General-Purpose Autonomic Computing Framework

User Guide

GPAC 0.13

The GPAC framework is released under the GNU Affero General Public Licence (AGPL)
version 3 or later. The main terms of the GNU AGPL licence are reproduced below for
convenience.

GPAC 1i1s free software: you can redistribute it and/or modify it
under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

GPAC 1s distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General
Public License for more details.

You should have received a copy of the GNU Affero General Public
License along with GPAC. If not, see <http://www.gnu.org/licenses/>.

Copyright © 2009 Radu Calinescu <Radu.Cal inescu@comlab.ox.ac.uk> (University of Oxford)

2

mailto:Radu.Calinescu@comlab.ox.ac.uk

Contents

Lo IEEOAUCTION. ...ttt et ht e et e bt e et e e s bt e et e e sabeeabeesateenbeesseeenneens 4
2. INSEALLALION ...ttt ettt et h ettt eb e bttt et e 5
2.1 Policy engine installation and CONfIGUIAtIONccccvieeiiieeriieeiiee e e e 5
2.2 Admin tool installation and CONfIGUIAtIONcecueeriieriiiiiieiie et 10

3. POLICY €NZINE PATAIMEGLETSeecuvieeeeiieeiiieeciieeeciteeeteeetteesteeesteeesabaeessseeesseeessaesssseesssseessseeessseesnssesennns 12
4. Application development with the GPAC framework............cccoceeviiiiiiiiiienienieeee e 12
L B € 131 1<) 1 10 4 FO OO OO PSR STURRPPUPO 13
T B 170) (0) 7 14 1<) 1 SRR 20
T/ I 5140 (011213 (o) 4 FO PR SRSRRR 21
5. AUAIE ETATL ..ttt et sttt nh e ettt sae e b 25
5.1 ComPlete AUATE tTAILeuvieiieieiieiieeieete ettt e e steeebe e teeesbeeseeesseesaeesseenseassseenseens 25
5.2 FUll POIICY A@LAILS........eeiiieiiieiie ettt et ettt et e et e et esateebeesneeenneans 25
5.3 Policy evaluation steps and POIICY ACLIONScccuieriieiiierieeiienieeieerieereesieeereeseeeereeseessseeseens 26

6. Types of autonomic COMPULING POLICIESvveruvieriiieiieiieeiie sttt ettt et e 28
6.1. Action POLICIES 1N GPACc..oiiiiiiiicieee ettt ettt et e et e s sbe e teeesbeesseeenseenneens 28
6.2. Utility-function policies i GPACcociiiiiiiiiieeieetee ettt 28
6.2.1 Operational MOAEIScc.eiiiieiiieiieiiecit ettt ettt e eteeeaeebeessaeeseessseesseessseensaens 31
6.2.2. Supplying an operational model to the autonomic Manager...........ccoceevvereenerniereeneenieneenne. 32

6.3 Utility policies using PRISM quantitative analysiscccceecveerieeviienieeiiienieeieesieeveeeeesve e 37
RETRIEIICES ...ttt ettt et ettt e e bt e et e et e e eabeebeeeabeenbeesabeenseesnteenseeennas 39
Appendix A. Installing IIS and NET 0N @ SEIVET.......cceeviiriiiiiiieiieeie et eiee et eve e seve e enve e 40
Appendix B. GPAC autonomic computing POIICIESccuerueerueriirieieeienieerieetesieere ettt 41
BT OVEIVIEW ...ttt ettt h ettt e bt et e e st e sb e eab e s st e s bt enbeentenbeenseeneesaeenseeneenees 41
B2 POLICY SYMEAX ...utiiiiiitieeiit ettt ettt ettt et et e et e e et e et e s st e eabeesabeenbeeenseenseesnbeenseennnas 42
B.3 POLICY SCIMANLICSeevieieiieiieeiieeieeeiieetee et et e eteesteeebeesbeessseeseeesseesseessseensaessseesseessseenseessseenseensss 45
BL3.1 POLICY SCOPE ...ttt ettt ettt et et e bt e st e e abeesabeenbeesaeeenseesateenbeesnnes 45
B.3.2 POICY CONAILION ..euviiiiieniiieiiieciieeieeciee ettt ettt et aaeesbeessaeensaesaseesseessseensaessseenseensnes 45
B.3.3 POIICY QCHIOMN ...ttt ettt ettt et et e et e st e e bt e neeeteesateebeesnees 46
Appendix C. Setting up PRISM Within GPACcccoiiiiiiiiecieeeeeeeeee e e 47
Appendix D. Known HMItationsceeuieiiiiiiiiiieiie ettt ettt st e e ebeesaeeenee 48

1. Introduction

The General-Purpose Autonomic Computing (GPAC) framework is intended to reduce the time and
expertise required for the development of autonomic computing applications. GPAC achieves this goal
by reusing software components across application domains, and by assisting the developer in building
those components of an autonomic computing solution that are application specific.

The generic architecture of a GPAC autonomic computing application is detailed in Fig. 1:

1. The system resources in this architecture represent the components of the system to which the
application adds self-management capabilities.

2. The reconfigurable policy engine represents the component that monitors the state of the system
resources and adjusts their configurable parameters in line with the high-level objectives of the
overall systems. These objectives are specified in the form of autonomic computing policies by
the system administrator/user.

3. The manageability adaptors are thin interfaces that enable the policy engine to access the state
and configuration parameters of the system resources.

4. The policy engine admin tool provides a GUI interface that the system administrator can use to
configure the policy engine, e.g., to supply the autonomic computing policies for the system.

The GPAC framework provides a fully operational policy engine (implemented as a .NET web service)
that can be used across applications; and a GUI policy engine admin tool (implemented as an ASP.NET
application). The system resources from Fig. 1 represent pre-existing, legacy components of the
application. Therefore, the only application components that need to be developed are the
manageability adaptors — one adaptor is required for each type of resource in the system, and the
GPAC framework simplifies this task by automating many of steps associated with the implementation
of these manageability adaptors as .NET web services.

Policy engine
admin tool
A

A 4

Reconfigurable policy engine
(autonomic manager)

T~

Manageability adaptor Manageability adaptor
A A
v v

I I
I I
System System
resources resources
(components) (components)

Fig. 1 Architecture of a GPAC autonomic computing application

4

2. Installation

The GPAC framework comprises the components is depicted in Fig. 2:
e adaptor/ contains the base, abstract class specialised by the manageability adaptors.
e client/ contains the ASP.NET policy engine admin tool.
e doc/ contains this user guide.
e engine/ contains the reconfigurable policy engine.
e examples/ contains sample applications.
e metamodel/ contains the meta-model for the system XML models used to configure the
policy engine, as explained later in the user guide.
e thirdParty/ contains the licences of third-party code used by and supplied with GPAC.
e tools/ contains tools used to ease the development of autonomic computing applications.

e COPYING.txt represents the GNU Affero General Public Licence (AGPL) version 3 under
which GPAC is released.
e README.txt contains a brief description of GPAC.

Fil= Edit Wew Favorites Tooks Help
Q Back ~ 2 ? 7) Search ‘[{ . Folders Elv
fddress |5 D:ikmplGPAC 3 o
Folders = Mame
=) tmp ~ | M) adaptor
=l GPAC b client:
{51 adaptar b doc
ke client b engine
fe0) doc b examples
{0 engine b metamodel
ke examples fe thirdParky
fe) metamodel fe) tools
i) thirdParty & COPYING. bt
&) tocls = [Z] README txt
£ | ¥ < s

Fig. 2 The GPAC framework

Two components of GPAC must be installed and configured for any application, namely the policy
engine and the policy engine admin tool. Each of the two components must be installed on a Windows
machine running IIS and .NET framework version 2, from an account with administrative rights on the
machine. Note that it is possible to install the policy engine and the admin tool on the same Windows
server, or on different servers that can communicate with each other using the IIS ports on those
servers.

2.1 Policy engine installation and configuration

1. First, make sure that IIS and .NET framework 2 are installed on the server on which you intend to
deploy the policy engine. Appendix A gives details about how to do this and how to install IIS and
NET framework 2 if needed.

2. Start by copying the policy engine folder engine/ to the IIS “Default Web Site” location on the
install server (typically C:\ 1netpub\wwwroot\, but this may be different on your server) — Fig. 3.

Note: You may want to change the name of the copied folder (i.e., engine/) to something suitable
for your application, as this name will appear in the policy engine URL.

& engine X]
File Edit ‘Wiew Favorites Tools Help "f
@ Back - _,,-" ‘ﬂ‘ P I Search ‘H_ 3 Falders mv
Address {2 C\Inetpubiwesrootlengine v Go
Folders X hare

23) Documents and Settings #| % App_Code
) 1386 %) App_Data
= I3 Inetpub) App_WebReferences
[2) AdminScripts ¥ Bin
I iissamples ¢ Global.asax
[mailrook Ebgﬁnn&t.CDnFig
IS Scripks ﬁlPDIicyEngine.asmx
= ook 8 Web. Config
I _private
I _whi_log
o B
£ b L b

Fig. 3 Policy engine location on the 11S “Default Web Site”

3. In order to handle system resources whose types are unknown until runtime, the policy engine web
service generates code (and data) dynamically and places these in its App Code, App Data and
App WebReferences directories. To enable this, the ASPNET account under which IIS is running web
services must be given permission to write to these directories.
o Open Windows Explorer and, for each of the three directories mentioned above, right-click on
‘Properties’ to open their property dialog — Fig. 4.
o In the ‘Security’ tab, press ‘Add’ , specify the ASPNET account on the local server, and click
OK —Fig. 7.
. Allow the ASPNET account not only to Read, List and Read&Execute the contents of the
folder (i.e., the default permissions), but also to Modify and to Write it — Fig. 8.
o Ensure that the permission have been set in this way for each of the App Code, App Data
and App_WebReferences directories.

4. In an XML or text editor, open the policy engine configuration file engine\Web.Config, and
make sure that value attribute in the line

<add key="'servicePath” value="c:\inetpub\wwwroot\engine'/>

specifies the actual path for the policy engine installation on your server. This allows the policy engine
to establish where to store the code it generates dynamically at runtime.

6

App_Code Properties

Gieneral |Sharing s Subverzion | Security || 'Wweb Sharng | Customize

&.J |.-'-‘-.|:||:u_E|:u:|e |

Type: File Falder
Location: C:Anetpubhwavaroothengine
Size: 234 KB [240.164 bytes)

Size on dizsk; 272 KB [278.528 butes)

Containg: 18 Files, 8 Falders

Created: 20 Februany 2009, 13:35:24
Attributes: [E] R ead-oni Advanced...
[] Hidden
[ak.] [Cancel] Apply

Fig. 4 *App_Code Properties’ dialog

Select Users or Groups

Select this object type:

|L|sers, Groups. or Buil-in security principals | [Object Types...]

Erom thiz location;

| local server name goes here | [Locations..._|

Enter the object names to select [examplez):

ASPMET LCheck Mames

o (e

Fig. 5 Selecting the ASPNET account on the local server

App_Code Properties E]@

General | Sharing | &* Subwersion | Secunty | web Sharing || Customize

Group or uger names:

m Adrinistrators

¢ ASPMET Machine Account [. . . ASPHET)
€7 CREATOR OWNER

ﬂ Internet Guest Account

ﬂ Launch 15 Process Account —

L6

7 SvSTEM
< |

|2

[i£

|

[Add.. H Bemove]

Permizsions for 5P MET Machine
Account Al Derw

Full Contral

kadify

Read & Execute
Lizt Folder Contents
Read

Wrike

Special Permiszions

I

For special permizsions or for advanced settings,
click Advanced. —

[Ok][Cancel][Apply]

Fig. 6 The ASPNET account needs Modify and Write permissions

5. In an XML or text editor, open the asp4net logger configuration file engine\log4net.Config
and make sure that the line

<file value="C:/Inetpub/wwwroot/engine/App_Data/GPAC.log" />

specifies the full path for a log file that the policy engine can generate. Optionally, other parameters in
this configuration file can be modified as described in the logdnet documentation that can be obtained
from http://logging.apache.org/log4net.

Note: The ASPNET account must have permission to write and modify this file, so unless the file is in
a directory for which these permissions were already set up (e.g., engine\App Data) these permissions
must be set up separately.

6. Next, open the IIS Control panel

e Start — Control Panel — Administrative Tools — Internet Information Services
open “Default Web Site” and navigate to “engine” (or the name that you gave to the copied policy
engine folder) — Fig. 7.

7. Set the policy engine up as an IIS application
e Open the ‘engine’ properties (right-click on ‘engine’).
e Inthe ‘Directory’ tab, under Application Settings, press ‘Create’ (application).
e Press ‘OK’.

http://logging.apache.org/log4net

The policy engine icon in the IIS control panel should change to that of an IIS application — Fig. 8.

£ Internet Information Services |Z||E|rz|

File Action Yew Help
@ = @@ X B 2

%Internet Information Services A Marme

= g CLPC 296 (local computer) &3 .svn
=7 Web Sites C3App_Code

= Default Web Site e Dats
+ 115Hel -
;" @ : =r D.ﬁ.pp_WebReFerences
(g Printers B .
(@ _vti_tin i
(@ Scripts @ lobal, asax
[:i keweh @ lag4net, Config
| @ F‘u:ulicyEngilje.asmx
[images o @ Wheb, Config
< | b4 % I >

Fig. 7 Policy engine web service prior to I11S configuration

% Internet Information Services '._ .E”z'

File Action Yew Help
e -+ @@ x EE

% Internet Information Services || Mame
= g CLPC 296 (local computer) @3 .svn
=+ web Sites ([app_Code

= Default web Site B o Deta
+ I15He] -
@ @ =P D.ﬁ.pp_Wel:uReFerences

(g Printers B _
R (dBin

L@ _vti_kin
(@ Scripts @ Global, asax
ksweh @ log4net. Config
@ PaolicyEngine, asmm:
[images 3 @] web. Canfig

< | > < I >

Fig. 8 Policy engine set up as an 11S application
8. Close the IIS Control panel.

You should now be able to point a web browser to the newly installed policy engine and see the
summary in Fig. 9. Make sure you specify the correct port for your IIS server, as the port in Fig. 9 (i.e.,
8080) may be different from yours). As additional checks, click on the ‘SupportedResource’ link and
then on the ‘Invoke’ button that allows one to test this web method — Fig. 10 (N.B.: only works from a
web browser running on the same server as the policy engine).

Depending on how the firewall settings on the server, you may or may not be able to access the policy
engine web service (but not the testing functionality) from other machines.

©J policyEngine Web Service - Mozilla Firefox
File Edit ‘Wew History EBookmarks Tools Help

- c (g I |_1'] http: i flocalhost: 3080/ engine /PolicyEngine. asmmix

@ Most Wisited ,' Getting Skarked |5u | Latest Headlines

PolicyEngine

The follawing operations are supparted. Far a formal definition, please review the Service Description.
® GetResources
® SetResources

® SupportedResource

Dane

Fig. 9 Policy engine web service

) Mozilla Firefox
Fle Edit \Wew History Bookmarks Tools Help

- c (g | |_1'] http: fflocalhost: 8080 engine/PalicvEngir 5.7 - - J.'
@ Most Wisited , Getking Started 2 | Latest Headlines

|_1°| PalicyEnginge Wweh Service |_1‘] http:/ /localhos.. pportedResource ﬁ

Thiz XL file does not appear to have any style information associated with it. The document
tree i chown below,

<string>policyEngne</string=

Dane

Fig. 10 Testing the SupportedResource web method

2.2 Admin tool installation and configuration

The install procedure for the admin tool from the client/ directory in the GPAC distribution is
similar to that for the policy engine, described in the previous section.

1. Start by copying the admin tool in client/ to the IIS “Default Web Site” location on the install
server (typically Cz\ Inetpub\wwwroot\, but this may be different on your server).

Note: You may want to change the name of the copied folder (i.e., engine/) to something suitable
for your application, as this name will appear in the policy engine URL.

10

2. Open the client\Web.Config configuration file for the copied admin tool in an XML or text
editor, and make sure that the line

<add key=""PolicyEngine.PolicyEngine"
value=""http://localhost:8080/engine/PolicyEngine._asmx"/>

specifies the actual URL of your policy engine. Note that if the admin tool and the policy engine are
installed on different servers, the two servers must be able to communicate with each other, and the
firewall configuration on the two servers must allow communication over the IIS port.

To complete the installation, set up the admin tool as an IIS application as described in steps 6 to 8
from Section 2.1, “Policy engine installation and configuration”.

To test the installation, open the admin tool in a web browser — you should see the web page in Fig. 11.

2 policy engine web client - Mozilla Firefox E|E|E|
File Edit View Higstory Bookmarks Tools Help
@ - ‘ot ([hetpeflocalhost a080jclentjDefaul. aspx i - - 2
@ Most Visited ’ Getting Started |2 | Latest Headlines
GPAC 0.8
System model

New model file:

| “ Browse..

Sainaw modal ‘

Polling period

10 geconds New period: Satparod

Resource urls

New resource URLs:

Satrasourca UBLs

Policy set

New policy set:
| || Browse..

Saf naw palicias ‘

Copyright (C) 2009 Radu Calinescw <RaduCaline sow@ cotrdab. ox.acuks

Dane

Fig. 11 Admin tool displaying the state of a newly installed policy engine
11

3. Policy engine parameters

As shown in Fig. 11, the policy engine comprises four configuration parameters. These parameters
specify what, when, where and how the policy engine should do:

1. The system model parameter describes what the system resources within the autonomic computing
application “look like”. This parameter defines formally all types of resources in the system, with their
state (i.e., read-only) and configuration (i.e., read-write) parameters — the resource parameters are also
termed properties. System models are XML documents that are instances of the
managedSystem.xsd XML schema from the metamode I\ directory in the GPAC distribution.

2. The polling period (or simply the period) parameters tells the policy engine when to sample the state
of the system and to evaluate the user-specified autonomic computing frequency. The parameter
specifies the length of the time interval between two successive policy evaluation steps, in seconds.
Note that policy engine is intended to also evaluate policies when notified that the state of the system
changed. However, this functionality is not included in the policy engine described by this user guide.

3. The resource URLSs specify where the manageability adaptors from the architecture in Fig. 1 are
located.

4. The policy set parameter represents the set of autonomic computing policies that specify how the
policy engine should manage the system resources. The types of policies supported by the current
version of the engine are described later in the guide, but it is worth noting that each policy comprises
the following elements:

e A scope that specifies which of the system resources the policy refers to.

e A trigger (also termed a condition) that specifies when the policy should be enforced.

e An action that describes what the policy engine should do about the resources within the scope
of the policy when the policy condition is true. Note that the action element of a GPAC policy
should not be confused with an “action autonomic computing policy”, which is a special type of
policy. GPAC policy actions can also be used to specify the “goal” and “utility-function”
autonomic computing policies described for instance in [1].

4. Application development with the GPAC framework

The development of an autonomic computing application with GPAC (Fig. 11) comprises three stages
that correspond to the sets of steps to be performed by three different user roles:'

1) The manageability adaptor required to organise an existing IT system into an autonomic system
is devised by the system developer during the generation stage;

2) In the deployment stage, this adaptor is deployed, and the policy engine is configured by the
system administrator;

3) Policies expressing the high-level system objectives are specified by the end user in the
exploitation stage.

The three stages are described below and illustrated through referring to the sample application from
the examples\simpleCluster\ directory in the GPAC distribution (Fig. 13). In this sample

' Note that the same person may be responsible for two or all of these roles.

12

application, the policy engine is configured to monitor the OS processes running on a “cluster” of
servers, and to stop processes as required by user-specified policies.

9 |(xmL) 4} |Configured 2
G1: modelr system D1: policy policy engine E1 policy
design engine specification
G2: xsL i [configuration

transformation | =™

System (XML

schema
G3: XSD |~ v
code &-‘J} Autonomic

computing
System data system
types (classes 4
G4: generic service | 4
subclassing Q%
Manageability, % _|Manageable &}}
adaptor D2: |resources E2: resource
adaptor
Generation Deployment Exploitation
~, automated Ty Q@ computer- manual
Key ‘S;,)} step Qiassisted step

step

Fig. 12 Application development with GPAC

4.1 Generation

This stage comprises four steps, G1 to G4. As indicated in Fig. 12, Steps G1 to G3 are fully
automated, and Step G4 is computer-assisted. To take advantage of this automation, use the
Manageability =~ Adaptor Generator tool included in the GPAC distribution under
tools/AdaptorGenerator/ and described at the end of this section.

In Step G1, an XML model of the system resources is designed by the system developer. The use of an
existing, off-the-shelf XML editor such as the Oxygen XML editor (http://www.oxygenxml.com/) for
this purpose is highly recommended (though not mandatory) for this. Make sure that when you create a

13

http://www.oxygenxml.com/

new XML document for the system model you specify that the new document is an instance of the
XML schema metamode I\managedSystem.xsd from the GPAC distribution, and the editor will
help with the generation of a valid instance of the GPAC meta-model. Please consult the
documentation for the XML editor you use to find out how to do this.

[simpleCluster, EI [E| E|
'll

File Edit ‘“iew Favorites Tools Help i

@Eack - QO 5 /-__“; Search ‘[1 Folders Elv

Address (I3 DiikmplGPACexamples)simpleCluster v | kgd Go
Folders = Mame
=) GPAC | Fedhadaptor
{0) adaptor) model
o) client k) policies
&) doc k) schema
&) engine & README txt
= &) examples
SR] simpleCluster
= e adaptor
k) App_Code
k=) App_Data
ke miodel
ke policies
k) schema
fe) metamodel
ke thirdParty "
£ > £ >

Fig. 13 Sample application used to illustrate the GPAC development process

The model for the sample application is available as simpleCluster\model\cluster.xml in
the GPAC distribution, and partly shown in Fig. 14. The only resources of interest for the sample
application are OS processes, and the model defines five properties of a process:
e serverName, the name of the server on which the process runs;
pid, the OS process ID;
name, the name of the process;
cpuTime, the amount of CPU time consumed by the process;
stop, a boolean-valued parameter that can be set to true to kill the process.

The first four properties of a process are read-only, i.e., state properties, while the stop property
represents the only configuration property of a process resource.

The serverName and pid properties of a process form the primary key of a process resource, i.e., they
uniquely identify a process within the ‘cluster’ system.

For a comprehensive description of all the elements of a system model, please see [2]. However, note

that the mutability and subscribe-ability characteristics of a resource property are not supported by the
GPAC framework version described in this guide.

14

W coXyoen/> - [D:MmpAGPACexamplesisimpleClusterimodelicluster.xml] |Z||E|[5__<|

File Edit Find Project Perspective Options Tools Document 'Window Help
DR iqfix jE=S=RD
¥Path2.0 - | Vg % M - &
A ® clusker,xml* 2 1 B |
% 3 = =gystem "hitpc e roc comfsystem® e L] —
= 4 "hitpcihenan w3 org 2001 HEMLSchema-instance” =
ofh 5 "Wty i w3 0rgi2 001 HMLS chema" =l
= "hittpe it ro o comifsystem filed LS metamodelir 1—{;:
), T zhame=cluster=iname= E'}
Il 8 3
z | =l-- Processes running on & server --= 5
99 10 == =rggources a
11 =|D=process=fD= ﬁr
12 i
123 = =propery=
14 =|D=zervarMame=/IDe= =
15 = =propertyDataTypes= i
16 =x5element "servertlarme" "nrocessSerertlame” f= ﬁ]
17 = =xssimpleType "processServertamea’= -
13 =xs restriction "ysatringr=
XSS o .
19 =g simpleTypes E
20 =/propetyDataTyvpes =
21 =mutability=constant=rmutahility= i-::;
22 =madifiahility=read-onh=rmodifiakilite= %_
23 =subscriheahilitv=false=rsubscribeahility= ﬁ
24 =primandkey=true=iprimarneys= — g
25 =lproperty= po
26 D
27 = =propery=
23 =[D=pid=i0=
29 = =propertyDataTypes=
30 =uselement " "processPid" f=
31 = =xssimpleType "processPid's
az =xs restriction "ysint'is
33 =g simpleTypes
34 =/propetyDataTyvpes
35 =mutahbility=constant=fmutability=
36 =muodifiahility=read-only=fmodifiatbility=
37 =subscriheahilitv=false=rsubscribeahility=
38 =primandkey=true=iprimarneys=
29 =lproperty=
40
4 = =propery=
42 =|D=hame=J0=
43 = =propertyDataTypes=
44 =uselement "narmea" "processhamea" = w5t
< | ¥ =
Text | Grid Author
IJD:'I,tmp'I,G...| |U+oozo | 7ol | Madified

In Step G2 of the generation phase, the XML model derived in Step G1 is used to generate an XML

schema describing th

Fig. 14 XML model of a cluster for the sample application

e data types associated with the system resources.

15

The XML schema simpleCluster\schema\clusterTypes.xsd is the XML schema for the
sample application — Fig. 15.

W <pXypens> - [D:MmpAGPACexamplesisimpleClusterischemakclusterTypes. xsd]

Fil= Edit Find Project Perspective Options Tools Document Window Help
e, ik F = e, e
No@R @A Q@ X e> E S LT ~
a2 - o + HJiF=Ef e
® clusterTypes.xsd = 14 B |
[1i]
= [— N) -
E 100 |v|CE | (&) OB o « o
1. "." |E|_| schema |E|_| process sasa | processServelame al
- -]
Process :I—l ‘— — serverMName L
http i roe comn sy stem http s roc camzystem ‘%
un
) =
(=] m
-% processPid o,
& — pid T
3
oo http vy Foccomsystern '%
3
procezsHarme
— name
http s roc camzystem o
h v
processZpuTirne E]
— cpuTime ke
http vy Foccomsystern ye
]
processStop wn
- stop g
http i roc comsystern [
9
Full Model Yiew | Logical Model Wiew 9
—_— =)
- a
1 =Tuml version="1.0" encoding="LITF-8""= ’_‘il ﬁ
z
3w augischema @mins="httpAawee rec comisystem” smins xs="httpifswan w3 org/ 2001 <MLSchema”
£
4 =g element name="process" type="process"l=
G = =2usicomplexType name="process"=
7w =uslzequences
g =xselement name="serertlame" tiype="processSemnertame nillable="trug"i=
9 =xs:element name="pid" type="processPid" nillable="trug"r=
10 =xselement name="name" type="processMame" nillable="true"r= —
" =xselement name="cpuTime" type="processCpuTime" nillable="true"r=
12 =x5element name="stop" type="processStop” nillable="true"r=
13 =hs gaguences
14 ahig complexTypes,
15
16 = =wsisimpleType name="processServertlame"s=
17 =u5restriction base="xs:string"f=
13 =hs simpleTypes=
i plelyp v|%
< E I
Text | Grid
l|D:'l,tmp'l,GF‘.ﬁ.C'l,exampIes'l,simpIeCIuste... | |LI+IIIIIIIZI.C'. | 14:20 |

Fig. 15 XML schema for the sample application

16

In Step G3 of the generation phase, the classes corresponding to the data types from the XML schema
are generated automatically. The classes for the sample application were generated using the xsd.exe
tool from Microsoft Visual Studio 2005, and are available in the GPAC distribution as
examples\simpleCluster\adaptor\App_Code\clusterTypes.cs
In Step G4, a manageability adaptor stubs is generated for each type of resource in the system, and the
system developer is required to augment these stubs with code in which the actual resource APIs are
used to access the state and configuration resource properties described in the system model from Step
G1.
The elements of the “process” manageability adaptor stub generated for the sample application is
shown in Fig. 16, and the file to which the developer needs to add the code mentioned above is shown
in Fig. 17 —note that the name of the file in this figure should read
App_Code/ProcessManageabilityAdaptor.cs
instead of
App_Code/ManagedProcess.cs

(This inconsistency is due to file renaming.)

A completed version of the manageability adaptor stub for the application is available from the GPAC
distribution — please see examples\simpleCluster\adaptor\.

2% adaptor - Microsoft Visual Studio

File Edit Wiew ‘Websitke Build Debug Tools Window Communiby
Help

e

Zlda| & @

'_m Solution 'adaptor' {1 project)
= D:"-.,..."-.,adapl:ur"-.,
= | App_TCode

'{i;] clusterTypes.cs

rllié] ManagedResource, cs

rllié] ProcessManageabilityadaptor . cs
[App_Data
ﬁl ProcessManageability ddaptor . asme
= Web.Corfig

saluadodd @

anp:u:llq}g J240)dx g Jandes B

L“.a Solution Explorer |53 Class View

_"a. Errar List | =] Cutput

Ready

Fig. 16 The process manageability adaptor for the sample application

17

&9 clusterManageabilityhdaptors - Microsoft Yisual Studio

File Edit “iew Refackor ‘Website Build Debug Tools Window Community Help
G- e %S9 S5 b Debug + MET - | [-
= = — w3 EE
=R @g o A% | EH B = = [A wooad Lo Qﬂ ﬁ} { =
Lll'lll App_Eude,-’ManagEdPrucess.cs] - X L%
L , -
@ |~{$Managedl:'ru:ucess v||.;'v v| 5
= o
i [WebZerviceBinding (ConformsTo = Weilrofiles.BasicProfilel 1)) 7‘ £
= Hpublic class ManagedProcess: ManagedResource<processk ad |
) i’{
2 protected override object[] GetcRawResourcesi) d&
bie { w
; process[] processirray = rmall; =
g =
= 5
= Iy w
Ff Add code to build managed rescource array here -g
£E i
return processArray; %?
S 2
4]
=
=] procected owerride object GetResourceProperty(object rawResource, string property) %
{
process typedBesource = (process)rawBesource;
switch (property)
{
case "serverlName":
S hdd code returning the walue of this process property
case "pid":
SF bdd code returning the walue of this process property
case "name":
S badd code returning the walue of this process propercy
case "cpuTime":
S badd code returning the walue of this process property B
case "stop":
S add code returning the walue of this process property
defanlt:
throw new Exceptioni'"unknowm property (" + property + "1"1;
}
r ;
=] protected override ManagedPesourcelpBesult SetBResourceProperties (process resource)
i
ManagedPeszourcelpPesult result = new ManagedPesourcelpBResult ()
A& Bet the walue of read-write process properties
if (resource.stop.HasValue)
{
£
Ff Add code to set the new walue for the stop property here
£
}
return result;
r .
-1 w
& X
_'a Errar List |] Dukput
Itemn(s) Saved Ln & Col 1 Chi IMS

Fig. 17 The developer needs to complete the implementation of the ManagedProcess.cs stub

18

The Manageability Adaptor Generator tool included in the GPAC distribution should be used to take
advantage of the automated generation of manageability adaptor stubs supported by the framework.

To use this tool, run the Windows application
tools\AdaptorGenerator\AdaptorGenerator\bin\Release\AdaptorGenerator._exe

from the GPAC distribution, specify the system model you want to use and an output directory, then
press the ‘Generate’ button — Fig. 18.

Manageability Adaptor Generator Z| |E| [E|

File Help
GPAC 0.8
Specify system model:

| O Stmpheluster.sml |

Specify output directory:

| O\t trnp 25 |

‘ Zenerate ‘

Fig. 18 The GPAC Manageability Adaptor Generator tool

The manageability adaptor generator stub is generated in the specified output directory, after which the
tool could be used to generate more adaptors if required (Fig. 19).

Success EE

b anageability adaptor stubz generated successfully under
D:\tmphtmp2h.

IJze the tool to generate more adaptors or exit.

Close

Fig. 19 Confirmation of successful adaptor stub generation

19

® processManageabilityAdaptor

Eile Edit Mew Favorites Tools Help '1.

GBack - _,/I Lﬂ‘x J_,-._xj Search ‘H__" Folders "'

Address |3 D\ tmpitmp2SiprocessManageability Adaptar b Ela]
Folders = Mame

) tmplo ~ | [2App_Code

3 tmp12 ~ [DApp_Data

) tmpl3 3@prncessManageahility.ﬁ.dapt-:ur.asm:x:

) tpls @Web.tunﬂg

1) tmpl6

I tmpl7

1) tmpla

I tmp12

I tmpz0

I tmp21

= [C5) tmp2s

=W'®] rrocessianageabilicy Adaphor

1) App_Code
|ji‘| app_Daka

) tmp30

I tmps7

& 7 tmnsg b

I~
'V

Fig. 20 Generated manageability adaptor stub for the sample application

4.2 Deployment

In Step D1 of the deployment phase, the admin tool from Fig. 11 is used to configure the policy engine,
and thus to set it up for integration in the planned autonomic computing application. To do this, select a
new model file in the “System model” section of the admin tool, and press the ‘Set new model’ button.
The result after setting the XML system model for the sample application is shown in Fig. 21.

In Step D2 of the deployment phase, the manageability adaptors whose generation is described in the
previous section are installed as IIS web services on servers from which they can access the APIs of the
managed system resources. The process is similar to the one described for the policy engine in an
earlier section of this guide, except that no changes to the Web.Config manageability adaptor
configuration files and no granting of directory access permissions are required.

It is a good idea to use a web browser to test that the deployed manageability adaptors are operational
before moving on to the next development step — Fig. 22.

20

©) Policy engine web client - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

@ - c i, | |_1'] http: flocalhost: 8080/ chient) Def aulk, asp: 7T v ,
|E| Most Visited , Getting Starked 5. | Latest Headlines

GPAC 0.8 Changing system model: Done

System model

cluster
process New model file:
semverflame
pid | |I Browse..
name
cpuTime
stop

Sat new modal ‘

Polling period

|1D seconds New period: Sat pariod

Resource urls

|| New resource URLs: | [

Daone

Fig. 21 Configured policy engine for the sample application

©) ProcessManageabilityAdaptor Web Senvice - Mozilla Firefox
File Edit ‘iew History Bookmarks Tools Help

@ - c N, | |_1'] httpsfflocalhost: 2858 adaptor fProcessManageabiltyAdaptor asmx. 5.7 - * j

EI Most Yisited ’ Getting Starked |2 | Latest Headlines

ProcessManageabilityAdaptor

The following operations are supported, For a formal definition, please review the Service Description.

® GetResources
® SetResources

® SupportedResource

Dane

Fig. 22 Deployed manageability adaptor for the sample application

4.3 Exploitation

In Step E1 of this development stage, autonomic computing policies are specified that encode the high-
level objectives of the system. The GPAC distribution provides two simple policy sets for the sample
application under examples/simpleCluster/policies/ and one of these is shown in Fig. 23.

21

W =pXypenf> - [D:MmpAGPACexamplesisimpleClusteripoliciesipolicySet2. xml] |Z| |E| E'

File Edit Find Project Perspective Options Tools Document Window Help
e "hh. FE FE ~ co g [e |
N2 fia Qi e DRI
®Path 2.0 'r| Vl @ % HE HE bE I.:/
® policy3etz, xml > 1 B |
E= 1= =policySet= ~ =
o 2= =policys a
o 3 =|Dr=test policy=/ID= 7
4 =gscope=process.name="notepad"=fscope=
5 =condition=time.hour &t 19=fcandition=
o G =action=process. stop=true=rfaction=
= 7 =lpalicy=
2~ =policy=s
ik po ey iy
9 =|D=test palicy=iD= i
10 =scopesprocess.name = "myApp2'=iscopes all
11 =condition=time.hour &t 17| process.cpuTime = 5000=fcondition=
12 =action=process.stop = true=raction= _ 2
13 =fpolicy= E_\@_ :
14 <ipolicySet= | T
Text | Grid Author %
HD:'l,tmp'l,GP.ﬁ.C'l,examples'l,simpl. . | [Learn completed |LI+IZIIIIIIIIII | 15:1 |

Fig. 23 Policy set for the sample application

The second of the two policies specifies that:
e “processes whose name is ‘myApp2’” (i.e., the policy scope)
e should be stopped (i.e., the policy action)
e when the current time is later than Spm or the process has consumed over 5000 units of CPU
(i.e., the policy trigger or condition).

Again, you can use the admin tool to set up these policies — a snapshot of the tool after the policies
were set is shown in Fig. 24.

22

©J Policy engine web client - Mozilla Firefox

File Edit ‘“iew History Bookmarks Tools Help

@ - c " I |j htkp: filocalhost: 30g0/dient /Def aulk, aspx bW *' ,
@ Most Yisiked ,' Getting Started 50 | Latest Headlines

GPAC 0.8 Changing policies: Done

System model

cluster
process New model file:
senverMame
pid | |I Browse..
name
cpuTime
stop

Sat new magal ‘

Polling period

10 seconds New period: Sai pariod

Resource urls

Newresource TRLs:

Satrasourca LUBLs

Policy set

[process.name="notepad"] ftime.hour = 19] [process. stop=trug]

N it t:
[process.name = "myApp2"] ime.hour =17 | process.cpuTime = 5000] [process.stog EW pOcy se

| || Browse..

Sai naw policias ‘

Copright (C)2009 Radu Calinescu <FaduCalinescu@condab oxacuk> 4

Dane

Fig. 24 Snapshot of the admin tool after setting a policy set for the sample application

Finally, in Step E2 of the exploitation phase, the URLs of all the manageability adaptors in the system
are supplied to the policy engine using the admin tool.

Before you specify the manageability adaptor URLSs for the sample application: Make sure that the
servers on which you installed these adaptors contain no processes that you do not want to loose and
which fall into the scope of any of the policies and satisfy the trigger of such a policy.

Fig. 25 shows a snapshot of the admin tool after the URL of an installed instance of the process
manageability adaptor for the sample application and the invalid string http://invalidURL were supplied
to the policy engine (as a space-separated list of URLs typed into the “New resource URLs” area of the
admin tool). Notice in Fig. 25 that the policy engine identified that the first URL corresponds to a
“process” manageability adaptor, whereas the latter URL was invalid.

Note: Under this policy set, the ‘notepad’ processes running on the same server as the manageability
adaptors will be killed if the time-dependent policy trigger is fulfilled.

23

http://invalidurl/

©3 Policy engine web client - Mozilla Firefox

File Edit “iew History Bookmarks Tools Help

@ - c (gl I|j http:fflocalhost: 8080/ client jDefault, aspx 7o ' j‘-
@ Most Yisited , Gekting Started |5 | Latest Headlines

GPAC 0.8 Changing resource TTELs: Done

Sy¥stem model

cluster
process New model file:
semvertlame
pid | ” Browse..
name
cpuTime
stop

Sai maw madal ‘

Polling period

10 seconds New period: Sat parod

Resource urls

[process] hitpMocalhost 2858madaptoriProcesshanageabilityidaptor.asms Newresource URLs:
[777] hitp:tinvalidURL

Sairasource UBLs

Policy set

[process.name="notepad"] ftime.hour = 19] [process.stop=trug]

New policy set:
[process.name = "myApp2"] ftime.hour =17 | process.cpuTime = 5000] [process stog P ¥

| ” Browse...

Sai raw palictas ‘

Copyright (CY2009 Radu Calinescw <RaduCalinescu@eomlab.ox ac ukx «

Done

Fig. 25 Snapshot of the admin tool after manageability adaptor URLSs were given by the user

24

5. Audit tralil

The GPAC logging mechanism can be configured dynamically to generate a policy-evaluation audit
trail, which is useful during both policy development and autonomic system operation. This logging is
done using a hierarchy of log4net loggers with the structure in Figure 5.1.

Logger Generated entries
PolicyEvaluator policy evaluator start/end log entries
PolicyEvaluator . Info start/end log entries for the policy evaluation steps
PolicyEvaluator _Resources summary of system resources examined
PolicyEvaluator .Resources._Details details of each resource
PolicyEvaluator _Policy start/end log entries about individual policy evaluations
PolicyEvaluator _Policy.Scope summary of system resources in the policy scope
PolicyEvaluator.Policy.Scope.Details details of each resource identified to be in the policy scope
PolicyEvaluator _Policy.Trigger log entry on the policy trigger
PolicyEvaluator _Policy.Action log entries on read/write resource properties that were set

Fig. 5.1 Logger hierarchy for the policy evaluator

All audit-trail log messages are generated at level ‘info’, so the logd4net configuration file
engine\log4net.Config needs to be changed to turn on the logging of these messages. Several
useful configurations are presented below — for a comprehensive descriptions of all options available,
please see the log4net documentation [4]. Note that the log4net configuration file can be modified as
many times as required during the operation of the autonomic manager; new configurations will take
effect immediately.

5.1 Complete audit trail

Append the XML fragment below to the log4net configuration file

<logger name="PolicyEvaluator'>
<level value="INFO" />
</logger>

to obtain a full audit trail. The log4net configuration file must not contain other entries referring to the
loggers in Fig. 5.1.

A fragment of the audit-trail log generated when this log4net configuration is used for the sample
application is shown in Fig. 5.2.

5.2 Full policy details

Full details about the evaluation of all policies are obtained when the following XML fragment is
included in the log4net configuration file:

<logger name="PolicyEvaluator.Policy'>
<level value="INFO" />
</logger>

The log4net configuration file must not contain other entries referring to the loggers in Fig. 5.1.

25

GPAC Audit Trail. rtf - WordPad

File Edit Wiew Insert Format Help

el Sk M © By

|Arial v| |‘ID v| |W’estem v| |;|[u B =

E-|-1-|-2-|-3-|-4-|-5-|-s-|-?-|-a-u-s-uwn-|41-|42-|ws-u44-|45-|ws-|4?-&wa-|49-

20090406 20:04:16,780 INFO [PolicyEvaluator] - POLICY EVALUATION STEP
2003-04-06 20:04:16 780 IMFO [PolicyEvaluator.Infa] - Starting policy evaluation
2003-04-06 20:04:16 780 INFO [PolicyEvaluatar.Info] - Obtaining resource instances associated with the current policy set from manageability adaptors
2003-04-06 20:04:16 750 INFO [PolicyEvaluator. Resources] - Obtaining resources of type ‘process’, with relevant property set = {serverMame, pid, name}
2009-04-06 20:04:16 780 INFO [PolicyEvaluator. Resources] - Querying manageability adaptor at URL
‘http:#localhost: 2858/ad aptor/ProcessManageability Adaptor asmx’
2005-04-06 20:04:16 795 IMFO [PolicyEvaluator. Resources. Details] - process with serverMame=serer!Z pid=884 name=MsMpEng
2003-04-06 20:04:16 795 INFO [PolicyEvaluator. Resources. Details] - process with serverfame=sener!2 pid=348 name=wWINyWORD
2003-04-06 20:04:16 795 INFO [PolicyEvaluator. Resources. Details] - process with serverfName=server!2 pid=3460 name=cmd
2009-04-06 20:04:16 795 INFO [PolicyEvaluator. Resources. Details] - process with serverMame=server!2 pid=520 name=winlogon
2009-04-06 20:04:16 795 INFO [PolicyEvaluator. Resources. Details] - process with serverMame=server12 pid=4504 name=wardpad

éljl]ﬁ-l)d-l]ﬁ 20:04:16,795 INFO [PolicyEvaluator.Resources.Details] - process with serverName=server12 pid=4536 name=notepad

2009-04-06 20:04:16 795 INFO [PolicyEvaluator. Resources. Details] - process with serverMame=serer12 pid=4 name=System

2009-04-06 20:04:16 795 INFO [PolicyEvaluator. Resources. Details] - process with serverMame=server!2 pid=3834 name=MSASCui

2005-04-06 20:04:16 795 IMFO [PolicyEvaluator Resources. Details] - process with serverMName=server!2 pid=3028 name=ManagementAgentMT

2009-04-06 20:04:16 795 INFO [PolicyEvaluator Resources. Details] - process with serverflame=sener!Z pid=4895 name=3AVAdminSerice

2003-04-06 20:04:16 795 INFO [PolicyEvaluator. Resources. Details] - process with serverfame=server!Z pid=0 name=Idle

2009-04-06 20:04:16 795 INFO [PolicyEvaluator. Resources] - Finished querying manageability adaptor at LIRL

‘http:#localhost: 2858/ad aptor/ProcessManageability Adaptor. asmyx' (found 55 resource instance(s))

2003-04-06 20:04:16 795 IMFO [PolicyEvaluator. Resources] - Finished obtaining resources of type ‘process’

2003-04-06 20:04:16 795 INFO [PolicyEvaluatar.Infa] - Finished obtaining resource instances associated with the current policy set

2003-04-06 20:04:16 795 INFO [PolicyEvaluator.Info] - Handling policies

2009-04-06 20:04:16 795 INFO [PolicyEvaluator.Policy] - Handling policy 1

2009-04-06 20:04:16 795 INFO [PolicyEvaluator. Policy. Scope] - Building policy scope

2003-04-06 20:04:16 795 IMFO [PolicyEvaluator Policy. Scope] - 1dentifying ‘process' resources in the policy scope, exposed by manageability adaptor
at URL ‘http:/flocalhost: 2855/adaptor/Processhanageability Adaptor. asmi’

20090406 20:04:16,795 INFO [PolicyEvaluator.Policy.Scope.Details] - Policy scope contains process with serverName=serveri2 pid=4536 name=notepad

2009-04-06 20:04:16 795 IMNFO [PolicyEvaluator. Policy. Scope] - Finished examining process’ resources exposed by manageability adaptor at URL
‘httpeHlocalhost: 2858/ adaptor/ProcessManageabilityAdaptor. asmi’ (found 1 resource instance(s) in scope)

2003-04-06 20:04:16 795 IMFO [PolicyEvaluator. Policy. Scope] - Finished building policy scope

20090406 20:04:16,795 INFO [PolicyEvaluator.Policy. Trigger] - The policy trigger is True

2003-04-06 20:04:16 795 INFO [PolicyEvaluator. Policy Action] - Starting implementation of policy action

2009-04-06 20:04:16 795 INFO [PolicyEvaluator. Policy. Action] - Considering read-write property changes for process’ resources exposed by manageability
adaptor at URL ‘http:/flocalhost: 2858/adaptor/ProcessManageabilityAdaptor asmy’

20090406 20:04:16,795 INFO [PolicyEvaluator.Policy.Action] - Applying policy action to process with serverName=server12 pid=4536 name=notepad

20090406 20:04:16,795 INFO [PolicyEvaluator.Policy.Action] - Setting read-write resource property stop=True

2003-04-06 20:04:16 5811 INFO [PolicyEvaluator. Policy Action] - Finished action implementation for process’ resources exposed by manageability adaptor at
URL http:#localhost: 2858/adaptor/ProcessManageabilityAdaptor. asmz’

2009-04-06 20:04:16 811 INFO [PolicyEvaluator. Policy. Action] - Finished implementation of policy action

2003-04-06 20:04:16 811 INFO [PolicyEvaluator. Policy] - Finished handling policy 1

2005-04-06 20:04:16 811 INFO [PolicyEvaluatar.Infa] - Finished handling policies

2003-04-06 20:04:16,5811 INFO [PolicyEvaluator.Infa] - Finished palicy evaluation

20090406 20:04:16,811 INFO [PolicyEvaluator] - FINISHED POLICY EVALUATION STEP

For Help, press F1

Fig. 5.2 Fragment of the full audit trail for the sample application, with colour-coded entries for
the different loggers in the audit-trail logger hierarchy. The entries referring to the notepad
‘process’ resource in the policy scope are highlighted in bold font.

5.3 Policy evaluation steps and policy actions

The inclusion of the XML fragment

<logger name="PolicyEvaluator'>
<level value="INFO" />

</logger>

<logger name="PolicyEvaluator.Info">
<level value="WARN" />

</logger>

<logger name="PolicyEvaluator.Resources">
<level value="WARN" />

</logger>

<logger name="PolicyEvaluator.Policy'>
<level value="WARN" />

</logger>

<logger name="PolicyEvaluator.Policy.Action">
<level value="INFO" />

</logger>

26

in the log4net configuration file will produce an audit trail that records the timed start/end of each
policy evaluation step, and the actions enforced on the managed system. Note how the logging level for
three of the loggers from Fig. 5.1 is raised to “WARN?” (i.e., warning) to ensure that these loggers do
not contribute (“INFO” log messages) to the audit trail.

Again, no other part of the configuration file should refer to the audit-trail loggers.

Note: One issue with the logdnet version integrated in GPAC is that changing the audit trail
configuration from

<logger name="PolicyEvaluator'>
<level value="INFO" />
</logger>

<logger name="PolicyEvaluator._Resources">
<level value="WARN" />
</logger>

(i.e., generate all log entries except for those associated with the PolicyEvaluator.Resources logger and
its descendents) to

<logger name="PolicyEvaluator'>
<level value="INFO" />
</logger>

(i.e., generate the full audit trail) does not work as expected. What happens is that the logging threshold
for the PolicyEvaluator.Resources logger and its descendents remains WARN-ing instead of being
changed to that of their ancestor logger PolicyEvaluator (i.e., INFO-rmation). To work around this
issue, specify the new logging level for the adjusted logger explicitly:

<logger name="PolicyEvaluator'>
<level value="INFO" />
</logger>

<logger name="PolicyEvaluator.Resources">

<level value="INFO" />
</logger>

27

6. Types of autonomic computing policies

Several policy types are typically used in autonomic computing systems:

e action policies provide a low-level specification of how the system configuration should be
changed to match its state;

e goal policies specify precise constraints that should be met by varying the system configuration;

e utility-function policies specify a “measure of success” that the self-managing system should
optimise by appropriately varying its configuration;

e resource-definition policies specify how the autonomic manager at the core of the autonomic
system should expose the system to its environment.

The current version of GPAC supports action and utility-function policies, as described in the
remainder of this section.

Notes:

1) The scope and condition/trigger components of all types of policies supported by GPAC use the
same syntax and have the same semantics (described in Appendix B). The policy component that
differs from one policy type to another is the policy action.

2) For historical reasons (in the early days of autonomic computing, action policies were the only type
of autonomic computing policies), the term ‘action’ is semantically overloaded — it is used to denote a
component of autonomic computing policies, as well as a type such policy. The sense it is used in
should be obvious from the context.

6.1. Action policies in GPAC

GPAC action policies specify new values that read-write or write-only properties of resources instances
in the scope of the policy should be set to if the policy condition holds. The running example of an
autonomic computing application used in the previous sections of this user guide employs action
policies (Figure 25).

6.2. Utility-function policies in GPAC

GPAC utility-function policies require that the autonomic manager decides the values of certain read-
write or write-only properties of resources instances in the scope of the policy such as to maximise an
expression that reflects the utility of the system.

The scope and condition/trigger components of a utility-function policy are similar to those of an action
policy. The action component of a utility-function policy has the form in Table 6.1 below.

Table 6.1 Generic form of a utility-function policy action

MAXIMISE(— keyword; tells that this is a utility-function policy action
set-comprehension, — selects resources whose properties will be set (subset of policy scope)
arithmetic-expression, — the utility function to maximise
config-property-list, — list of resource properties to set to values that maximise system utility
bool-expression, — constraint(s) that the new system configuration must satisfy

operational-mode|-expression — operational model that he autonomic manager must use in its planning

28

Note: The arithmetic-expression can be:

1. A set-arithm-function? such as “SUM(service, service.priority*service.throughput)”, in which
case the policy is termed a global utility-function policy and the autonomic manager is
required to maximise the utility function across all resources in the policy scope. The sample
application described in this section uses a global utility-function policy.

2. An arithmetic-expression that is not a set-arithm-function, e.g., “service.throughput —
0.2*service.allocatedCpu”, in which case the policy is termed a local utility-function policy and
the autonomic manager is required to maximise the utility function individually for each
resource in the policy scope. The sample application presented in Section 6.3 employs a local
utility-function policy.

We will illustrate the use of utility policies for the concrete example application from the
examples\server\ directory in the GPAC distribution.

Consider a server that runs several services of different priorities and variable workloads. Each service
handles end-user requests that are received with different, variable inter-arrival time, and has a
response time that depends on the amount of server resources dedicated to it. For illustration purposes,
we will take this amount to be the percentage of CPU time allocated to the service, and assume that the
server supports such precise partitioning of the CPU among services.

The only type of resource in the system described above is ‘service’ and its properties are:

Property Description Characteristics
name Unique identifier of service read only; primary key
priority Numerical priority read only
interArrivalTime Request inter-arrival time (e.g., averaged over past 120s) read only
cpuAllocation Percentage of server CPU allocated to the service read write
responseTime Current response time in ms (e.g., averaged over past 120s) | read only

Further assume that the utility of each service depends on its response time and its priority as shown by
the diagram in Figure 6.1.°

When all services running on the server are considered, the utility function to maximise is:

Zservice.priority x min(1000, max(0, 2000 - service.responseTime))

service

The autonomic manager is required to maximise this utility function by deciding appropriate values for
the ‘cpuAllocation’ property of all services, subject to the constraint:

D _servicecpuAllocation < 100

service

1.e., the autonomic manager must not allocate more than 100(%) of the server CPU across all services.
Figure 6.2 shows a graphical representation of this utility function when our server is running two
services: a “premium” service of priority 100 and a “standard” service of priority 10.

? See Appendix B.2 for further details.
3 A concrete shape for the utility function and concrete values such as 1000ms and 2000ms were chosen for illustration
purposes. This does not limit the generality of the approach.

29

4 utility = service.priority * min(1000, max(0, 2000 — service.responseTime))

1000 * service.priority

/

service.responseTime

1000ms 2000ms

Fig. 6.1 The utility of a service is: (a) equal to its priority * 1000 if its response time is under
1000ms; (b) zero, if its response time is above 2000ms; (c) a linearly decreasing value for response
times between 1000ms and 2000ms.

2000

4000

50000 g

responseTime - premium service responseTime - standard service

Fig. 6.2 Utility function for server running a premium service of priority 100 and a standard
service of priority 10, shown for response times between 0 and 5000ms.

30

Based on the description of our example application so far, we can write its utility-function policy
action as

MAXIMISE(
service, resources to manage
SUM(service,service.priority*min(1000,max(0,2000-service.responseTime))), utility function
(service.cpuAllocation), resource property to set
SUM(service,service.cpuAllocation)<=100, constraint
operational-model-expression operational model (see below)
)

The remainder of this section explains what an operational model of a resource is; how it is supplied to
the autonomic manager; and how the autonomic manager uses such operational models to realise
utility-function policies. The outstanding argument operational-model-expression of the policy action
is explained at the end of Section 6.2.2.

6.2.1 Operational models

An operational model of a resource specifies how the state (i.e., the read-only properties) of the
resource changes when its configuration (i.e., read-write and write-only properties) are modified (e.g.,
by the autonomic manager).

Consider a generic resource with n>0 state properties (S;, S,, ..., S,) and m>0 configuration

properties(C;, C,, .., C,). An operational model for the resource is a function f such that, given

any current state of the resource (S;,Sy, .., S.) andany possible configuration

(¢, €, .., C,) fortheresource,

0 0 0
(s'y, s, .. s'y)= f(s/, S5, -, Sp, C/» Cyy ., Cp) (6.1)

represents (an approximation of) the next state of the resource.

GPAC works with partial operational models of resources, i.e., with finite sets of points from the
mapping f presented above. Such a partial operational model for a ‘service’ resource from our example
application specify the expected response time of the service for a number of request inter-arrival time
values and a number of possible values for the cpuAllocation configuration property of the service,

e.g.

0
', = f(S,, c,)
service.responseTime (i.e., S'|) service.interArrivalTime (i.e., Sg) service.cpuAllocation (i.e., C;)

2500ms 3000ms 5%
2200ms 3000ms 10%
500ms 3000ms 100%
2400ms 3500ms 5%
2350ms 3500ms 10%

The actual operational model approximation used for the example application was obtained by running
multiple tests in which the service workload (i.e., request inter-arrival times) and CPU allocations were

31

varied across the entire range of possible values for these properties of a service. The resulting model is
shown in Figure 6.3.

Given the current requested inter-arrival time of a service, the autonomic manager uses the (partial)
operational model of the service to estimate the response times associated with various values it can
assign to the cpuAllocation property of the service, and thus to decide which of these values to use.
This is explained in more detail below.

6.2.2. Supplying an operational model to the autonomic manager

Partial operational models can be supplied to the autonomic manager through the manageability
adaptors for the relevant resource instances. This requires that one of the read-only properties of the
associated resource type is an array whose elements are tuples of the form

0 0
sy, S, .« S, SU» S5, s Sps €y Coy wy Cp)

responselime

4000

, o 5000
interdrrivalTime o

cpudllocation

Fig. 6.3 Operational model of a service, obtained by averaging the results of multiple experiments

Returning to our example of a server running multiple services, the ‘service’ resource needs to have an
additional ‘operationalModel’ property. The specification of this property is illustrated by the
abridged version of the system model examples/server/model/server.xml from the GPAC
distribution shown below:

32

<system ...>
<name>server</name>

<l-- Services running within a server -->
<resource>
<ID>service</ID>

<property>
<|D>name</ID>

<primaryKey>true</primaryKey>
</property>

<property>
<ID>priority</ID>

<}6r0perty>

<property>
<ID>cpuAllocation</ID>

<)|.o.roperty>

<property>
<|D>interArrivalTime</ID>

<};.3.roperty>

<property>
<ID>responseTime</ID>

<)|£).roperty>

<property>
<ID>operationalModel</ID>
<propertyDataType>
<xs:element "operationalModel” "serviceOperationalModel" />
<xs:complexType "serviceOperationalModel">
<xs:sequence>
<xs:element "modelElement" "serviceModelElement" "unbounded" />
</xs:sequence>
</xs:complexType>

<xs:complexType "serviceModelElement">
<xs:sequence>
<xs:element "responseTime" "serviceResponseTime" />
<xs:element "interArrivalTime" "servicelnterArrivalTime" />
<xs:element "cpuAllocation” "serviceCpuAllocation" />

</xs:sequence>

</xs:complexType>
</propertyDataType>
<mutability>constant</mutability>
<modifiability>read-only</modifiability>
<subscribeability>false</subscribeability>
<primaryKey>false</primaryKey>

</property>

</resource>

</system>

As indicated above, the name of the additional property must be spelt as shown above (i.e.,
‘operationalModel’), and its type must be a unbounded sequence of complex-type elements comprising
fields whose names and types are those of other resource properties.

33

The actual elements of the operational model must be supplied by the manageability adaptor for the
resource. For our example application, the model shown in Figure 6.3 is stored as a list of comma-
separated coordinates in the file examples\server\adaptor\App_Data\model . txt from the GPAC
distribution:

500, 5, 4487
500, 10, 4458
500, 15, 4436
500, 20, 4415
500, 25, 4392
500, 30, 4373

On initialisation, the manageability adaptor code in examples\server\adaptor\Global .asax reads
and parses the contents of this file, so that the manageability adaptor can supply it to the autonomic
manager when requested to provide the ‘operationalModel’ property of a ‘service’ resource — the code
can be examined in examples\server\adaptor\App_Code\serviceManageabi l ityAdaptor.cs.

Note: To run this example application successfully, the entry

<add key="operationalModelFile"
value=""C:\GPAC\examples\server\adaptor\App_Data\model . txt"/>

from the configuration file examples\server\adaptor\Web.Config for the manageability adaptor
will need to be changed to reflect the actual deployment of the web service.

We are now ready to explain how the last argument of the MAXIMISE() expression for an utility-
function policy action is used to specify to the autonomic manager the way in which the elements of the
operational model fit the pattern given by equation (6.1) given at the beginning of Section 6.2.1. For the
general case from equation (6.1) this is achieved by setting the operational-model-expression argument
of the MAXIMISE() expression to

0 0 0
(s'y, S5, ., S%) (S, S3, o Sy, Ci, Cypy vy Cp),

which, for our example application, is:
(service.responseTime)(service.interArrivalTime,service.cpuAllocation)

This specifies that the response time of a service is a depends on its (request) inter-arrival time and the
amount of CPU allocated to the service, so the complete policy action for the example application is
given by

MAXIMISE(
service, resources to manage
SUM(service,service.priority*min(1000,max(0,2000-service.responseTime))), utility function
(service.cpuAllocation), resource property to set
SUM(service,service.cpuAllocation)<=100, Constraint
(service.responseTime)(service.interArrival Time,service.cpuAllocation) operational model

This policy action asks the autonomic manager to decide the ‘cpuAllocation’ for a set of services such
as to maximise the given utility function. The autonomic manager achieves this objective by using the
operational model:

a) to assess their expected ‘responseTime’ (because ‘responseTime’ depends on the other properties)

34

b) for their current ‘interArrivalTime’ (because ‘interArrivalTime’ appears in the second term of the
operational-model-expression and is not a “resource property to be set”)
¢) and for all possible values of their ‘cpuAllocation’ (because this is a “resource property to be set”).

The policy presented above is included in the policy file examples\server\policies\policyl.xml
from the GPAC distribution.

Also included in this example application from the GPAC distribution is a server simulator under
examples\server\simulator\. This is a Windows application — the complete code is included as
well as a binary examples\server\simulator\bin\Debug\AppServerSimulator.exe. The
interaction between this simulator and the manageability adaptor consists in simulator calls to two
additional web methods of the manageability adaptor — one to inform the adaptor about the current
average request inter-arrival times and one to read the latest cpuAllocation values decided by the
autonomic manager. In order to enable this interaction, the entry

<applicationSettings>
<AppServerSimulator.Properties.Settings>
<setting
name="AppServerSimulator_ConfigurationService_serviceManageabilityAdaptor"
serializeAs="String">
<value>http://localhost:4027/adaptor/serviceManageabi lityAdaptor.asmx</value>
</setting>
</AppServerSimulator.Properties.Settings>
</applicationSettings>

from the configuration file examples\server\simulator\app.config for the simulator must be
changed to reflect the actual URL of the manageability adaptor.

Figures 6.4 and 6.5 illustrate the overall architecture of the example application described so far and a
sample run of the server simulator, respectively.

monitor upload
inter-arrival
Autonomic Service times AppServerSimulator
Manager Manageability [
& control Adaptor getepu
> p allocations
decided by
autonomic
Step 2: Supply system model, Step 1: Customize Web.Config to Step 3: Customize app.config to
manageability adaptor URL and enable adaptor to read operational enable simulator to access adaptor
utility-function policy to model file (see above for details) web methods (see above for
autonomic manager. Set polling allocations decided by autonomic details), and start simulator.
period to approx. 5 seconds. manager.

Fig. 6.4 The examples\server\ application from the GPAC distribution, with a summary of the
three steps required to run the application.

35

Note: It is possible to have read-write and write-only resource properties specified in the config-
property-list argument of a utility-function policy even when they are not involved in the operational
model of the associated resource. The range of values to examine for such properties must be specified
explicitly in the policy because the autonomic manager cannot use the operational modal to decide the
value(s) for such properties. For instance, in the utility-function policy action

MAXIMISE(
set-comprehension,
arithmetic-expression,
(server.cfgPropertyA, server.cfgPropertyB(10.0 : 0.5 : 20.0)),
bool-expression,
(server.stateProperty)(server.cfgPropertyA)

)

server.cfgPropertyB is not part of the operational model. Therefore, the policy specifies that in order to
decide the value for this property, the autonomic manager should analyse all the values that are 0.5
units apart between 10.0 and 20.0 (i.e., 10.0, 10.5, 11.0, ..., 19.5 and 20.0).

Server Simulator,

Fiequest mean inter-arival time - premium zervice [us]

5000
EO0
L
0]]] " time [s]
CPU allozation - premium service [Z]
100 1
_,—F’J_L“Ha 500
L
o]]] " hime [5]
Awerage responze time - premiunm service [ms]
A000-
,/’\\ EO0
L
o . i i " time [5]
Timed-out requests - premium service
10004
BO0
o " hime [5]

Fiequest mean inter-arrival time - standard zervice [us]

E00

time []

CPU allozation - standard service [%]
100 1

,—'’J_}_’_I U T E0O

u]] " time [z]
Awerage response time - standard zervice [ms]
5000H
/N\]_\ =11
] :

]] time [2]
Timed-out requests - standard service

1000H-
600

1] " hime [5]

Fig. 6.5 Sample run of the server simulator — autonomic manager polling period 5s

36

6.3 Utility policies using PRISM quantitative analysis

PRISM [5] is a probabilistic model checker/quantitative analysis tool developed by the University of
Oxford’s Quantitative Analysis and Verification Group. The tool is used for the analysis of
probabilistic models including discrete- and continuous-time Markov chains (DTMCs and CTMCs)
expressed in the PRISM high-level, state-based language. Cost/reward-augmented versions of
probabilistic computational tree logic (PCTL) and continuous stochastic logic (CSL) are used to specify
the quantitative properties to analyse for DTMC and CTMC models, respectively.

The GPAC autonomic manager can use PRISM to support its implementation of utility-function
policies as described in detail in [6]. The steps required to use this capability of GPAC are summarised
below:

1. The probabilistic model checker PRISM needs to be set up on the server running the autonomic
manager. The process involved is described in Appendix C.

2. A PRISM operational model describing the behaviour of the resources involved in the utility-
function policy needs to be developed. This step is described below.

3. Like for ordinary utility-function policies (described in Section 6.2), the resource involved in
the policy needs to have a read-only ‘operationalModel’ property, but the property must be of
type ‘string’. The value supplied by the manageability adaptor for this property must be the
PRISM operational model from step 2 above.

4. The policy action of a PRISM-based utility-function policy has the same form as for an ordinary
utility-function policy (see Table 6.1), except that the keyword ‘PRISM_MAXIMISE’ is used
instead of ‘MAXIMISE’ at the beginning of the policy action expression.

Like before, the second argument of the PRISM-MAXIMISE policy action is the utility function, and it

can make reference to:

e Read-write resource properties that do not appear in the config-property-list, and read-only
resource properties. The values obtained from the manageability adaptors will be used wherever
such properties are mentioned.

e Derived resource properties (i.c., resources whose modifiability is specified as “derived” in the
system model). The values of these properties cannot be read or written through the manageability
adaptor. Instead, these values are obtained through the PRISM analysis of the operational model
for the resource. This is explained below.

e Read-write resource properties that appear in the config-property-list. Each property in the list
must be followed by a range specifier of the form ‘(start : step : stop)’ as explained in the note at
the end of the previous section in this document. Note that when PRISM is used in the autonomic
manager analysis step, such ranges must be specified for all resource properties in the config-
property-list, whether or not they are part of the operational model.

The GPAC distribution includes a PRISM-based autonomic application that involves the dynamic,
adaptive power management of a disk drive. This application — located in examples\diskDrive\
and described in detail in [6] — ensures that the probability of the disk drive being taken into a low-
power ‘sleep’ state is permanently adjusted in line with the inter-arrival time for the I/O requests that
the disk is handling. Thus, energy can be saved when the disk drive is lightly loaded, without
compromising performance when the disk drive request inter-arrival time decreases.

To try this application, supply to the autonomic manager:

(a) the system model examples\diskDrive\model\diskDrive.xml
(b) the policy examples\diskDrive\policies\policyl.xml

37

(c) the URL of a running instance of the manageability adaptor examples\diskDrive\adaptor
* make sure that the Web.Config entry

<add key="operationalModelFile"
value=""D:\Users\Radu\GPAC\examples\diskDrive\adaptor\App_Data\diskDrive.sm"/>

is updated to specify the actual location of the PRISM operational model diskDrive.sm on your
server.

Also, set the autonomic manager polling period to 5 seconds. Running the disk-drive simulator at
examples\diskDrive\simulator after ensuring that the entry
<setting
name=""AppServerSimulator_ManageabilityAdaptor_diskDriveManageabilityAdaptor"
serializeAs="String">
<value>http://localhost:2358/adaptor/diskDriveManageabi l ityAdaptor.asmx</value>
</setting>

in the app.config configuration file for the simulator is updated to reflect the URL of the manageability
adaptor on your system will then yield the results in Figure 6.6.

Disk Drive Simulator

Request average inter-arrival time [mz]
2000

—\—}7 3600

0 T
Average request quede length
20 1

tirne [z]

L _}__{_[__1_,_1—_1—_}___,__
JR—
_— —
\._.'I'_‘ \—’__I_I__l—,—:_\ '_{—_ 3600

a T time [3]
Average power [miaf]

2500

3600
1] l
LItilibye

200 1

time [2]

R el

- T |
w l—_l_\—% ’—*IEEDD

0= " e [5]
switch-to-zleep-prabability = 100
BT

\—\ [7 3800

1] " time [5]

All policies: RED=TuneOut; GREEN=Activation; BLUE=Adaptive

Fig. 6.6 Dynamic power management of disk drive using PRISM-based quantitative analysis for
the implementation of utility-function autonomic computing policies

38

References

[1] W.E. Walsh et al. Utility functions in autonomic systems. In: Proceedings of the 1% IEEE
International Conference on Autonomic Computing, pp. 70-77, 2004.

[2] R. Calinescu — General-Purpose Autonomic Computing. In: M. Denko et al (editors), Autonomic
Computing and Networking, Springer, New York, 2009, pp. 3-30.

[3] Steve Litt — Perl Regular Expressions,
http://www.troubleshooters.com/codecorn/littperl/perlreg.htm.

[4] Apache log4net, http://logging.apache.org/log4net/index.html.

[5] PRISM probabilistic model checker, http://www.prismmodelchecker.org/.

[6] R. Calinescu and M. Kwiatkowska — Using Quantitative Analysis to Implement Autonomic IT
Systems. Proceedings of the 31st International Conference on Software Engineering, 2009. Available
from http://qav.comlab.ox.ac.uk/bibitem.php?key=CK09.

39

http://www.troubleshooters.com/codecorn/littperl/perlreg.htm
http://logging.apache.org/log4net/index.html
http://www.prismmodelchecker.org/
http://qav.comlab.ox.ac.uk/bibitem.php?key=CK09

Appendix A. Installing IIS and .NET on a server

Install IIS (May need Windows XP CD)

1. Start — Control Panel — Add or Remove Programs — Add/Remove Windows Components

Windows Components Wizard @

‘Windows Components
‘r'ou can add or remove components of Windows XP.

To add or remaove a component, click the checkbox. A shaded box means that anly
part of the component will be installed. To see what's included in a component, click

Details.
LComponents:
[[] @ Indexing Service 0.0ME

8 Intemet Explorer 0.0MB
¥2 Intemet Informatio 5] 35MB
O Eﬂ Management and Monitoring Toolz 20MB
[5 Messane Nuedinn nnwe ¥

Dezeription: Includes Web and FTP support, along with support for FrontPage,
trangactions, Active Server Pages, and database connections.

Total dizk space required: BE.3 MB §

Space available on dizk: 1304843 MB

[< Back][Hewt »][Cancel]

2. Click “Details” and tick everything (Documentation, FTP, and SMTP are optional)

Internet Information Services (115) El

To add or remove a component, click the check box. & shaded box means that only part
of the component will be installed. To zee what's included in a component, click Details.

Subcomponents of Internet Information Services [[1S];

> Comman Files 10MB A
@ Documentation 35MB
B8 File Transter Protocal [FTP) Service 0.1 MB
& FrortPage 2000 Server Extersions 43 ME
'}ﬁ] Intermet Information Services Snap-n 1.3ME
i SMTP Service 1.1 MB
o w/orld wide Web Service 23MB ¥

Description: Provides support to create FTP sites used to upload and dowrnload files

Total disk space required: 56.4 MB
Space available on disk: 1304843 ME

)8] [Cancel

3. OK — Next — Finish

Install NET Framework 2.0 Beta 2

1. Download and install .NET framework
e http://msdn.microsoft.com/netframework/downloads/updates/default.aspx
2. Register .NET with IIS
e Open command prompt and navigate to
CAWINDOWS\Microsoft. NET\Framework\v2.0.xxxxx\
3. run “aspnet_regiis.exe —i” to register .NET into IIS

40

http://msdn.microsoft.com/netframework/downloads/updates/default.aspx

Appendix B. GPAC autonomic computing policies

This appendix describes the syntax and semantics of the policies supported by the GPAC
reconfigurable policy engine. Note, however, that this appendix is work under development.

B.1 Overview

The GPAC version described in this guide supports policies comprising three components:
1. Policy scope. This is a semicolon-separated list of simple set comprehension expressions
scope : := set-comprehension ; set-comprehension ; ... ; set-comprehension
where the generic form of a set comprehension expression is
set-comprehension : - = resource-type | boolean-expression

Either term (but not both terms) can be missing from a set comprehension expression, i.e., the
policy scope

server ; process.name = “f00”
is equivalent to

server | true ; process | process.name = “foo”
Boolean expressions are conjunctions (i.e., ‘&’) of boolean terms, which are disjunction (i.e.,
‘") of potentially negated (i.e., ‘!”) boolean-typed resource properties (e.g., ‘process.isActive’),
boolean constants (i.e., true or Talse), relational expressions (described below),
paranthesised boolean expressions (i.e., ‘(boolean-expression)’) or regular expressions of the
form

resource-property =~ ’pattern”’
or

resource-property !~ ’pattern”
The first regular expression returns true if the value of the resource property matches the pattern
and the second regular expression returns true if the value does not match the pattern provided —

see [3] for more information on using regular expressions.

Relational expressions can be used to compare any types of expressions, including arithmetic
expressions involving resource properties.

2. Policy trigger (aka ‘policy condition’) This is a boolean expression that refers to resource
properties and/or properties of built-in policy engine variables. The only built-in variable
supported by the GPAC framework version described in this guide is ‘time’, with the
properties: year, month, day, hour, minute, second.

41

3. Policy actions. The GPAC version described in this guide supports semicolon-separated list of
assignments, where the left-hand-side term of the assignment is a resource property and the
right-hand-side term is an expression of the appropriate type.

B.2 Policy syntax

policy - = policy-scope policy-trigger policy-action
policy-scope 1= set-comprehension |
set-comprehension ; policy-scope
set-comprehension - := resource-type |
resource-type | bool-expression |
bool-expression
bool-expression :2= bool-term |
bool-term | bool-expr
bool-term ::= bool-factor |
Tbool-factor |
bool-factor & bool-term
Tbool-factor & bool-term
bool-factor ::= bool-constant |
resource-property |
selected-res-property |
(bool-expression)|
relational-expression
bool-constant 1= true|fTalse
resource-property 1= resource-type . property-id
resource-type ::= ID of resource defined in the system model
property-id 2= ID of resource property from the system model
selected-res-property -:= ARGMAX(set-comprehension, arithmetic-expression) . property-id |
ARGMIN (set-comprehension, arithmetic-expression) . property-id
relational-expression - := arithmetic-expression arithm-rel-operator arithmetic-expression |
bool-expression bool-rel-operator bool-expression |
string-expression string-rel-operator string-expression
arithmetic-expression z = arithmetic-term |

arithmetic-term + arithmetic-expression |
arithmetic-term — arithmetic-expression

42

arithmetic-term

arithmetic-factor |
arithmetic-factor * arithmetic-term |
arithmetic-factor / arithmetic-term

arithmetic-factor numerical-constant |
resource-property |
selected-res-property |
built-in-property |
(arithmetic-expression) |
function

numerical-constant

0 | [1-9][0-9]*

_[0-9]+ | 0.[0-9]+ | [1-9][0-9]* . [0-9]+

build-in-property time.year | time.month | time.day |

time._hour | time.minute | time.second

function

math-function (arithmetic-expr-list) |
set-arithm-function (set-comprehension, arithmetic-expression) |
COUNT (set-comprehension)

math-function

min | max

arithmetic-expr-list

arithmetic-expression, arithmetic-expression |
arithmetic-expression, arithmetic-expr-list

set-arithm-function

SUM | PROD | MAX | MIN | MEAN

arithm-rel-operator

|<|<:|>|>:

bool-rel-operator

string-expression

string-constant |
resource-property

string-constant ”-delimited string of ASCII characters

string-rel-operator

policy-trigger

bool-expression

policy-action

assignment-action | utility-function-action

assignment-action

assignment-expression |
assignment-expression ; assignment-action

assignment-action resource-property = expression

expression arithmetic-expression | bool-expression | string-expression

43

utility-function-action : :

utility-function-type

config-property-list

config-property-spec ::

op-model-expr

resource-property-list : -

utility-function-type (set-comprehension, arithmetic-expression,
(config-property-list), bool-expression,
op-model-expr)

MAXIMISE | PRISM_MAXIMISE

config-property-spec | config-property-spec, config-property-list

resource-property |

resource-property(numerical-constant : numerical-constant :

numerical-constant)

(resource-property-list) (resource-property-list)

resource-property | resource-property, resource-property-list

44

B.3 Policy semantics

B.3.1 Policy scope

The scope of a policy is a semicolon-separated list of set comprehension expressions, each of which
selects a set of system resources. Given that a policy can involve resources of different types, these set
comprehension expressions can refer to different types of resources, as indicated by the diagram in
Figure B.1.

The resources involved in the policy are those that belong to one
of the three sets selected by the set comprehension expressions in
the policy scope:

set-comprehension, ; set-comprehensionz ; set-comprehensions
|] 1] 1]

resources pesources exposed ! resources ex posed resounrces exposed

jexposed! by momt. adaptor ! by mgmt. adaptor by mgmt. adaptor
by mgmt. at URLg at TRL, at TRL,
adaptor
at THLq
System resources of type A System resources of type B

Fig. B.1 The scope of a policy for a system comprising two types of resources, A and B. Four
manageability adaptors expose the resources of the systems — those at URLs 1 to 3 expose
resource instances of type A, while the adaptor at the fourth URL exposes resource instances of
type B. The policy scope comprises three set comprehension expressions, the first two of which
select different subsets of system resources of type A; the last set comprehension expression
selects some of the type B resource instances exposed by the manageability adaptor located at
URL,.

B.3.2 Policy condition

Given the set of resource instances in the scope of a policy, the policy condition is a global boolean
expression over all these resource instances. The policy action is implemented if and only if the policy
condition evaluates to true.

Several examples of policy conditions are presented below:

45

Policy condition Description

time.hour >17 & time.minute > 30 Implement policy action if the current time is
5:30pm or later
SUM (process, process.cpuUtilisation) > 60 Implement policy action if the aggregated CPU

utilisation of all processes in the policy scope is
greater than or equal to 60%

COUNT (harddisk) > 0 Implement policy action if the policy scope
contains more than 0 ‘harddisk’ resource instances
true Always implement policy action

B.3.3 Policy action

Policy actions are sequences of semicolon-separated assignments to read-write or write-only resource
properties. All resource instances in the policy scope that match the resource type on the left-hand side
of a policy action assignment expression have their respective properties set to the value of the
expression on the right. For instance, for the sample policy action

process.stop = true

all processes in the policy scope will have their ‘stop’ property set to true.

Note:

Some resource instances in the policy scope may not appear on the left-hand side of the assignment,
e.g., in the policy action

report.cpuUsage = SUM(process, process.cpuUsage)
resource instances of type process are used to obtain the value for a read-write property of another type

of resources. Similarly, some of the resources in the policy scope may only contribute to the policy
condition expression, without appearing in the policy action expression.

46

Appendix C. Setting up PRISM within GPAC

1. Follow the instructions at http://www.prismmodelchecker.org/download.php to download and
install PRISM on the same server on which you are running the GPAC autonomic manager.
2. Inthe Web.Config configuration file for the autonomic manager, update the configuration entry

<add key="'prismPath"
value=""D:\Personal Program Files\prism-3.1.1.r542\bin\prism"/>

so that it specifies the actual location of the PRISM deployment on your server.

47

http://www.prismmodelchecker.org/download.php

Appendix D. Known limitations

Support for goal policies is not available in version 0.13 of the GPAC framework, but will be
reintroduced in future versions of the framework, as described in [2]. However, note that goal policies
can be simulated with utility-function policies, by using a utility function that takes only two values — 0
for argument values for which the goal function would have been false, and 1 otherwise.

Setting a new system model automatically removes the policy set in place, which is the right thing to do
if the model refers to new types of resources, but may be undesirable if the system model is just a fine-
tuned version of the previous model.

Manageability adaptors URLs are checked only when first supplied to the autonomic manager. If the
manageability adaptors are not switched on when the URLs are specified to the autonomic manager,
they will be marked as invalid, and not used once they are started. The workaround is to re-specify the
same URLs after the manageability adaptors are started.

48

	1. Introduction
	2. Installation
	2.1 Policy engine installation and configuration
	2.2 Admin tool installation and configuration

	3. Policy engine parameters
	4. Application development with the GPAC framework
	4.1 Generation
	4.2 Deployment
	4.3 Exploitation

	5. Audit trail
	5.1 Complete audit trail
	5.2 Full policy details
	5.3 Policy evaluation steps and policy actions

	6. Types of autonomic computing policies
	6.1. Action policies in GPAC
	6.2. Utility-function policies in GPAC
	6.2.1 Operational models
	6.2.2. Supplying an operational model to the autonomic manager

	6.3 Utility policies using PRISM quantitative analysis

	References
	Appendix A. Installing IIS and .NET on a server
	Appendix B. GPAC autonomic computing policies
	B.1 Overview
	B.2 Policy syntax
	B.3 Policy semantics
	B.3.1 Policy scope
	B.3.2 Policy condition
	B.3.3 Policy action

	Appendix C. Setting up PRISM within GPAC
	Appendix D. Known limitations

