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Starting point: connection to Paul’s work

General topic - joint measurements of unsharp observables (as explained to some
extent in Pekka’s talk and 1)
Noise bounds for joint measurability 2

Geometric structure of quantum effects 3 4

Comment: most of Paul’s work on operational quantum mechanics is directly
relevant for the study of quantum information and correlations — regardless of
whether one agrees with (or cares about) the philosophy of unsharp reality and
individual state interpretation.

1J. Kiukas, P. Lahti, J.-P. Pellonpaa, K. Ylinen, FOOP special issue 2019
2P. Busch, T. Heinosaari, J. Schultz, N. Stevens, 2013
3P. Busch, S.P. Gudder, LMP 1999
4P. Busch, H.-J. Schmidt, Quant. Inf. Proc. 2010



Outline

Basic idea and some motivation
I Context: joint measurability (compatibility) / steering under quantum noise5 6
I Problem: incompatibility vs subspace compatibility ' quantum coherence?
I Coherence understood on the spatial level (as opposed to noncommutativity)
I Added motivation: steering in strongly correlated spin networks

Method: subspace constraints for positivity
I Strength of an effect along a ray7 - Schur complements and complementarity8
I Positivity constraints in term of the strength function
I Coherent extension of subspace observables

Coherent extension of subspace models for joint measurability
I General idea
I One systematic method (works in some cases)
I Application: loss of incompatibility due to decoherence + subspace noise

5J. Kiukas, C. Budroni, R. Uola, J.-P. Pellonpaa, PRA 2017
6T. Heinosaari, J. Kiukas, D. Reitzner, JPA 2017
7P. Busch, S.P. Gudder, LMP 1999
8J. Kiukas, P. Lahti, J.-P. Pellonpaa, K. Ylinen, FOOP special issue 2019



Motivation: joint measurability and EPR-steering

Fix a quantum state σ and outcome space Ω. A (σ-consistent) ensemble is a family
of states (σω)ω∈Ω plus a probability measure µ such that

∫
Ω σωdµ(ω) = σ.

An assemblage is a set {(σω|x, µx)}x of ensembles. It is non-steerable9 if there is an
ensemble ((ρg)g∈G , µ) and probability densities ω 7→ Dx(ω, g) w.r.t. µx, such that

σω|x =
∫
Dx(ω, g) ρg µ(dg), for each ω, x (trace class Bochner integral)

Ensemble-measurement duality10
∫
U
σωdµ(ω) = σ

1
2F (U)σ 1

2

I 1-1 between ensembles (σω , µ) and observables (normalised POVMs) F
I Operational meaning through Bayes theorem (inversion of conditional probabilities)
I Works in separable Hilbert spaces due to Radon-Nikodym property of the trace class

; A set of observables {Ex} is jointly measurable (compatible) iff the assemblage
{(σω|x, µx)}x given by

∫
U
σω|xdµx(ω) = σ

1
2F (U)σ 1

2 and µx(·) = tr[Ex(·)σ] is
non-steerable11 12.

The ensemble ρg of hidden states corresponds to the joint observable G via∫
Z
ρg dµ(g) = σ

1
2G(Z)σ 1

2 , and is called the (classical) model for {Ex}.
9H.M. Wiseman, S.J. Jones, A.C. Doherty, PRL 2007
10used independently of steering e.g. in Dall’Arno, D’Ariano, Sacchi, PRA 2011
11Uola, Moroder, Guhne, PRL 2014; Quintino, Vertesi, Brunner, PRL 113
12Uola, Budroni, Guhne, Pellonpaa, PRL 2015; Kiukas, Budroni, Uola, Pellonpaa, PRA 2017



Motivation: subspace models for joint measurability / steering

Let H0 be a (closed) subspace of a Hilbert space H with inclusion V0 : H0 → H.

Definition
(a) A setM of observables on H are said to be subspace compatible (w.r.t H0) if the

set of subspace observables {X 7→ V ∗0 F (X)V0 | F ∈M} is compatible.
(b) Their joint observable G is then called a subspace model forM.

Obviously,M is subspace compatible if it is compatible.

Problem (Extension of subspace models)
Find constraints under which a given subspace model extends to a joint observable in the
full space.

Motivation:
Subspace models are easier to find (smaller dimension)
Could be implemented iteratively to solve the full problem

I Probably not very efficient in general.
I Could be useful in cases where the subspace split is natural / where models are

expected to have specific structure.

Two obvious applications: decoherence and subspace noise



Motivation: subspace models and (de)coherence

I only look at the simplest case: H0 has codimension one (so dimH0 = 1).
The “block” form is useful: any H ∈ B(H) = B(H⊥0 ⊕H0) can be written as

H =
(
p 〈ψ|
|ψ〉 F

)
ψ ∈ H0 describes coherence between the subspaces.

Definition
A setM of observables is called incompatible due to coherence (w.r.t. H0) if it is
incompatible but subspace compatible.

Problem
IfM is incompatible due to coherence, how much decoherence is needed to break the
incompatibilitya ofM?

aIncompatibility breaking channels (IBC) introduced in [Heinosaari, Kiukas, Reitzner, JPA 2015]



Motivation: subspace models and (de)coherence

Problem
IfM is incompatible due to coherence, how much decoherence is needed to break the
incompatibilitya ofM?

aIncompatibility breaking channels (IBC) introduced in [Heinosaari, Kiukas, Reitzner, JPA 2015]

Formally:
Def: A decoherence semigroup (w.r.t. H0) is a (continuous) semigroup [0, 1] 7→ Λr
of quantum channels such that Λ1 = id and (I−P0)Λ0(H)P0 = 0 for all H ∈ B(H).
Def: The subspace H0 is decoherence-free w.r.t a channel Λ if B(H0) is included in
the fixed point space of Λ.
If Λr is a decoherence semigroup w.r.t. a decoherence-free subspace H0, andM is
incompatible due to coherence w.r.t H0, then

r0 := sup{r ∈ [0, 1] | Λr(M) compatible}

is the minimal amount of decoherence needed to break incompatibility.
Basic examples are Hadamard (Schur) multiplication channels - simplest case:

Λr
((

p 〈ψ|
|ψ〉 F

))
:=
(

p r〈ψ|
r|ψ〉 F

)



Motivation: subspace models and (de)coherence

A decoherence semigroup which also effects subspace noise is given by the amplitude
damping channels

Λr
((

p 〈ψ|
|ψ〉 F

))
=
(

p r〈ψ|
r|ψ〉 r2F + (1− r2)pI

)
.

Subspace incompatibility is lost first (due to mixing with a trivial observable), while
overall incompatibility is lost (possibly later) due to decoherence.
Two critical parameter values:

rc := sup{r ∈ [0, 1] | Λr(M) is compatible}
rsc := sup{r ∈ [0, 1] | Λr(M) is subspace compatible}

rc ≤ rsc.

Problem
Given a setM of incompatible observables, how large is the gap between rc and rsc?

Note: qubit amplitude damping is entanglement-breaking iff r = 0, with (diamond
norm) distance from nearest EBC at least r2/2 13 - the IBC problem is nontrivial.

13F. Leditzky, E. Kaur, N. Datta, M. M. Wilde PRA 97, 012332 (2018)



Extra motivation for qubit amplitude damping: steering in spin networks

Strongly interacting network with N qubits and Hamiltonian H.
I Assume that the total spin commutes with H so each K-excitation sector is invariant.
I Restrict to the subspace of (at most) one excitation.
I Alice has access to spin A of the chain, Bob has another (distant) spin B.

State and entanglement transfer in such systems studied a lot 14 15 16

Problem
Is this entanglement good enough for quantum steering across the chain?

Excitation transfer is described by qubit amplitude damping 17

; The steering problem reduces to the IBC problem for the amplitude damping
channel.

The IBC problem for amplitude damping is motivated by “practical” applications.

14M. Christandl, N. Datta, A. Ekert, A. J. Landahl, PRL 92, 187902 (2004)
15T. J. Osborne, N. Linden, PRA 69, 052315 (2004)
16M. B. Plenio, F. L. Semiao, New J. Phys. 7 73 2005
17S. Bose, PRL 91, 207901 (2003)
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Strength of an effect along a ray22

For any effect E and ψ ∈ H define the strength of E along ψ by
λ(E,ψ) = sup{λ ≥ 0 | λ|ψ〉〈ψ| ≤ E}

Theorem

(a) λ(E,ψ) > 0 iff ψ ∈ ranE
1
2 , in which case λ(E,ψ) = ‖E−

1
2 ψ‖−2.

(b) For each p ∈ (0, 1] and ψ ∈ H0, the set

Fp,ψ := {E ≥ 0 | λ(E,ψ) ≥ 1/p}

is a convex cone.

I Note: if ψ ∈ ranE ⊂ ranE
1
2 then λ(E,ψ) = 〈ψ|E−1ψ〉−1.

Proposition (Two effects along the same ray)
For two effects E,F , the following are equivalent:
(i) min{λ(E,ψ), λ(F, ψ)} = 0 for all ψ ∈ H.

(ii) ranE
1
2 ∩ ranF

1
2 = {0}.

(iii) there is no ψ ∈ H such that |ψ〉〈ψ| ≤ E and |ψ〉〈ψ| ≤ F
(iv) E and F are complementarya

aAs in Pekka’s talk - see the FOOP special issue paper by Kiukas, Lahti, Pellonpaa, Ylinen
22P. Busch, S. P. Gudder, Lett. Math. Phys. 47 329 (1999)



Another perspective - subspace constraints for positivity

Let H0 ⊂ H be a subspace with codimension 1. Any selfadjoint H ∈ B(H) can be
decomposed along the direct sum H⊥0 ⊕H0:

H =
(
p 〈ψ|
|ψ〉 F

)
, p ∈ R, ψ ∈ H0, F ∈ B(H0) selfadjoint.

If d := dimH0 <∞ we define the Schur complements:
H/p := F − p−1|ψ〉〈ψ| (for p > 0), H/F := p− 〈ψ|F−1ψ〉 (for F > 0).

Observation (The strength function and Schur complements)
H/F = p− λ(F,ψ)−1 (and this works also for d =∞).

I also use the “determinant” M(H) = (H/p) p = pF − |ψ〉〈ψ|.

Proposition (Subspace constraints for positivity)
The following are equivalenta:
(i) H ≥ 0
(ii) p ≥ 0 and M(H) ≥ 0
(iii) F ≥ 0 and λ(F,ψ) ≥ p−1

aStandard for matrices, general case: [Paulsen, Completely bounded maps and operator algebras]



Subspace constraints on states and effects

Any state on H is of the form

ρ =
(
q 〈ϕ|
|ϕ〉 (1− q)ρ0

)
, q ∈ [0, 1], ρ0 a state on H0, λ(ρ0, ϕ) ≥ q−1 − 1.

The vector ϕ describes the coherence of the state (w.r.t H0).
Any effect on H is of the form

H =
(
p 〈ψ|
|ψ〉 F

)
, p ∈ [0, 1], ψ ∈ H0, F ∈ Fp,ψ, I− F ∈ F1−p,ψ.

Recall: Fp,ψ := {E ≥ 0 | λ(E,ψ) ≥ 1/p}
We call H coherent if ψ 6= 0, and ‖ψ‖2 the coherence of H. Note that ψ extracts
the coherences in states operationally via

2Re〈ψ|ϕ〉 = tr[ρH]− qp− (1− q)tr[ρ0F ]



Extension of subspace effects

For each p ∈ R, ψ ∈ H0 define an extension map Ip,ψ : B(H0)→ B(H) via

Ip,ψ(F ) =
(
p 〈ψ|
|ψ〉 F

)
.

If p > 0, Ip,ψ is positivity preserving precisely on the cone
Fp,ψ := {E ≥ 0 | λ(E,ψ) ≥ 1/p}.
I− Ip,ψ(F ) = I1−p,−ψ(I− F ).

Proposition (Extension of a single effect)
Let F be an effect on the subspace H0. Given ψ ∈ H0, there exists a 0 < p < 1 such
that Ip,ψ(F ) is an effect, iff

λ(F (I− F ), ψ) ≥ 1 or, equivalently ‖[F (I− F )]−
1
2ψ‖2 ≤ 1.



Joint extensions and complementarity

Consider a pair of effects E,F on the subspace H0.
Definition (as in Pekka’s talk): effects E,F are complementary if there is no effect
A 6= 0 such that A ≤ E and A ≤ F .
E,F are complementary iff ranE 1

2 ∩ ranF 1
2 = {0}

Proposition (Joint coherent positive extensions)
The following are equivalent:
(i) There is no coherent extension Ip,ψ such that Ip,ψ(E) ≥ 0 and Ip,ψ(F ) ≥ 0.
(ii) E and F are complementary.

supψ∈H0 min{λ(E,ψ), λ(F,ψ)} = inf{p | ψ ∈ H0, Ip,ψ(E) ≥ 0, Ip,ψ(F ) ≥ 0}
“quantifies” deviation from complementarity.

Proposition (Joint coherent effect extensions)
The following are equivalent:
(i) There is no coherent extension Ip,ψ such that Ip,ψ(E) and Ip,ψ(F ) are effects.
(ii) The effects E(I− E) and F (I− F ) are complementary.



Explicit coordinate form of effect extensions for d < ∞

For each unit vector φ ∈ H0, define

σ1
φ :=

(
0 〈φ|
|φ〉 0

)
σ2
φ :=

(
0 −i〈φ|
i|φ〉 0

)
, σ3

φ :=
(

1 0
0 −|φ〉〈φ|

)
Let F be any rank r subspace effect with eigendecomposition F =

∑r

i=1 λi|φi〉〈φi|.
Given any ψ ∈ ranF and p ∈ [0, 1], define x0 = (p+ tr[F ])/(1 + r), xi3 = (x0 − λi),
and write ψ =

∑
i
(xi1 + ixi2)φi. The coherent effect extension is

Ip,ψ(F ) =
(
p 〈ψ|
|ψ〉 F

)
= x0I +

r∑
i=1

3∑
k=1

xikσ
k
φi
.

The strength function / Schur complement has an explicit form:

Ip,ψ(F )/F = p− λ(F,ψ)−1 = x0 +
r∑
i=1

x0x
i
3 − [xi1]2 − [xi2]2 − [xi3]2

x0 − xi3
.

Note: in the qubit case (d = r = 1) this reduces to (x0 − x3)−1(x2
0 − x2

1 − x2
2 − x2

3)
(Minkowski distance divided by x0 − x3)

Problem
Can we generalise the qubit effect compatibility characterisation given in a?

aP. Busch, H.-J. Schmidt, Quant. Inf. Proc. 9 143 (2010)



Maximally coherent effect extensions

Consider the extension map

Ip,ψ(F ) =
(
p 〈ψ|
|ψ〉 F

)
.

Proposition (Maximally coherent effect extensions)
(a) The coherence of an effect extension Ip,ψ(F ) is at most ‖ψ‖2 = f0(1− f0), where

f0 is the point in the spectrum of F closest to 1/2.
(b) The maximum is attained (approximately) when ψ is a corresponding (approximate)

eigenvector, and p = 1− f0.
(c) If Ip,ψ(F ) is maximally coherent effect extension of F then λ(F,ψ) = p−1,

λ(I− F,ψ) = (1− p)−1, and rankIp,ψ(F ) = rank(F ).
(d) A maximally coherent effect extension of F is a projection iff either F or I− F has

rank one.
(e) F has a coherent effect extension iff F is not itself a projection.



Extension of subspace observables

Fix an outcome set Ω with σ-algebra A. The Hilbert space H is separable.
Task: find constraints for extending an observable F : A → B(H0) into an
observable on the full space.
Take any probability measure µ : A → B(H0) and a measurable function
Ψ : Ω→ H0 such that

∫
Ω Ψ(ω)dµ(ω) = 0.

Define the µ-continuous vector measure Ψ(X) =
∫
X

Ψ(ω)dµ(ω) and the set of
extensible subspace observables

Mµ,Ψ = {F : A → B(H0) | F (X) ∈ Fµ(X),Ψ(X) for all X ∈ A}.

For each F ∈Mµ,Ψ define the extension Iµ,Ψ through

[Iµ,Ψ(F )](X) = Iµ(X),ψ(X)(F (X)) =
(
µ(X) 〈Ψ(X)|
|Ψ(X)〉 F (X)

)
, X ∈ A.

Note: every observable H : A → B(H) arises in this way from some subspace
observable 23.

23µ-continuity of Ψ is due to the Radon-Nikodym property of H and the positivity constraint.
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Extension of subspace models - idea and a simple method

Fix two extension maps Iµ,Ψ and Iµ′,Ψ′ .
Assuming F, F ′ are compatible subspace observables with outcome sets Ω,Ω′, and a
joint observable G (on product space), we look for a joint observable for the
extensions Iµ,Ψ(F ) and Iµ′,Ψ′ (F ′).

Definition
The observable G̃ := Iµ×µ′,Ψ×µ′+µ×Ψ′ (G) is called the coherence-additive model for
Iµ,Ψ(E) and Iµ′,Ψ′ (F ).

Note: in the discrete case, e.g. µ({i}) = pi, Ψ({i}) = ψipi, and

G̃ij =
(

pip
′
j pip

′
j〈ψi + ψ′j |

pip
′
j |ψi + ψ′j〉 Gij

)
It has the correct marginals: e.g. using Ψ′(Ω′) = 0 we get

(Ψ× µ′ + µ×Ψ′)(X × Ω′) = Ψ(X)µ′(Ω′) + µ(X)Ψ′(Ω′) = Ψ(X).

; The model is valid exactly when all positivity constraints are fulfilled:

λ
(
G(Z), (Ψ× µ′ + µ×Ψ′)(Z)

)
≥ (µ×µ′)(Z)−1 (whenever Z is not µ× µ′-null).



Extension of subspace models - idea and a simple method

Definition
G̃ := Iµ×µ′,Ψ×µ′+µ×Ψ′ (G) is the coherence-additive model for Iµ,Ψ(E) and Iµ′,Ψ′ (F ).

The model is valid exactly when all positivity constraints are fulfilled:
λ
(
G(Z), (Ψ× µ′ + µ×Ψ′)(Z)

)
≥ (µ× µ′)(Z)−1 for all Z

or, equivalently, M (Iµ×µ′,Ψ×µ′+µ×Ψ′ (G)(Z)) ≥ 0 for all Z .

Proposition (Example of the coherence-additive model)
Define the operator measure G on H0 by

G(X ×X ′) = µ′(X ′)F (X) + µ(X)F ′(X ′)− µ(X)µ(X ′)I
+ |Ψ(X)〉〈Ψ′(X ′)|+ |Ψ′(X ′)〉〈Ψ(X)|.

For each X,X ′ of nonzero µ, µ′-measure, define the positive operator

Lµ,µ
′

Ψ,Ψ′ [F, F ′](X,X ′) := M(Iµ,Ψ(F )(X))
µ(X)2 +

M(Iµ′,Ψ′ (F ′)(X ′))
µ′(X ′)2 .

If Lµ,µ
′

Ψ,Ψ′ [F, F ′](X,X ′) ≥ I for all X,X ′, then G is a joint subspace observable for F, F ′,
and the coherence-additive model is a joint observable for Iµ,Ψ(F ) and Iµ′,Ψ′ (F ′).



Application: decoherence + subspace smearing

The amplitude damping channel is given for each r ∈ [0, 1] by

Λr
((

p |ψ〉
|ψ〉 F

))
=
(

p 〈rψ|
|rψ〉 r2F + (1− r2)pI

)
.

It has d+ 1 Kraus operators

K0 =
(

1 0
0 rI

)
, Ki =

(
0
√

1− r2〈φi|
0 0

)
,

where {φi} is any basis of H0.
It forms a semigroup 28 ΛrΛr′ = Λrr′ for all r, r′ ∈ [0, 1].
It forms a decoherence semigroup since Λ1 = Id and Λ0(H) = tr[(I− P0)H]I.
Hence29, for any setM of observables there is a unique critical point rc such that
Λr breaks the incompatibility ofM iff r ≤ rc.

28qubit case mentioned e.g. in V. Giovannetti, R. Fazio PRA 71, 032314 (2005)
29T. Heinosaari, J. Kiukas, D. Reitzner, JPA 2015



Application: decoherence + subspace smearing

The amplitude damping channel is given for each r ∈ [0, 1] by

Λr
((

p 〈ψ|
|ψ〉 F

))
=
(

p r〈ψ|
r|ψ〉 r2F + (1− r2)pI

)
.

Let F be a subspace observable, µ a probability measure (with same outcomes), and

Fµλ (X) := λF (X) + (1− λ)µ(X)I0, for each λ ∈ [0, 1],

their usual mixture of F with a trivial observable.

Observation
Suppose that Iµ,Ψ(F ) is a coherent extension of F (with some choice of Ψ). Then

Λr(Iµ,Ψ(F )) = Iµ,rΨ(Fµ
r2 ).

Explicitly:

Λr
((

µ(X) 〈Ψ(X)|
|Ψ(X)〉 F (X)

))
=
(

µ(X) r〈Ψ(X)|
r|Ψ(X)〉 Fµ

r2 (X)

)
.

Hence, amplitude damping is a coherent extension of trivial subspace noise.



Application: decoherence + subspace smearing

The amplitude damping channel is a coherent extension of subspace noise:

Λr(IµΨ[F ])(X) = Λr
((

µ(X) 〈Ψ(X)|
|Ψ(X)〉 F (X)

))
=
(

µ(X) r〈Ψ(X)|
r|Ψ(X)〉 Fµ

r2 (X)

)
.

For any F, F ′, the mixtures Fµ
r2 and (F ′)µ

′

r2 are compatible for r2 ≤ 1
2

30.
Can the extensions Λr(IµΨ[F ]) and Λr(IµΨ[F ]′) be incompatible in this case?

Proposition (Coherence-additive model for amplitude dampinga)
aThis generalises the qubit version [J. Kiukas, C. Budroni, R. Uola, J.-P. Pellonpaa, PRA 2017]

Λr(IµΨ[F ]) and Λr(IµΨ[F ′]) have a coherence-additive model for

r2 ≥
(

2− inf
X,X

inf spectrum (Lµ,µ
′

Ψ,Ψ′ [F, F ′](X,X ′))
)−1

.

Proof.
We have M(Λr(IµΨ[F ](X))) = r2M(IµΨ[F ](X)) + (1− r2)µ(X)2I and hence

Lµ,µ
′

rΨ,rΨ′ [Fµr2 , (F ′)µ
′

r2 ](X,X ′) = r2Lµ,µ
′

Ψ,Ψ′ [F, F ′](X,X ′) + 2(1− r2)I.

By the previous Prop. the coherence-additive model works when this is ≥ I.
30P. Busch, T. Heinosaari, J. Schultz, N. Stevens, 2013



Application: 2-IBC problem for amplitude damping

Definition
A channel is Λ is 2-IBCa if {Λ(F ),Λ(F ′)} is compatible for any pair of observables F, F ′.

aT. Heinosaari, J. Kiukas, D. Reitzner, JPA 2015

Proposition (Prev. slide)
Λr(IµΨ[F ]) and Λr(IµΨ[F ′]) have a coherence-additive model for

r2 ≥
(

2− inf
X,X

inf spectrum (Lµ,µ
′

Ψ,Ψ′ [F, F ′](X,X ′))
)−1

.

Corollary
Λr is 2-IBC if and only if 0 ≤ r2 ≤ 1

2 .

Proof.
By the previous Proposition, Λr is 2-IBC for all r2 ≤ 1

2 . For the converse, take any unit
vector φ. Then Λr( 1

2 (I + σkφ)) = 1
2 (I + rσkφ) +Rr for k = 1, 2, where Rr is supported in

I− |φ〉〈φ|, so they are incompatible for r2 ≥ 1
2 by Paul’s unbiased qubit criteriona.

aP. Busch, Phys. Rev. D 33, 2253 (1986)



Summary

I studied the difference between compatibility and subspace compatibility for
subspaces of co-dimension one.

Effects decomposed in the block form(
p 〈ψ|
|ψ〉 F

)
This is an effect iff F is an effect and λ(F,ψ) ≥ p−1, λ(I−F,ψ) ≥ (1− p)−1, where

λ(E,ψ) = sup{λ ≥ 0 | λ|ψ〉〈ψ| ≤ E}
is the strength of E along ψ

I discussed one simple extensible subspace model - works for amplitude damping
(decoherence + trivial subspace noise)

Qubit case also motivated by steering in spin networks
Some open questions:

I Generalisations of compatibility criteria for pairs of qubit effects
I Precise connections between quantum coherence and incompatibility
I Iterative search for joint measurements?

Thank you


