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Entangled states are considered to be an important resource
for quantum computation and quantum information
processes. Various authors have developed theories of
entanglement including entanglement measures and
robustness but this work is somewhat different. Our work is
inspired by a paper of Paul Busch:

The role of entanglement in
quantum measurement and information processing,

[Int. J. Theor. Phys. 42: 937–941 (2003).]

The theme of Paul’s paper is that one cannot transfer
information without entanglement. Our present work
involves measuring the amount of entanglement.
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1 Classical Entanglement

It is frequently stated that entanglement is a strictly
quantum phenomenon that is not present in classical theory.
We do not believe this is actually true and begin with a
classical theory of entangled measures. This theory is quite
simple and does not have the depth and complexity of its
quantum counterpart. However, we believe that it can be
instructive and give insights into the quantum theory.

Let M be the set of probability measures on N. We view
u ∈M as a probability vector u = {ui : i ∈ N}, ui ≥ 0,∑
ui = 1 and write ||u||2 =

∑
u2i . The support of u is

supp(u) = {i : ui 6= 0}. The entanglement index of u is the
cardinality of supp(u) and is denoted by n(u). The
entanglement number of u is

e(u) =
[
1− ||u||2

]1/2
=

∑
i 6=j

uiuj

1/2

=

[∑
i

ui(1− ui)

]1/2
We see that e(u)2 is the average deviation of u from 1. We
say that u is a point (or Dirac) measure if ui = 1 for some
i ∈ N. We say u is uniform if ui = uj whenever, ui, uj 6= 0.
If u is uniform, then n(u) <∞ and ui = 1/n(u) whenever
ui 6= 0.
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Theorem 1.1. (a) e(u) = 0 iff u is a point measure.
(b) If n(u) <∞, then e(u) ≤ [(n(u)− 1) /n(u)] and
equality is achieved iff u is uniform.

If u is uniform and n(u) 6= 1, we say that u is maximally
entangled with index n(u). There is precisely one
maximally entangled u for every finite support in N. Also,
0 ≤ e(u) < 1.

Example 1. (a) If u1 = u2 = 1/2, then e(u) = 1/
√

2 and
u is maximally entangled with index 2. (b) If
u1 = u2 = u3 = 1/3 then e(u) =

√
2/3 and u is maximally

entangled with index 3. (c) If u1 = 1/2, u2 = 1/3, u3 = 1/6,
then e(u) =

√
11/18. (d) If u1 = 1/9, u2 = 1/9, u3 = 7/9,

then e(u) =
√

30/9. We have
√

30

9
<

1√
2
<

√
11

18
<

√
2

3

so (d) < (a) < (c) < (b).

If u, v ∈M and λ ∈ [0, 1], then λu + (1− λ)v ∈M is a
mixture of u and v. It is easy to check that n is concave,
that is

n [λu + (1− λ)v] ≥ λn(u) + (1− λ)n(v)
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Theorem 1.2. If u, v ∈M , λ ∈ [0, 1] we have

e [λu + (1− λ)v] ≥ λe(u) + (1− λ)e(v)

and if λ ∈ (0, 1) we have equality iff u = v.

Let M ×M be the set of probability measures on N×N.
Then u ∈M ×M if u = {uij : i, j ∈ N}, uij ≥ 0,∑
uij = 1. As before

e(u) =
[
1− ||u||2

]1/2
=
(

1−
∑

u2ij

)1/2
Also, e(u) = 0 iff u is a point measure. If v, w ∈M we
define u = v × w ∈M ×M by uij = viwj. We say
u ∈M ×M is factorized, if u = v × w for some v, w ∈M .
If u is not factorized, then u is entangled. Notice that if
e(u) = 0 then u is factorized. The converse does not hold
because there are factorized u ∈M ×M that are not point
measures. This does not hold in quantum mechanics and
gives an important difference between quantum mechanics
and the classical theory.

Example 2. (a) Let u ∈M ×M be u11 = u12 = 1/2.
Then e(u) = 1/

√
2 but u is factorized. (b) Let u ∈M ×M

be u11 = u12 = u22 = 1/3. Then e(u) =
√

2/3 and u is
entangled.
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2 Quantum Statistics

Let H be a complex, finite-dimensional Hilbert space. A
pure state is a one-dimensional projection Pφ = |φ〉〈φ| on
H . A unit vector φ ∈ H is a vector state. A context is a set
of mutually orthogonal pure states Pφi such that∑
Pφi = I . Equivalently, a context is an orthonormal basis

{φi} of vector states. A context is a complete set of minimal
nonzero sharp events. There are uncountably many contexts
for a quantum system. For a classical system described by
N, the minimal nonzero sharp events are the points of N so
the only context is N itself.

Let L(H) be the set of linear operators on H . For
A ∈ L(H) define |A| = (A∗A)1/2 ≥ 0. A state is a
ρ ∈ L(H) such that ρ ≥ 0, tr(ρ) = 1. Denote the set of
states by S(H). If ρ ∈ S(H) and A ∈ L(H) the
ρ-expectation of A is Eρ(A) = tr(ρA) and the ρ-variance of
A is

Vρ(A) = Eρ

[
|A− Eρ(A)I|2

]
In particular, for a pure state Pφ

Eφ(A) = EPφ(A) = 〈φ,Aφ〉

Vφ(A) = VPφ(A) =
〈
φ, |A− 〈φ,Aφ〉I|2 φ

〉
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The complex vector space L(H) becomes a Hilbert space
under the H-S inner product 〈A,B〉 = tr(A∗B). The H-S
norm becomes

||A|| = [tr(A∗A)]1/2 =
[
tr(|A|2)

]1/2
Theorem 2.1. (a) Vρ(A) = Eρ

(
|A|2

)
− |Eρ(A)|2

(b) |Eρ(A)|2 ≤ Eρ

(
|A|2

)
and Vρ(A) = 0 iff Aρ1/2 = cρ1/2

for some c ∈ C.

Corollary 2.2. Vφ(A) =
〈
φ, |A|2 φ

〉
− |〈φ,Aφ〉|2 and

Vφ(A) = 0 iff Aφ = cφ for some c ∈ C; that is φ is an
eigenvector of A with eigenvalue c.

For a context A = {φi}, A ∈ L(H) is measurable with
respect to A if APφi = PφiA for all i. Then Aφi = Eφi(A)φi
for all i. The only operators accurately described by A are
operators measurable with respect to A. We define the
context coefficient of A with respect to A by

cA(A) =
[∑

Vφi(A)
]1/2

By Corollary 2.2, cA(A) = 0 if A is measurable with respect
to A. We consider cA(A) as an indicator of how close A is to
being measurable with respect to A. Notice that A is
normal (AA∗ = A∗A) iff cA(A) = 0 for some context A.
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For A ∈ L(H) and context A = {φi} we can write

A =
∑
i

〈φi, Aφi〉|φi〉〈φi| +
∑
i 6=j

〈φi, Aφj〉|φi〉〈φj|

We define the linear maps LA, RA : L(H)→ L(H) by

LA(A) =
∑
i

〈φi, Aφi〉|φi〉〈φi|

RA(A) =
∑
i 6=j

〈φi, Aφj〉|φi〉〈φj|

Then A = LA(A) + RA(A) and we call LA the context map
and RA the residual map. Notice that LA preserves
self-adjointness, positivity and states. In fact, LA is a
completely positive map and is a special case of a quantum
channel. Also LA(A) is measurable with respect to A iff
LA(A) = A or equivalently RA(A) = 0.

Theorem 2.3. For any A ∈ L(H) and context A,
||RA(A)|| = cA(A).

Thus, cA(A) = ||A− LA(A)|| so cA(A) is a measure of
the closeness of A to LA(A).
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3 Quantum Entanglement

We incorporate Section 1 and Section 2 to develop a general
theory of quantum entanglement. We restrict attention to
bipartite systems. Let H1, H2 be finite-dimensional complex
Hilbert spaces and let H = H1 ⊗H2. A state ρ ∈ S(H) is
factorized if there exist ρ1 ∈ S(H1), ρ2 ∈ S(H2) with
ρ = ρ1 ⊗ ρ2. ρ ∈ S(H) is separable if ρ =

∑
λiρi ⊗ σi,

λi ≥ 0,
∑
λi = 1, ρi ∈ S(H1), σi ∈ S(H2). If ρ ∈ S(H) is

not separable, ρ is entangled. A vector state ψ ∈ H is
factorized if there exist vectors φ1 ∈ H1, φ2 ∈ H2 with
ψ = φ1 ⊗ φ2. If ψ is not factorized, ψ is entangled.

Lemma 3.1. If |ψ〉〈ψ| ∈ S(H) is a pure state, the
following statements are equivalent (a) |ψ〉〈ψ| is
factorized. (b) |ψ〉〈ψ| is separable. (c) ψ is factorized.

Let A = {φi}, B = {ψi} be contexts for H1, H2 with
dimH1 = dimH2 = n and let

Mn = {λ ∈M : supp(λ) ⊆ {1, 2, . . . , n}}
If λ ∈Mn we call (λ,A,B) an entanglement and
(Mn,A,B) an entanglement system.

Corresponding to E = (λ,A,B) we have a vector state

ψE =
∑√

λi φi ⊗ ψi ∈ H1 ⊗H2

a pure state PE = Pψe, a separable state

ρE =
∑

λiPφi⊗ψi =
∑

λiPφi ⊗ Pψi
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and an entanglement operator

BE =
∑
i 6=j

√
λiλj |φi〉〈φj| ⊗ |ψi〉〈ψj|

From Section 1, since λ ∈M we have defined e(λ). We use
this to define the entanglement numbers

e(ψE) = e(PE) = e(λ)

Conversely, if ψ ∈ H1 ⊗H2 is a vector state, then there
exists a Schmidt decomposition (λ,A,B) where λ ∈Mn is
unique and ψ =

∑√
λi φi ⊗ ψi. Thus, ψ determines an

entanglement E = (λ,A,B) such that ψ = ψE although A,
B are not unique. We then have

PE = |ψE〉〈ψE| = ρE + BE

We consider ρE as the separable part and BE as describing
the entangled part of PE. Letting

D = A⊗ B = {φi ⊗ ψj}
be the corresponding context for H = H1⊗H2 we have that

PE = LD(PE) + RD(PE)

Where LD and RD are the context and residual maps of
Section 2. Then ||BE|| = ||PE − ρE|| gives a measure of the
entanglement of PE. The next theorem shows that our three
entanglement measures coincide.

Theorem 3.2. CD(BE) = ||BE|| = e(ψE)
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Let E = (α,A,B), F = (β,A,B) be entanglements
belonging to the entanglement system (Mn,A,B). We have
the corresponding vector states ψE =

∑√
αi φi ⊗ ψi,

ψF =
∑√

βi φi ⊗ ψi. For λ ∈ (0, 1) we have the
entanglement

G =
(
λα + (1− λ)β,A,B

)
and the vector state

ψG =
∑√

λαi + (1− λ)ηi φi ⊗ ψi

By Theorem 1.2 we have

e(ψG) = e
[
λα + (1− λ)β

]
≥ λe(α) + (1− λ)e(β)

= λe(ψE) + (1− λ)e(ψF )

Example 3. Let (M3,A,B) be an entanglement system
with A = {φi}, B = {ψi}. Define the vector states

α = 1√
2
ψ1 ⊗ ψ1 + 1√

2
φ2 ⊗ ψ2

β = 1√
3
φ1 ⊗ ψ1 + 1√

3
φ2 ⊗ ψ2 + 1√

3
φ3 ⊗ ψ3

γ = 1√
2
φ1 ⊗ ψ1 + 1√

3
φ2 ⊗ ψ2 + 1√

6
φ3 ⊗ ψ3

δ = 1√
3
φ1 ⊗ ψ1 + 1

3 φ2 ⊗ ψ2 +
√

7
9 φ3 ⊗ ψ3

As in Example 1, e(α) = 1/
√

2, e(β) =
√

2/3,

e(γ) =
√

11/81, e(δ) =
√

30/9 and we have

e(δ) < e(α) < e(γ) < e(β)
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Until now we considered the entanglement number for a
pure state Pφ. We next discussed mixed states. If ρ is not
pure, then ρ has an uncountable number of decompositions
ρ =

∑
λiPi, λi > 0,

∑
λi = 1 where Pi are pure states.

Also ρ has a spectral decomposition in which the Pi are
mutually orthogonal pure states.

Example 4. Let H = C2 ⊗ C2, {φ1, φ2} a context for C2

and define φ = 1√
2

(φ1 + φ2). Consider the separable state

ρ = 1
2 (|φ⊗ φ〉〈φ⊗ φ| + |φ1 ⊗ φ1〉〈φ1 ⊗ φ1|)

The nonzero eigenvalues of ρ are 1/4 and 3/4 with
eigenvectors

ψ1 = 1
2
√
3

[(3φ1 + φ2)⊗ φ1 + (φ1 + φ2)⊗ φ2]
ψ2 = 1

2 [(φ2 − φ1)⊗ φ1 + (φ1 + φ2)⊗ φ2]
The unique spectral decomposition of ρ is

ρ = 1
4 Pψ1 + 3

4 Pψ2

It is easy to check that ψ1 and ψ2 are entangled.

Example 4 shows that a spectral decomposition cannot be
used to determine an entanglement number for a mixed
state. Indeed, since ρ is separable, its entanglement number
should be zero, yet e(Pψ1), e(Pψ2) > 0.
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We now define the entanglement number for a mixed
state ρ. Suppose ρ =

∑
λiPi, λi > 0,

∑
λi = 1, Pi 6= Pj,

i 6= j is a decomposition of ρ into pure states Pi. Let
A = {Pi} and define eA(ρ) =

∑
λie(Pi). We define the

entanglement number e(ρ) by

e(ρ) = inf
A

[eA(ρ)] (1)

Since a pure state has the unique decomposition P = P , (1)
reduces to the usual definition of entanglement number for
pure states. We say that the infimum in (1) is attained if
there exists an A such that e(ρ) = eA(ρ).

Theorem 3.3. The infimum e(ρ) is attained for some A.

Theorem 3.4. A state ρ is separable iff e(ρ) = 0.

Theorem 3.5. e(ψ) is continuous in the norm topology
of H.

It is an open problem whether e(ρ) is continuous in the
operator topology of H . We conjecture that this is true.
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