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Sequential measurements 1
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Sequential measurements 2

 Consider two sequential energy measurements of

and

 Define ``work“ as the random variable 

such that, e.g.,

 W can also be viewed as a POV-measure and hence as a 
(generalized) observable 



  

Excursion: 1st law

 Let the total system consist of a system S and a heat bath B 
such that

and

 It follows that

 Hence the 1st law W=U+Q holds for the observables

U change in the internal energy          and

Q heat 



  

Framework / Simple case 1




: 


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j | i 

(i,j) j | i p(i)

    

 Outcome set

 Probability function

  

 Conditional probability

●  1st marginal probability



  

Framework / Simple case 2

Y 
 Random variable

 Assumption

 Special random variable

p(i) > 0 for all i 

 J-equation :



  

Framework / Simple case 3

 J-equation   is doubly stochastic

 Proof of :

General assumption:   is doubly stochastic



  

Framework / Simple case 4

 Choose q(j)=
i (i,j)2ndmarginal probability)

 log concave 

That means: 

The Shannon entropy S(p) =  
 i
p(i) log p(i) does not 

decrease between two measurements.



  

Framework / Simple case 5

 Qubit measurements:
 The Shannon entropy is a monotonically decreasing function of 

the distance to the center of the Bloch sphere



  

Framework / Simple case 6

Shannon entropy vs. distance2 to the uniform mixed state /dim: 



  

Framework / Modified case 1

 Is the assumption of  being doubly stochastic 
satisfied in QT ?

   Modified assumption:

Only if d(i) Tr P
i
 =D(j)Tr Q

j 
=1.   Too restrictive !



  

Framework / Modified case 2

   is of  modified doubly stochastic type, i.e.

 modified J-equation:

   Non-decrease of modified Shannon entropy S'(p)between two measurements:



  

Framework / Modified case 3

 W. Pauli:
Über das H-Theorem vom 

Anwachsen der Entropie vom 
Standpunkt der neuen 
Quantenmechanik (1928)

 Proof of S'(p)S'(q)
using the symmetry condition 

following from 
Fermi's Golden Rule



  

Framework / Modified case 4

 Is entropy a (sharp) observable ?

 Fix the self-adjoint operator    log 
1    

and let run through 
all density operators. But then the expectation value of 

Tr ()=Tr(log 
1
) is  the ``cross entropy“ 

and only reduces to the usual entropy if 
1



  

Jarzynski equations 1

 Recall the assumption

 It is satisfied for

where

Let

, hence

and



  

Jarzynski equations 2

 Then the (modified) J-equation entails

 Upon choosing the canonical ensemble

the standard Jarzynski equation 

follows, where W denotes the random variable „work“ 

and



  

Jarzynski equations 3

 Other choices of  yield modified Jarzynski equations 
describing systems in local equilibrium given by

 microcanonical,
 canonical, or

 Application of Jensen's inequality gives 2nd law-like eqs., e.g., 

 grand canonical ensembles.

 But note that S=(U-F) only holds in the thermal equilibrium 
and the Jarzynski equation applies to the non-equilibrium case 



  

Summary

Framework for SM2

 J-equation

q(j) 2nd marginal prob.

``Pauli-scenario“

S'(p)  S'(q)
``Jarzynski-scenario“



  

 Thank you for your attention !
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