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In this document we present inner approximations to the causal structures mentioned in Section IV of the
main text, which are listed as structures 4, 5 and 6 in [1] (see Figure 1). We provide these in terms of one
vector on each extremal ray of the corresponding marginal entropy cone and we give strategies for recovering
these vectors in each case, proving that our extremal rays define an inner approximation. (Note that the
inner approximations to causal structures 1, 2 and 3 have been analysed in the main text).
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Figure 1: Structures 4, 5 and 6 with observed variables W , X, Y and Z and unobserved A and B.
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1 Causal Structure 4

We provide the vertex description of an inner approximation to the marginal entropy cone of Causal Struc-
ture 4 in terms of one vector on each extremal ray, with components ordered as

(H(W ), H(X), H(Y ), H(Z), H(WX), H(WY ), H(WZ), H(XY ), H(XZ),

H(Y Z), H(WXY ), H(WXZ), H(WY Z), H(XY Z), H(WXY Z)) .

(1) 2 2 3 2 4 4 4 4 4 5 5 4 5 5 5

(2) 2 2 2 1 4 4 3 4 3 3 5 4 5 4 5

(3) 1 2 2 2 3 3 3 3 3 4 4 3 4 4 4

(4) 2 1 2 2 3 3 3 3 3 4 4 3 4 4 4

(5) 2 1 2 2 3 3 4 3 3 3 4 4 4 3 4

(6) 1 1 2 2 2 3 3 3 3 4 4 4 4 4 4

(7) 2 1 1 2 3 3 4 2 3 3 4 4 4 4 4

(8) 2 1 2 1 3 3 3 3 2 3 4 3 4 3 4

(9) 1 1 1 3 2 2 3 2 3 3 3 3 3 3 3

(10) 1 1 1 2 2 2 3 2 3 3 3 3 3 3 3

(11) 1 1 2 1 2 3 2 3 2 3 3 3 3 3 3

(12) 2 1 1 1 3 3 3 2 2 2 3 3 3 3 3

(13) 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3

(14) 1 1 1 2 2 2 3 2 2 3 3 3 3 3 3

(15) 1 1 1 2 2 2 3 2 3 2 3 3 3 3 3

(16) 1 1 1 2 2 2 2 2 2 3 3 2 3 3 3

(17) 1 1 1 2 2 2 3 2 2 2 3 3 3 2 3

(18) 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

(19) 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2

(20) 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3

(21) 1 1 1 1 2 2 2 2 2 2 3 2 3 3 3

(22) 1 1 1 1 2 2 2 2 2 2 3 3 3 2 3

(23) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

(24) 1 1 1 1 2 2 2 2 1 2 3 2 3 2 3

(25) 1 1 1 1 2 2 1 2 2 2 2 2 2 2 2

(26) 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2

(27) 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2

(28) 1 1 1 1 2 2 2 2 2 1 2 2 2 2 2

(29) 1 0 1 1 1 2 2 1 1 2 2 2 2 2 2

(30) 1 1 1 0 2 2 1 2 1 1 2 2 2 2 2

(31) 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

(32) 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

(33) 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

(34) 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

(35) 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

(36) 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1

(37) 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1

(38) 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1

(39) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(40) 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Below, we list strategies to recover an entropy vector on each of the extremal rays listed above. C1, C2,
C3, C4 and C5 are uniformly random bits, ⊕ denotes addition modulus 2.

(1) A = C1, B = (B1, B2) = (C2, C3), W = (W1, W2) = (B1, A ⊕ B2), X = (X1, X2) = (C4, C5),
Y = (Y1, Y2, Y3) = (B1, X1, B2 ⊕X2) and Z = (W2 ⊕ Y2, A⊕W2 ⊕ Y1 ⊕ Y3).

(2) A = C1, B = (B1, B2) = (C2, C3), W = (W1, W2) = (B1, A ⊕ B2), X = (X1, X2) = (C4, C5),
Y = (Y1, Y2) = (B1 ⊕X2, B2 ⊕X1) and Z = (A⊕W1 ⊕W2 ⊕ Y2).

(3) A = C1, B = C2, W = A ⊕ B, X = (X1, X2) = (C3, C4), Y = (Y1, Y2) = (X1, B ⊕ X2) and
Z = (A⊕W ⊕ Y2, W ⊕ Y1).

(4) A = C1, B = (B1, B2) = (C2, C3), W = (W1, W2) = (B1, A ⊕ B2), X = C4, Y = (Y1, Y2) =
(B1, B2 ⊕X) and Z = (W2, A⊕W1 ⊕W2 ⊕ Y2).

(5) A = C1, B = (B1, B2) = (C2, C3), W = (W1, W2) = (B1, A ⊕ B2), X = C4, Y = (Y1, Y2) =
(B1, B2 ⊕X) and Z = (Y2, A⊕W1 ⊕W2 ⊕ Y2).

(6) A = C1, B = (B1, B2) = (C2, C3), W = A ⊕ B1, X = C4, Y = (Y1, Y2) = (B1 ⊕ X, B2) and
Z = (A⊕ Y2, A⊕W ).

(7) A = C1, B = (B1, B2) = (C2, C3), W = (W1, W2) = (A ⊕ B1, B2), X = C4, Y = B1 ⊕ X and
Z = (W2 ⊕ Y, A⊕ Y ).
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(8) A = C1, B = (B1, B2) = (C2, C3), W = (W1, W2) = (A ⊕ B1, A ⊕ B2), X = C4, Y = (Y1, Y2) =
(B1 ⊕X, B2 ⊕X) and Z = A⊕W2 ⊕ Y1.

(9) A = C1, B = C2, W = A⊕B, X = C3, Y = B ⊕X and Z = (A⊕W, Y, A).

(10) A = C1, B = C2, W = A⊕B, X = C3, Y = B ⊕X and Z = (A⊕ Y, W ⊕ Y ).

(11) A = 0, B = (B1, B2) = (C1, C2), W = B1, X = C3, Y = (Y1, Y2) = (B1 ⊕X, B2) and Z = W ⊕ Y2.

(12) A = 0, B = (B1, B2) = (C1, C2), W = (W1, W2) = (B1, B2), X = C3, Y = B1 ⊕X and Z = W2 ⊕ Y .

(13) A = C1, B = C2, W = A⊕B, X = C3, Y = B ⊕X and Z = (A⊕W, A).

(14) A = C1, B = C2, W = A⊕B, X = C3, Y = B ⊕X and Z = (W ⊕ Y, A).

(15) A = C1, B = C2, W = A⊕B, X = C3, Y = B ⊕X and Z = (A⊕ Y, A).

(16) A = C1, B = C2, W = A⊕B, X = C3, Y = B ⊕X and Z = (W, A⊕W ⊕ Y ).

(17) A = C1, B = C2, W = A⊕B, X = C3, Y = B ⊕X and Z = (Y, A⊕W ⊕ Y ).

(18) A = 0, B = C1, W = B, X = C2, Y = B ⊕X and Z = (W, Y ).

(19) A = 0, B = C1, W = B, X = C2, Y = (Y1, Y2) = (B,X) and Z = (W ⊕ Y2).

(20) A = C1, B = C2, W = A⊕B, X = C3, Y = B ⊕X and Z = A.

(21) A = C1, B = C2, W = A⊕B, X = C3, Y = B ⊕X and Z = A⊕ Y .

(22) A = C1, B = C2, W = A⊕B, X = C3, Y = B ⊕X and Z = A⊕W .

(23) A = 0, B = (B1, B2) = (C1, C2), W = (W1, W2) = (B1, B2), X = (X1, X2) = (C3, C4), Y =
(Y1, Y2) = (B2 ⊕X1 ⊕X2, B1 ⊕X1) and Z = (W1 ⊕W2 ⊕ Y1, W2 ⊕ Y2). 1

(24) A = C1, B = C2, W = A⊕B, X = C3, Y = B ⊕X and Z = A⊕W ⊕ Y .

(25) A = 0, B = C1, W = B, X = C2, Y = B ⊕X and Z = W .

(26) A = 0, B = 0, W = C1, X = C2, Y = X and Z = W ⊕ Y .

(27) A = 0, B = C1, W = B, X = C2, Y = B ⊕X and Z = W ⊕ Y .

(28) A = 0, B = C1, W = B, X = C2, Y = B ⊕X and Z = Y .

(29) A = 0, B = 0, W = C1, X = 0, Y = C2 and Z = W ⊕ Y .

(30) A = 0, B = C1, W = B, X = C2, Y = B ⊕X and Z = 0.

(31) A = 0, B = 0, W = 0, X = 0, Y = 0 and Z = C1.

(32) A = 0, B = 0, W = 0, X = 0, Y = C1 and Z = 0.

(33) A = 0, B = 0, W = 0, X = C1, Y = 0 and Z = 0.

(34) A = 0, B = 0, W = C1, X = 0, Y = 0 and Z = 0.

(35) A = 0, B = 0, W = 0, X = 0, Y = C1 and Z = Y .

(36) A = 0, B = 0, W = 0, X = C1, Y = X and Z = 0.

(37) A = 0, B = 0, W = C1, X = 0, Y = 0 and Z = W .

(38) A = 0, B = C1, W = B, X = 0, Y = B and Z = 0.

(39) A = 0, B = 0, W = 0, X = C1, Y = X and Z = Y .

(40) A = 0, B = C1, W = B, X = 0, Y = B and Z = Y .
1Note that this strategy recovers double the entropy vector listed above.
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2 Causal Structure 5

We provide the vertex description of an inner approximation to the marginal entropy cone of Causal Struc-
ture 5 in terms of one vector on each extremal ray, with components ordered as

(H(W ), H(X), H(Y ), H(Z), H(WX), H(WY ), H(WZ), H(XY ), H(XZ),

H(Y Z), H(WXY ), H(WXZ), H(WY Z), H(XY Z), H(WXY Z)) .

(1) 2 2 2 3 3 4 4 4 4 5 5 5 5 5 5

(2) 2 2 2 3 3 4 4 3 3 4 4 4 4 4 4

(3) 2 2 2 2 3 4 4 3 3 4 4 4 4 4 4

(4) 2 2 1 3 4 3 4 3 4 4 5 5 5 5 5

(5) 2 2 1 2 4 3 3 3 4 3 5 5 4 5 5

(6) 2 2 1 2 3 3 3 3 3 3 4 4 4 4 4

(7) 1 1 2 2 2 3 3 3 3 4 4 4 4 4 4

(8) 1 1 2 2 2 3 3 2 2 3 3 3 3 3 3

(9) 1 2 1 2 2 2 2 3 3 3 3 3 3 3 3

(10) 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2

(11) 1 1 1 3 2 2 3 2 3 3 3 3 3 3 3

(12) 1 1 1 2 2 2 3 2 3 3 3 3 3 3 3

(13) 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3

(14) 1 1 1 2 2 2 3 2 2 3 3 3 3 3 3

(15) 1 1 2 1 2 3 2 2 2 3 3 3 3 3 3

(16) 1 1 1 2 2 2 2 2 2 3 3 2 3 3 3

(17) 1 1 1 2 2 2 2 2 3 2 3 3 2 3 3

(18) 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2

(19) 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3

(20) 2 2 2 2 3 4 3 3 3 4 4 4 4 4 4

(21) 1 1 1 1 2 2 2 2 2 2 3 3 2 3 3

(22) 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2

(23) 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2

(24) 1 2 1 1 2 2 1 2 2 2 2 2 2 2 2

(25) 1 1 1 1 2 2 1 2 2 2 3 2 2 3 3

(26) 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

(27) 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2

(28) 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2

(29) 1 1 0 1 2 1 2 1 2 1 2 2 2 2 2

(30) 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

(31) 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

(32) 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

(33) 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

(34) 1 1 1 1 1 2 1 2 1 2 2 1 2 2 2

(35) 1 1 1 1 2 2 1 1 2 2 2 2 2 2 2

(36) 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

(37) 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

(38) 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1

(39) 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1

(40) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(41) 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

(42) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In the following we list strategies to recover entropy vectors on all of the above rays. C1, C2, C3, C4 and
C5 are uniform bits, ⊕ denotes addition modulus 2.

(1) A = (A1, A2) = (C1, C2), B = C3, W = (W1, W2) = (C4, C5), X = (X1, X2) = (W1, B ⊕ W2),
Y = (Y1, Y2) = (A1 ⊕X1, A2 ⊕X2) and Z = (A1 ⊕ Y1, B ⊕ Y2, A1 ⊕A2 ⊕B).

(2) A = C1, B = C2, W = (W1, W2) = (C3, C4), X = (X1, X2) = (B ⊕W1, B ⊕W2), Y = (Y1, Y2) =
(X1, A⊕X2) and Z = (A⊕B ⊕ Y1, A⊕ Y2, A⊕B).

(3) A = C1, B = C2, W = (W1, W2) = (C3, C4), X = (X1, X2) = (B ⊕W1, B ⊕W2), Y = (Y1, Y2) =
(X1, A⊕X2) and Z = (A⊕B ⊕ Y1, A⊕ Y2).

(4) A = C1, B = (B1, B2) = (C2, C3), W = (W1, W2) = (C4, C5), X = (X1, X2) = (B1 ⊕W1, B2 ⊕W2),
Y = A⊕X1 and Z = (A⊕B1 ⊕ Y, A⊕ Y, A⊕B2).

(5) A = C1, B = (B1, B2) = (C2, C3), W = (W1, W2) = (C4, C5), X = (X1, X2) = (B1 ⊕W1, B2 ⊕W2),
Y = A⊕X1 and Z = (A⊕B1 ⊕ Y, B1 ⊕B2 ⊕ Y ).

(6) A = C1, B = C2, W = (W1, W2) = (C3, C4), X = (X1, X2) = (B ⊕ W1, W2), Y = A ⊕ X2 and
Z = (A⊕ Y, A⊕B).

(7) A = (A1, A2) = (C1, C2), B = C3, W = C4, X = B ⊕ W , Y = (Y1, Y2) = (A1 ⊕ X, A2) and
Z = (A1 ⊕A2, A1 ⊕B).
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(8) A = C1, B = C2, W = C3, X = B ⊕W , Y = (Y1, Y2) = (X, A) and Z = (Y1, A⊕B ⊕ Y1).

(9) A = C1, B = C2, W = C3, X = (X1, X2) = (W, B), Y = A⊕X1 ⊕X2 and Z = (A⊕B ⊕ Y, B ⊕ Y ).

(10) A = 0, B = C1, W = C2, X = (X1, X2) = (B, W ), Y = X1 ⊕X2 and Z = (B ⊕ Y, B).

(11) A = C1, B = C2, W = C3, X = B ⊕W , Y = A⊕X and Z = (B, A, A⊕ Y ).

(12) A = C1, B = C2, W = C3, X = B ⊕W , Y = A⊕X and Z = (B, A).

(13) A = C1, B = C2, W = C3, X = B ⊕W , Y = A⊕X and Z = (A⊕B ⊕ Y, A).

(14) A = C1, B = C2, W = C3, X = B ⊕W , Y = A⊕X and Z = (A⊕ Y, A⊕B).

(15) A = C1, B = C2, W = C3, X = B ⊕W , Y = (Y1, Y2) = (A, X) and Z = A⊕B.

(16) A = C1, B = C2, W = C3, X = B ⊕W , Y = A⊕X and Z = (A⊕B ⊕ Y, A⊕ Y ).

(17) A = C1, B = C2, W = C3, X = B ⊕W , Y = A⊕X and Z = (Y, A⊕B ⊕ Y ).

(18) A = 0, B = C1, W = C2, X = (X1, X2) = (W, B), Y = X1 ⊕X2 and Z = B.

(19) A = C1, B = C2, W = C3, X = B ⊕W , Y = A⊕X and Z = B ⊕ Y .

(20) A = C1, B = C2, W = (W1, W2) = (C3, C4), X = (X1, X2) = (B ⊕ W1, W2), Y = (Y1, Y2) =
(X1, A⊕X2) and Z = (A⊕B ⊕ Y1, A⊕ Y2).

(21) A = C1, B = C2, W = C3, X = B ⊕W , Y = A⊕X and Z = A⊕B.

(22) A = C1, B = 0, W = C2, X = W , Y = A⊕X and Z = (A, Y ).

(23) A = 0, B = C1, W = C2, X = B ⊕W , Y = X and Z = (B, Y ).

(24) A = 0, B = C1, W = C2, X = (X1, X2) = (W, B), Y = X1 ⊕X2 and Z = B ⊕ Y .

(25) A = C1, B = C2, W = C3, X = B ⊕W , Y = A⊕X and Z = A⊕B ⊕ Y .

(26) A = C1, B = 0, W = C2, X = W , Y = A⊕X and Z = A.

(27) A = 0, B = C1, W = C3, X = B ⊕W , Y = X and Z = B.

(28) A = C1, B = C2, W = 0, X = B, Y = A⊕X and Z = A.

(29) A = 0, B = C1, W = C2, X = B ⊕W , Y = 0 and Z = B.

(30) A = 0, B = 0, W = 0, X = 0, Y = 0 and Z = C1.

(31) A = 0, B = 0, W = 0, X = 0, Y = C1 and Z = 0.

(32) A = 0, B = 0, W = 0, X = C1, Y = 0 and Z = 0.

(33) A = 0, B = 0, W = C1, X = 0, Y = 0 and Z = 0.

(34) A = C1, B = 0, W = C2, X = W , Y = A⊕X and Z = A⊕ Y .

(35) A = 0, B = C1, W = C2, X = B ⊕W , Y = X and Z = B ⊕ Y .

(36) A = 0, B = 0, W = 0, X = 0, Y = C1 and Z = Y .

(37) A = 0, B = C1, W = 0, X = B, Y = 0 and Z = B.

(38) A = 0, B = 0, W = 0, X = C1, Y = X and Z = 0.

(39) A = 0, B = 0, W = C1, X = W , Y = 0 and Z = 0.

(40) A = 0, B = 0, W = 0, X = C1, Y = X and Z = Y .

(41) A = 0, B = 0, W = C1, X = W , Y = X and Z = 0.

(42) A = 0, B = 0, W = C1, X = W , Y = X and Z = Y .
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3 Causal Structure 6

We provide the vertex description of an inner approximation to the marginal entropy cone of Causal Struc-
ture 6 in terms of one vector on each extremal ray, with components ordered as

(H(W ), H(X), H(Y ), H(Z), H(WX), H(WY ), H(WZ), H(XY ), H(XZ),

H(Y Z), H(WXY ), H(WXZ), H(WY Z), H(XY Z), H(WXY Z)) .

(1) 2 3 2 2 4 4 3 5 4 4 5 5 4 5 5

(2) 2 3 2 2 4 3 3 5 5 4 5 5 4 5 5

(3) 2 3 1 2 4 3 3 4 4 3 5 5 4 5 5

(4) 2 2 1 2 4 3 3 3 4 3 5 5 4 5 5

(5) 2 2 2 1 3 3 2 4 3 3 4 3 3 4 4

(6) 1 3 1 2 3 2 2 4 4 3 4 4 3 4 4

(7) 2 1 2 1 3 4 3 3 2 3 4 4 4 4 4

(8) 1 2 1 2 3 2 3 3 4 3 4 4 3 4 4

(9) 1 2 1 2 3 2 2 3 4 3 4 4 3 4 4

(10) 1 2 2 1 2 3 2 3 3 3 3 3 3 3 3

(11) 2 1 1 2 3 3 3 2 3 2 3 3 3 3 3

(12) 1 1 2 2 2 3 3 2 2 3 3 3 3 3 3

(13) 2 2 1 1 3 3 2 3 2 2 3 3 3 3 3

(14) 1 2 1 2 2 2 2 3 3 2 3 3 2 3 3

(15) 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2

(16) 1 1 2 1 2 3 2 3 2 3 3 3 3 3 3

(17) 1 2 1 1 3 2 2 3 3 2 3 3 3 3 3

(18) 2 1 1 1 3 3 3 2 2 2 3 3 3 3 3

(19) 1 1 2 1 2 3 2 2 2 3 3 3 3 3 3

(20) 2 1 1 1 3 3 2 2 2 2 3 3 3 3 3

(21) 1 2 1 1 2 2 2 3 3 2 3 3 2 3 3

(22) 1 1 1 2 2 2 2 2 3 2 3 3 2 3 3

(23) 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

(24) 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2

(25) 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2

(26) 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3

(27) 1 1 1 1 2 2 2 2 2 2 3 3 2 3 3

(28) 1 2 1 1 2 2 1 3 2 2 3 2 2 3 3

(29) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

(30) 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2

(31) 1 2 1 1 2 2 1 2 2 2 2 2 2 2 2

(32) 1 1 1 1 2 2 1 2 2 2 3 2 2 3 3

(33) 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2

(34) 1 1 1 1 2 2 1 2 2 2 2 2 2 2 2

(35) 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2

(36) 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2

(37) 1 1 1 1 2 2 2 2 2 1 2 2 2 2 2

(38) 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2

(39) 1 1 0 1 2 1 2 1 2 1 2 2 2 2 2

(40) 1 1 1 0 2 2 1 2 1 1 2 2 2 2 2

(41) 1 1 1 1 2 2 1 1 2 2 2 2 2 2 2

(42) 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

(43) 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

(44) 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

(45) 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

(46) 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

(47) 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

(48) 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1

(49) 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1

(50) 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1

(51) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(52) 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

(53) 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

(54) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In the following we list strategies to recover entropy vectors on all of the above rays. C1, C2, C3, C4 and
C5 are uniform bits, ⊕ denotes addition modulus 2.

(1) W = (W1, W2) = (C1, C2), B = (B1, B2) = (C3, C4), A = (A1, A2, A3) = (W1, W2, C5),
X = (X1, X2, X3) = (A1, A1⊕A3⊕B2, A3⊕B1), Y = (Y1, Y2) = (A3⊕X1⊕X3, A1⊕A2⊕A3⊕X2)
and Z = (B1 ⊕ Y1, B2).

(2) W = (W1, W2) = (C1, C2), B = (B1, B2) = (C3, C4), A = (A1, A2, A3) = (W1, W2, C5),
X = (X1, X2, X3) = (A1, A2⊕A3⊕B1, A2⊕A3⊕B2), Y = (Y1, Y2) = (A1⊕A2, A1⊕A2⊕A3⊕X2)
and Z = (B1 ⊕ Y1 ⊕ Y2, B2).

(3) W = (W1, W2) = (C1, C2), B = (B1, B2) = (C3, C4), A = (A1, A2, A3) = (W1, W2, C5),
X = (X1, X2, X3) = (A1 ⊕A2, A2 ⊕A3 ⊕B1, A3 ⊕B2), Y = A3 ⊕X1 ⊕X3 and Z = (B2 ⊕ Y, B1).

(4) W = (W1, W2) = (C1, C2), B = (B1, B2) = (C3, C4), A = (A1, A2, A3) = (W1, W2, C5),
X = (X1, X2) = (A1 ⊕A3 ⊕B1, A2 ⊕B2), Y = A3 ⊕X1 and Z = (B1 ⊕ Y, B1 ⊕B2).
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(5) W = (W1, W2) = (C1, C2), B = C3, A = (A1, A2, A3) = (W1, W2, C4), X = (X1, X2) =
(A1, A2 ⊕A3 ⊕B), Y = (Y1, Y2) = (A1 ⊕A2, A3 ⊕X2) and Z = Y2 ⊕B.

(6) W = C1, B = (B1, B2) = (C2, C3), A = (A1, A2) = (W, C4), X = (X1, X2, X3) = (A1, B1, A2⊕B2),
Y = A1 ⊕A2 ⊕X2 ⊕X3 and Z = (B1 ⊕B2 ⊕ Y, B2).

(7) W = (W1, W2) = (C1, C2), B = C3, A = (A1, A2, A3) = (W1, W2, C4), X = A3⊕B, Y = (Y1, Y2) =
(A1 ⊕A3 ⊕X, A2 ⊕X) and Z = B.

(8) W = C1, B = (B1, B2) = (C2, C3), A = (A1, A2) = (W, C4), X = (X1, X2) = (B1, A2 ⊕ B2),
Y = A1 ⊕A2 ⊕X2 and Z = (B1 ⊕ Y, B2).

(9) W = C1, B = (B1, B2) = (C2, C3), A = (A1, A2) = (W, C4), X = (X1, X2) = (A1 ⊕ B1, A2 ⊕ B2),
Y = A1 ⊕A2 ⊕X2 and Z = (B2 ⊕ Y, B1 ⊕B2).

(10) W = C1, B = C2, A = (A1, A2) = (W, C3), X = (X1, X2) = (A2 ⊕ B, A1), Y = (Y1, Y2) =
(X1, A1 ⊕A2) and Z = B.

(11) W = (W1, W2) = (C1, C2), B = C3, A = (A1, A2) = (W1, W2), X = A2 ⊕ B, Y = A1 ⊕ X and
Z = (B ⊕ Y,B).

(12) W = C1, B = C2, A = (A1, A2) = (W, C3), X = A1⊕B, Y = (Y1, Y2) = (X, A2) and Z = (Y1, B⊕Y2).

(13) W = (W1, W2) = (C1, C2), B = C3, A = (A1, A2) = (W1, W2), X = (X1, X2) = (A1, A2 ⊕ B),
Y = A1 ⊕A2 ⊕X2 and Z = B ⊕ Y .

(14) W = C1, B = C2, A = (A1, A2) = (W, C3), X = (X1, X2) = (A1, A2 ⊕ B), Y = A2 ⊕X1 ⊕X2 and
Z = (B ⊕ Y, B).

(15) W = C1, B = C2, A = W , X = (X1, X2) = (A,B), Y = X1 ⊕X2 and Z = (B ⊕ Y, B).

(16) W = C1, B = C2, A = (W, C3), X = B, Y = (X ⊕A2, A1 ⊕A2) and Z = B ⊕ Y .

(17) W = C1, B = C2, A = (W, C3), X = (X1, X2) = (A1 ⊕B, A2), Y = A1 ⊕A2 and Z = B.

(18) W = (W1, W2) = (C1, C2), B = C3, A = (A1, A2) = (W1, W2), X = A1 ⊕ B, Y = A1 ⊕ A2 ⊕X and
Z = B.

(19) W = C1, B = C2, A = (A1, A2) = (W, C3), X = A1⊕B, Y = (Y1, Y2) = (X, A2) and Z = B⊕Y1⊕Y2.

(20) W = (W1, W2) = (C1, C2), B = C3, A = (A1, A2) = (W1, W2), X = A1 ⊕ A2 ⊕ B, Y = A2 ⊕X and
Z = B ⊕ Y .

(21) W = C1, B = C2, A = (A1, A2) = (W, C3), X = (X1, X2) = (A2 ⊕ B, A1), Y = A1 ⊕ A2 ⊕X1 and
Z = B.

(22) W = C1, B = C2, A = (A1, A2) = (W, C3), X = A2 ⊕B, Y = A1 ⊕A2 ⊕X and Z = (B ⊕ Y, B).

(23) W = C1, B = C2, A = W , X = B, Y = A⊕X and Z = (B ⊕ Y, B).

(24) W = C1, B = C2, A = W , X = A⊕B, Y = (Y1, Y2) = (A, A⊕X) and Z = B.

(25) W = C1, B = C2, A = W , X = (X1, X2) = (A, B), Y = X1 ⊕X2 and Z = B.

(26) W = C1, B = C2, A = W , X = A⊕B, Y = X ⊕ C3 and Z = B ⊕ Y .

(27) W = C1, B = C2, A = (A1, A2) = (W, C3), X = A1 ⊕A2 ⊕B, Y = X ⊕A2 and Z = B.

(28) W = C1, B = C2, A = (A1, A2) = (W, C3), X = (X1, X2) = (A1, A2 ⊕ B), Y = A1 ⊕ A2 ⊕X2 and
Z = B ⊕ Y .
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(29) W = (W1, W2) = (C1, C2), B = (B1, B2) = (C3, C4), A = (A1, A2) = (W1, W2), X = (X1, X2) =
(A1 ⊕B1, A2 ⊕B2), Y = (Y1, Y2) = (A1 ⊕A2 ⊕X1, A1 ⊕X2) and Z = (B1, B2). 2

(30) W = C1, B = C2, A = W , X = A⊕B, Y = X and Z = (B, Y ).

(31) W = C1, B = C2, A = W , X = (X1, X2) = (B, A), Y = A⊕X1 and Z = B ⊕ Y .

(32) W = C1, B = C2, A = (A1, A2) = (W, C3), X = A2 ⊕B, Y = A1 ⊕A2 ⊕X and Z = B ⊕ Y .

(33) W = C1, B = C2, A = W , X = A⊕B, Y = A and Z = B.

(34) W = C1, B = C2, A = W , X = B, Y = A⊕X and Z = B ⊕ Y .

(35) W = C1, B = C2, A = W , X = A⊕B, Y = X and Z = B.

(36) W = C1, B = C2, A = W , X = B, Y = A⊕X and Z = B.

(37) W = C1, B = C2, A = W , X = A⊕B, Y = A⊕X and Z = Y .

(38) W = 0, B = C1, A = C2, X = A⊕B, Y = A and Z = B.

(39) W = C1, B = C2, A = W , X = A⊕B, Y = 0 and Z = B.

(40) W = C1, B = C2, A = W , X = B, Y = A⊕X and Z = 0.

(41) W = C1, B = C2, A = W , X = A⊕B, Y = X and Z = B ⊕ Y .

(42) W = 0, B = 0, A = 0, X = 0, Y = 0 and Z = C1.

(43) W = 0, B = 0, A = 0, X = 0, Y = C1 and Z = 0.

(44) W = 0, B = 0, A = 0, X = C1, Y = 0 and Z = 0.

(45) W = C1, B = 0, A = 0, X = 0, Y = 0 and Z = 0.

(46) W = 0, B = 0, A = 0, X = 0, Y = C1 and Z = Y .

(47) W = 0, B = C1, A = 0, X = B, Y = 0 and Z = B.

(48) W = 0, B = 0, A = 0, X = C1, Y = X and Z = 0.

(49) W = C1, B = 0, A = W , X = 0, Y = A and Z = 0.

(50) W = C1, B = 0, A = W , X = A, Y = 0 and Z = 0.

(51) W = 0, B = 0, A = 0, X = C1, Y = X and Z = Y .

(52) W = C1, B = 0, A = W , X = 0, Y = A and Z = Y .

(53) W = C1, B = 0, A = W , X = A, Y = X and Z = 0.

(54) W = C1, B = 0, A = W , X = A, Y = X and Z = Y .

References

[1] Henson, J., Lal, R. & Pusey, M. F. Theory-independent limits on correlations from generalized Bayesian
networks. New Journal of Physics 16, 113043 (2014).

2Note that this strategy recovers double the entropy vector listed above.
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