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1 Introduction

SAVILE ROW is a constraint modelling tool. It provides a high-level language for the user to specify their constraint
problem, and automatically translates that language to the input languages of constraint solvers as well as SAT, MaxSAT,
and SMT solvers. SAVILE ROW is a research tool, designed to enable research into reformulation of constraint models,
therefore it is designed for flexibility. It is designed to be easy to add new transformation rules and develop new translation
pipelines.

This manual is for version 1.9.1 of SAVILE Row.

This manual covers the basics of using SAVILE Row. It does not cover adding new rules or translation pipelines.

SAVILE ROW reads the ESSENCE PRIME modelling language, which is described in Section 2 below. SAVILE ROw
converts constraint models expressed in ESSENCE PRIME into the solver input format, in a process that has some similar-
ities to compiling a high-level programming language. Like a compiler, SAVILE ROW applies some optimisations to the
model (the most basic being partial evaluation and common subexpression elimination).
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1.1 Problem Classes and Instances

The distinction between problem classes and problem instances will be important in this manual. It is easiest to start
with an example. Sudoku in general is a problem class, and a particular Sudoku puzzle is an instance of that class. The
problem class is described by writing down the rules of Sudoku, i.e. that we have a 9 x 9 grid and that each row, column
and subsquare must contain all values 1..9. A particular instance is described by taking the class and adding the clues, i.e.
filling in some of the squares. The set of clues is a parameter of the class — in this case the only parameter. Adding the
parameters to a class to make a problem instance is called instantiation.

In typical use, SAVILE ROow will read a problem class file and also a parameter file, both written in ESSENCE PRIME.
It will instantiate the problem class and unroll all quantifiers and matrix comprehensions, then perform reformulations
and flattening of nested expressions before producing output for a constraint solver.

1.2 Translation Pipelines and Solver Backends

The current version of SAVILE ROW has two translation pipelines. The first works on problem instances only. Every
parameter of the problem class must be given a value in the parameter file. Output produced by this pipeline may be
entirely flattened or it may contain some nested expressions depending on the output language.

* Minion — Output is produced in the Minion 3 language for Minion 1.8 or later. The model produced is not entirely
flat, it makes use of nested wat ched-or and wat ched—and constraints.

* Gecode — Output is produced for Gecode in the entirely flat, instance-level language FlatZinc for use by the
fzn—-gecode tool.

 Chuffed — Output is produced for the Chuffed solver in the FlatZinc language. The Chuffed and Gecode backends
produce very similar FlatZinc.

 Standard FlatZinc — Output for any solver with a FlatZinc parser.

* SAT - Output is produced in DIMACS format for use with any SAT solver.

e SMT - Output is produced in SMT-LIB 2 format for use with SMT solvers such as Boolector, Z3, and Yices2.
* MaxSAT — Produces Weighted Partial MaxSAT for use with MaxSAT solvers such as Open-WBO and MaxHS.

* MiniZinc — Output is produced in an instance-level, almost flat subset of the MiniZinc modelling language. The
MiniZinc output follows the FlatZinc outputs as closely as possible.

The Minion, Gecode, Chuffed, standard FlatZinc, SAT, SMT, and MaxSAT backends are able to run the solver and
parse the solution. For these backends, SAVILE Row will produce a solution file (in ESSENCE PRIME) and a file with
some statistics. The SAT and SMT backends make multiple calls to solve optimisation problems (using a bisecting
strategy by default), unless the target solver natively supports optimisation. All constraints (i.e. the entire ESSENCE
PRIME language) are supported with each backend. For the bundled solvers (Minion, CaDiCaL (SAT), Chuffed), paths
are set so that SAVILE ROW always uses the bundled solver by default.

The second translation pipeline does not instantiate the model, instead it performs class-level reformulation and flat-
tening. This pipeline is experimental and incomplete. There is one backend that produces Dominion Input Language for
the Dominion solver synthesiser.

MINION is well supported by SAVILE ROW so we will use MINION as the reference in this document. Modelling
problems directly in MINION’s input language is time-consuming and tedious because of its primitive structure (it can be
compared to writing a complex program in assembly language), so a tool like SAVILE ROWw takes much of the tedium out
of modelling constraint problems for MINION.
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Figure 1: On the left is a Sudoku puzzle. The objective is to fill in all blank squares using only the digits 1-9 such that each
row contains all the digits 1-9, each column also contains all the digits 1-9, and each of the 3 by 3 subsquares outlined in
thicker lines also contains all digits 1-9. On the right is the solution. (Images are public domain from Wikipedia.)

2 The Essence Prime Language

The purpose of this section is to describe the ESSENCE PRIME language and to be a reference for users of ESSENCE
PRIME- not to be a formal description of the langauge. ESSENCE PRIME is a constraint modelling language, therefore
it is mainly designed for describing NP-hard decision problems. It is not the only (or the first) constraint modelling
language. ESSENCE PRIME began as a subset of ESSENCE [/] and has been extended from there. It is similar to the earlier
Optimization Programming Language (OPL) [15]]. ESSENCE PRIME is implemented by the tool SAVILE Row [[12}[13]].

ESSENCE PRIME is considerably different to procedural programming languages, it does not specify a procedure
to solve the problem. The user specifies the problem in terms of decision variables and constraints, and the solver
automatically finds a value for each variable such that all constraints are satisfied. This means, for example, that the
order the constraints are presented in ESSENCE PRIME is irrelevant.

ESSENCE PRIME allows the user to solve constraint satisfaction problems (CSPs). A simple example of a CSP is a
Sudoku puzzle (Figure[T). To convert a single Sudoku puzzle to CSP, each square can be represented as a decision variable
with domain {1...9}. The clues (filled in squares) and the rules of the puzzle are easily expressed as constraints.

We will use Sudoku as a running example. A simple first attempt of modelling Sudoku in ESSENCE PRIME is shown
in Figure[2] In this case the clues (for example M[1, 1]=5) are included in the model. We have used not-equal constraints
to state that all digits must be used at most once in each row and column. We have also omitted the sub-square constraints
for now.

In this example, some CSP decision variables are declared using a £ind statement. It is also worth noting that other
variables exist that are not decision variables, for example, row is a quantifier variable that exists only to apply some
constraints to every row.

An ESSENCE PRIME model usually describes a class of CSPs. For example, it might describe the class of all Sudoku
puzzles. In order to solve a particular instance of Sudoku, the instance would be specified in a separate parameter file
(also written in ESSENCE PRIME). The model would have parameter variables (of type integer, boolean or matrix), and
the parameter file would specify a value for each of these variables.

Since ESSENCE PRIME is a constraint modelling language, we will define the constraint satisfaction problem (CSP). A
CSPP = (X, D, () is defined as a set of n decision variables X = (x1,...,x,), asetof domains D = (D(x1),...,D(z,))
where D(z;) C Z, |D(x;)| < oo is the finite set of all potential values of x;, and a conjunction C = C; ACy A --- A C,

of constraints.
For CSP P = (X, D, (), a constraint C}, € C consists of a sequence of m > 0 variables Xy, = (zy,,. .., Tk, ) With
domains Dy, = (D(xy, ), ..., D(zy,,)) s.t. Xy is a subsequencel|of X, Dy, is a subsequence of D, and each variable xy,

'T use subsequence in the sense that (1, 3) is a subsequence of (1,2, 3,4).
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language ESSENCE’ 1.0
find M : matrix indexed by [int(1..9), int(1..9)] of int(1l..9)

such that

M[9, 9]

9,

forAll row : int (1..9)
forAll coll : int(1..9)
forAll col2: int(coll+1..9) . M[row, coll]!=M[row, col2],

forAll col : int(1..9)
forAll rowl : int(1..9)
forAll row2: int (rowl+1l..9) . M[rowl, col]!=M[row2, col]

Figure 2: First example of a (partial) Sudoku model in ESSENCE PRIME

and domain D(zy, ) matches a variable x; and domain D(z;) in P. Cj, has an associated set CY C D(zy, ) x---x D(zy,,)
of tuples which specify allowed combinations of values for the variables in Xj.

2.1 The Essence Prime Expression Language

In ESSENCE PRIME expressions are built up from variables and literals using operators (such as +). We will start by
describing the types that expressions may take, then describe the simplest expressions and build up from there.

2.1.1 Types and Domains

Types and domains play a similar role; they prescribe a set of values that an expression or variable can take. Types denote
non-empty sets that contain all elements that have a similar structure, whereas domains denote possibly empty sets drawn
from a single type. In this manner, each domain is associated with an underlying type. For example integer is the type
underlying the domain comprising integers between 1 and 10. The type contains all integers, and the domain is a finite
subset.

ESSENCE PRIME is a strongly typed language; every expression has a type, and the types of all expressions can be
inferred and checked for correctness. Furthermore, ESSENCE PRIME is a finite-domain language; every decision variable
is associated with a finite domain of values.

The atomic types of ESSENCE PRIME are int (integer) and bool (boolean). There is also a compound type,
matrix, that is constructed of atomic types.

There are three different types of domains in ESSENCE PRIME: boolean, integer and matrix domains. Boolean and
integer domains are both atomic domains; matrix domains are built from atomic domains.

Boolean Domains bool is the Boolean domain consisting of false and true.

Integer Domains An integer domain represents a finite subset of the integers, and is specified as a sequence of ranges or
individual elements, for example int (1..3,5,7,9..20). Each range includes the endpoints, so the meaning
of arange a. .b is the set {i € Z|a < i < b}. Arange a. .b would normally be in order, i.e. a<=b but this is not
strictly required. Out-of-order ranges correspond to the empty set of integers.
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The meaning of an integer domain is the union of the ranges and individual elements in the domain. For example,
int (10, 1..5, 4..9) isequivalentto int (1..10).

Finally, the elements and endpoints of ranges may be expressions of type int. The only restriction is that they may
not contain any CSP decision variables. The integer expression language is described in the following sections.

Matrix Domains A matrix is defined by the keyword mat rix, followed by its dimensions and the base domain. The
dimensions are a list, in square brackets, of domains. For instance,

Matrixl : matrix indexed by [int (1..10),int(1..10)] of int(1..5)

is the domain of a two-dimensional square matrix, indexed by 1..10 in both dimensions, where each element of the
matrix has the domain int (1. .5). Elements of this matrix would be accessed by Matrix1 [A, B] where A and
B are integer expressions.

Matrices may be indexed by any integer domain or the boolean domain. For example,
Matrix2 : matrix indexed by [int (-2..5),int(-10..10,15,17)] of int(l..5)
is a valid matrix domain.

2.1.2 Domain Expressions

ESSENCE PRIME contains a small expression language for boolean and integer domains. This language consists of
three binary infix operators intersect, union and —. All three are left-associative and the precedences are given in
Appendix [B] The language also allows bracketed subexpressions with ( and ).

For example, the first and second lines below are exactly equivalent.

letting dom be domain int (1..5, 3..8)
letting dom be domain int (1..5) union int (3..8)

2.1.3 Literals

Each of the three types (integer, boolean and matrix) has a corresponding literal syntax in ESSENCE PRIME. Any value
of any type may be written as a literal. Sets and real numbers are not (as yet) part of the language. Integer and boolean
literals are straightforward:

12 3 -5
true false

There are two forms of matrix literals. The simpler form is a comma-separated list of expressions surrounded by
square brackets. For example, the following is a matrix literal containing four integer literals.

(1, 3, 2, 4]

Matrix literals may contain any valid expression in ESSENCE PRIME. For example a matrix literal is allowed to
contain other matrix literals to build up a matrix with two or more dimensions. The types of the expressions contained in
the matrix literal must all be the same.

The second form of matrix literal has an explicit index domain that specifies how the literal is indexed. This is specified
after the comma-separated list of contents using a ; as follows.

[ 1, 3, 2, 4 ; int(4..6,8) ]
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The index domain must be a domain of type bool or int, and must contain the same number of values as the number
of items in the matrix literal. When no index domain is specified, a matrix of size n is indexed by int (1. .n).

Finally a multi-dimensional matrix value can be expressed by nesting matrix literals. Suppose we have the following
domain:

matrix indexed by [int(-2..0),int(1,2,4)] of int(1..5)
One value contained in this domain is the following:

1,2,3 ; int(1,2,4) 1,

[ 1,3,2 ; int(1,2,4) 1,

3,2,1 ; int(1,2,4) 1]
t(-2..0) ]

2.1.4 Variables

Variables are identified by a string. Variable names must start with a letter a—z or A-Z, and after the first letter may
contain any of the following characters: a~z A-Z 0-9 _. A variable may be of type integer, boolean or matrix.

Scoping of variables depends on how they are declared and is dealt with in the relevant sections below. As well as a
type, variables have a category. The category is decision, quantifier or parameter. Decision variables are CSP variables,
and the other categories are described below.

Expressions containing decision variables are referred to as decision expressions, and expressions containing no de-
cision variables as non-decision expressions. This distinction is important because expressions in certain contexts are not
allowed to contain decision variables.

2.1.5 Expression Types

Expressions can be of any of the three basic types (integer, boolean or matrix). Integer expressions range over an integer
domain, for instance x + 3 (where x is an integer variable) is an integer expression ranging from Ib(x) + 3 to ub(z) + 3.
Boolean expressions range over the Boolean domain, for instance the integer comparison x = 3 can either be t rue or
false.

2.1.6 Type Conversion

Boolean expressions or literals are automatically converted to integers when used in a context that expects an integer. As
is conventional false is converted to 0 and true is converted to 1. For example, the following are valid ESSENCE
PRIME boolean expressions.

1+2-3+true- (x<y) =5
false < true

Integer expressions are not automatically converted to boolean. Matrix expressions cannot be converted to any other
type (or vice versa).
2.1.7 Matrix Indexing and Slicing

Suppose we have a three-dimensional matrix M with the following domain:
matrix indexed by [int(1..3), int(l1..3), bool] of int(l..5)

M would be indexed as follows: M[x,y, z], where x and y may be integer or boolean expressions and z must
be boolean. Because the matrix has the base domain int (1..5), M[x,y, z] will be an integer expression. Matrix
indexing is a partial function: when one of the indices is out of bounds then the expression is undefined. ESSENCE
PRIME has the relational semantics, in brief this means that the boolean expression containing the undefined expression
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is false. So for example, M[1,1, false]=M[2, 4, true] is always false because the 4 is out of bounds. The
relational semantics are more fully described in Section 3| below.
Parts of matrices can be extracted by slicing. Suppose we have the following two-dimensional matrix named N:

(01,2,3; int(1,2,4) 1,
[ 1,3,2 ; int(1,2,4) 1,
[ 3,2,1 ; int(1,2,4) ]
; int(-2..0) 1

We could obtain the first row by writing N[-2, . .], whichisequalto [ 1,2,3 ; int(1l..3)]. Similarly the
first column can be obtained by N[..,1] whichis [ 1,1,3 ; int(1l..3)]. In general, the indices in a matrix
slice may be . . or an integer or boolean expression that does not contain any decision variables. Matrix slices are always
indexed contiguously from 1 regardless of the original matrix domain.

When a matrix slice has an integer or boolean index that is out of bounds, then the expression is undefined and this is
handled as described in Section[3l
2.1.8 Integer and Boolean Expressions

ESSENCE PRIME has a range of binary infix and unary operators and functions for building up integer and boolean
expressions, for example:

* Integer operators: + — * x* / % | min max

* Boolean operators: \/ /\ -> <-> !

¢ Quantified sum: sum

* Logical quantifiers: forAll exists

¢ Numerical comparison operators: = != > < >= <=

* Matrix comparison operators: <=lex <lex >=lex >lex
» Set operator: in

¢ Global constraints: al1Diff gcc

* Table constraint: table

These are described in the following subsections.

2.1.9 Integer Operators

ESSENCE PRIME has the following binary integer operators: + — » / % x=. +, — and x are the standard integer
operators.

The operators / and % are integer division and modulo functions. a/b is defined as |a/b] (i.e. it always rounds
down). This does not match some programming languages, for example C99 which rounds towards 0.

The modulo operator a%b is defined as a — b|a/b] to be complementary to /.

3/2 =1

(-3)/2 = -2
3/(-2) = -2
(=3)/(=2) =1
382=1

(-3) ¥ 2 =1

3% (-2) = -1
(-3) % (-2) = -1
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** is the power function: xx*y is defined as Y. There are two unary functions: absolute value (where | x| is the
absolute value of x), and negation (unary —).

2.1.10 Boolean Operators

ESSENCE PRIME has the /\ (and) and \ / (or) operators defined on boolean expressions. There are also —> (implies), <—>
(if and only if), and ! (negation). These operators all take boolean expressions and produce a new boolean expression.
They can be nested arbitrarily.

The comma , in ESSENCE PRIME is also a binary boolean operator, with the same meaning as /\. However it has
a different precedence, and is used quite differently. /\ is normally used within a constraint, and , is used to separate
constraints (or separate groups of constraints constructed using a forAl1). Consider the following example.

forAll i : int(l..n) . x[il=y[i] /\ =x[i]!=y[i+1],
exists i : int(l..n) . x[i]=1 /\ y[i]!=y[i+1]

Here we have two quantifiers, both with an /\ inside. The comma is used to separate the forAl11l and the exists.
The comma has the lowest precedence of all binary operators.

2.1.11 Integer and Boolean Functions

ESSENCE PRIME has named functions min (X, Y) and max (X, Y) that both take two integer expressions X and Y. min
and max can also be applied to one-dimensional matrices to obtain the minimum or maximum of all elements in the
matrix (see Section[2.1.22)). factorial (x) returns the factorial of values from O to 20 where the result fits in a 64-bit
signed integer. It is undefined for other values of x and the expression x is not allowed to contain decision variables.
popcount (x) returns the bit count of the 64-bit two’s complement representation of x, and x may not contain decision
variables.

The function toInt (x) takes a boolean expression x and converts to an integer 0 or 1. This function is included
only for compatibility with ESSENCE: it is not needed in ESSENCE PRIME because booleans are automatically cast to
integers.

2.1.12 Numerical Comparison Operators

ESSENCE PRIME provides the following integer comparisons with their obvious meanings: = != > < >= <=. These
operators each take two integer expressions and produce a boolean expression.

2.1.13 Matrix Comparison Operators

ESSENCE PRIME provides a way of comparing one-dimensional matrices. These operators compare two matrices using
the dictionary order (lexicographical order, or lex for short).

There are four operators. A <lex B ensures that A comes before B in lex order, and 2 <=lex B which ensures
that A <lex BorA=B.>=lex and >1lex are identical but with the arguments reversed. For all four operators, A and B
may have different lengths and may be indexed differently, but they must be one-dimensional. Multi-dimensional matrices
may be flattened to one dimension using the £1atten function described in Section [2.1.22]below.

2.1.14 Set Operator

The operator in states that an integer expression takes a value in a set expression. The set espression may not contain
decision variables. The set may be a domain expression (Section [2.1.2)) or the toSet function that converts a one-
dimensional matrix to a set, as in the examples below.

x+y in (int (1,3,5) intersect int(3..10))
x+y in toSet ([ i1 | i : int(l..n), 1%2=01])
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10

2.1.15 The Quantified Sum Operator

The sum operator corresponds to the mathematical ) | and has the following syntax:
sum 1 : D . E

where 1 is a quantifier variable, D is a domain, and E is the expression contained within the sum. More than one quantifier
variable may be created by writing a comma-separated list 1, j, k.
For example, if we want to take the sum of all numbers in the range 1 to 10 we write

sum 1 : int(l..n) . 1

which corresponds to Y, 4. n cannot be a decision variable.

Quantified sum has several similarities to the forAll and exists quantifiers (described below in Section @:
it introduces new local variables (named quantifier variables) that can be used within E, and the quantifier variables all
have the same domain D. However sum has one important difference: a sum is an integer expression.

A quantified sum may be nested inside any other integer operator, including another quantified sum:

sum i,3j : int(1..10)

sum k : int(i..10)
x[1i,3] » k

2.1.16 Universal and Existential Quantification

Universal and existential quantification are powerful means to write down a series of constraints in a compact way.
Quantifications have the same syntax as sum, but with forA1ll and exists as keywords:

forAll i : D . E
exists i : D . E

For instance, the universal quantification
forAall i : int(1..3) . x[1i] = 1
corresponds to the conjunction:
x[1] =1 /\ x[2] =2 /\ x[3] = 3
An example of existential quantification is
exists 1 : int(1..3) . x[i] = 1
and it corresponds to the following disjunction:
x[1] = 1 \/ x[2] = 2 \/ x[3] =3

Quantifications can range over several quantified variables and can be arbitrarily nested, as demonstrated with the sum
quantifier.
In the running Sudoku example, forA11 quantification is used to build the set of constraints. The expression:

forAll row : int(1..9)
forAll coll : int(1..9)
forAll col2: int(coll+1..9) . M[row, coll]!=M[row, col2]

is a typical use of universal quantification.
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Global Constraint

Arguments

Description

allDiff (X)

X 1S a matrix

Ensures expressions in X take
distinct values in any solution.

atleast (X, C, Vals)

X is a matrix
Vals is a matrix of non-decision expressions
C is a matrix of non-decision expressions

For each non-decision expression
Vals [i], the number of occurrences
of Vals[i] inXisatleastC[i].

atmost (X, C, Vals)

X is a matrix
Vals is a matrix of non-decision expressions
C is a matrix of non-decision expressions

For each non-decision expression
Vals [i], the number of occurrences
of Vals[i] inXisatmost C[1i].

gcc (X, Vals, C)

X is a matrix
Vals is a matrix of non-decision expressions
C is a matrix

For each non-decision expression
Vals [i], the number of occurrences
of Vals[i] inXequals C[1i].

alldifferent_except
(X, Value)

X is a matrix
Value is a non-decision expression

Ensures variables in X take
distinct values, except that

Value may occur any number
of times.

Table 1: Global constraints in ESSENCE PRIME. Each may be nested within expressions and have arbitrary expressions
nested within them. Each matrix parameter of a global constraint must be a one-dimensional matrix. In some cases
the parameter is a matrix of non-decision expressions — that is, integer or boolean expressions that contain no decision
variables. Quantifier and parameter variables are allowed in non-decision expressions.

2.1.17 Quantification over Matrix Domains

All three quantifiers are defined on matrix domains as well as integer and boolean domains. For example, to quantify over
all permutations of size n:

forAll perm matrix indexed by
allDiff (perm)

[int (1..n)] of int(l..n)

-> exp

The variable perm represents a matrix drawn from the matrix domain, and the al1Diff constraint evaluates to
true when perm is a permutation of 1...n. Hence the expression exp is quantified for all permutations of 1...n.

If n is a constant, the example above could be written as a set of n nested forAll quantifiers. However if n is a
parameter of the problem class, it is very difficult to write the example above using other (non-matrix) quantifiers.

2.1.18 Global Constraints

ESSENCE PRIME provides a small set of global constraints such as al1D1 £ f (which is satisfied when a vector of variables

each take different values). Global constraints are all boolean expressions in ESSENCE PRIME. Typically it is worth using

these in models because the solver often performs better with a global constraint compared to a set of simpler constraints.
For example, the following two lines are semantically equivalent (assuming x is a matrix indexed by 1. . n).

forAll i, 3
allDiff (x)

int (1..n) i<j => x[1i]'=x[7]

Both lines will ensure that the variables in x take different values. However the a11D1 £ £ will perform better in most
situations Table 1| summarises the global constraints available in ESSENCE PRIME.
Now we have the a11Diff global constraint, the Sudoku example can be improved and simplified as shown in

Figure 3]

21n the current version of Savile Row, with default settings, the x [1] !=x[j] constraints would be aggregated to create al1Diff (x) therefore
there is no difference in performance between these two statements. There would be a difference in performance when aggregation is switched off (for
example by using the —01 flag).
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language ESSENCE’ 1.0

find M : matrix indexed by [int(1..9), int(1..9)] of int(1l..9)

such that
M[1,1]1=5,
M[112]=3I
M[1,5]=7,
M[9,9]1=9,

forAll row : int(1..9) .
allpiff (M[row,..]),

forAll col : int(1..9)
allDiff (M[..,col])

Figure 3: Second version of Sudoku, using global constraints.

Global constraints are boolean expressions like any other, and are allowed to be used in any context that accepts a
boolean expression.

2.1.19 Table Constraints

In a table constraint the satisfying tuples of the constraint are specified using a matrix. This allows a table constraint to
theoretically implement any relation, although practically it is limited to relations where the set of satisfying tuples is
small enough to store in memory and efficiently search.

The first argument specifies the variables in the scope of the constraint, and the second argument is a two-dimensional
matrix of satisfying tuples. For example, the constraint a+b=c on boolean variables could be written as a table as follows.

table( la,b,c], [I[0,0,01, [O,1,1], [1,0,1]] )

The first argument of table is a one-dimensional matrix expression. It may contain both decision variables and
constants. The second argument is a two-dimensional matrix expression containing no decision variables. The second
argument can be stated as a matrix literal, or an identifier, or by slicing a higher-dimension matrix, or by constructing a
matrix using matrix comprehensions (see Section [2.1.20).

If the same matrix of tuples is used for many table constraints, a 1etting statement can be used to state the matrix
once and use it many times. Lettings are described in Section[2.2.2] below.

2.1.20 Matrix Comprehensions

We have seen that matrices may be written explicitly as a matrix literal (Section[2.1.3)), and that existing matrices can be
indexed and sliced (Section [2.1.7). Matrices can also be constructed using matrix comprehensions. This provides a very
flexible way to create matrices of variables or values. A single matrix comprehension creates a one-dimensional matrix,
however they can be nested to create multi-dimensional matrices. There are two syntactic forms of matrix comprehension:

domainl, J : domain2, condl, cond2 ]
domainl, J : domain2, condl, cond2 ; indexdomain ]

[ exp |
[ exp |

i
i
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where exp is any integer, boolean or matrix expression. This is followed by any number of comprehension variables,
each with a domain. After the comprehension variables we have an optional list of conditions: these are boolean expres-
sions that constrain the values of the comprehension variables. Finally there is an optional index domain. This provides
an index domain to the constructed matrix.

To expand the comprehension, each assignment to the comprehension variables that satisfies the conditions is enu-
merated in lexicographic order. For each such assignment, the values of the comprehension variables are substituted into
exp. The resulting expression then becomes one element of the constructed matrix.

The simplest matrix comprehensions have only one comprehension variable, as in the example below.

[ num**2 | num : int(1..5) 1 = [ 1,4,9,16,25 ; int(1..5) ]

The matrix constructed by a comprehension is one-dimensional and is either indexed from 1 contiguously, or has the
given index domain. The given domain must have a lower bound but is allowed to have no upper bound. For example the
first line below produces the matrix on the second line.

[ i+ | i: int(1..3), j : int(1..3), i<j ; int(7..) ]
[ 3, 4, 5 ; int(7..9) 1

Matrix comprehensions allow more advanced forms of slicing than the matrix slice syntax in Section 2.1.7] For
example it is possible to slice an arbitrary subset of the rows or columns of a two-dimensional matrix. The following two
nested comprehensions will slice out the entries of a matrix M where both rows and columns are odd-numbered, and build
a new two-dimensional matrix.

[ [ M[i,3] | 3 : int(l..n), 3%2=1 ] | i : int(l..n), i%2=1 ]

Now we have matrix comprehensions, the Sudoku example can be completed by adding the constraints on the 3 x 3
subsquares (as shown in Figure ). A comprehension is used to create a matrix of variables and the matrix is used as the
parameter of an al1D1iff constraint.

In this example, the matrix constructed by the comprehension depends on the values of i and j from the forAll
quantifier. The comprehension variables k and 1 each take one of three values, to cover the 9 entries M[k, 1] in the
subsquare.

2.1.21 Matrix Comprehensions over Matrix Domains

Similarly to quantifiers, matrix comprehension variables can have a matrix domain. For example, the following compre-
hension builds a two-dimensional matrix where the rows are all permutations of 1. . n.

[ perm | perm : matrix indexed by [int(l..n)] of int(l..n), allDiff (perm) ]

2.1.22 Functions on Matrices

Table 2] lists the matrix functions available in ESSENCE PRIME.

The functions sum, product, and and or were originally intended to be used with matrix comprehensions, but
can be used with any matrix. The quantifiers sum, forAll and exists can be replaced with sum, and and or
containing matrix comprehensions. For example, consider the forAll expression below (from the Sudoku model). It
can be replaced with the second line below.

forAll row : int(1..9) . allDiff(M[row,..])

and ([ allDiff (M[row,..]) | row : int(1..9) 1)
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language ESSENCE’

find M

such that
M[1,1]=5,
M[1,2]=3,
M[1,5]1=7,
M[9,9]=9,

forAll row

allDiff (M[row, ..

forAll col

allDiff (M[.

$ all 3x3 subsquare have to be all-different

matrix indexed by

1.0

[int (1..9),

int(1..9)
1),

int (1..9)
.,coll),

int (1..9)]

of int (1..9)

$ 1,7 indicate the top-left corner of the subsquare.

forAall i,

int(1,4,7)
allDiff ([ M[k,1] | k

int(i..1i+2), 1

int (j..3+2)1)

Figure 4: Third version of Sudoku, using global constraints, a matrix comprehension and quantifiers.

Function Arguments Description

sum (X) X is a one-dimensional matrix Constructs the sum of elements in X
product (X) X is a one-dimensional matrix Constructs the product of elements in X

and (X) X is a one-dimensional matrix of booleans  Constructs the conjunction of X

or (X) X is a one-dimensional matrix of booleans  Constructs the disjunction of X

min (X) X is a one-dimensional matrix The integer minimum of elements in X

max (X) X is a one-dimensional matrix The integer maximum of elements in X
flatten (X) X 1S a matrix Constructs a one-dimensional matrix (indexed

contiguously from 1) with the same contents as X

flatten (n, X)

X is a matrix

The first n+1 dimensions of X are

flattened into one dimension that is indexed
contiguously from 1. Therefore flatten (n, X)
produces a new matrix with n fewer dimensions
than X. The first argument n must be positive
or0,and flatten (0, X) returns X unchanged.

toSet (X)

X is a one-dimensional matrix
of non-decision expressions

The set of elements in X

Table 2: Matrix Functions

SAVILE Row Manual 1.9.1



15

In fact, matrix functions combined with matrix comprehensions are strictly more powerful than quantifiers. Also, the
function product has no corresponding quantifier. Quantifiers are retained in the language because they can be easier
to read.

As a more advanced example, given an n X n matrix M of decision variables, the sum below is the determinant of M
using the Leibniz formula. The outermost comprehension constructs all permutations of 1...7n using a matrix domain
and an al1Diff. Lines 3 and 4 contain a comprehension that is used to obtain the number of inversions of perm (the
number of pairs of values that are not in ascending order). Finally line 5 builds a product of some of the entries of the
matrix. Without the product function, it is difficult (perhaps impossible) to write the Leibniz formula in ESSENCE
PRIME for a matrix of unknown size n.

sum ([
$ calculate the sign of perm from the number of inversions.
( (1) *% sum([ perm[idxl]>perm[idx2]
| idx1 : int(l..n), 1idx2 : int(l..n), idxl<idx2 1) )=
product ([ M[j, perm[Jj]] | J : int(l..n) 1)
| perm : matrix indexed by [int(l..n)] of int(l..n), allDiff (perm)])

The £ 1atten function is typically used to feed the contents of a multi-dimensional matrix expression into a constraint
that accepts only one-dimensional matrices. For example, given a three-dimensional matrix M, the following example is a
typical use of flatten.

allDiff ( flatten(MI[1,..,..1) )

When flattening a matrix M to create a new matrix F, the order of elements in F is defined as follows. Suppose M were
written as a matrix literal (as in Section[2.1.3)) the order elements are written in the matrix literal is the order the elements
appear in F. The following example illustrates this for a three-dimensional matrix.

flatten([ [ [1,2], [3,4] 1, [ [5,6), [7,8] 1 1) = (1,2,3,4,5,6,7,8]

2.2 Model Structure

An ESSENCE PRIME model is structured in the following way:
1. Header with version number: language ESSENCE’ 1.0
2. Parameter declarations (optional)
3. Constant definitions (optional)

Decision variable declarations (optional)

Constraints on parameter values (optional)

Objective (optional)

Solver Control (optional)

® =N s

Constraints

Parameter declarations, constant definitions, decision variable declarations, and constraints on parameter values can
be interleaved, but for readability we suggest to put them in the order given above. Comments are preceded by ‘$” and
run to the end of the line.

Parameter values are defined in a separate file, the parameter file. Parameter files have the same header as problem
models and hold a list of parameter definitions. Table[3|gives an overview of the model structure of problem and parameter
files. Each model part will be discussed in more detail in the following sections.
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Problem Model Structure Parameter File Structure
language ESSENCE’ 1.0 language ESSENCE’ 1.0

$ parameter declaration $ parameter instantiation
given n : int letting n=7

$ constant definition

letting c=5

$ variable declaration
find x,y : int (1..n)

$ constraints
such that
X +y >= c,
x + cxy = 0

Table 3: Model Structure of problem files and parameter files in ESSENCE PRIME. ‘$’ denotes comments.

2.2.1 Parameter Declarations with given

Parameters are declared with the given keyword followed by a domain the parameter ranges over. Parameters are allowed

to range over the infinite domain int, or domains that contain an open range such as int (1..) and int (..10). For
example,
given n : int (0..)

given d : int (0..n)

declares two parameters, and the domain of the second depends on the value of the first. Parameters may have integer,
boolean or matrix domains.

Now we have parameters we can generalise the Sudoku model of Figure [3] to represent the problem class of all
Sudoku puzzles. The generalised model is shown in Figure[5] The parameter is the clues matrix, where blank spaces
are represented as 0 and non-zero entries in clues are copied to M.

2.2.2 Constant Definitions with letting

In most problem models there are re-occurring constant values and it can be useful to define them as constants. The
letting statement allows to assign a name with a constant value. The statement

letting NAME = A

introduces a new identifier NAME that is associated with the expression A. Every subsequent occurrence of NAME in
the model is replaced by the value of A. Please note that NAME cannot be used in the model before it has been defined.
A may be any integer, boolean or matrix expression that does not contain decision variables. Some integer examples are
shown below.

given n : int (0..)
letting ¢ = 10
letting d = c*n«*2

Here the second integer constant depends on the first. As well as integer and boolean expressions, lettings may contain
matrix expressions, as in the example below. When using a matrix literal the domain is optional — the two lettings below
are equivalent. The version with the matrix domain may be useful when the matrix is not indexed from 1.
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language ESSENCE’ 1.0

given clues : matrix indexed by [int(1..9), int(1..9)] of int(0..9)
find M : matrix indexed by [int(1..9), int(1..9)] of int(1..9)

such that

forAll row : int(1..9)
forAll col : int(1..9)
(clues[row, col]l!=0) -> (M[row, col]=clues[row, coll),

forAll row : int (1..9)
allpiff (M[row,..]),

forAll col : int(1..9)
allpiff (M[..,co0l]),

$ all 3x3 subsquare have to be all-different
$ i,J indicate the top-left corner of the subsquare.
forAall i,3 : int(1,4,7)

allDiff ([ M[k,1] | k : int(i..i+2), 1 : int(j..3+2)1]1)

Figure 5: Fourth version of Sudoku, adding the clues parameter to the version in Figure 4]

letting cmatrix = [ [2,8,5,11, [3,7,9,4] ]
letting cmatrix2 : matrix indexed by [ int(l..2), int(l..4) ] of int(1..10)
= [ [2,8,5,1], [3,7,9,4] 1

Finally new matrices may be constructed using a slice or comprehension, as in the example below where the letting is
used for the table of a table constraint.

letting xor_table = [ [a,b,c] | a : bool, b : bool, ¢ : bool,
(a /\ b) \/ ('a /\ !'b) <=> ¢ ]

find x,y,z : bool

such that

table([x,y,2z], xor_table)

2.2.3 Constant Domains

Constant domains are defined in a similar way using the keywords be domain.

letting ¢ = 10
given n : int(1l..)
letting INDEX be domain int (l..cx*n)

In this example INDEX is defined to be an integer domain, the upper bound of which depends on a parameter n and
another constant c.

Constant domains are convenient when a domain is reused several times. In the Sudoku running example, we could
use a letting for the domain int (1..9), as shown in Figure@

SAVILE Row Manual 1.9.1



18

language ESSENCE’ 1.0
letting range be domain int (1..9)

given clues : matrix indexed by [range, range] of int (0..9)
find M : matrix indexed by [range, range] of range
such that

forAll row : range
forAll col : range
(clues[row, col]l!=0) -> (M[row, col]=clues[row, coll),

forAll row : range
allDiff (M[row, ..]),

forAll col : range
allDiff (M[..,col]),

$ all 3x3 subsquare have to be all-different
$ i,J indicate the top-left corner of the subsquare.
forAll i,j : int(1,4,7)

allDiff ([ M[k,1] | k ¢ int(i..i+2), 1 : int(j..J+2)1)

Figure 6: Fifth version of the Sudoku model. Compared to Figure[5|the range letting statement has been added.

2.2.4 Decision Variable Declaration with find

Decision variables are declared using the find keyword followed by a name and their corresponding domain. The
domain must be finite. The example below

find x : int(1..10)

defines a single decision variable with the given domain. It is possible to define several variables in one £ind by giving
multiple names, as follows.

find x,y,z : int(1..10)
Matrices of decision variables are declared using a matrix domain, as in the following example.
find m : matrix indexed by [ int(1..10) ] of bool

This declares m as a 1-dimensional matrix of 10 boolean variables. Simple and matrix domains are described in
Section

In the Sudoku running example, we have been using the following two-dimensional matrix domain.

find M : matrix indexed by [int(1..9), int(1..9)] of int(1..9)

2.3 Constraints on Parameters with where

In some cases it is useful to restrict the values of the parameters. This is achieved with the where keyword, which
is followed by a boolean expression containing no decision variables. In the following example, we require the first
parameter to be less than the second.
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given x : int(1l..)
given y : int(1l..)
where x<y

2.4 Objective

The objective of a problem is either maximising or minimising an integer or boolean expression. For instance,
minimising x

states that the value assigned to variable = will be minimised. Only one objective is allowed, and it is placed after all
given, find and letting statements.

2.5 Solver Control

In addition to instructing the solver to minimise or maximise some expression, ESSENCE PRIME also allows a variable
order to be specified for search. The branching on statement specifies a sequence of variables for the solver to branch
on. Each element of the branching on list may be an individual variable or a matrix with any number of dimensions.
Decision variables in matrices are enumerated in the order produced by the f1atten function. Any matrix expression is
allowed within the branching on list, including matrix comprehensions. A simple use of branching on would be
to list some individual variables:

find w,x,y,z : int(1..10)
branching on [w,x]

The branching on list may contain the same decision variable more than once. This can be useful to pick some
variables from a matrix to branch on first, then include the rest of the matrix simply by including the entire matrix. In the
following example the diagonal of M is branched first, then the rest of M is included.

find M : matrix indexed by [int(1..9), int(1..9)] of int(1..9)
branching on [ [ M[i,i] | 1 : int(1..9)]1, M ]

In some cases a good search order does not follow the natural order of matrices, and might even alternate between
matrices. The following example uses a comprehension to alternate between two matrices that are both indexed by
timestep:

find arm : matrix indexed by [int(l..timesteps)] of int (1..10)
find action : matrix indexed by [int (l..timesteps)] of int(1..10)

branching on [ [ [arm[i], action[i]] | i : int(l..timesteps) ] ]

Some solver types (e.g. SAT, MaxSAT, and SMT solvers) ignore the search order, while Chuffed (with its free search
option) uses the search order as part of a hybrid search.

When searching for all solutions (-all-solutions) or a given number of solutions (—num-solutions) with a
branching on statement, each solution produced will have a distinct assignment to the branching on variables,
thus using a branching on statement can reduce the number of solutions found.

When using Minion as the backend solver, a heuri st ic statement may be used in the preamble to specify a dynamic
search heuristic to apply to the variables in the branching onlist. heuristic is followed by static (the default),
sdf, conflict or srf (refer to the Minion documentation for a description of these heuristics). If any other solver is
used then the heuristic statement is ignored.

SAVILE Row Manual 1.9.1



20

2.6 Constraints

After defining constants and declaring decision variables and parameters, constraints are specified with the keywords
such that. The constraints in ESSENCE PRIME are boolean expressions as described in Section [2.1.8]
Typically the constraints are written as a list of boolean expressions separated by the , operator.

3 Undefinedness in ESSENCE PRIME

Since the current version of ESSENCE PRIME is a closed language, there are a finite set of partial functions in the language.
For example, x/y is a partial function because it is not defined when y=0. In its current version ESSENCE PRIME
implements the relational semantics as defined by Frisch and Stuckey [8]. The relational semantics has the advantage that
it can be implemented efficiently.

The relational semantics may be summarised as follows:

* Any integer or matrix expression directly containing an undefined expression is itself undefined.

* Any domain or domain expression directly containing an undefined expression is itself undefined.

* Any statement in the preamble (find, letting etc) directly containing an undefined expression is undefined.
* Any boolean expression that directly contains an undefined expression is false.

Informally, the relational semantics confines the effect of an undefined expression to a small part of the problem
instance (which becomes false), in many cases avoiding making the entire problem instance false.

Consider the four examples below. Each contains a division by zero which is an undefined integer expression. In each
case the division is contained in a comparison. Integer comparisons are boolean expressions.

(x/0 = y) = false

(x/0 !'= y) = false
! (x/0 = y) = true
' (x/0 !'= y) = true

Applying the rules of the relational semantics results in each of the comparisons inside the brackets becoming false:

(false) = false
(false) = false

! (false) = true
! (false) = true
In the relational semantics, (x/0 != y) is not semantically equivalent to ! (x/0 = y), which is somewhat

counter-intuitive.

Another counter-intuitive case arises with matrix indexing. In the following example, the expression M[0] is unde-
fined because 0 is not in the index domain. If the matrix is boolean (i.e. DOM is bool) then M[ 0] becomes false, and
the model has a solution when M[1 ] =false. However, if the matrix contains integer variables (i.e. DOMis int (0. .1))
then the constraint M[0] = M[1] becomes false and the model has no solutions.

find M : matrix indexed by [int (1l)] of DOM
such that
M[0] = M[1]

In the SAVILE ROW implementation of ESSENCE PRIME, all partial functions are removed in a two-step process,
before any other transformations are applied. The first step is as follows. For each partial function a boolean expression
is created that is t rue when the partial function is defined and false when it is undefined. There are six operators
that may be partial: division, modulo, power, factorial, matrix indexing and matrix slicing. Table 4| shows the generated
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Partial Function Defined When
X/Y Y!=0

Xs$Y Y!=0

XxxY (X'=0 \/ Y!=0) /\ ¥Y>=0
factorial (X) X>=0

Matrix indexing: IeDdl/\
M[I,J,K] JeD2/\
where domain of M is K € D3
matrix indexed by [D1l, D2, D3] of DBase

Matrix slicing: IeDd1l/\
M[I,.., K] K € D3

where domain of M is
matrix indexed by [D1l, D2, D3] of DBase

Table 4: Partial functions in ESSENCE PRIME. X, Y, I, J and K are arbitrary expressions of the correct type.

boolean expression for each operator. The boolean expression is then added to the model by connecting it (with /\) onto
the closest boolean expression above the partial function in the abstract syntax tree.

The second step is to replace the partial function P with a total function SP. For each input where P is defined, SP is
defined to the same value. For inputs where P is undefined, SP takes a default value (typically O for integer expressions).

Once both steps have been applied to each partial function, the model is well defined everywhere. This is done first,
before any other model transformations, and thus allows all subsequent transformations to be simpler because there is
no need to allow for undefinedness. For example, the expression x/y=x/y may not be simplified to t rue, because it
is false when y=0. However, after replacing the partial division function, the resulting equality can be simplified to
true. In general any equality between two syntactically identical expressions can be simplified to t rue once there are
no partial functions.

4 Installing and Running SAVILE ROow

SAVILE ROW is distributed as an archive with the following contents:
¢ The Java source code (in src) licensed with GPL 3.
» The compiled classes in a JAR file named savilerow. jar.
» Executable script savilerow for running SAVILE Row.
* This document in doc.
* Various example ESSENCE PRIME files and parameter files, in examples.
* Required Java libraries in 1ib
* Executables for backend solvers Minion, CaDiCaL, and Chuffed, and the graph automorphism solver Ferret in bin
+ Build script compile. sh to rebuild savilerow. jarf}

Archives are provided for Linux and Mac, and the Linux archive works well on Windows 10 in the Ubuntu app. The
two distributions are largely the same, with the only difference being the packaged executables in bin.
A recent version of Java is required on all platforms. SAVILE ROW was compiled to run on Java 8 or later.

3Requires a JDK to be installed and javac to be in the path. It compiles for Java 8 backward compatibility by using the —-release 8 flag. If
compiling using Java 8 the ——release 8 flag needs to be removed from the javac command-line.
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4.1 Running SAVILE ROW on Linux and Mac

Download the appropriate archive and unpack it somewhere convenient. Open a terminal and navigate to the SAVILE
Row directory. Use the script named savilerow. One of the simplest ways of running SAVILE ROW is given below.

./savilerow problemFile.eprime parameterFile.param

The first argument is the problem class file. This is a plain text file containing the constraint problem, expressed in the
ESSENCE PRIME language.

The second argument (parameterFile.param) is the parameter file (again in the ESSENCE PRIME language).
This contains the data for the problem instance. The parameter file can be omitted if the problem has no parameters (no
given statements in the preamble).

4.2 Running SAVILE ROW on Windows

The current (1.9.1) version of SAVILE ROW does not have a release for Windows specifically, however the Linux re-
lease works well in the Ubuntu 20.04 app on Windows 10. To install, first enable the Windows Subsystem for Linux.
Second, install the Ubuntu 20.04 app and update packages in it (for example with sudo apt update; sudo apt
upgrade). Third, install Java (for example, sudo apt install default-jre). Then follow the instructions for
installing and running on Linux.

4.3 Solution Files

For the Minion, SAT, SMT, MaxSAT, Standard FlatZinc, Gecode, and Chuffed backends, SAVILE ROW is able to run the
solver and parse the solution (or set of solutions) produced by the solver. These solutions are translated back into ESSENCE
PRIME. For each £ind statement in the model file (i.e. each statement that declares decision variables), the solution file
contains a matching lett ing statement. For example, if the model file contains the following f ind statement:

find M : matrix indexed by [int(1..2), int(1..2)] of int(1..5)
The solution file could contain the following 1etting statement.

letting M = [[2, 3]

4.4 File Names

The input files for SAVILE ROW typically have the extension .eprime, .param, or .eprime—-param. These exten-
sions allow SAVILE ROW to identify the model and parameter file on the command line. If these files have a different
extension (or no extension) then SAVILE ROW must be called in a slightly different way:

./savilerow -in-eprime problemFile —-in-param parameterFile

Given input file names <problemFile> and <parameterFile>, output files have the following names by de-
fault.

* For Minion output, <parameterFile>.minion (orif there is no parameter file, <problemFile>.minion).

* For Gecode or Chuffed output, <parameterFile>. fzn (orif there is no parameter file, <problemFile>. fzn).

For SAT or MaxSAT output, <parameterFile>.dimacs (orif there is no parameter file, <problemFile>.dimacs).
 For Minizinc output, <parameterFile>.mzn (or if there is no parameter file, <problemFile>.mzn).

» For Dominion output, there is typically no parameter file so the output file is named after the problem file. If the
problem file ends with . eprime, then the extension is removed. The extension .dominion is added.
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When SAVILE ROW parses a single solution from the output of a solver, it produces a file named
<parameterFile>.solution (or if there is no parameter file, <problemFile>.solution). When there
are multiple solutions (e.g. when using the —all-solutions flag) the solution files are numbered (for example,
nurses.param.solution.000001 to nurses.param.solution.000871).

If SAVILE ROW runs Minion or a SAT solver it produces a file <parameterFile>. info (or if there is no param-
eter file, <problemFile>. info) containing solver statistics.

Finally, a file named <parameterFile>.aux (or <problemFile>.aux) is also created. This contains the
symbol table and is read if SAVILE ROW is called a second time to parse a solution.

4.5 Command Line Options
The command-line help text is produced with the following flag.

—help

4.5.1 Specifying input files
The options —in—-eprime and —in-param specify the input files as in the example below.
savilerow —-in-eprime sonet.eprime -in-param sonetl.param

These flags may be omitted for any filename that ends with .eprime, .param, or .eprime-param

The option -params may be used to specify the parameters on the command line. For example, suppose the
nurse.eprime model has two parameters. We can specify them on the command line as follows. The format of
the parameter string is identical to the format of a parameter file (where, incidentally, the 1anguage line is optional and
line breaks are not significant).

savilerow nurse.eprime -params "letting n_nurses=4 letting Demand=[[1,0,1,0],[0,2,1,0]11"

4.5.2 Specifying output format

SAVILE ROW produces output for various solvers and classes of solver as described in Section[I.2] The output format is
specified by using one of the following command-line options.

-minion
—gecode
—chuffed
-flatzinc
-minizinc
—-sat

—smt
-maxsat
—dominion

The output filename may be specified as follows. In each case there is a default filename so the flag is optional. Default
filenames are described in Section[4.4] The flag ~out -sat also sets the MaxSAT filename.

—out-minion <filename>
—-out—-gecode <filename>
—out—-chuffed <filename>
-out-flatzinc <filename>
—out-minizinc <filename>
-out-sat <filename>
—-out—-smt <filename>
—out—-dominion <filename>
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The three flags —out —gecode, —~out-chuffed, and —~out-flatzinc all set the FlatZinc filename i.e. they have
exactly the same effect.

In addition, the file names for solution files, solver statistics files and symbol table files (called aux files) may be
specified as follows. Once again there are default filenames described in Section [4.4]

-out-solution <filename>
—out—-info <filename>
—out—aux <filename>

The symbol table is not saved by default. To obtain the symbol table file, use the following flag. The symbol table is
used in ReadSolution mode, described below.

—-save—symbols

4.5.3 Optimisation Levels

The optimisation levels (-00 to —03) provide an easy way to control how much optimisation SAVILE ROW does, with-
out having to switch on or off individual optimisations. The default is —02, which is intended to provide a generally
recommended set of optimisations. The rightmost —O flag on the command line is the one that takes precedence.

-00

The lowest optimisation level, —00, turns off all optional optimisations. SAVILE ROw will still simplify expressions
(including constraints). Any expression containing only constants will be replaced with its value. Some expressions have
quite sophisticated simplifiers that will run even at —00. For example, al1Diff ( [x+y+z, z+y+x, p, gl) would
simplify to false because the first two expressions in the a11Diff are symbolically equal after normalisation.

—00 will do no common subexpression elimination, will not unify equal variables, and will not filter the domains of
variables.

-01

—01 does optimisations that are very efficient in both space and time. Variables that are equal are unified, and a form
of common subexpression elimination is applied (Active CSE, described below). —O1 is equivalent to ~deletevars
and —active-cse.

-02

In addition to the optimisations performed by —01, —02 performs filtering of variable domains (both find and
auxiliary variables) and aggregation (both of which are described in the following section). —02 is the default optimisation
level. -02 adds ~reduce-domains-extend and ~aggregate compared to —O1.

-03

In addition to —02, —03 enables tabulation (-t abulate) and associative-commutative common subexpression elim-
ination (—ac—-cse) (both described below).

4.54 Symmetry-Breaking Levels

The options —S0, —S1 and —S2 control optional optimisations that can change the number of solutions. The default is
—-S1 which applies only very simple and fast optimisations.

-S0

Preserve the number of solutions, i.e. perform no optimisations that might change the number of solutions.
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-S1

Remove variables that appear in no constraints, and allow SAVILE ROW to introduce auxiliary variables that are not
functionally defined by the primary (‘find’) variables. At present, non-functional auxiliary variables are only used with
the SAT, MaxSAT and SMT backends. Equivalent to ~remove-redundant-vars and —aux-non-functional.

-S2

In addition to —S1, apply a graph automorphism solver to find symmetries among the decision variables. The sym-
metries are then broken using the standard lex-leader method. Equivalent to adding the flag —var-sym-breaking to
-S1.

4.5.5 Translation Options
Common Subexpression Elimination

SAVILE ROW currently implements four types of common subexpression elimination (CSE). Identical CSE finds and
eliminates syntactically identical expressions. This is the simplest form of CSE, however it can be an effective optimi-
sation. Active CSE performs some reformulations (for example applying De Morgan’s laws) to reveal expressions that
are semantically equivalent but not syntactically identical. Active CSE subsumes Identical CSE. Active CSE is enabled
by default as part of —02. Associative-Commutative CSE (AC-CSE) works on the associative and commutative (AC)
operators +, x, /\ (and) and \ / (or). It is able to rearrange the AC expressions to reveal common subexpressions among
them. AC-CSE is not enabled by default. It would normally be used in conjunction with Identical or Active CSE. Finally,
Active AC-CSE combines one active reformulation (integer negation) with AC-CSE, so for example Active AC-CSE is
able to extract y — z from the three expressions x +y — 2, w —x — y + 2, and 10 — y + 2, even though the sub-expression
occurs as y — z in one and —y + z in the other two. Active AC-CSE is identical to AC-CSE for And, Or and Product, it
differs only on sum.

The following flags control CSE. The first, —-no—-cse, turns off all CSE. The other flags each turn on one type of CSE.

-no-cse
—identical-cse
—active-cse
—-ac-cse
—active-ac-cse

Variable Deletion

SAVILE ROW can remove a decision variable (either variables declared with £ ind or auxiliary variables introduced during
tailoring) when the variable is equal to a constant, or equal to another variable. This is often a useful optimisation. It can
be enabled using the following flag.

—deletevars

Domain Filtering

It can be useful to filter the domains of variables. In SAVILE ROW this is done by running the translation pipeline to com-
pletion and producing a Minion file, then running Minion usually with the options —-preprocess SACBounds-limit
—outputCompressedDomains. With these options Minion performs conventional propagation plus SAC on the
lower and upper bound of each variable (SACBounds, also known as shaving) with a limit on the number of iterations.
The filtered domains are then read back in to SAVILE ROw. The translation process is started again at the beginning.
Thus domain filtering can benefit the entire translation process: variables can be removed (with —~deletevars), con-
straint expressions can be simplified or even removed (if they are entailed), the number of auxiliary variables may be
reduced. In some cases domain filtering can enable another optimisation, for example on the BIBD problem it enables
associative-commutative CSE to do some very effective reformulation.
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Domain filtering can be used with any target solver (but Minion is always used to perform the domain filtering regard-
less of the target solver). It is switched on using the following flag.

-reduce—-domains

Standard domain filtering affects the decision variables defined by find statements. Auxiliary variables created by
SAVILE ROW are not filtered by default. To enable filtering of both £ind variables and auxiliary variables, use the
following flag:

—-reduce—-domains—extend

Aggregation of Constraints

Aggregation collects sets of constraints together to form global constraints that typically propagate better in the target
solver. At present there are two aggregators for allDifferent and GCC. SAVILE ROW constructs allDifferent constraints by
collecting not-equal, less-than and other shorter allDifferent constraints. GCC is aggregated by collecting atmost and
atleast constraints over the same scope.

—aggregate

Tabulation

Tabulation converts constraint expressions into table constraints to improve propagation. A set of four heuristics are used
to identify candidate expressions for tabulation. When tabulating a constraint, the number of tuples is limited to 10,000 to
avoid spending excessive time on one constraint. Refer to the CP 2018 paper for more detail [1].

—tabulate

Factor Encoding

The factor encoding of table constraints [S] may be useful to strengthen propagation when a problem class has overlapping
table constraints (or tabulation produces overlapping table constraints). It is enabled with the following flag.

—factor-encoding

Mappers

The Dominion constraint solver synthesiser has mappers (also known as views) in its input language. By default SAVILE
Row will use these whenever possible. The following two flags control the use of mappers — the first switches mappers off
completely, and the second allows mappers to be used only where Minion can use them. For example, multiplication-by-
a-constant mappers are allowed on variables in a sum constraint, because Minion has weighted sum constraints (which,
incidentally, are built from sum constraints using mappers).

—nomappers
-minionmappers

Integer Variable Types

When creating Minion output SAVILE ROW will by default use the DISCRETE or BOOL variable type when the variable
has fewer than 10,000 values and BOUND otherwise. DISCRETE and BOOL represent the entire domain and BOUND only
stores the upper and lower bound, thus propagation may be lost when using BOUND. The following flag prevents SAVILE
RoOW using BOUND variables.

-no-bound-vars
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Remove Redundant Variables

The following flag causes SAVILE ROW to remove any decision variables that are not mentioned in a constraint or in the
objective function. It is enabled by default as part of —S1.

—-remove-redundant-vars

Non-functional Auxiliary Variables

The following flag allows SAVILE ROW to to create auxiliary variables that are not functionally defined on the primary
variables. May change the number of solutions. Currently only affects the SAT, SMT, MaxSAT backends. Typically a
non-functional variable would be < or > an expression rather than equal to the expression, thus avoiding encoding one
side of the equality.

—aux-non-functional

Variable Symmetry Breaking

If variable symmetry breaking is enabled, SAVILE ROw will apply a graph automorphism solver based on Ferret to find
symmetries among the decision variables. Any symmetries discovered will be broken by the standard lex-leader method.
It is disabled by default because it can be expensive. Variable symmetry breaking is part of —S2.

-var-sym-breaking

4.5.6 SAT Encoding Options

The SAT backend in general is described in Appendix [A] There are several options for encoding constraints into SAT, in
particular sums and tables.

Sum constraints are divided into three groups and there are flags to control the encoding of each group. The simplest
group is at-most-one (AMO) and exactly-one (EO) constraints containing only Boolean terms (not just Boolean variables
but any expression of type Boolean) and where all coefficients are 1. The encoding of these constraints is controlled by
—-sat-amo flags. Pseudo-Boolean (PB) sums also contain only Boolean terms but can have coefficients other than 1. The
encoding of PB constraints is controlled by —sat—-pb flags. Finally, the encoding of general sums (containing at least
one integer term) is controlled by —sat—sum flags.

Table Encodings

Binary table constraints use the support encoding. For non-binary tables, the default encoding introduces a SAT variable
for each tuple and was proposed by Bacchus [3]. Another encoding based on MDDs is available for non-binary tables,
enabled with the following flag:

—-sat-table-mdd

AMO Encodings

The default encoding for AMO and EO constraints is Chen’s 2-product, it is small and tends to be efficient. Three other
encodings are available: the Commander encoding of Klieber and Kwon (with group size 3); the ladder encoding; and an
encoding similar to the totalizer (named Tree). The flags to select the encoding are below:

—-sat—amo—product (default)
—-sat—amo—commander
—-sat—-amo—-ladder
—sat—amo—-tree
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PB Encodings

There are five encodings of Pseudo-Boolean constraints. Four of them are based on Bofill et al [4] (with thanks to Jordi
Coll for providing the implementations): Multi-valued Decision Diagrams (MDD); the Global Polynomial Watchdog
(GPW); the Sequential Weighted Counter (SWC); and the Generalized Generalized Totalizer (GGT). Each of these is im-
plemented exactly as described in [4]. For these four encodings, any pseudo-Boolean equality constraints are decomposed
into < and >. Also these four encodings support only top-level constraints (i.e. constraints that are not nested inside a
logic expression). The flags are as follows:

-sat-pb-mdd
-sat-pb-gpw
—-sat-pb-swc
-sat-pb-ggt

The fifth encoding (called Tree) is similar to the Generalized Totalizer. It can directly encode sum-equality, and can
also encode non-top-level constraints. It is the default encoding and also the fallback for non-top-level constraints when
using one of the other four encodings.

—-sat-pb-tree (default)

The first four encodings (MDD, GPW, SWC, GGT) are able to take advantage of at-most-one (and exactly-one)
relations on the Boolean variables to reduce the size of the encoding. All four of these encodings work with automatic
AMO and EO detection as described in the CP 2019 paper [2], which uses Minion to find mutexes between variables then
constructs maximal cliques of the mutex graph. The flag below is used to switch on the AMO and EO detection. It is
often worthwhile for sufficiently challenging instances with PB constraints.

—amo—-detect

Sum Encodings

The options for encoding general sums (containing at least one integer variable) are the same as for PB constraints. The
flags are as follows:

-sat—-sum-mdd
—-sat-sum-gpw
—sat—-sum-swc
—sat—-sum—ggt
-sat-sum-tree (default)

The Tree encoding natively handles integer terms. The other four (MDD, GPW, SWC, GGT) treat integer terms as a
group of Boolean terms (e.g. 1 % (x = 1) + 2 % (x = 2) + - - -) with an exactly-one relation on them. The four encodings
(MDD, GPW, SWC, GGT) also can benefit from automatically detected AMO and EO relations with the —amo-detect
flag.

4.5.7 SMT Encoding Options

The SMT backend, enabled with the —smt flag, is able to produce the SMT-LIB 2 language with a choice of four theories:
QF_BV (the theory of bit vectors), QF_IDL (integer difference logic), QF_LIA (linear integer arithmetic), and QF_NIA
(nonlinear integer arithmetic). The theory is selected using one of the four flags below:

-smt-bv (default)
—-smt—-idl
-smt-1lia
—-smt-nia
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For each theory there is a choice of nested or flat encodings, where nested aims to maintain the original nesting of
expressions (for example, a product within a sum) as far as possible, whereas flat removes nesting by introducing auxiliary
variables. Nested is the default. The encoding may be selected using one of the flags below:

—-smt-nested (default)
-smt-flat

The SMT backend is described and evaluated in a CP 2020 paper [6], including comparison of the four theories and
two encodings.

Combined with —run—-solver, the SMT backend will run Boolector, Z3, or Yices2. It will select a default solver
for the chosen theory, or the solver can be set manually using one of the following flags:

-boolector (default for QF_BV theory)
-z3 (default for QF_NIA)
-yices2 (default for QF_IDL and QF_LIA)

Choosing a solver does not affect any other setting of the SMT backend. If the solver does not support the chosen
theory (at the time of release) SAVILE ROw will output a warning and continue.

4.5.8 Warning Flags

The following flag produces a warning when the semantics of a model is affected by undefinedness (see Section 3)).

—Wundef

4.5.9 Controlling SAVILE Row

The following flag specifies a time limit in seconds. SAVILE ROW will stop when the time limit is reached, unless it has
completed tailoring and is running a backend solver. The time measured is wallclock time not CPU time.

—timelimit <time>

Time limits may also be passed through to solvers, for example when using Minion as the backend solver, the following
flag will limit Minion’s run time (specified in seconds).

—-solver-options "-cpulimit <time>"

A similar approach can be used to apply a time limit to other solvers.
In some cases the SAT or MaxSAT output can be very large. The following option allows the number of clauses to be
limited. If the specified number of clauses is reached, SAVILE ROW will delete the partial SAT file and exit.

—cnflimit <numclauses>

Some reformulations use a pseudorandom number generator with a fixed seed. The following option may be used to
set a different seed.

—-seed <integer>
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4.5.10 Solver Control

The following flag causes SAVILE ROW to run a solver and parse the solutions produced by it. This is currently imple-
mented for Minion, Gecode, Chuffed, Standard FlatZinc, SAT, SMT, and MaxSAT backends.

-run-solver

The following two flags control the number of solutions. The first causes the solver to search for all solutions (and
SAVILE ROW to parse all solutions). The second specifies a required number of solutions.

—-all-solutions
—num-solutions <n>

When parsing solutions the default behaviour is to create one file for each solution. As an alternative, the following
flag will send solutions to standard out, separated by lines of 10 minus signs.

—-solutions-to-stdout

To prevent solutions being output at all, use the following flag.
—-solutions-to—null

The following flag passes through command-line options to the solver. The string would normally be quoted.
—-solver-options <string>

For example when using Minion -solver-options "-cpulimit <time>" may be used to impose a time
limit, or when using Gecode —solver—-options "-p 8" causes Gecode to parallelise to 8 cores.

4.5.11 Solver Control — Minion

The following flag specifies where the Minion executable is. The default value is minion.
-minion-bin <filename>

When Minion is run directly by SAVILE ROW, preprocessing is usually applied before search starts. The following
flag allows the level of preprocessing to be specified.

—-preprocess LEVEL
where LEVEL is one of None, GAC, SAC, SAC_limit, SSAC, SSAC_limit,
SACBounds, SACBounds_limit, SSACBounds, SSACBounds_limit

The default level of preprocessing is SACBounds_limit.
The —preprocess flag affects the behaviour of Minion in two cases: first when Minion is called to filter domains
(the ~-reduce—-domains option), and second when Minion is called to search for a solution.

4.5.12 Solver Control — Gecode

The following flag specifies where the Gecode executable is. The default value is fzn-gecode.

—gecode-bin <filename>

4.5.13 Solver Control — Chuffed

The following flag specifies where the Chuffed executable is. The default value is fzn-chuffed.

—chuffed-bin <filename>
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4.5.14 Solver Control — Standard FlatZinc

The following flag specifies a FlatZinc solver binary.

—fzn-bin <filename>

4.5.15 Solver Control — SAT Solvers

SAVILE ROW is able to run and parse the output of MiniSAT, Lingeling, Glucose, CaDiCaL, and kissat solvers as well
as two MiniSAT-based solvers for finding all solutions. The following flag specifies which family of solvers is used.
CaDiCaL is the default.

-sat—-family [ minisat | lingeling | glucose | cadical | kissat |
nbc_minisat_all | bc_minisat_all ]

The ‘all’ values imply the —all-solutions flag.
The following flag specifies the SAT solver executable. The default value is minisat, lingeling, glucose,
cadical, kissat,nbcminisat_all release,orbcminisat_all_release depending on the SAT family.

—-satsolver-bin <filename>

The following flag enables interactive usage of the supported solvers when SAVILE ROw is built with this fea-
ture. Supported SAT solvers are used incrementally via JNI calls. Currently supported: glucose, cadical, and
nbcminisat_all.

—-interactive-sat

When using SAT or SMT solvers, optimisation is performed with multiple calls to the solver. There are three modes:
bisect (default), linear, and unsat. Each places constraints on the (encoding of the) objective variable. Bisect splits the
interval of the objective variable into two approximately equal sub-intervals, and attempts to find a solution in the better
sub-interval (i.e. smaller if minimising). The interval is updated and the procedure is repeated until the interval becomes
empty, at which point the last solution found is an optimal solution. Linear bounds the objective variable each time a
solution is found, such that the next solution will be better. Unsat assigns the objective variable to its best remaining value
(smallest value when minimising). If no solution is found, the best value is removed and the procedure iterates, continuing
until a solution is found.

The optimisation strategy may be set with the following flag:

-opt-strategy [ bisect | linear | unsat ]

4.5.16 Solver Control — SMT Solvers

To set the SMT solver executable use the following flag. If it is not set, then SAVILE ROW will look for a binary named
z3, yices—smt2, or boolector in the bin directory (depending which SMT solver was selected, boolector by

default, see Section4.5.7).

—-smtsolver-bin <filename>

Note that the —opt-strategy flag is relevant when doing optimisation with an SMT solver.
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4.5.17 ReadSolution Mode

SAVILE ROW has two modes of operation, Normal and ReadSolution. Normal is the default, and in this mode SAVILE
RoOW reads an ESSENCE PRIME model file and optional parameter file and produces output for a solver. In some cases it
will also run a solver and parse the solution(s), producing ESSENCE PRIME solution files.

When using ReadSolution mode, SAVILE ROW will read a solution in Minion format and translate it back to ESSENCE
PRIME. This allows the user to run Minion separately from SAVILE ROW but still retrieve the solution in ESSENCE PRIME
format. When running Minion, the —~solsout flag should be used to retrieve the solution(s) in a table format.

The mode is specified as follows.

-mode [Normal | ReadSolution]

When using ReadSolution mode, the name of the aux file previously generated by SAVILE ROW needs to be specified
using the —out —aux flag, so that SAVILE ROW can read its symbol table. Also the name of the solution table file from
Minion is specified using -minion-sol-file. —out—solution is required to specify where to write the solutions.
—all-solutions and —num-solutions <n> are optional in ReadSolution mode. Below is a typical command.

savilerow —-mode ReadSolution -out—aux <filename> -minion-sol-file <filename>
-out-solution <filename>

When neither ~all-solutions nor —num-solutions <n> is given, SAVILE ROW parses the last solution in
the Minion solutions file. For optimisation problems, the last solution will be the optimal or closest to optimal.

Appendices
A SAT Encoding

We have used standard encodings from the literature such as the order encoding for sums [[14] and support encoding [[10]
for binary constraints. Also we do not attempt to encode all constraints in the language: several constraint types are
decomposed before encoding to SAT.

A.1 Decomposition

The first step is decomposition of the constraints AllDifferent, GCC, Atmost and Atleast. All are decomposed into sums
of equalities and we have one sum for each relevant domain value. For example to decompose AllDifferent([z, y, z]): for
each relevant domain value a we have (z = a)+ (y = a)+ (z =a) < 1(or (x =a)+ (y = a) + (z = a) = 1 when the
number of variables and values are equal). These decompositions are done after AC-CSE if AC-CSE is enabled (because
the large number of sums generated hinders the AC-CSE algorithm) and before Identical and Active CSE.

The second step is decomposition of lexicographic ordering constraints. We use the decomposition of Frisch et al [9]
(Sec.4) with implication rewritten as disjunction, thus the conjunctions of equalities in Frisch et al become disjunctions
of disequalities. Also the common subsets of disequalities are factored out and replaced with auxiliary Boolean variables.
This decomposition is also performed after AC-CSE and before Identical and Active CSE.

The third step occurs after all flattening is completed. The constraints min, max, and element are decomposed. For
min(V) = zwehave V[1] = 2V V[2] = z...and z < V[1] A z < V2] .... Max is similar to min with < replaced by
>. The constraint element(V, z) = z becomes Vi : (z # i V V[i] = z).

A.2 Encoding of CSP variables

The encoding of a CSP variable provides SAT literals for facts about the variable: [x = a], [z # al, [t < a] and [z > a]
for a CSP variable = and value a. We will refer to [v = a] and [x # a] as direct literals, and [x < a] and [x > a] as
order literals. If the variable has only two values, it is represented with a single SAT variable. All the above facts (for both
domain values) map to the SAT variable, its negation, true or false.
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When the CSP variable has more than two values, an encoding is chosen to provide the literals that are needed to
encode the constraints. There are three encodings, with one providing the order literals, another providing the direct
literals, and the third providing both. Encodings of the binary constraints < and < use the order literals, and the tree
encoding (see Section [4.5.6) of sums also uses the order literals. All other constraint encodings use the direct literals.
If the objective function is a single variable, the order literals are required for that variable. Otherwise, if the objective
function is a sum at encoding time (only possible with the MaxSAT backend) then direct literals are required for all
variables in the sum.

If the order literals are not needed for a variable x, then the variable is encoded with one SAT variable per domain
value (representing [z = a]). The 2-product encoding is used for at-most-one and a single clause for at-least-one.

If the direct literals are not needed, then using the language of the ladder encoding of Gent et al [[11], we have only
the ladder variables and the clauses in Gent et al formula (2). If both order and direct literals are required, then we use the
full ladder encoding with the clauses in formulas (1), (2) and (3) of Gent et al. Also, for the maximum value max(D(x))
the facts [v # max(D(x))] and [x < max(D(x))] are equivalent so one SAT variable is saved. For the minimum value
min(D(z)), the facts [x = min(D(z))] and [ < min(D(z))] are equivalent so one SAT variable is saved. Also, a
variable may have gaps in its domain. Suppose variable = has domain D(z) = {1...3,8...10}. SAT variables are
created only for the 6 values in the domain. Facts containing values {4...7} are mapped appropriately (for example
[z < 5] is mapped to [z < 3]). The encoding has 2| D(x)| — 3 SAT variables.

A.3 Encoding of Constraints

Now we turn to encoding of constraints. Some simple expressions such as x = a, x < a and —z (for CSP variable x
and value a) are represented with a single SAT literal. We have introduced a new expression type named SATLiteral.
Each expression that can be represented as a single literal is replaced with a SATLiteral in a final rewriting pass before
encoding constraints. SATLiterals behave like boolean variables hence they can be transparently included in any constraint
expression that takes a boolean subexpression.

At-most-one and exactly-one constraints (i.e. a sum of boolean expressions that is < 1 or = 1) are by default encoded
with the 2-product encoding, which is small and tends to perform better than alternatives. Other encodings can be selected
by command-line flags (Section4.5.6).

There is a choice of 5 encodings of pseudo-Boolean and other sum constraints, as described in Section The
MDD, GPW, SWC, and GGT encodings are implemented exactly as described in Bofill et al [4]. Sum-equal constraints
are split into sum-< and sum->> before encoding. All four of these encodings work with automatic AMO and EO detection
as described in the CP 2019 paper [2]. The flag —amo—-detect is used to switch on the AMO and EO detection.

The Tree encoding for sums decomposes each sum constraint using a binary tree, similar to the generalized totalizer.
Auxiliary integer variables are introduced for the internal nodes of the tree. A ternary sum constraint is used to connect
each internal node to its two children. The ternary sums are then encoded using the order encoding [14]. The Tree
encoding does not work with AMO and EO detection. Tree can be superior to MDD, GPW, SWC, and GGT in the case
where the original constraint is a sum-equality, because Tree does not first break down the sum-equality constraint into
sum-< and sum->>.

For other constraints we used the standard support encoding wherever possible [10]. Binary constraints such as |x| = y
use the support encoding, and ternary functional constraints x ¢ y = 2z (eg © X y = 2) use the support encoding when z is
a constant. Otherwise, x ¢ y = z are encoded as a set of ternary SAT clauses: Vi € D(z),Vj € D(y) : (v #1i V y #
JjV z=1¢j). When ioj is not in the domain of z, the literal z = 7 ¢ j will be false. Logical connectives such as A, V, <>
have custom encodings. Binary table constraints use the support encoding. Non-binary tables use Bacchus’ encoding [3]]
(Sec.2.1) by default. An MDD-based encoding is also implemented for non-binary table constraints and is enabled with a

command-line flag (Section[4.5.6).

B Operator Precedence in ESSENCE PRIME

Table [5] shows the precedence and associativity of operators in ESSENCE PRIME. As you would expect, operators with
higher precedence are applied first.
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Operator Functionality Associativity  Precedence
! Boolean negation 20
| Absolute value 20
* % Power Right 18
Integer negation 15
* Multiplication Left 10
/ Division Left 10
% Modulo Left 10
intersect Domain intersection Left 2
union Domain union Left 1
+ Addition Left 1
- Subtraction & Domain Subtraction Left 1
= Equality Left 0
'= Disequality Left 0
<= Less-equal Left 0
< Less than Left 0
>= Greater-equal Left 0
> Greater than Left 0
<=lex Lex less-equal Left 0
<lex Lex less than Left 0
>=lex Lex greater-equal Left 0
>lex Lex greater than Left 0
in Value in a set Left 0
/\ And Left -1
\/ Or Left -2
-> Implication Left -4
<=> If and only if Left -4
forAll, exists, sum Quantifiers -10
, And Left -20

Table 5: Operator precedence in ESSENCE PRIME

Left-associative operators are evaluated left-first, for example 2/3/4 = (2/3) /4. The only operator with right
associativity is = ». This allows double exponentiation to have its conventional meaning: 2+ x3x %4 = 2x* (3x%4)

Unary operators usually have a higher precedence than binary ones. There is one exception to this rule: that » = has a
higher precedence than unary minus. This allows —2 * x 2 x « 3 to have its conventional meaning of — (2x % (2x%3) ) =-2586,
as opposed to (=2) «x (2x*3)=256.

C Reserved Words

The following words are keywords and therefore are not allowed to be used as identifiers.

forall, forAll, exists, sum,
such, that, letting, given, where, find, language,
int, bool, union, intersect, in, false, true
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