Preparation uncertainty for multi-slit interferometry

Oliver Reardon-Smith

University of York

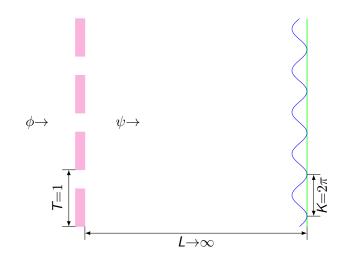
ors510@york.ac.uk

June 18, 2019

Joint work with Paul Busch and Jukka Kiukas

Introduction		
000000		

Setup



Introduction				
000000	0000	0000000	00000	00

Background

- Modular momentum observable Aharonov, Pendleton, Petersen (1969)
- $(P_{MOD}\hat{\varphi})(p) = (p 2k\pi)\hat{\varphi}(p)$, where $(p 2k\pi) \in [-\pi, \pi]$
- We seek a natural "which way" observable

Introduction				
000000	0000	0000000	00000	00

Characterisation by covariance

- Idea: Complementarity for standard P / Q comes from the Fourier transform
- This generalises to locally compact Abelian groups
- \blacktriangleright Dual of a LCA group is the continuous homomorphisms $\mathcal{G} \to \mathbb{T} \subset \mathbb{C}$
- ▶ Denoted \tilde{G}
- Bidual: $\widetilde{\widetilde{G}} \cong G$ (Pontryagin)

Introduction				
000000	0000	0000000	00000	00

Examples

$$\mathbb{R} \cong \mathbb{R}$$
$$f_{y}(x) = e^{ixy}, \quad x, y \in \mathbb{R}$$
$$\widetilde{\mathbb{T}} \cong \mathbb{Z}$$
$$f_{n}\left(e^{i\theta}\right) = e^{ni\theta}, \quad n \in \mathbb{Z}, \theta \in [-\pi, \pi]$$

 \sim

0000000 00000 00000 00000 00000	Introduction				
	0000000	0000	0000000	00000	00

Problem

Spectrum: $\sigma\left(\mathbf{P}_{\textit{MOD}}\right) = \left[-\pi,\pi\right]$ is not an LCA group

Introduction				
0000000	0000	0000000	00000	00

Two solutions

- 1. Identify points π and $-\pi$ and give the topology and group operation of $\mathbb{T} \implies$ dual is \mathbb{Z}
- 2. Consider $[-\pi,\pi]$ embedded in $\mathbb{R} \implies$ dual is \mathbb{R}

Introduction				
000000	0000	0000000	00000	00

Covariance conditions

Circle case:

$$e^{in P_{MOD}} E(k) e^{-in P_{MOD}} = E(k+n), \quad k, n \in \mathbb{Z}$$

Interval case:

$$e^{ix \operatorname{P}_{MOD}} E(X) e^{-ix \operatorname{P}_{MOD}} = E(x + X), \quad x \in \mathbb{R}, X \in \mathcal{B}(\mathbb{R})$$

Metric error ●000		

Uncertainty

- Can't define a mean for distributions on T
- \blacktriangleright No mean \implies no variance
- Use "metric error"¹ for a Borel measure µ on a metric space (X, d)

$$\delta_{\alpha}(\mu) = \left(\inf_{x_0} \int_{X} d(x, x_0)^{\alpha} d\mu(x)\right)^{\frac{1}{\alpha}}$$

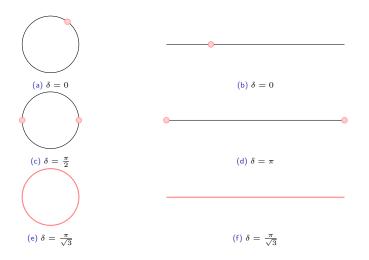
- For α = 2, X = ℝ, d(x, y) = |x − y|, recover standard deviation*
- For α = 2, X = T, d(x, y) = arc length, recover Judge's circular variance²

¹P. Busch, P. Lahti, R.F. Werner, *Measurement uncertainty relations*, J. Math. Phys. 55 042111 (2014)

 2 D. Judge, On the uncertainty relation for L_z and φ , Phys. Lett. 5 129 (1963)

Introduction 0000000	Metric error 0●00	Reduction to cases	Uncertainty relations	Conclusion

Classical examples



Metric error		
0000		

Quantum uncertainty

• Given an observable E and a state ρ define

 $E^{\rho}: \mathcal{B}(X) \to [0,1]$ $E^{\rho}: \mathcal{A} \mapsto \operatorname{tr}(\mathcal{E}(\mathcal{A})\rho)$

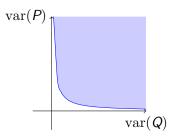
For convenience we also define

$$\begin{split} \delta_{\alpha}(E,\rho) &= \delta_{\alpha}(E^{\rho}) \\ &= \left(\inf_{x_0} \int_{X} d(x,x_0)^{\alpha} \operatorname{tr} \left(E(dx)\rho \right) \right)^{\frac{1}{\alpha}} \end{split}$$

Metric error		
0000		

Goal

- Heisenberg uncertainty relation completely characterises variance preparation uncertainty between Q and P
- Want something similar for P_{MOD} and (some of) the observables obeying the covariance conditions



	Reduction to cases	
	0000000	

Diagonalising P_{MOD}

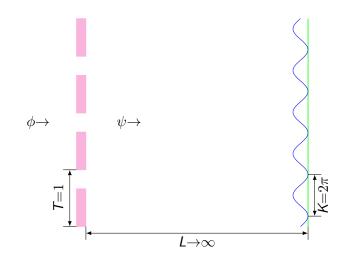
$$U: L^{2}(\mathbb{R}) \to L^{2}([-\pi,\pi],\mathcal{H}_{0}) \simeq L^{2}([-\pi,\pi]) \otimes \mathcal{H}_{0}$$
$$(U\varphi)(p) = \sum_{k \in \mathbb{Z}} \hat{\varphi}(p+2k\pi) |k\rangle$$

$$U \mathbb{P}_{MOD} U^* = M_0 \otimes I,$$

where
$$(M_0\hat{\varphi})(p) = p\varphi(p)$$
, for $\varphi \in L^2([-\pi,\pi])$

	Reduction to cases	
	0000000	

Setup



Introduction	Metric error	Reduction to cases	Uncertainty relations	

Covariant path observables

- Observables obeying the covariance conditions may be characterised
- ▶ (Circle): $E(n) = V^* (E^{P_c}(n) \otimes I) V$, for $n \in \mathbb{Z}$, P_c is the usual differential operator on \mathbb{T}
- ▶ (Interval): $E(X) = V^* J^* (E^P(X) \otimes I) JV$, *P* is the differential operator on \mathbb{R}

$$(J\varphi)(p) = \begin{cases} \varphi(p), & p \in [-\pi, \pi] \\ 0, & \text{else} \end{cases}$$

▶ Where $V: L^2([-\pi, \pi], \mathcal{H}_0) \rightarrow L^2([-\pi, \pi], \mathcal{K}_0)$ is an isometry which commutes with $M_0 \otimes I$

	Reduction to cases	
	0000000	

Further restriction

- Lots of covariant observables
- ▶ We restrict to *variance free* observables³

$$N_{\varphi}(E) := \int_{\mathbb{R}} x^2 \langle \varphi | E(dx) \varphi \rangle - ||E[1]\varphi||^2 \ge 0$$

• Consider only observables such that $N_{\varphi}(E) \equiv 0$

³R. Werner, Dilations of Symmetric Operators Shifted by a Unitary Group J. Funct. Analysis. 92 166 (1990)

	Reduction to cases	
	0000000	

Variance free observables - circle

$$\delta(\boldsymbol{E}, \varphi) = \inf_{\boldsymbol{n} \in \mathbb{Z}} \left| \left| \boldsymbol{E}[1] \boldsymbol{e}^{\boldsymbol{i} \boldsymbol{n} \boldsymbol{P}_{\boldsymbol{M} \boldsymbol{O} \boldsymbol{D}}} \varphi \right| \right|$$

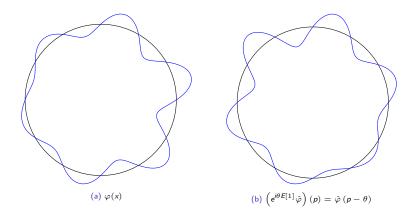
- then E is a spectral measure
- we can choose \mathcal{K}_0 , V such that V is unitary

•
$$E[1] = V^*(P_c \otimes I)V$$
 is self-adjoint

 the spectral measure of P_{MOD} is covariant under shifts generated by E[1]

	Reduction to cases	
	00000000	

Extra covariance - circle



000000 0000 0000000 00000 00			Reduction to cases		
	000000	0000	00000000	00000	00

Variance free observables - interval

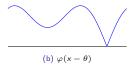
$$\flat \ \delta(\mathbf{E},\varphi) = \inf_{\mathbf{x}\in\mathbb{R}} \left| \left| \mathbf{E}[1] \mathbf{e}^{\mathbf{i}\mathbf{x}\mathbf{P}_{MOD}}\varphi \right| \right|$$

- There are no spectral measure solutions
- ▶ We can still choose V to be unitary to make E variance free
- There is no "extra covariance"

	Reduction to cases	
	0000000	

No extra covariance - interval

(a) $\varphi(x)$



	Uncertainty relations ●0000	

Metric error - circle⁴

- Domain D = { φ ∈ L²([-π, π]) | abs. cont., φ(-π) = φ(π) }
 P_c = -i^d/_{dx}, is self-adjoint on D (as is P²_c)
 δ(E, φ)² = inf_{n∈ℤ} ⟨e^{inM₀⊗I}VUφ| (P²_c ⊗ I) e^{inM₀⊗I}VUφ⟩
 δ(P_{MOD}, φ)² = inf_{p∈[-π,π]} ⟨e^{ipP_c⊗I}VUφ| (M²₀ ⊗ I) e^{ipP_c⊗I}VUφ⟩
- Uncertainty region convex fully characterised by the Legendre transform

$$\delta(\boldsymbol{E}, \varphi)^2 + \alpha \delta(\mathbf{P}_{MOD}, \varphi) \ge \lambda(\alpha), \tag{1}$$

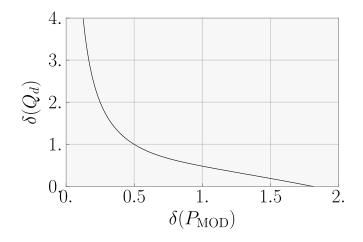
where $\lambda(\alpha)$ is the least eigenvalue of

$$H_{\alpha} = P_c^2 + \alpha M_0^2 \tag{2}$$

⁴P. Busch, J. Kiukas, R.F. Werner, Sharp uncertainty relations for number and angle, J. Math. Phys. (2018)

	Uncertainty relations	

Circle diagram



	Uncertainty relations	

Metric error - interval (1)

Metric error - interval (2)

Extra assumption:

- Fix a position uncertainty for particle on the interval
- Consider the states with minimum "momentum" uncertainty among states with this position uncertainty
- Assume one of these states has position expectation 0

• True if position uncertainty in
$$\left[\sqrt{\frac{\pi^2}{3}-2},\pi\right]$$

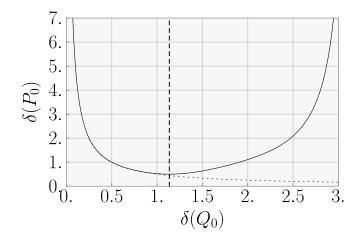
• Even where this is not true the ground states ψ_{α} of H_{α} are states so

$$\{(\delta(M_0,\psi_\alpha),\delta(P_0,\psi_\alpha)|\alpha\in\mathbb{R}\}$$
(3)

upper bounds the boundary curve

	Uncertainty relations	
	00000	

Interval diagram



		Conclusion
		00

Outlook and open questions

- Left hand side of the interval diagram
- Explicit measurement scheme
- Measurement uncertainty
- Different covariance conditions (or a proof that there are none)

		Conclusion
		00

Thank you for your time