
LPAssumptions: User Manual

Roger Colbeck∗ and V. Vilasini†

Department of Mathematics, University of York, Heslington, York YO10 5DD.
(Dated: May 20, 2020)

LPAssumptions (https://github.com/rogercolbeck/LPAssumptions) is a Mathematica package
for solving linear programming problems where the objective function can contain unknown variables
other than those being optimized over. This manual explains what the package does in more detail,
and how to use it.

A generic linear programming problem can be specified by giving a vector c, a matrix M and a vector b such that
the problem corresponds to

minimize c.x

subject to Mx ≥ b

x ≥ 0

Any linear programming problem can be written in this form and this is the same form as used by Mathematica’s
LinearProgramming function.

If c, M and b are completely specified (consist of numerical values), LinearProgramming can already be used to solve
the problem. The aim of this package is to also be able to cope with the case where there are unspecified constants
in vector c representing the objective function. For example, we might wish to optimize x1 + ax2, where a is an
unspecified constant in the range 0 ≤ a ≤ 1, returning the solution for all values of a in the range.

Important: At the moment LPAssumptions requires all the unspecified constants to be in the objective function
vector, c. Note that if they are instead all in the constraint vector b, they can be moved to c by considering the dual
linear program.

To use the package, open the file LPAssumptions.m in Mathematica and press “run all code”. Then open a new
notebook and the command LPAssumptions should be available for use.

The main function of the package, is LPAssumptions[c, M, b, assump, (Options)]. It takes as input c (a vector
corresponds to the objective function), M (the constraint matrix), b (the constraint vector) and assump (any initial
assumptions on the unspecified variables involved). The argument assump should be given as a list of assumptions,
e.g., assump={0 ≤ a ≤ 1, t > 3}. If assump is omitted, then it is taken to be empty ({}). With no assumptions and
no unspecified variables, provided the problem is feasible and bounded, the answer given by LPAssumptions should
match that of LinearProgramming (up to the slightly different structure of the output).

The output takes the form {{constr1, vec1}, {constr2, vec2}, . . .}, where constri are the set of constraints under
which the optimum is achieved by the vector veci. The values of the objective function at the optima can then be
computed using c.veci (see also the option OutputValues→True below).

Additional options can be specified:

• Iterations (default: 50,000): The maximum number of iterations (each iteration corresponds to performing one
pivot) that the function will perform before giving an error that an optimum was not found by then.

• PrintTemp (default: False): Using PrintTemp→True, it prints temporary messages while running.

• OutputValues (default: False): Using OutputValues→True, LPAssumptions outputs a list
{{constr1, val1}, {constr2, val2}, . . .}, where constri are the set of constraints under which the optimal
value is vali. By default, this option is set to False and the function instead outputs for each constraint, the
point (as a vector) at which the optimal value is attained in that case, and the optimal value can be obtained
by simply taking the dot product of this vector with the objective vector c.

For example running LPAssumptions[c, M, b, assump, {Iterations→1000, PrintTemp→True}] will only run at most
1000 iterations and give temporary messages during the evaluation.

Note also that if the constraints of the problem are not in the specified form the code can also cope with this.
If the ith constraint has of the form Mix ≤ bi, then this can be specified by using {bi,−1} as the corresponding

∗Electronic address: roger.colbeck@york.ac.uk
†Electronic address: vv577@york.ac.uk

https://github.com/rogercolbeck/LPAssumptions
mailto:roger.colbeck@york.ac.uk
mailto:vv577@york.ac.uk


2

entry of b; if some of the constraints are of the form Mix = bi, then this can be specified by using bi, 0 and for
Mix ≥ bi we use {bi, 1}. For instance, to specify the problem with constraints x1 + 2x2 = 2 and 2x1−x2 ≤ 4 we have
M = {{1, 2}, {2,−1}} and b = {{2, 0}, {4,−1}}. Note also that a maximization can be converted to a minimization
by replacing c with −c.

The algorithm works by using the two phase simplex algorithm [1]. It relies on Mathematica’s Simplify[expr,assump]
command to decide on how to proceed through the computation, where expr is an inequality. If Mathematica is unable
to decide whether the inequality is true or false, the algorithm splits into two cases, one in which it assumes expr is
true, and the other in which it assumes it is false. It then carries on adding additional assumptions as necessary until
termination (or the number of iterations is exceeded). Problems can arise if expr is true (or false) but Mathematica’s
Simplify is unable to determine this (see the examples notebook for such a case).

For more details, see the example notebook (LPAssumptions examples.nb) available at http://www-users.york.
ac.uk/~rc973/LPAssumptions.html. In the examples, we also show how to compute the local weight (see e.g. [2, 3]
of a no-signalling probability distribution where the distribution has unspecified parameters (specifically we consider
a noisy PR-box with inefficient detectors, see Section IV D F of [4]). This code was also used in [5].

Appendix: Internal commands run by LPAssumptions

This appendix should help anyone wishing to understand the algorithm in more detail, or to further develop the
code. These commands are private within the package, so cannot be directly called. To use them directly, the relevant
ones need to be uncommented at the start of the package before the package is run.

StartTab[c, M, b]: Generates the initial tableau for the linear programming problem of minimizing c.x subject
to Mx = b, x ≥ 0, where each element of b is nonnegative (any linear programming problem can be brought into
this form by adding slack variables to make inequalities equality, and by changing the sign of rows of M and the

corresponding element of b if necessary). It outputs the matrix

(
−cT 0
M b

)
(adding one row and column to M).

SlackenMix[c, M, b]: Converts the problem of minimizing c.x subject to Mx ≥ b, x ≥ 0 into the form required by
StartTab by adding slack variables i.e., it outputs {c′,M ′, b′} corresponding to minimizing c′.x subject to M ′x = b′,
x ≥ 0 where b′ is non-negative. If b is given as a list of pairs, the second entry in each pair indicates whether there is
an equality (0), greater than (1) or less than (−1), as in Mathematica’s LinearProgramming.

ProcessCols[A, assump, col]: Takes a tableau A and processes the columns corresponding to col to output a new
tableau such that the chosen columns have only one non-zero element. The command makes assumptions assump
about any variables, e.g., assump= {a < 2, t > 3} where a and t are free elements in the first row of A. [It can be
better to specify the assumptions as open intervals (< or >) rather than closed ones (≤ or ≥) and deal with the
equalities separately if required.] If col is a number, this acts on the first col columns (this version hasn’t been fully
tested), while if col is a list of columns, this acts on those, e.g., col={2, 4, 5} processes columns 2, 4 and 5. If no
argument corresponding to col is provided, ProcessCols[A, assump] processes a number of columns equal to the number
of constraint rows in the tableau (the number of rows in A minus 1).

FixArtificialVariables[A, artificial, assump]: Takes a tableau A, a list of artificial variables, artificial and a set of
assumption assump and outputs a new tableau in which the artificial variables are removed from the basis.

FindBasis[A, (Options)]: Takes a tableau A and outputs a list of the positions of the elements of the basis, i.e.,
the positions of the 1s in columns that are all 0s except for one 1. Options: IgnoreFirst→True doesn’t worry about
the first entry being zero when checking the column (by default, this is set to False); st→n starts checking on the nth

row (default, st→2 since the first row represents the objective function).

NewBasis[basis, row, col]: Given a basis, a row and a column, outputs {leaving, newbasis}, where leaving is the
leaving variable and newbasis is the new basis assuming a pivot on that row and column, where the new basis is given
in the form of the previous command.

ExtractValues[A, (Options)]: Takes a tableau A and outputs a list of pairs comprising the basis variables (the
column representing it) and the values they take at the current feasible point. The only option available is st for
specifying the starting row as in FindBasis for example and the default is again st→2.

http://www-users.york.ac.uk/~rc973/LPAssumptions.html
http://www-users.york.ac.uk/~rc973/LPAssumptions.html


3

LPSolve[A, assump, (Options)]: Solves the linear programming problem specified by tableau A under assumptions
assump with starting row st (the default is st→ 2, otherwise set it with the option st→n). The default choice of st→ 2
meaning that the second row is the first constraint row to consider pivoting on. Taking st→ 3 can be useful where the
second row is an objective function for a related problem, e.g., in phase I. The tableau must be in canonical form (i.e.,
with an subset of columns equal to the identity matrix or a permutation thereof and with b positive). By default,
the command performs at most 50,000 pivots (this can be altered using the Iterations option), and gives an error if
the optimum isn’t found by then. It also prints any unresolvable expressions (e.g., due to not enough assumptions).
For example, a step in the algorithm may depend on whether a + c < 0, but this may not be decidable from the
constraints. The final output is the tableau after all pivoting is complete. The solution is the element in the first row
and last column of this output. A further option is ArtificialVars. Setting ArtificialVars→ {10, 11, 12} means that the
variables in columns 10, 11 and 12 are artificial. When LPSolve has a choice it will try to move artificial variables out
of the basis. Further, the maximum number of iterations to be performed can be set using the Iterations option, the
default is 50,000 iterations.

LPSolveAssumptions[A, assump, st, current, (Options)]: Solves the linear programming problem specified by tableau
A under assumptions assump with starting row st. The default choice of st is 2 meaning that the second row is
the first constraint row to consider pivoting on. Taking st equal to 3 can be useful where the second row is an
objective function for a related problem, e.g., in phase I. The option current is used to specify the current extra
assumption being resolved, this is needed internally since the function calls itself and can be set to “{}”. The
command performs at most 50,000 pivots, and gives an error if the optimum isn’t found by then. In this case, any
unresolvable expressions (e.g., due to not enough assumptions) are resolved into both options. The output is a list
{{constr1, vec1}, {constr2, vec2}, . . .}, where constr1 are the set of constraints under which the solution vec1 is valid
etc. Options: Iterations, PrintTemp, OutputValues (all 3 the same as in LPAssumptions) and OutLength which keeps
track of the number of variables (dimension of the objective vector c) in the original linear programming problem.
This is needed because the algorithm involves adding slack and artificial variables to produce a new problem with the
same solution (but more variables) and the information regarding the original number of variables is lost. By default,
this is set to the value -1 which denotes that all variables are to be considered in the given tableau A.

PhaseI[A, assump]: Takes a tableau A corresponding to the problem of minimizing c.x subject to Mx = b, x ≥ 0

in the form A=

(
−cT 0
M b

)
and generates a suitable input to PhaseII which requires an identity matrix or permutation

thereof amongst the columns and no artificial variables in the basis. This uses the AddId command that takes A to 0 1 0
−cT 0 0
M I b

, where 1 is a vector of 1s. It also uses FixArtificialVariables when needed to move artificial variables

out of the basis. When solving this, one does not pivot on the second row which is retained and adjusted so as to be
used in PhaseII. The Iterations option is available as in LPSolve.

PhaseII[A, assump]: Takes the output tableau of PhaseI, drops the irrelevant rows and columns to generate a
starting tableau for the original problem which it solves using LPSolve, outputting the final tableau. The Iterations
option is available as in LPSolve.

PhaseIIAssumptions[A, assump]: Takes the output tableau of PhaseI, drops the irrelevant rows and columns to
generate a starting tableau for the original problem which it solves using LPSolveAssumptions, outputting the list as for
that command. The Iterations, PrintTemp, OutputValues and OutLength options are available as in LPSolveAssumptions.

[1] George B. Dantzig. Origins of the simplex method. In Stephen G. Nash, editor, A History of Scientific Computing, pages
141–151. ACM, New York, NY, USA (1990). https://dl.acm.org/citation.cfm?id=88081

[2] Marek Zukowski et. al. Strengthening the Bell theorem: Conditions to falsify local realism in an experiment (1999).
https://arxiv.org/abs/quant-ph/9910058

[3] Thomas Cope and Roger Colbeck. Bell inequalities from no-signaling distributions. Physical Review A 100 022114 (2019).
https://doi.org/10.1103/PhysRevA.100.022114

[4] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C.
Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi and P. Wallden.
Advances in Quantum Cryptography (2019). https://arxiv.org/abs/1906.01645

https://dl.acm.org/citation.cfm?id=88081
https://arxiv.org/abs/quant-ph/9910058
https://doi.org/10.1103/PhysRevA.100.022114
https://arxiv.org/abs/1906.01645


4

[5] V. Vilasini and Roger Colbeck. Analysing causal structures using Tsallis entropies (2019). https://arxiv.org/abs/1907.02551

arXiv:1907.02551

	Appendix: Internal commands run by LPAssumptions
	References

