M ,a : faultMa = 0⇒ servicestartMa = (a×plen+1)

For each M ,a, for each s ∈ {((a−1)×plen) . . .(a×plen−1)} :[
faultMa = 1 ∧ servicestartMa ≤ s ∧ serviceendM

a > s
]
⇔ tMs = servicing

To implement the constraints with≤ and >, a reified comparison constraint is used.
For each ≤ or > symbol, an additional existential variable is introduced. A single
reified disjunction constraint is used to link the additional variables with faultMa and
tMs .

The quantifier sequence is given below. The variables associated with each period
are quantified, in chronological order. Within each period, the variables associated with
faults are quantified first, then the time unit variables for the period. The other variables
are existentially quantified at the end of the quantifier sequence.

1. For each period a in ascending order, the following two groups of variables are
quantified:

(a) The following sequence is repeated for each machine M :
∃precpM

a , thispM
a ,availableM

a ,∀unifaultMa ,∃faultMa , faultpM
a

(b) For each time unit s ∈ {(a− 1)× plen . . .a× plen− 1} and each machine
M : ∃tMs ∈ {1 . . .n, idle,servicing}

2. For each machine M and period a: ∃servicestartMa ,serviceendM
a ∈ {((a−1)×

plen) . . .(a×plen)}

3. For each machine M and job j: ∃startMj ,endM
j ∈ {0 . . .maxmakespan}

33

4. ∃opt ∈ {0 . . .maxmakespan}

There are two main reasons that model A is problematic. Firstly, the model is not
compact enough for propagation to be efficient. There are O(mn×maxmakespan)
channelling constraints, and the maxmakespan can be large. As an example, if variable
t1
1 is set to 1 by the search procedure, and d(1,1) = 10, then t1

2...10 are all set to 1 by
propagation, which causes 10n channelling constraints to be woken up by changes to
t1
1...10 variables, and nm channelling constraints (and various others) to be woken up by

bound changes on the start11 and end1
1 variables. In addition, variables t1

11...makespan may
have value 1 removed, which could potentially wake up a further (maxmakespan−10)n
channelling constraints. The maxmakespan and the durations can be large, so model A
is highly inefficient for propagation.

The other reason is search. To make intelligent branching decisions for the tMs
variables would require a variable and value ordering heuristic which is aware of the
start and end times of tasks. This is not currently implemented in Queso, although it
would not be difficult.

5.6.4 Model B

Model B is much more compact, and preserves the CSP model structure much better.
The trick here is to duplicate the whole CSP model once for each period. This model
contains redundancy, because there are periods copies of the entire schedule repre-
sented in the QCSP instance. The reason for the copies is to allow rescheduling for
faults. The schedules are numbered from 1 . . .periods. They are connected by condi-
tional equality constraints: for schedules a and a + 1, if a fault occurs in period a + 1,
then all tasks in schedule a which started within periods 1 . . .a have the same start time
in schedule a+1. Other tasks may need to be scheduled differently, with servicing time
included. If no fault occurs in period a+1, then the entire schedule a+1 equals sched-
ule a. When all variables are assigned, the final schedule in the sequence accounts for
all occurrences and non-occurrences of faults in the scenario.

The variables to model faults (shown in section 5.6.2) are quantified between in-
stances of the CSP model. The fault variables for period a are quantified between
schedule a− 1 and schedule a. Operationally, this means Queso solves the whole job
shop instance for schedule 1, assuming no faults occur for periods 2 . . .periods. Then
Queso branches on the universal variables unifault2. If no faults occur, then the whole
schedule is copied forward and there is no more work to do. If a fault occurs in period
2, then the section of the schedule before the start of period 2 is copied forward, and
the rest is rescheduled. If it proves impossible to construct schedule 2, then Queso
backtracks into schedule 1 and changes that if possible. The b variables are preserved
from the CSP model, and are searched on. Model B is illustrated for a small example
in figure 2.

For each period a, an extra existential variable nofaulta ∈ {0,1} is introduced which
is used for copying forward the entire schedule when no faults occur. The following
constraints are introduced.

For each a : nofaulta⇔¬fault1a∧·· ·∧¬faultma

34

0 5 10
time

15

Schedule 1

Schedule 2

machine

1

3

2

1

3 1

2

3 2

2:

1:

3:

job allocation

1

3

2

1

3 1

2

3 2

2:

1:

3:

Schedule 3 2:

1:

3:

S

Fault occurred at time 5. Schedule 2 must
be the same as schedule 1 before time
5, but will differ afterwards.

1

3

2

1

3 1

2

3 2

S

Service time is scheduled
on machine 2, and the
schedule is completed
assuming no fault at
time 10.

No fault occurred at time 10
therefore the whole of
schedule 3 is equal to
schedule 2.

No fault occurred at
time 0. Schedule 1 is
constructed assuming
no faults at time 5 or 10

(a)

(b)

No fault
m3
m2
m1

Period 1: Period 2:

No fault
m3
m2
m1

Period 3:

No fault

No fault

No fault

No fault
m3
m2
m1

No fault

No fault

No fault

No fault

No fault

No fault

Figure 2: (a) Representation of model B on a problem (shown in table 2) with 3 ma-
chines, 3 jobs and 3 periods of length 5. Since there are three periods, there are three
schedules represented in the model. There are nine possible faults. A solution for the
scenario where one fault occurs on machine 2 in period 2 is illustrated. The final sched-
ule (3) is the one which fully accounts for the faults which did and did not occur in this
scenario.
(b) Assume that all fault probabilities are equal, and only one fault may occur within
the threshold probability. There are ten scenarios in total, nine with one fault and one
with no faults. This tree shows an approximation of how Queso branches on the uni-
versal variables in model B, assuming no failures occur. After branching for period 1,
the solver constructs schedule 1. Then it branches for period 2, constructs schedule 2
etc, in a depth-first search. The scenario illustrated in figure (a) is marked with a solid
black box.

35

Copies of the CSP model are introduced for each period, with each variable super-
scripted with the period number. For example, startM ,a

j is the starting time of the task
from job j which requires machine M from period a. Constraint types 1,2 and 3 are
used for all periods. Constraint type 4 and the opt variable are only present for the last
period.

For each period, additional variables servicestartMa and serviceendM
a are intro-

duced with the same meaning and domain as in model A. They are linked to the CSP
model with the following constraints. The τ

M ,a
j,1 ,τM ,a

j,2 variables represent task order-
ing, and are existentially quantified.

For each M ,a : servicestartMa + servicetime = serviceendM
a

For each M ,a : ¬faultMa ⇒ servicestartMa = (a×plen+1)

For each M ,a, j :

faultMa ⇒ τ
M ,a
j,1 ∨ τ

M ,a
j,2

endM,a
j ≤ servicestartMa ⇔ τ

M ,a
j,1

serviceendM
a ≤ startM ,a

j ⇔ τ
M ,a
j,2

Adjacent periods are connected with the following constraints. The σ variables
are local and are existentially quantified at the end of the period set. σ1 and σ2 are
both Boolean variables. σ1 indicates whether the value of startM ,a

j lies within periods

1 . . .a (i.e. startM ,a
j ≤ a× plen). σ2 indicates whether startM ,a

j is copied to the next

period. startM ,a
j must be copied forward if there are no faults in period a+1 (therefore

nofaulta+1⇒ σ2) or the task started within periods 1 . . .a (therefore σ1⇒ σ2).

For each a ∈ {1 . . .periods−1},M , j :
¬σ1∨σ2

¬nofaulta+1∨σ2

[startM ,a
j ≤ a×plen]⇔ σ1

[startM ,a
j = startM ,a+1

j]⇔ σ2

Finally some implied constraints are added for efficiency. The ordering variables b
and σ entirely specify the order of tasks. When these variables are assigned, all that is
needed to complete a schedule is to set the start time of each task. In early experiments
we experienced thrashing on the start variables. In the context of makespan minimiza-
tion, a schedule where the tasks are tightly packed is always preferable. The following
constraints state that tasks are tightly packed, by stating that the start time of a task
startM ,a

j is equal to one of the following possibilities: the end time of the previous
task in the job; the end time of any other task which runs on machine M (including

36

servicing tasks); the start of the schedule; or the start of any period 2 . . .a + 1. This
last possibility requires some explanation. For schedule a, it may be necessary to start
the task at the beginning of period a + 1 so that it is not copied forward into schedule
a+1. Since the start time is not copied forward, the task can be moved in response to
servicing in period a +1. (It may be necessary for the task to start at the beginning of
period a + 1 if there is no fault, and later if there is a fault in period a + 1.) The same
argument also applies to all schedules 1 . . .a− 1, therefore the task may begin at the
start of any period 2 . . .a+1.

The constraints are constructed as follows. For each a∈ {1 . . .periods},M , j, there
is a Boolean reified disjunction of the form γ1 ∨ ·· · ∨ γn ⇔ 1, and for each γd there is
a constraint such as (startM ,a

j = endM ,a
j−1)⇔ γd . Each γd represents one possible value

for startM ,a
j from the list of possibilities above.

Bounds(D)-consistency is applied to the reified ≤ constraints. All others are im-
plemented using reified disjunction. The quantification sequence is given below.

1. For each period a in ascending order:

(a) For each machine M : ∃precpM
a , thispM

a ,availableM
a ,∀unifaultMa ,∃faultMa , faultpM

a

(b) ∃nofaulta ∈ {0,1}

(c) For each pair of jobs j1, j2 and each machine M , ∃bM ,a
j1, j2
∈ {0,1}

(d) For each machine M and job j, ∃τM ,a
j,1 ,τM ,a

j,2 ∈ {0,1}

(e) For each machine M and job j, ∃startM ,a
j ,endM ,a

j ∈ {0 . . .maxmakespan}

(f) For each machine M and period a, ∃servicestartMa ,serviceendM
a ∈ {((a−

1)×plen) . . .(a×plen−1)}
(g) For all pairs of σ variables for this period, ∃σ1,σ2 ∈ {0,1}
(h) For all γ variables in this period, ∃γ ∈ {0,1}

2. ∃opt ∈ {0 . . .maxmakespan}

This model is much more compact than model A, and allows branching on b and τ

variables first, thus deciding the ordering of tasks before branching on the start vari-
ables. Edge-finding constraints could be trivially added to this model, over the start
variables. If an edge-finding constraint supported variable durations, it could also be
used on servicestart where the duration would be 0 if no servicing is required, and
servicetime if it is required.

5.7 Why use QGAC
Why use quantified notions of consistency such as QGAC to solve this problem? Con-
straint Logic Programming solvers such as Eclipse [1] allow the programmer to con-
struct an ad-hoc solution using GAC or weaker consistency, where the solver branches
for those combinations of faults which are within the probability threshold. However,

37

this is a weak approach because the solver does not distinguish between existential and
universal variables, and cannot do any extra reasoning on universal variables.

If the servicing time for machine M cannot be scheduled in period a, then faultMa is
set to 0 by propagation on other constraints (which are specific to models A and B). At
this point, if availableM

a is set to 1, then the unifaultMa variable is pruned, and the solver
backtracks immediately. In this way the solver exploits the universal variables. Since
QGAC on reified disjunction is cheap and search is inherently expensive, it seems very
likely that enforcing QGAC is worthwhile, although it remains an empirical question.

A second alternative would be to expand out the QCSP model for all scenarios
within the probability bound, creating a CSP. This is very similar to the approach used
by Tarim, Manandhar and Walsh to solve Stochastic CSP [32, 39]. The size of the
resultant CSP is the size of the QCSP model multiplied by the number of scenarios.
There can be exponentially many scenarios. However, in the experiments below, there
are 215 scenarios but only 16 or 226 scenarios within the probability bound, therefore
this approach is possible if we only consider the 16 or 226 scenarios.

This approach would probably yield more powerful propagation. Search decisions
would be propagated for every scenario. If the decision is incompatible with any suf-
ficiently probable combination of future faults, then the propagation may determine
failure. This is not the case when applying QGAC to QCSP model B. However, propa-
gation would be more expensive in this scheme, and the set of scenarios must be small.

6 Empirical evaluation
The aim of this section is to show that applying QCSP to job shop scheduling can
be useful, compared to simpler approaches, when dealing with machine faults and
servicing.

I use model B for all experiments. To optimize schedules, searchOpt is used. The
variable opt is minimized. When applying a new upper bound, all end variables for
all periods are pruned with the new upper bound. The pure value rule is applied to
universal variables (i.e. unifaultMa variables) but not existentials. This is because it is
expensive to apply the pure value rule to all variables and it rarely does any useful work
on existentials. This is the same situation as in Connect 4.

The ten problem instances used here have n = m = 5 and are derived from the OR-
LIB instances LA01 to LA103. LA01 to LA10 have five machines but ten or fifteen
jobs. I used only the first five jobs and deleted the others, creating instances LA01-
5× 5 to LA10-5× 5. The instances are small for non-contingent scheduling, but be-
come challenging for Queso when contingency is introduced. The number of Boolean
variables b in the CSP model would be mn(n−1)/2 = 50, so the space of assignments
to them is 250.

6.1 Comparing non-contingent with contingent scheduling
A typical approach to machine breakdown is to add extra time to a schedule [24].
Therefore I compare the length of the schedules generated by the two approaches.

3Available from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/

38

The performance of the QCSP algorithms on model B is likely to degrade as the
disruption caused by servicing increases. This is because the schedule for each period
is constructed assuming that no further faults will occur, so if a very disruptive fault
does occur in a later period, the solver is likely to search extensively.

6.1.1 Experiments with at most one fault

Hypothesis 1

Contingent scheduling will generate schedules with significantly shorter makespans
and similar robustness to a non-contingent approach.

Hypothesis 2

The performance of the QCSP algorithms will degrade as servicetime is increased, all
else remaining the same.

Method

The ten instances LA01-5×5 to LA10-5×5 are used. The maxmakespan is 600 in all
cases. The schedule is divided into three periods of 200 time units, and for each period,
each machine has a fault probability of 0.05. The threshold probability is 0.01. The
effect of this is that every scenario of a winning strategy contains at most one fault.
With five machines and three periods, there are fifteen scenarios where some machine
has a fault, and one scenario where no machine has a fault.

The searchOpt algorithm was used to generate contingent schedules. In these
schedules, the parameter which is minimized is the maximum of the schedule length
for each scenario. The output of the solver is the minimized parameter.

Results

Figure 3(a) plots the ratio between the worst-case makespan with contingency and
the makespan with no contingency. The makespan often increases as servicetime is
increased, but the makespan is clearly not exactly proportional to servicetime. The
lowest value (across the 10 instances) of Pearson’s correlation coefficient [43] between
servicetime and makespan is 0.8025 (instance LA01-5× 5) and the highest is 0.9995
(for LA09-5×5). Therefore the two are highly correlated.

In some cases, increasing the servicing time by 10 results in an increase of more
than 10 in the makespan. For example, for instance LA01-5×5 between servicetime =
70 and 80 the makespan increases by 37. This is counterintuitive, and could not happen
in non-contingent scheduling. In this example, a particular partial schedule (which
is associated with a low worst-case makespan) becomes infeasible for some scenario
as servicetime is increased, so the schedule where servicetime = 80 is significantly
different to the one where servicetime = 70.

In this experiment, every scenario of a winning strategy contains at most one fault.
To generate a non-contingent schedule with similar robustness, I assume that a single
fault occurs on machine M during a period a when M is constantly in use, and that the

39

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 20 40 60 80 100 120

co
nt

in
ge

nt
 m

ak
es

pa
n

/ n
on

-c
on

tin
ge

nt
 m

ak
es

pa
n

Servicing time

LA01-5x5
LA02-5x5
LA03-5x5
LA04-5x5
LA05-5x5
LA06-5x5
LA07-5x5
LA08-5x5
LA09-5x5
LA10-5x5

(a) Effect of servicing on worst-case makespan

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 20 40 60 80 100 120

co
nt

in
ge

nt
 m

ak
es

pa
n

/ p
ad

de
d

m
ak

es
pa

n

Servicing time

LA01-5x5
LA02-5x5
LA03-5x5
LA04-5x5
LA05-5x5
LA06-5x5
LA07-5x5
LA08-5x5
LA09-5x5
LA10-5x5

1

(b) Contingent worst-case makespan against padded
makespan

Figure 3: Comparing contingent and padded non-contingent schedules

fault increases the makespan by servicetime time units. Therefore the non-contingent
approach is to generate an optimal schedule and add servicetime to the makespan to
allow for one servicing task. During execution of the schedule, servicing during period
a on machine M would potentially cause tasks on that machine to start later, which
would also affect tasks on other machines according to the precedence constraints. This
increases the makespan by up to servicetime time units. The schedule is padded at the
end to allow for overrun, and is referred to as padded non-contingent schedule.

This approach may seem to be too pessimistic. However, for the instance LA01-
5× 5, for the optimal non-contingent schedule generated by Queso (with makespan
444), there is a machine M = 1 and period a = 1 where the machine is constantly
in use, and adding servicing to this period does increase the makespan by servicetime
time units. I did not inspect the schedules for the other instances for this property.

Figure 3(b) plots the ratio between the worst-case makespan with contingency and
the makespan of a padded non-contingent schedule. At almost all points, the contingent
schedules have a shorter makespan. The improvement is up to 10%. This is evidence
in favour of the first hypothesis.

Unfortunately the QCSP algorithms do not scale well as servicetime is increased.
Search time and search nodes are plotted in figures 4(a) and (b). The experiment was
run on a P4 3.06GHz with 1GB of RAM, using Sun Java 1.6 in server mode. Note that
the search time includes all setup processes. Therefore for short searches, the number
of nodes explored per millisecond can be low. This quantity varies in the range 0.19 to
0.78.

The number of nodes does not scale well for some instances. The time spent at
each node decreases for long searches, but the overall effect is that search time does
not scale well. This is evidence in favour of the second hypothesis.

Observations

In some cases, Queso scales very poorly when servicing time is increased. This is most
dramatic on instance 2, where the number of nodes increases from 459 to 8.4 million

40

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100 120

S
ea

rc
h

tim
e

(m
s)

Servicing time

LA01-5x5
LA02-5x5
LA03-5x5
LA04-5x5
LA05-5x5
LA06-5x5
LA07-5x5
LA08-5x5
LA09-5x5
LA10-5x5

(a) Search time

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100 120

S
ea

rc
h

no
de

s

Servicing time

LA01-5x5
LA02-5x5
LA03-5x5
LA04-5x5
LA05-5x5
LA06-5x5
LA07-5x5
LA08-5x5
LA09-5x5
LA10-5x5

(b) Search nodes

Figure 4: Search time and nodes plotted against servicetime

as the servicing time is increased from 0 to 80.
Queso schedules the periods in order. Consider the situation where the first period

is scheduled, and a set of decisions made in the first period are incompatible with all
valid schedules for the final period. Assume intermediate periods can be scheduled.
Queso will reach the final period, detect the conflict, and backtrack. However, because
of chronological backtracking, it will explore every possibility for periods between the
first and the last, before backtracking to the first period. It will thrash, detecting the
same conflict many times. Situations like this are impossible when the servicing time
is 0, but as servicing time is increased, the disruption caused by faults is increased so
I believe it is more likely that this type of thrashing will occur. This effect could be
reduced by using an extension to search such as CBJ [27] or conflict learning (used in
QBF [29]), both of which reduce thrashing by avoiding re-discovering conflicts, and
therefore are likely to be very helpful in this situation.

6.1.2 Experiments with at most two faults

As mentioned in section 5.7, it is possible to solve QCSP by expanding it out into a
CSP. This is feasible for the experiments above, where there are 16 scenarios. How-
ever, if we allow at most two faults to occur in each scenario, the number of scenarios
is 226, approximately 14 times as many. This is likely to make the expansion to CSP
infeasible. However it is also likely to degrade the performance of the QCSP algo-
rithms. Also, when comparing contingency to the naive padding approach, there is the
potential for greater savings with two faults than one.

Method

The same ten instances are used, with the same value for maxmakespan (600) and the
same number of periods (3). The fault probability is 0.05 and the threshold is 0.001,
therefore each scenario contains at most two faults, and there are 226 scenarios. As
before, the searchOpt algorithm is used. To save computation time, servicetime is

41

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100 120

S
ea

rc
h

tim
e

(m
s)

Servicing time

LA01-5x5
LA02-5x5
LA03-5x5
LA04-5x5
LA05-5x5
LA06-5x5
LA07-5x5
LA08-5x5
LA09-5x5
LA10-5x5

(a) Search time

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 20 40 60 80 100 120

co
nt

in
ge

nt
 m

ak
es

pa
n

/ p
ad

de
d

m
ak

es
pa

n

Servicing time

LA01-5x5
LA02-5x5
LA03-5x5
LA04-5x5
LA05-5x5
LA06-5x5
LA07-5x5
LA08-5x5
LA09-5x5
LA10-5x5

1

(b) Contingent worst-case makespan against padded
makespan

Figure 5: Results for experiments with at most two faults

increased in increments of 20 rather than 10, but in all other respects the parameters
are the same.

Results

Figure 5(a) shows search time. LA02-5× 5 is a difficult instance, and when service-
time is 80 it has the longest search time whether we are considering two faults or
one (compare to figure 4(a)). With two faults, the search time is 147030s, and with
one fault it is 17744s, a ratio of 8.29. This is less than the 14-fold increase in the
number of scenarios. However, the mean ratio of search time is 14.3, averaged for
servicetime ∈ {20,40,60,80} and for all 10 problems. The ratio of the number of
nodes, averaged in the same way, is 13.6. It is more difficult to solve the instances with
more scenarios, and the increase in difficulty approximately matches the increase in
the number of scenarios.

Figure 5(b) plots the maximum makespan for the contingent schedule against a
non-contingent schedule padded with 2× servicetime. As expected, the contingent
approach gives a greater saving when we have two faults (compare to figure 3(b)).

7 Conclusion
I have presented two main contributions to solving QCSP. The first is an algorithm to
propagate reified disjunction constraints. This dominates the logic primitives of Bor-
deaux and Monfroy [14, 16], and proves useful with Connect 4 and job shop schedul-
ing. The second contribution is the non-binary pure value rule. This is implemented by
reusing constraint propagation algorithms, and again proves useful for both job shop
scheduling and Connect 4. Also, I presented a simple optimization algorithm.

A model of Connect 4 was presented, which exploits both the reified disjunction
constraint and the pure value rule. This was used to evaluate the pure value rule, by
solving Connect 4 at various board sizes with and without the pure value rule. The pure

42

value rule is successful in reducing the number of search nodes by over 150 times on
the board with 5 columns and 4 rows. The reified disjunction propagator was evaluated
by comparing it with Bordeaux’s decomposition. The reified disjunction propagator
performed more than 5000 times better in both time and search nodes.

A binary encoding of Connect 4 was developed in order to compare Queso against
QCSP-Solve and BlockSolve. On the board with 4 rows and 4 columns, QCSP-Solve
was more than 8000 times slower than Queso, and BlockSolve was more than 80000
times slower. In the conversion to a binary QCSP, the structure of the problem is lost
and the reasoning algorithms of QCSP-Solve and BlockSolve are not able to simplify
it effectively. This provides some evidence that non-binary QCSP is a necessary step
forwards, although it is likely that a better model of Connect 4 exists in binary QCSP.

Two models of faulty job shop scheduling were presented, where model A is for
pedagogical purposes and model B is intended as a proof of concept for scheduling
in QCSP. Both models were designed to make use of the pure value rule on universal
variables, and of the reified disjunction constraint. Model B has two main modelling
tricks. First, the pure value rule is exploited by using two fault variables, unifault and
fault, with unifault being universally quantified and fault being existential. There is
just one constraint over each universal variable, which makes it very easy to manage
when values become pure. The second trick is to copy the CSP model of JSSP for
each period. This allows a reasonably compact model (compared to model A), and
permits the use of edge finding constraints, variable-value ordering heuristics and a
whole range of other techniques from CSP scheduling. To the best of my knowledge,
this is the first model of a complex and realistic problem in QCSP.

Applying contingent scheduling via QCSP can yield schedules with a shorter makespan
than a naive padding approach, since it can optimize the schedule separately for each
scenario. Unsurprisingly, the computational cost is higher. The search time grows with
the servicing time required for each fault, all else being equal. The cost of finding op-
timal solutions to model B does not scale badly against the number of scenarios. The
experiments were performed on instances with 16 and 226 valid scenarios, a 14-fold
increase in the number of scenarios, and the average search time increased by only 14.3
times.

Future work

There are many opportunities for development of the QCSP formalism, both in terms
of algorithms and in modelling and application. In constraint programming, there is a
large body of research on solving CSP instances, but also a great deal of research on
modelling problems effectively and selecting appropriate propagation algorithms. Both
these strands of research are in their infancy in QCSP. On the solving side, it would be
interesting to investigate making use of conflicts and solutions. In QBF, conflict learn-
ing [29] and solution backjumping [30] are very effective. In constraint programming,
conflict learning is attracting interest. Also, it would be helpful to incorporate all the
constraints of an existing constraint solver into a QCSP solver, to support more effec-
tive modelling.

43

Acknowledgements

Many thanks to Ian Gent who supervised my Ph.D. and made helpful comments on
drafts of this paper. Thanks to anonymous reviewers who provided many helpful com-
ments. I would like to thank EPSRC for providing the funding for this work through a
doctoral training grant and grant number EP/E030394/1.

References
[1] Eclipse user manual release 5.10, 2006. http://eclipse.crosscoreop.com/doc/.

[2] Carlos Ansótegui. Personal communication.

[3] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

[4] Fahiem Bacchus and Kostas Stergiou. Solution directed backjumping for QCSP.
In Proceedings 13th International Conference on the Principles and Practice of
Constraint Programming (CP 2007), pages 148–163, 2007.

[5] Fahiem Bacchus and Toby Walsh. A constraint algebra. Technical Report
APES-77-2004, APES Research Group, 2004. Available from http://www.dcs.st-
and.ac.uk/˜apes/apesreports.html.

[6] Thanasis Balafoutis and Kostas Stergiou. Algorithms for stochastic CSPs. In Pro-
ceedings 12th International Conference on the Principles and Practice of Con-
straint Programming (CP 2006), pages 44–58, 2006.

[7] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based Schedul-
ing. Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[8] J. Christopher Beck and Mark S. Fox. Dynamic problem structure analysis as a
basis for constraint-directed scheduling heuristics. Artificial Intelligence, 117:31–
81, 2000.

[9] Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard. Reasoning on quantified
constraints. In Rappresentazione Della Conoscenza e Ragionamento Automatico,
2006.

[10] Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard. QCSP made practical
by virtue of restricted quantification. In Proceedings 20th International Joint
Conference on Artificial Intelligence (IJCAI 2007), pages 38–43, 2007.

[11] Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard. Modeling adversary
scheduling with QCSP+. In Proceedings 23rd Annual ACM Symposium on Ap-
plied Computing, 2008.

[12] Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard. Quantified constraint
optimization. In Proceedings 14th International Conference on Principles and
Practice of Constraint Programming, pages 463–477, 2008.

44

[13] Christian Bessière and Jean-Charles Régin. Arc consistency for general constraint
networks: preliminary results. In Proceedings 15th International Joint Confer-
ence on Artificial Intelligence (IJCAI 97), pages 398–404, 1997.

[14] Lucas Bordeaux. Boolean and interval propagation for quantified constraints.
In Proceedings 1st International Workshop on Quantification in Constraint Pro-
gramming (at CP 2005), 2005.

[15] Lucas Bordeaux, Marco Cadoli, and Toni Mancini. CSP properties for quantified
constraints: Definitions and complexity. In Proceedings 20th National Confer-
ence on Artificial Intelligence (AAAI 2005), pages 360–365, 2005.

[16] Lucas Bordeaux and Eric Monfroy. Beyond NP: Arc-consistency for quantified
constraints. In Proceedings 8th International Conference on the Principles and
Practice of Constraint Programming (CP 2002), pages 371–386, 2002.

[17] Lucas Bordeaux and Lintao Zhang. A solver for quantified boolean and linear
constraints. In Proceedings ACM Symposium on Applied Computing (SAC), pages
321–325, 2007.

[18] F Börner, A Bulatov, Peter Jeavons, and Andrei Krokhin. Quantified constraints:
Algorithms and complexity. In Proceedings 17th International Workshop on
Computer Science Logic (CSL 2003), pages 58–70, 2003.

[19] Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An algorithm to evalu-
ate quantified Boolean formulae. In Proceedings 15th National Conference on
Artificial Intelligence (AAAI 98), pages 262–267, 1998.

[20] Marco Cadoli, Marco Schaerf, Andrea Giovanardi, and Massimo Giovanardi. An
algorithm to evaluate quantified Boolean formulae and its experimental evalua-
tion. Journal of Automated Reasoning, 28(2):101–142, 2002.

[21] Jacques Carlier and Eric Pinson. A practical use of Jackson’s preemptive schedule
for solving the job-shop problem. Annals of Operations Research, 26:269–287,
1990. Cited by [33].

[22] Yves Caseau and Francois Laburthe. Improved CLP Scheduling with Task In-
tervals. In Proceedings 11th International Conference on Logic Programming
(ICLP 94). The MIT press, 1994.

[23] Chiu Wo Choi, Warwick Harvey, Jimmy Ho-Man Lee, and Peter J. Stuckey. Fi-
nite domain bounds consistency revisited. In Proceedings 19th Australian Joint
Conference on Artificial Intelligence (AI 2006), pages 49–58, 2006.

[24] Andrew J. Davenport and J. Christopher Beck. A survey of techniques
for scheduling with uncertainty. Unpublished manuscript. Available from
http://tidel.mie.utoronto.ca/publications.php.

[25] Ian Gent and Andrew Rowley. Encoding Connect-4 using quantified Boolean
formulae. Technical Report APES-68-2003, APES research group, 2003.

45

[26] Ian P. Gent, Enrico Giunchiglia, Massimo Narizzano, Andrew G. D. Rowley, and
Armando Tacchella. Watched data structures for QBF solvers. In Proceedings
6th International Conference on Theory and Applications of Satisfiability Testing
(SAT 2003), pages 25–36, 2003.

[27] Ian P. Gent, Peter Nightingale, Andrew Rowley, and Kostas Stergiou. Solving
quantified constraint satisfaction problems. Artificial Intelligence, 2007. To ap-
pear.

[28] Ian P. Gent, Peter Nightingale, and Kostas Stergiou. QCSP-Solve: A solver for
quantified constraint satisfaction problems. In Proceedings 19th International
Joint Conference on Artificial Intelligence (IJCAI 2005), pages 138–143, 2005.

[29] E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/term resolution and
learning in the evaluation of quantified Boolean formulas. Journal of Artificial
Intelligence Research (JAIR), 26:371–417, 2006.

[30] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Backjumping
for quantified Boolean logic satisfiability. In Proceedings 17th International Joint
Conference on Artificial Intelligence (IJCAI 2001), pages 275–281, 2001.

[31] Nikos Mamoulis and Kostas Stergiou. Algorithms for quantified constraint satis-
faction problems. In Proceedings 10th International Conference on the Principles
and Practice of Constraint Programming (CP 2004), pages 752–756, 2004.

[32] Suresh Manandhar, Armagan Tarim, and Toby Walsh. Scenario-based stochastic
constraint programming. In Proceedings 18th International Joint Conference on
Artificial Intelligence (IJCAI 2003), pages 257–262, 2003.

[33] Paul Martin and David B. Shmoys. A new approach to computing optimal sched-
ules for the job-shop scheduling problem. In Proceedings 5th International Con-
ference on Integer Programming and Combinatorial Optimization (IPCO 96),
pages 389–403, 1996.

[34] Peter Nightingale. Consistency and the Quantified Constraint Satisfaction Prob-
lem. PhD thesis, School of Computer Science, St Andrews University, 2007.

[35] Francesca Rossi, Charles Petrie, and Vasant Dhar. On the equivalence of con-
straint satisfaction problems. In Proceedings 9th European Conference on Artifi-
cial Intelligence (ECAI 90), pages 550–556, 1990.

[36] Francisco Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Con-
straint Programming. Elsevier, 2006.

[37] Norman M. Sadeh, Katia P. Sycara, and Yalin Xiong. Backtracking techniques
for the job shop scheduling constraint satisfaction problem. Artificial Intelligence,
76(1-2):455–480, 1995.

[38] Kostas Stergiou. Repair-based methods for quantified CSPs. In Proceedings 11th
International Conference on the Principles and Practice of Constraint Program-
ming (CP 2005), pages 652–666, 2005.

46

[39] Armagan Tarim, Suresh Manandhar, and Toby Walsh. Stochastic constraint pro-
gramming: A scenario-based approach. Constraints, 11(1):53–80, 2006.

[40] J.M. van den Akker, C.A.J. Hurkens, and M.W.P. Savelsbergh. Time-indexed
formulations for machine scheduling problems: Column generation. INFORMS
Journal on Computing, 12(2):111–124, 2000.

[41] Guillaume Verger and Christian Bessière. Blocksolve: a bottom-up approach for
solving quantified CSPs. In Proceedings 12th International Conference on the
Principles and Practice of Constraint Programming (CP 2006), pages 635–649,
Nantes, France, 2006.

[42] Toby Walsh. Stochastic constraint programming. In Proceedings 15th European
Conference on Artificial Intelligence (ECAI 2002), pages 111–115, 2002.

[43] Eric W. Weisstein. Correlation coefficient.
http://mathworld.wolfram.com/CorrelationCoefficient.html.

47

