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Abstract—Cache-related pre-emption delays (CRPD) have
been integrated into the schedulability analysis of sporadic tasks
with constrained deadlines for fixed-priority pre-emptive schedul-
ing (FPPS). This paper generalizes that work by integrating
CRPD into the schedulability analysis of tasks with arbitrary
deadlines for fixed-priority pre-emption threshold scheduling
(FPTS). The analysis is complemented by an optimal threshold
assignment algorithm that minimizes CRPD. The paper includes
a comparative evaluation of the schedulability ratios of FPPS and
FPTS, for constrained-deadline tasks, taking CRPD into account.

I. Introduction
For cost-effectiveness reasons, it is preferred to use commer-

cial off-the-shelf (COTS) programmable platforms for real-time
embedded systems, rather than dedicated, application-domain
specific platforms. These COTS platforms typically contain a
cache to bridge the gap between the processor speed and main
memory speed and to reduce the number of conflicts with other
devices on the system bus. Unfortunately, caches give rise to
additional delays upon pre-emptions due to cache flushes and
reloads of blocks that are replaced during pre-emption. This
cache-related pre-emption delay (CRPD) can have a significant
impact on the computation times of tasks. For fixed-priority
pre-emptive scheduling (FPPS), which is the defacto standard
used in industry, CRPD has therefore been integrated into the
schedulability analysis [17, 26, 32, 28, 3].

Recently, limited pre-emptive scheduling schemes received
a lot of attention from academia. In particular, fixed-priority
scheduling with limited pre-emptions, such as fixed-priority
scheduling with deferred pre-emption (FPDS) or co-operative
scheduling [16, 14, 20] and fixed-priority scheduling with pre-
emption thresholds (FPTS) [33, 31, 30, 25], are considered
viable alternatives between the extremes of FPPS and fixed-
priority non-pre-emptive scheduling (FPNS). Compared to
FPPS, limited pre-emptive schemes can (i) reduce memory
requirements [31, 23, 21] and (ii) reduce the cost of arbitrary
pre-emptions [16, 14, 10]. Compared to both FPPS and FPNS,
these schemes may significantly improve the feasibility of a
task set [14, 31, 8, 20].

Although FPDS clearly outperforms FPTS from a theoretical
perspective [18], applying FPDS in practice is still a challenge
because pre-emption points have to be explicitly added in the
code. Assuming strictly periodic tasks with known phasing, a
single non-pre-emptive region (NPR) can significantly reduce
the preemptions that can feasibly occur [29]. Alternatively,
sporadic tasks with floating NPRs [34, 6] can be used; however,
these require specific operating-system support and can lead

to preemptions by all higher priority tasks at arbitrary points
in the code which may incur substantially higher CRPD costs.

FPTS, on the other hand, can be easily applied for sporadic
task systems, even without any changes to the code when
pre-emption thresholds can be assigned to tasks at integration
time, e.g. by means of dedicated primitives or by means of
code-wrappers using standard synchronization primitives. Such
support is specified by both the OSEK [1] and AUTOSAR [2]
operating-system standards, in the form of internal resources1,
and deployed in the automotive industry. FPTS may therefore
be used for legacy code and viewed as an evolutionary successor
of FPPS as defacto standard in industry. To the best of our
knowledge, however, integration of CRPD in the schedulability
analysis of sporadic tasks for FPTS has not been addressed
and is therefore the topic of this paper.

The limited pre-emptive nature of FPTS gives rise to specific
challenges when integrating CRPD in the analysis, in particular
to prevent over-estimations of CRPD. For example, not all
tasks contributing to the worst-case response time of a task can
actually pre-empt the execution of a job of that task, unlike
with FPPS, as illustrated by a non-pre-emptive task. Next,
there does not exist an Optimal Threshold Assignment (OTA)
algorithm minimizing CRPD. Finally, existing comparisons
between FPPS and FPTS, e.g. [18], do not consider CRPD.

This paper presents three major contributions, i.e. (i) analysis
for FPTS with CRPD (Sections IV - VII), (ii) an OTA algorithm
for FPTS with CRPD that minimizes CRPD (Section VIII),
and (iii) a comparative evaluation of the schedulability ratio
of task sets under FPPS and FPTS, for constrained-deadline
tasks, taking CRPD into account (Section IX).

II. Real-time scheduling model

A. Basic model for FPPS

We assume a single processor and a set T of n independent
sporadic tasks τ1, τ2, . . ., τn, with unique priorities π1, π2, . . .,
πn. At any moment in time, the processor is used to execute
the highest priority task that has work pending. For notational
convenience, we assume that (i) tasks are given in order of
decreasing priorities, i.e. τ1 has the highest and τn the lowest
priority, and (ii) a higher priority is represented by a higher
value, i.e. π1 > π2 > . . . > πn. We use hp(π) (and lp(π)) to
denote the set of tasks with priorities higher than (lower than)

1The restriction to one internal resource per task in OSEK and AUTOSAR
needs to be lifted to fully implement FPTS. In this way, FPTS is supported by
ETAS’ RTA-OSEK and RTA-OS operating systems, which have been deployed
in 50 to 55 million new ECUs per year since 2008 [19].



π. Similarly, we use hep(π) (and lep(π)) to denote the set of
tasks with priorities higher (lower) than or equal to π.

Each task τi is characterized by a minimum inter-activation
time Ti ∈ R+, a worst-case computation time Ci ∈ R+, and
a (relative) deadline Di ∈ R+. We assume that the constant
pre-emption costs, such as context switches, are subsumed
into the worst-case computation times. We feature arbitrary
deadlines, i.e. the deadline Di may be smaller than, equal to,
or larger than the period Ti. The utilization Ui of task τi is
given by Ci/Ti, and the utilization U of the set of tasks T by∑

1≤i≤n Ui. An activation of a task is also termed a job.
For notational convenience, we introduce E j(t) =

⌈
t/T j

⌉
and E∗

j (t) =
(
1 +

⌊
t/T j

⌋)
to represent the maximum number of

activations of τ j in an interval [x, x+t) and [x, x+t], respectively,
where both intervals have a length t.

B. Refined model for FPTS

In FPTS, each task τi has a pre-emption threshold θi, where
π1 ≥ θi ≥ πi. When τi is executing, it can only be pre-empted
by tasks with a priority higher than θi. Note that we have FPPS
and FPNS as special cases when ∀1≤i≤nθi = πi and ∀1≤i≤nθi = π1,
respectively.

We use het(π) (and lt(π)) to denote the set of tasks with
thresholds higher than or equal to (lower than) π. Finally,
we use b(i) to denote the set of tasks that may block τi due
to their preemption threshold assignment. An overview of
notations for sets of tasks is given in Table I. Note that for
FPPS hep(π) = het(π), lp(π) = lt(π), and b(i) = ∅.

TABLE I
Notations for various sets of indices of tasks.

classic notations for FPPS additional notations for FPTS

hep(π) def
= {h|πh ≥ π} het(π) def

= {h|θh ≥ π}
lp(π) def

= {�|π > π�} lt(π) def
= {�|π > θ�}

hp(π) def
= {h|πh > π} b(i) def

= lp(πi) \ lt(πi)
lep(π) def

= {�|π ≥ π�}

C. A model for cache-related pre-emption costs

For ease of presentation, we assume direct-mapped caches,
similar to [3]. The scheduling analysis integrating CRPD is
based on the concepts of evicting cache blocks (ECBs) and
useful cache blocks (UCBs) [26, 4]. A memory block that may
be accessed by a task is termed an ECB, as it may evict a
cache block of another task. A cache block that may be (re-)
used at multiple program points without being evicted by the
task itself is termed a UCB. The set of UCBs and ECBs of
tasks can be analyzed with, for example, a prototype version of
AbsInt’s aiT Timing Analyzer for ARM [22]. Similar to [3], in
the current paper the sets of ECBs and UCBs are represented
as sets of integers, where each integer represents a cache set.

The worst-case block-reload time (BRT) is given by a
constant. Example 1 shows the relation between the ECBs
of a task (ECBi), the UCBs of a task (UCBi) and the BRT.

Example 1. We assume a direct-mapped cache with 4 cache
sets and two tasks τ1 and τ2. The memory blocks of τ1 map

to cache set 0, 1 and 2. Only τ1’s memory block mapping to
cache set 1 is useful, i.e. ECB1 = {0, 1, 2} and UCB1 = {1}.
The memory blocks of τ2 map to cache set 1, 2, and 3 and
all three are useful, i.e. ECB2 = {1, 2, 3} and UCB2 = {1, 2, 3}.
The cache-related pre-emption of task τ1 pre-empting task τ2
is thus given as follows:

|ECB1 ∩ UCB2| · BRT = |{1, 2}| · BRT = 2 · BRT.

The cache utilization UC
i of task τi is given by |ECBi|/N,

where |ECBi| denotes the number of ECBs of τi and N denotes
the number of cache sets. The total cache utilization UC of
the set of tasks T is given by

∑
1≤i≤n UC

i =
∑

1≤i≤n |ECBi|/N.

III. Recap of response time analysis for FPPS and FPTS

This section starts with a recapitulation of the exact schedu-
lability analysis for FPTS, as presented in [25]. Next, that
analysis is specialized for FPPS with constrained deadlines,
i.e. for cases with Di ≤ Ti, and extended with CRPD [3].

A. FPTS with arbitrary deadlines (without CRPD)

A set T of tasks is schedulable if and only if for every
task τi ∈ T its worst-case response time Ri is at most equal
to its deadline Di, i.e. ∀1≤i≤nRi ≤ Di. To determine Ri, we
need to consider the worst-case response times of all jobs in a
so-called level-i active period [14]. The worst-case length Li

of that period is given by the smallest positive solution of

Li = Bi +
∑

∀ j∈hep(πi)

E j(Li) ·C j, (1)

where Bi denotes the worst-case blocking of task τi, given by

Bi = max
(
0, max

∀b∈b(i)
Cb

)
. (2)

Li can be found by fixed point iteration that is guaranteed to
terminate for all i when U < 1 [14].

For a job k of τi, with 0 ≤ k < Ei(Li), the worst-case start
time S i,k and worst-case finalization time Fi,k are given by

S i,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Bi + kCi +

∑
∀ j∈hp(πi)

E j(S i,k) ·C j if Bi > 0

kCi +
∑

∀ j∈hp(πi)
E∗

j (S i,k) ·C j if Bi = 0 (3)

and

Fi,k = S i,k +Ci+⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑

∀ j∈hp(θi)

(
E j(Fi,k) − E j(S i,k)

)
·C j if Bi > 0∑

∀ j∈hp(θi)

(
E j(Fi,k) − E∗

j (S i,k)
)
·C j if Bi = 0

. (4)

Later in this paper we prove that (4) can be simplified by
removing the case distinction, because E j(S i,k) = E∗

j (S i,k) (see
Corollary 1). Similar to Li, the values for S i,k and Fi,k can be
found by means of an iterative procedure.

The worst-case response time Ri of τi is now given by

Ri = max
0≤k<Ei(Li)

(
Fi,k − k · Ti

)
. (5)



B. FPPS with constrained deadlines and CRPD

FPPS is a special case of FPTS, and the analysis of FPTS can
therefore be simplified for FPPS. For FPPS with constrained
deadlines, the worst-case response time Ri of task τi is given
by the smallest positive solution [24, 5] of

Ri = Ci +
∑

∀ j∈hp(πi)

E j(Ri) ·C j. (6)

An upper bound for Ri with CRPD [32, 3] can be found using

Ri = Ci +
∑

∀ j∈hp(πi)

(
E j(Ri) ·C j + γi, j(Ri)

)
, (7)

where γi, j(Ri) represents the cache-related pre-emption cost due
to all jobs of a higher priority pre-empting task τ j executing
within the worst-case response time of task τi. The definition of
γi, j(t) depends on the specific approach chosen for determining
these costs [3].

Integration of CRPD in the schedulability analysis of tasks
has been addressed for FPPS with a focus on the pre-empting
tasks [17], the pre-empted tasks [26], and by considering both
the pre-empting and pre-empted tasks [32, 3]. The ECB-Only
approach and UCB-Only Multiset approach focus on just the
pre-empting tasks and just the pre-empted tasks, respectively.
The ECB-Union and UCB-Union Multiset approaches consider
a combination of pre-empting and pre-empted tasks.

1) ECB-Only approach: For this case, γi, j(t) is given by2

γecb-o
i, j (t) =

{
BRT · E j(t) ·

∣∣∣ECB j

∣∣∣ if aff(πi, π j) � ∅
0 otherwise

, (8)

where aff(πi, π j) denotes the set of tasks that have a priority
(i) higher than or equal to πi, i.e. can affect the response time
of τi, and (ii) lower than π j, i.e. can be pre-empted by τ j. For
FPPS with constrained deadlines, aff(πi, π j) is defined as

aff(πi, π j)
def
= lp(π j) ∩ hep(πi). (9)

2) UCB-Only Multiset and ECB-Union Multiset approaches:
For these approaches, γi, j(t) is defined as

γM
i, j(t)

def
= BRT ·

E j(t)∑
�=1

∣∣∣∣sort (Mi, j(t)
)

[�]
∣∣∣∣ , (10)

where the function sort() sorts the sets of the multiset Mi, j(t)
in non-increasing order of their size. Hence, the sum of the
sizes of the E j(t) largest sets of the multiset Mi, j(t) is taken
and multiplied by BRT.

For the UCB-Only Multiset approach, the multiset Mi, j(t)
contains E j(Rh) · Eh(t) copies of the size of UCBh of each task
h ∈ aff(πi, π j) affecting task τi and affected by task τ j, i.e.

Mucb-o
i, j (t) def

=
⋃

h∈aff(πi,π j)

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
E j(Rh)·Eh(t)

∣∣∣UCBh

∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (11)

2Strictly speaking, the condition aff(πi, π j) � ∅ in (8) can be removed,
because γecb-o

i, j (t) is only applied in a context where i ∈ lp(π j). We inserted
the condition to ease the comparison of FPPS (this section) and FPTS (later
on).

Instead, for the ECB-Union Multiset approach, for each task
h ∈ aff(πi, π j) the multiset Mi, j(t) contains E j(Rh) · Eh(t) copies
of the size of the intersection of UCBh and the ECBs of all
tasks in hep(π j), i.e.

Mecb-u
i, j (t) def

=
⋃

h∈aff(πi,π j)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋃

E j(Rh)·Eh(t)

∣∣∣∣∣∣∣∣UCBh ∩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋃

g∈hep(π j)

ECBg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
(12)

Note that (12) extends (11) by intersecting every UCBh with(⋃
g∈hep(π j) ECBg

)
.

3) UCB-Union Multiset approach: For this approach, first
a multiset Mucb

i, j (t) is formed containing E j(Rh) · Eh(t) copies
of the UCBh of each task h ∈ aff(πi, π j), i.e.

Mucb
i, j (t) def

=
⋃

h∈aff(πi,π j)

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
E j(Rh)·Eh(t)

UCBh

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (13)

Apart from the cardinality operator in (11), the equations (11)
and (13) are identical. Next a multi-set Mecb

j (t) is formed
containing E j(t) copies of the ECB j of task τ j, i.e.

Mecb
j (t) def

=
⋃
E j(t)

ECB j. (14)

The CRPD γucb-u
i, j (t) is then given by the size of the multi-set

intersection of Mecb
j (t) and Mucb

i, j (t) multiplied by BRT, i.e.

γucb-u
i, j (t) def

= BRT ·
∣∣∣∣Mecb

j (t) ∩ Mucb
i, j (t)

∣∣∣∣ . (15)

In the remainder of this paper, we follow a similar structure
for extending FPTS with CRPD. Before looking at specific
approaches, we consider challenges for FPTS with CRPD
(Section IV). We subsequently focus on pre-empting tasks
(Section V), pre-empted tasks (Section VI), and the combination
of pre-empting and pre-empted tasks (Section VII).

IV. FPTS with CRPD: Preliminaries and challenges

To extend the schedulability analysis of FPTS with CRPD,
we must extend the corresponding formulas. For this purpose,
we extend Li in (1), S i,k in (3) and Fi,k in (4) with a new
term γi, j(t) in a similar way as the Ri in (7) has been extended
for FPPS with constrained deadlines. However, due to (i) the
generalization towards arbitrary deadlines and (ii) the limited-
pre-emptive nature of FPTS, it is not possible to simply extend
these equations for FPTS with a term γi, j(t) by reusing the
existing approaches to determine CRPD. This section addresses
preliminaries and challenges for FPTS with CRPD.

A. Distinguishing executing and affected tasks

The extension for FPPS is based on the tasks that can execute
and affect the execution of a task τi in the interval under
consideration. An overview of these tasks for the response
interval [0,Ri) is given in Table II, i.e. the table shows

• interval: a description of an interval under consideration;
• execute: the tasks that can execute jobs in the interval;
• affected by τ j: the set of tasks that can execute jobs in

the interval and can be pre-empted by task τ j;



TABLE II
Overview of tasks that can execute and affect the execution of task τi in a level-i active period starting at time t = 0 for both FPPS with constrained deadlines

and FPTS with arbitrary deadlines, assuming a task τb that blocks τi for FPTS, i.e. b ∈ b(i).

FPPS FPTS
interval [0,Ri) [0,Hi) [0, Li) [0, S i,k) [0, Fi,k)
execute hep(πi) {i} ∪ hp(θi) {b} ∪ hep(πi) see [0, Li) see [0, Li)
affected by τ j lp(π j) ∩ hep(πi) = aff(πi, π j) lt(π j) ∩ ({i} ∪ hp(θi)) lt(π j) ∩ ({b} ∪ hep(πi)) see [0, Li) see [0, Li)

#-jobs
{

Eh(Ri) if h ∈ hep(πi)
0 otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Eh(Hi) if h ∈ hp(θi)
1 if i
0 otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Eh(Li) if h ∈ hep(πi)
1 if b
0 otherwise

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Eh(S i,k) if h ∈ hp(πi)
k if i
1 if b
0 otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eh(Fi,k) if h ∈ hp(θi)
Eh(S i,k) if h ∈ hp(πi) \ hp(θi)
k + 1 if i
1 if b
0 otherwise

• #-jobs: the number of job activations of a task that can
execute in the interval.

The “#-jobs” in the interval [0,Ri) can be immediately derived
from Ri, see (6). If Ri ≤ Di ≤ Ti, then Ei(Ri) = 1 and, as a
result, task τi can be treated as any other task.

When we focus only on the pre-empting tasks, e.g. when
using the ECB-Only approach, we only need the information of
the row affected by τ j in Table II; see (8). When we focus on
the pre-empted tasks, e.g. when using the UCB-Only Multiset
approach, the #-jobs also play a role, i.e. the multiset Mucb-o

i, j (t)
in (11) contains E j(Rh) · Eh(t) copies of the size of UCBh for
each task h ∈ aff(πi, π j) affecting τi and affected by τ j.

In the next sections, the information in Table II is the basis
for the extensions for FPTS with CRPD.

B. Bounding the number of pre-emptions using hold times

For FPPS with constrained deadlines, all pre-emptions during
the response time of a job of a task may actually evict UCBs
of that job. For FPTS, however, some pre-emptions can only
take place between the activation and the start of a job, and
therefore do not evict UCBs of that job. An obvious example
is a non-pre-emptive task, where no pre-emption can take place
during the actual execution of its jobs.

To prevent pessimism in the analysis when focussing on
pre-empted tasks, we consider so-called hold times. To that end,
we distinguish the (absolute) activation time ai,k, (absolute)
start-time si,k and (absolute) finishing time fi,k of a job k of
task τi; see Figure 1. The length of the interval [ai,k, fi,k) and
[si,k, fi,k) is termed the response time and the hold time3 of job
k of task τi, respectively.

task τi

timeai,k fi,k

response time
execution by
other tasks than τi
execution by τi
release

Legend:

si,k

hold time

Fig. 1. The response time and hold time of job k of task τi.

Under FPPS, the worst-case hold time Hi of a task τi can
be calculated by means of (6), i.e. by using the equation
to determine the worst-case response time Ri for FPPS with

3The notion of hold time is inspired by the term resource hold times in [9]
and the observation in [21, 23] that it is possible to make two tasks mutually
non-pre-emptive by letting them share a so-called pseudo-resource. Our hold
time is the same as the resource hold time of the pseudo-resource.

TABLE III
Task characteristics of T2 and worst-case response times and hold times of
periodic tasks with non-constrained deadlines under FPPS without CRPD.

T D C π = θ R H
τ1 5 5 2 2 2 2
τ2 7 9 4.2 1 8.6 8.2

TABLE IV
Task characteristics of T3 and worst-case response times and hold times of

periodic tasks under FPTS without CRPD.

T = D C π θ R H
τ1 6 1 4 4 3 1
τ2 7 2 3 4 5 2
τ3 9 2 2 3 8 3
τ4 11 2 1 3 8 3

constrained deadlines; see [12, 13]. Under FPTS, only tasks
with a priority higher than θi can pre-empt τi. Hence, the
worst-case hold time Hi (without CRPD) is given by

Hi = Ci +
∑

∀ j∈hp(θi)

E j(Hi) ·C j. (16)

The worst-case hold time Hi of a task τi may be smaller than
the worst-case response time Ri. This is because (i) the potential
delay of the execution of a job by a previous job [13], (ii) the
blocking by a task τb with b ∈ b(i), and (iii) the interference of
tasks τ j with j ∈ hp(πi) ∩ lep(θi) are included in Ri but not in
Hi. Example 2 below illustrates (i) and Example 3 illustrates
(ii) and (iii).

Example 2. The characteristics of a set T2 of periodic tasks
is given in Table III. The timeline shown in Figure 2 illustrates
both the worst-case hold time H2 = 8.2 and the worst-case
response time R2 = 8.6 for the job activated at time t = 14. R2
is larger than H2, because R2 includes a delay of 0.4 of the
job activated at time t = 7. This illustrates (i).

Example 3. The characteristics of a set T3 of periodic tasks
are given in Table IV. The worst-case hold times of all tasks
are smaller than their worst-case response times. Task τ1 is
an example of (ii), task τ4 is an example of (iii), and tasks τ2
and τ3 are examples of both (ii) and (iii).

Tasks τ3 and τ4 of Example 3 are particularly interesting
when FPTS is extended with CRPD, because task τ1 can be
activated twice during their worst-case response time but only
once during their worst-case hold time.



0 10 20 305 15 25 35

task τ1

task τ2

time

8.2 7.4 8.6 7.8 7.0

Fig. 2. Timeline for T2 for an entire hyper period (i.e. lcm(T1,T2) = 35) with a simultaneous release of τ1 and τ2 at time t = 0. The numbers to the top right
corner of the boxes denote the response times of the respective job activations.

C. Determining the number of job activations “#-jobs”

We now show that we can derive the “#-jobs” for FPTS
in Table II from the equations corresponding to the intervals,
similar to FPPS. We start with the interval [0,Hi). The intervals
[0, Li), [0, S i,k) and [0, Fi,k) are subsequently addressed for
Bi � 0 and Bi = 0.

1) #-jobs for [0,Hi): The “#-jobs” for the interval [0,Hi)
follows immediately from (16). Exactly 1 activation of τi is
taken into account. To prevent pessimism when Ti is smaller
than Hi, Table II contains a dedicated clause for identifying
the appropriate number of job activations of task τi itself.

Example 4. We reconsider T2 of Example 2. For that example,
E2(H2) = 2 rather than 1.

2) #-jobs for [0, Li), [0, S i,k), and [0, Fi,k) when Bi � 0:
Given a task τb that blocks τi under FPTS, i.e. b ∈ b(i), the
number of activations #-jobs in the intervals [0, Li), [0, S i,k)
and [0, Fi,k) in Table II can be immediately derived from (1) for
Li, (3) for S i,k and (4) for Fi,k. To prevent pessimism, exactly
one activation of τb is taken into account. Similarly, exactly k
and k + 1 jobs of τi are taken into account when determining
S i,k and Fi,k, respectively.

Example 5. We reconsider T2 of Example 2. The worst-
case finalization time F2,0 of the first job of τ2 is equal to
8.2. Because E2(8.2) = 2, (11) would include 2 jobs of τ2
in Mucb-o

2,1 (8.2) rather than 1. To prevent this pessimism, we
explicitly take the number of jobs of τi into account.

3) #-jobs for [0, Li), [0, S i,k), and [0, Fi,k) when Bi = 0:
Lemma 1 shows that the ∗ can be removed from E∗

j (S i,k) for
the case Bi = 0 in (4) for Fi,k.

Lemma 1. Let j ∈ hp(πi) and assume a level-i active period
starting at time t = 0 with a simultaneous release of τi and τ j.
Let S i,k denote the worst-case start time of job k of τi in that
level-i active period and be derived by (3). Now the following
equality holds:

∀ j∈hp(πi)E
∗
j (S i,k) = E j(S i,k). (17)

Proof. The term E∗
j (S i,k) represents the maximum number of

activations of τ j in the interval [0, S i,k]. When ∃m∈NS i,k = m·T j,
task τ j is activated at time S i,k. This would imply that τi

cannot start at S i,k, which contradicts the definition of S i,k.
We therefore conclude that �m∈NS i,k = m · T j. As a result,
E∗

j (S i,k) = E j(S i,k), which proves the lemma. �

Corollary 1. We may simplify (4) by replacing E∗
j (S i,k) by

E j(S i,k) and ignoring the case distinction, i.e.

Fi,k = S i,k +Ci +
∑

∀ j∈hp(θi)

(
E j(Fi,k) − E j(S i,k)

)
·C j. (18)

Similarly, Lemma 2 shows that γi, j(t) can be defined in terms
of E j(S i,k) rather than E∗

j (S i,k) for the case Bi = 0 in (3) when
determining S i,k.

Lemma 2. When S i,k is extended with a term γi,k(t) for the
case Bi = 0, γi,k(t) can be based on E j(t) rather than E∗

j (t).

Proof. A solution for the recurrent relation for S i,k is found
when S (�)

i,k = S (�+1)
i,k for two subsequent iterations. For S (�)

i,k there
are two cases, either E j(S

(�)
i,k ) = E∗

j (S
(�)
i,k ) or E j(S

(�)
i,k ) � E∗

j (S
(�)
i,k ).

Let E j(S
(�)
i,k ) = E∗

j (S
(�)
i,k ), i.e. �m∈NS (�)

i,k = m · T j. As a result, it
doesn’t matter whether E j(t) or E∗

j (t) is used in γi,k(t).
Now let E j(S

(�)
i,k ) � E∗

j (S
(�)
i,k ), i.e. ∃m∈NS (�)

i,k = m · T j. As a
result, an additional activation of τ j will be taken into account
when determining S (�+1)

i,k , irrespective of using either E j(t) or
E∗

j (t) in γi,k(t). Together, these two cases prove the lemma. �

We therefore conclude that, apart from the number of job
activations of τb, the information in Table II also holds for τi

when Bi = 0.

D. Identifying the task causing the largest blocking delay

A nice property of FPTS is that just one job of lower priority
is able to cause blocking delays. In the presence of CRPD,
however, the largest computation time among the blocking tasks
does not necessarily result in the largest worst-case response
time.

Example 6. We reconsider T3 of Example 3. Without CRPD,
the blocking of τ2 due to τ3 and τ4 is the same because C3 = C4,
i.e. B2 = max(0,max{C3,C4}) = 1. The blocking including
CRPD may be different, however, due to different UCBs of τ3
and τ4 and the ECBs of τ1. Even a smaller computation time
of a blocking task may result in a larger overall blocking effect
when CRPD is included.

For the case with blocking (Bi � 0), we therefore need a
more complex procedure to compute response times. Our new
procedure determines the values for Li, S i,k, Fi,k, and Ri with
CRPD by taking the maximum value over all tasks that may
block τi.

E. Termination of the iterative procedure for Li

Termination of the iterative procedure to determine Li is
no longer guaranteed when U < 1, because the CRPD is not
taken into account in the utilization U. To address this problem,



we first observe that by definition every level-i active period,
with 1 ≤ i < n, is contained in a level-n active period [14].
Hence termination for Ln guarantees termination for Li for all
1 ≤ i < n. Next, the lowest priority task τn cannot be blocked.
As a result, when Ln exceeds the least common multiple (LCM)
of the periods of the task set T , the iterative procedure will not
terminate. This is because at the LCM the activation pattern is
repeated and if Ln did not terminate at the LCM then there is
pending load pushed across the LCM boundary. By integrating
CRPD into the analysis, the effective utilization with CRPD
is apparently larger than 1. The set is therefore considered
unschedulable when Ln exceeds the LCM.

V. FPTS with CRPD: pre-empting tasks
In this section, we consider the ECB-Only approach, i.e.

focus only on the pre-empting tasks. Because the worst-case
hold time Hi only plays a role for pre-empted tasks, we ignore
Hi in this section. In order to extend the equations for Li, S i,k

and Fi,k for FPTS with a term γi, j(t), we must adapt γecb-o
i, j (t)

by considering the tasks affected by τ j (see the row affected by
τ j in Table II). As shown in Table II, the tasks being affected
by pre-emptions are the same for the intervals [0, Li), [0, S i,k),
and [0, Fi,k), but differ from the tasks being affected under
FPPS with constrained deadlines. We therefore generalize, i.e.
redefine, the set of tasks aff(πi, π j) for FPTS to

aff(πi, π j)
def
= lt(π j) ∩ hep(πi). (19)

Equation (19) for FPTS specializes to (9) for FPPS because
lp(π j) = lt(π j) for FPPS.

To determine the worst-case response time Ri of τi, we can
then reuse (5). In the subsections below, we consider the cases
without and with blocking separately.

A. Worst-case length Li

1) Tasks without blocking: For the case Bi = 0, we can find
an upper bound for Li with CRPD by extending (1) with γi, j(t),
similar to the extension of Ri in (7), i.e.

Li =
∑

∀ j∈hep(πi)

(
E j(Li) ·C j + γi, j(Li)

)
. (20)

For the ECB-Only approach, we can subsequently reuse (8)
for γecb-o

i, j (t) with aff(πi, π j) as defined in (19).
2) Tasks with blocking: For the case Bi � 0, we rewrite (1)

for Li by distributing addition over the inner-max operation in
equation (2) for Bi and subsequently extending the equation
for CRPD as explained in Section IV-D, i.e.

Li = max
∀b∈b(i)

⎛⎜⎜⎜⎜⎜⎜⎜⎝Cb +
∑

∀ j∈hep(πi)

(
E j(Li) ·C j + γi, j,b(Li)

)⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (21)

A subscript “b” has been introduced in γi, j,b(t) to capture the
CRPD related to the blocking task τb. For the ECB-Only
approach, γecb-o

i, j,b (t) is defined as

γecb-o
i, j,b (t) =

{
BRT · E j(t) ·

∣∣∣ECB j

∣∣∣ if aff(πi, π j) � ∅ ∨ b ∈ lt(π j)
0 otherwise

.

(22)

Compared to (8) for FPPS, the first clause for γecb-o
i, j,b (t) in (22)

for FPTS has been extended with b ∈ lt(π j), because τ j may in
that case also pre-empt task τb. Note that lt(π j)∩({b}∪hep(πi))
in Table II is equal to aff(πi, π j) ∪ (lt(π j) ∩ {b}) in (22).

B. Worst-case start time S i,k

1) Tasks without blocking: Similar to Li, we extend equation
(3) for S i,k with a term γi,k(t) to include CRPD, i.e.

S i,k = kCi +
∑

∀ j∈hp(πi)

(
E∗

j (S i,k) ·C j + γi, j(S i,k)
)
. (23)

Based on Lemma 2, we conclude that we can define γi,k(t)
in terms of E j(t) rather than E∗

j (t). Hence, we can also reuse
γecb-o

i,k (t) from (8) for the ECB-Only approach, with aff(πi, π j)
as defined in (19), similar to Li.

2) Tasks with blocking: We extend S i,k with an additional
subscript “b” and a term γi, j,b(t), i.e.

S i,k,b = Cb + kCi +
∑

∀ j∈hp(πi)

(
E j(S i,k,b) ·C j + γi, j,b(S i,k,b)

)
. (24)

For the ECB-Only approach, we can reuse γecb-o
i, j,b (t) from (22),

similar to Li.

C. Worst-case finalization time Fi,k

1) Tasks without blocking: We can extend (18) with γi, j(t)
terms complementing E j(Fi,k) ·C j and E j(S i,k) ·C j, i.e.

Fi,k = S i,k +Ci +
∑

∀ j∈hp(θi)

(
E j(Fi,k) − E j(S i,k)

)
·C j

+
∑

∀ j∈hp(θi)

(
γi, j(Fi,k) − γi, j(S i,k)

)
. (25)

Similar to Li and S i,k we use (8) for γecb-o
i,k (t), with aff(πi, π j)

as defined in (19).
2) Tasks with blocking: Similar to S i,k, we add a subscript

“b” to Fi,k. Similar to the case Bi = 0, we expand the formula
with terms for CRPD, i.e.

Fi,k,b = S i,k,b +Ci +
∑

∀ j∈hp(θi)

(
E j(Fi,k,b) − E j(S i,k,b)

)
·C j

+
∑

∀ j∈hp(θi)

(
γi, j,b(Fi,k,b) − γi, j,b(S i,k,b)

)
.(26)

Similar to Li and S i,k, we apply (22) for γecb-o
i, j,b (t). To compute

Fi,k, we take the maximum value over all tasks that may block
τi, similar to Li and as explained in Section IV-D, i.e.

Fi,k = max
∀b∈b(i)

Fi,k,b. (27)

VI. FPTS with CRPD: pre-empted tasks

In this section, we consider the UCB-Only Multiset approach,
i.e. we focus on the pre-empted tasks. In this case, the row
#-jobs in Table II also plays a role. As shown in Table II, a
case distinction is needed to capture the tasks that are being
pre-empted, and these cases differ for [0,Hi), [0, Li), [0, S i,k)
and [0, Fi,k). As a consequence, this section presents dedicated
adaptations of γi, j(t) and Mi, j(t), for each interval. For ease



of presentation, we only consider the case where tasks may
experience blocking. The other case is similar.

A. Worst-case hold time Hi

We can find an upper bound for Hi with CRPD by extending
(16) with γi, j(t), similar to the extension of Ri with γi, j(t), i.e.

Hi = Ci +
∑

j∈hp(θi)

(
E j(Hi) ·C j + γi, j(Hi)

)
. (28)

Although we can apply γM
i, j(t) in (10) for the UCB-Only Multiset

approach, we need to adapt the definition of Mucb-o
i, j (t) in (11)

to prevent pessimism, as discussed in Sections IV-B and IV-C.
Firstly, worst-case hold times are to be considered for pre-
empted tasks, rather than worst-case response times. Secondly,
exactly one job of task τi needs to be considered rather than
Ei(t) jobs. These two adaptations of (11) result in

Mucb-o
i, j (t) =

⋃
h∈aff′(θi,π j)

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
E j(Hh)·Eh(t)

∣∣∣UCBh

∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎠

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ ⋃

E j(Hi)

∣∣∣UCBi

∣∣∣⎞⎟⎟⎟⎟⎠ if i ∈ lt(π j)

∅ otherwise
. (29)

Because task τi is treated in a separate clause, we need an
alternative aff′(πi, π j) for aff(πi, π j) excluding {i}, i.e.

aff′(πi, π j)
def
= lt(π j) ∩ hp(πi) = aff(πi, π j) \ {i}. (30)

B. Worst-case length Li

Similar to the ECB-Only approach, we can use (21) to find
an upper bound for Li by extending (10) for γM

i, j(t) with a
subscript b for the blocking task τb, with b ∈ b(i):

γM
i, j,b(t) = BRT ·

E j(t)∑
�=1

∣∣∣∣sort (Mi, j,b(t)
)

[�]
∣∣∣∣ . (31)

The definition of Mucb-o
i, j (t) in (11) also needs to be extended

with a subscript b, to consider exactly one blocking job of τb

rather than Eb(t) jobs.

Mucb-o
i, j,b (t) =

⋃
h∈aff(πi,π j)

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
E j(Hh)·Eh(t)

∣∣∣UCBh

∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎠

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ ⋃

E j(Hb)

∣∣∣UCBb

∣∣∣⎞⎟⎟⎟⎟⎠ if b ∈ lt(π j)

∅ otherwise
. (32)

The pre-condition b ∈ b(i) for Mucb-o
i, j,b (t) is taken into account

by the max in (21). The definition of Mucb-o
i, j,b (t) is based on

aff(πi, π j), rather than aff′(πi, π j), because the number of jobs of
τi are not known a-priori. Moreover, the definition contains the
worst-case hold times of τh and τb rather than their worst-case
response times to avoid pessimism.

C. Worst-case start time S i,k

As well as considering exactly one job of task τb, the
definitions of γM

i, j,b(t) and Mucb-o
i, j,b (t) are further extended for

S i,k to consider exactly k jobs of τi (see Table II), i.e.

γM
i, j,k,b(t) = BRT ·

E j(t)∑
�=1

∣∣∣∣sort (Mi, j,k,b(t)
)

[�]
∣∣∣∣ (33)

and

Mucb-o
i, j,k,b (t) =

⋃
h∈aff′(πi,π j)

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
E j(Hh)·Eh(t)

∣∣∣UCBh

∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎠

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ ⋃

E j(Hi)·k

∣∣∣UCBi

∣∣∣⎞⎟⎟⎟⎟⎠ if i ∈ lt(π j)

∅ otherwise

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ ⋃

E j(Hb)

∣∣∣UCBb

∣∣∣⎞⎟⎟⎟⎟⎠ if b ∈ lt(π j)

∅ otherwise
. (34)

Similar to Hi, task τi is again treated by a separate clause,
necessitating the usage of aff′(θi, π j) rather than aff(θi, π j).
Moreover, Mucb-o

i, j,k,b (t) is based on the worst-case hold times
of τh, τi, and τb rather than their worst-case response times.

Similar to the ECB-Only approach, a subscript “b” is added
to S i,k. Moreover, the equation of S i,k in (3) is extended with
γi, j,k,b(t) as follows:

S i,k,b = Cb+kCi+
∑

∀ j∈hp(πi)

(
E j(S i,k,b) ·C j + γi, j,k,b(S i,k,b)

)
. (35)

D. Worst-case finishing time Fi,k

As indicated in Table II, exactly k + 1 jobs of τi need to be
considered for Fi,k. Moreover, we need to split the set of tasks
hp(πi) into two subsets for Fi,k, i.e. the set hp(πi) \ hp(θi) of
tasks that can be blocked by τi and the set hp(θi) that cannot
be blocked by τi. The former set can execute and experience
pre-emptions in [0, S i,k), whereas the latter set can execute and
experience pre-emptions in [0, Fi,k). To take the proper number
of activations of tasks in these two sets into account, we use
two parameters ts and t f for γi, j,k,b and Mucb-o

i, j,k,b , i.e.

γM
i, j,k,b(ts, t f ) = BRT ·

E j(t f )∑
�=1

∣∣∣∣sort (Mi, j,k,b(ts, t f )
)

[�]
∣∣∣∣ , (36)

and

Mucb-o
i, j,k,b (ts, t f ) =

⋃
h∈(aff′(πi,π j)∩hp(θi))

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
E j(Hh)·Eh(t f )

∣∣∣UCBh

∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎠

∪
⋃

h∈(aff′(πi,π j)\hp(θi))

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
E j(Hh)·Eh(ts)

∣∣∣UCBh

∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎠

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ ⋃

E j(Hi)·(k+1)

∣∣∣UCBi

∣∣∣⎞⎟⎟⎟⎟⎠ if i ∈ lt(π j)

∅ otherwise

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ ⋃

E j(Hb)

∣∣∣UCBb

∣∣∣⎞⎟⎟⎟⎟⎠ if b ∈ lt(π j)

∅ otherwise
. (37)

Similar to the ECB-Only approach, Fi,k is extended with a



subscript “b” and γi, j,k,b terms, i.e.

Fi,k,b = S i,k,b +Ci

+
∑

∀ j∈hp(θi)

(
E j(Fi,k,b) − E j(S i,k,b)

)
·C j

+
∑

∀ j∈hp(θi)

(
γi, j,k,b(S i,k,b, Fi,k,b) − γi, j,k,b(S i,k,b)

)
. (38)

The term γi, j,k,b(S i,k,b) in (38) prevents the cache-related pre-
emption costs already covered in (35) for S i,k,b to be accounted
for twice.

We may subsequently determine Fi,k by (27) and can derive
Ri through (5) as before.

VII. FPTS with CRPD: pre-empting and pre-empted tasks

In this section, we consider the ECB-Union and UCB-Union
Multiset approaches, i.e. we consider both the pre-empting and
the pre-empted tasks. As described in Section III-B for FPPS
with CRPD, the definitions of the multisets for the ECB-Union
and UCB-Union Multiset approaches can be derived from the
definition of the multiset for the UCB-Only Multiset approach.
A similar derivation applies for FPTS with CRPD. We therefore
only consider the definition of the multisets Mecb-u

i, j,k,b (ts, t f ) and
Mucb-u

i, j,k,b (ts, t f ) for the worst-case finalization time Fi,k for the
case with blocking. The derivation of the definitions for the
case without blocking and for the worst-case length Li and
worst-case start time S i,k are similar.

A. ECB-Union Multiset approach

The ECB-Union Multiset approach considers the pre-emption
cost of pre-empting tasks for every pre-empted task individually.
Similar to FPPS with CRPD, the definition of the multiset of the
UCB-Only Multiset approach will be extended by intersecting
the UCBs of every affected task with

(⋃
g∈hep(π j) ECBg

)
, e.g.

from (37) for Mucb-o
i, j,k,b (ts, t f ) we derive

Mecb-u
i, j,k,b (ts, t f ) =⋃

h∈(aff′(πi,π j)∩hp(θi))

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
E j(Hh)·Eh(t f )

∣∣∣∣∣∣∣∣UCBh ∩

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
g∈hep(π j)

ECBg

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎠

∪
⋃

h∈(aff′(πi,π j)\hp(θi))

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
E j(Hh)·Eh(ts)

∣∣∣∣∣∣∣∣UCBh ∩

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
g∈hep(π j)

ECBg

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎠

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ ⋃

E j(Hi)·(k+1)

∣∣∣∣∣∣UCBi ∩
⎛⎜⎜⎜⎜⎝ ⋃

g∈hep(π j)
ECBg

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎠ if i ∈ lt(π j)

∅ otherwise

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ ⋃

E j(Hb)

∣∣∣∣∣∣UCBb ∩
⎛⎜⎜⎜⎜⎝ ⋃

g∈hep(π j)
ECBg

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎠ if b ∈ lt(π j)

∅ otherwise
.(39)

The equations for γM
i, j,k,b(ts, t f ) in (36), Fi,k,b in (38), and Fi,k

in (27) can be reused for the ECB-Union Multiset approach.

B. UCB-Union Multiset approach

For the UCB-Union Multiset approach, first a multiset
Mucb

i, j,k,b(ts, t f ) is formed. Similar to FPPS with CRPD, the

definition for Mucb
i, j,k,b(ts, t f ) can be derived from (37) for

Mucb-o
i, j,k,b (ts, t f ) by removing all cardinality operators, i.e.

Mucb
i, j,k,b(ts, t f ) =

⋃
h∈(aff′(πi,π j)∩hp(θi))

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
E j(Hh)·Eh(t f )

UCBh

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∪

⋃
h∈(aff′(πi,π j)\hp(θi))

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⋃
E j(Hh)·Eh(ts)

UCBh

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ ⋃

E j(Hi)·(k+1)
UCBi

⎞⎟⎟⎟⎟⎠ if i ∈ lt(π j)

∅ otherwise

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝ ⋃

E j(Hb)
UCBb

⎞⎟⎟⎟⎟⎠ if b ∈ lt(π j)

∅ otherwise
. (40)

Similar to FPPS with CRPD, the definition of γucb-u
i, j,k,b is given

in terms of the size of the multi-set intersection of Mecb
j (t) and

Mucb
i, j,k,b(ts, t f ), i.e.

γucb-u
i, j,k,b (ts, t f ) = BRT ·

∣∣∣∣Mecb
j (t f ) ∩ Mucb

i, j,k,b(ts, t f )
∣∣∣∣ , (41)

where Mecb
j (t) is defined in (14). The equations for Fi,k,b (38)

and Fi,k (27) also apply for the UCB-Union Multiset approach.

C. Composite approach

The ECB-Union Multiset and UCB-Union Multiset ap-
proaches can be combined into a simple composite approach
that dominates both [3]. This composite approach uses

Ri = min(Recb-u
i ,Rucb-u

i ), (42)

where Recb-u
i and Rucb-u

i are the worst-case response times of
task τi using the ECB-Union Multiset approach and the UCB-
Union Multiset approach, respectively. Since this composite
approach is the most effective analysis for CRPD, we use it in
our evaluation.

VIII. An Optimal Threshold Assignment Algorithm

In [33] an optimal threshold assignment algorithm (OTA)
for a set T scheduled under FPTS without CRPD is described,
which assumes that priorities of tasks are given, i.e. it finds
(the minimum) pre-emption thresholds achieving schedulability
of T under FPTS, if such an assignment exists. The algorithm
traverses the tasks in ascending priority order, exploiting the
property that the schedulability test for task τi is independent
of the pre-emption thresholds of tasks with a priority higher
than τi. For FPTS with CRPD this property does not hold. As
an example, a task τ j may affect a task τh, with j, h ∈ hp(πi),
when the threshold θh of τh is lower than the priority π j of τ j.
The algorithm subsequently presented in [31] can determine the
maximum pre-emption thresholds of tasks, taking a threshold
assignment for which the set is schedulable as input.

This section presents an OTA algorithm for FPTS with
CRPD, yielding the maximum pre-emption thresholds of tasks
when the set is schedulable, effectively minimizing pre-emption
costs. The algorithm also assumes that priorities of tasks are



given and traverses the tasks in descending priority order. It
exploits the property that once a task τi is schedulable, it
remains schedulable when the pre-emption threshold θ� of a
task τ� with a priority lower than task τi is reduced and θ�
either was or becomes lower than priority πi.

Our OTA algorithm (see Algorithm 1) uses an auxiliary
set Θ̂ = {θ̂1, θ̂2, . . . θ̂n} of maximum pre-emption thresholds
next to a set Θ = {θ1, θ2, . . . , θn} of assigned pre-emption
thresholds. Upon initialization, all values in Θ̂ are set to the
highest priority π1 (line 2), i.e. tasks are non-pre-emptive and
therefore experience minimal CRPD. The algorithm traverses
the tasks in descending priority order (lines 5-23). When it
considers a task τi, it first assigns its maximum pre-emption
threshold θ̂i to θi (line 7). Next, it tests schedulability of τi

without any blocking and returns unschedulable when the
test fails (line 9). Otherwise, it tests schedulability of τi with
blocking by considering each lower priority task τ� in isolation
(lines 11-22). It decreases the maximum pre-emption threshold
θ̂� of τ� if-and-only-if τi is unschedulable due to blocking by
task τ� (lines 17-19). In that case, θ̂� is decreased to the highest
priority of all tasks with a priority lower than τi, i.e. πi+1 of τi+1.
This may increase the CRPD of tasks with a priority lower
than τi but does not affect the schedulability of tasks with
a priority higher than πi. Hence, when the algorithm returns
schedulable, i.e. the task set is schedulable, it has assigned the
maximum pre-emption threshold to each task.

Theorem 1. Given a set of tasks T and a priority assignment
Π, the OTA algorithm (Algorithm 1) assigns the maximum
pre-emption thresholds Θ ⊆ Π to tasks achieving schedulability,
if such an assignment exists.

A proof of correctness and detailed explanation of our OTA
algorithm using invariants are given in the next subsection.

A. Correctness and proof of OTA algorithm

Our algorithm is based on two invariants, which use Π =
{π1, π2, . . . , πn} to denote the set of priorities and T H

m to denote
the subset of m highest priority tasks with 0 ≤ m ≤ n, i.e.
T H

0 = ∅, T H
i = {τh|h ∈ hep(πi)} for 1 ≤ i ≤ n, and T H

n = T .
If the following main invariant holds for T , then Θ contains

the maximum pre-emption thresholds for which all tasks in T
are schedulable, where Θ = Θ̂ ⊆ Π.

Invariant 1. Given a subset T H
m of m highest priority tasks

1) the set Θ̂ contains the maximum pre-emption threshold of
each task such that all tasks in T H

m meet their deadlines,
i.e. ∀τi∈TH

m
Ri ≤ Di, where Θ̂ ⊆ Π.

2) the set Θ contains the assigned pre-emption threshold of
τ j if τ j ∈ T H

m , i.e. θ j = θ̂ j, and it contains the priority of
τ j if τ j � T H

m , i.e. θ j = π j.

The variables in Θ̂ and Θ are initialized to the highest (non-
pre-emptive) priority π1 (line 2) and the (fully pre-emptive)
priority of the corresponding task (line 3), respectively. As a
result, Invariant 1 holds for the empty set T H

0 .
Next, the algorithm traverses the tasks in descending priority

order (lines 5-23). When a task τi is considered (line 5), the

Algorithm 1: OptimalThresholdAssignment({τ1 . . . τn})
Input: A task set T = {τ1 . . . τn} with {Ci,Ti,Di, πi},∀τi ∈ T .
Output: Task set schedulable and θi,∀τi ∈ T , where Θ ⊆ Π.
1: for each τi do
2: θ̂i ← π1; {Init. the max. threshold θ̂i with the highest priority π1.}
3: θi ← πi; {Init. the threshold θi with the priority πi of τi.}
4: end for{Invariant 1 holds for TH

0 .}
5: for each τi (from highest to lowest priority πi) do
6: {Loop invariant: Invariant 1 holds for TH

i−1.}
7: θi ← θ̂i; {Assign max. threshold θ̂i to θi of τi.}
8: Compute Ri; {without blocking, i.e. Cb ← 0}
9: if Ri > Di then return unschedulable end if

10: {Invariant 2 holds for τi and TH
i .}

11: for each τ� with � ∈ lp(πi) (from highest to lowest) do
12: {Loop invariant: Invariant 2 holds for τi and TH

�−1.}
13: {Test schedulability of τi when blocked by τ� based on θ̂�:}
14: θ� ← θ̂�; {Temporarily assign max. threshold θ̂� to θ� of τ�.}
15: Re-compute Ri; {with blocking, i.e. Cb ← C�}
16: {Establish Invariant 2 for τi and TH

�
.}

17: if Ri > Di then {Disallow blocking by τ�:}
18: θ̂� ← πi+1;
19: end if
20: {Reset the threshold θ� of τ� (re-establish Invariant 1):}
21: θ� ← π�;
22: end for {Invariant 2 holds for τi and TH

n .}
23: end for {Invariant 1 holds for TH

n , i.e. Θ = Θ̂ ⊆ Π ∧ ∀1≤i≤nRi ≤ Di.}
24: return schedulable;

invariant holds for T H
i−1. First the pre-emption threshold of τi is

assigned its maximum value, i.e. θi is set to θ̂i (line 7), and the
schedulability of τi without blocking is determined. If τi is not
schedulable, then the algorithm returns unschedulable (line 9),
i.e. there does not exist a pre-emption threshold assignment
making the set of tasks T H

i schedulable. Otherwise 2) has been
established for T H

i and the inner-loop is entered.
The inner-loop (lines 11-22) considers each task τ� with a

priority lower than τi separately. The aim is to establish 1) for
T H

i , based on the following invariant.

Invariant 2. Given a task τi and a subset T H
� with � ∈ lep(πi),

the set Θ̂ contains the maximum pre-emption threshold for
each task, where Θ̂ ⊆ Π, such that

1) all tasks in T H
i−1 are schedulable, and

2) τi is schedulable when only the set T H
� is considered, i.e.

when all tasks in T \ T H
� are ignored.

If this invariant holds for τi and T then Θ̂ contains the
maximum pre-emption thresholds for which all tasks in T H

i
are schedulable, where Θ̂ ⊆ Π, i.e. Invariant 1 holds for T H

i .
Before the inner-loop, Invariant 2 holds for τi and T H

i , and
when a task τ� is considered (line 11), it holds for τi and T H

�−1.
When τi remains schedulable when blocked by τ�, θ̂� remains
unchanged. Otherwise θ̂� is set to the priority πi+1 of task τi+1,
i.e. the highest priority in Π for which τi is not blocked by τ�.
This may increase the CRPD of tasks with a priority lower than
τi, but does not affect the schedulability of tasks with a priority
higher than τi. Note that it doesn’t make sense to decrease the
threshold of τ� to a priority higher than or equal to the priority
of τi, because the CRPD experienced by τi remains at best the
same and may even increase due to additional pre-emptions
during the execution of a job of τ�. Invariant 2 has therefore
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been established for T H
� .

At each iteration of the outer-loop, the set T H
m of Invariant 1

is increased by one task. Similarly, at each iteration of the
inner-loop, the set T H

� of Invariant 2 is increased by one task.
Hence, the algorithm terminates with either schedulable and a
set of maximum pre-emption thresholds that deem the task set
schedulable with the least possible CRPD or unschedulable, in
which case no assignment of pre-emption thresholds achieving
schedulability exists under the given priority assignment.

B. Algorithmic complexity

Algorithm 1 traverses the set of tasks (of size n) in
descending priority order and it may then consider any lower-
priority task (at most n−1 tasks). Hence, just like the algorithm
in [33], our algorithm has O(n2) iterations. In each iteration,
the response time analysis is applied, which has a pseudo-
polynomial time complexity.

IX. Evaluation

We perform the same simulation studies as in [3] to compare
the relative CRPD costs under FPTS, FPPS and FPNS. The
results are compared with the scheduling analysis ignoring
CRPD. We have therefore generated system configurations so
that the results for FPTS without CRPD match those in [10, 15]
and the results for FPPS with CRPD those in [3].

In our basic system configuration, we assume a cache with
N = 512 cache sets and a total cache utilization of UC = 4, i.e.
the total number of ECBs of all tasks is N × UC = 2048. We
then select the cache utilization UC

i of each task (the number of
ECBs of a task, |ECBi|) using UUnifast [11]. 40% of a task’s
ECBs are also UCBs, i.e. |UCBi| = 0.4 · |ECBi|. To compute the
schedulability of a task set under CRPD, we compared the most
effective approaches, i.e. the combination of the UCB-Union
Multiset and the ECB-Union-Multiset, both for FPPS (see [3])
and FPTS (developed in this paper). For each experiment and
for each parameter configuration, we generate a new set of
1,000 systems.

For each system, we generate n = 10 tasks which are
assigned deadline monotonic priorities. The task deadlines
are implicit, i.e. Di = Ti, and the task periods Ti are randomly
drawn from the interval [10, 1000] ms. The individual task
utilizations Ui (with Ci = Ui × Ti) are generated using the
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UUnifast algorithm [11]. The pre-emption thresholds of tasks
are selected by our OTA algorithm (see Section VIII).

In our first experiment, we vary the task-set’s utilization
and the block reload time is set to 8μs. Figure 3 shows the
ratio of task sets deemed schedulable. The relative performance
improvement of FPTS compared to FPPS is strongly amplified
when including the CRPD. In contrast, FPTS and FPPS without
CRPD only differ in case of high task utilization (starting at
U = 0.85) and at most by 20%. In the presence of CRPD,
however, FPPS is only able to schedule half of all generated
task sets at a utilization of U = 0.8, while FPTS is able to
schedule more than 90% of all task sets. FPTS only experiences
a similar performance degradation at a considerably higher
utilization, i.e. approximately at U = 0.88.

In the remaining experiments, we use as a metric the
weighted schedulability ratio [7]. This metric takes a weighted
average of the schedulability ratio over the entire utilization
range U ∈ [0, 1] using the utilization (U) as a weight. It is
defined as follows [7]. Let S y(T , p) be the binary result (1 if
schedulable, 0 otherwise) of schedulability test y for a task set
T and parameter value p. Then:

Wy(p) =
∑
∀T U · S y(T , p)∑

∀T U
, (43)

where U is the utilization of task set T . This weighted
schedulability ratio reduces what would otherwise be a 3-
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dimensional plot to 2 dimensions [7]. Weighting the individual
schedulability results by task-set utilization reflects the higher
placed value being able to schedule higher utilization task sets.

In the second experiment, we vary the block reload time
(BRT) from 0μs to 640μs. Figure 4 shows the results. By
increasing the BRT, we increase the CRPD and therefore
penalise pre-emption. Consequently, the number of task sets
deemed schedulable with FPPS with CRPD quickly drops to
zero, while the performance of FPTS with CRPD converges
to the performance of FPNS (as expected). It is interesting
to see that FPTS with CRPD is able to deem more task sets
schedulable than FPNS, even for an infinite BRT. The reason
is as follows. If the sets of UCBs and ECBs of two tasks are
completely disjoint (which may happen for randomly generated
UCBs and ECBs of tasks), the CRPD of these two tasks pre-
empting each other will remain zero. It is therefore possible
that FPTS with CRPD outperforms FPNS, because not each
pre-emption will be penalised.

In the third experiment, we vary the total cache utilization
(UC) from 0 to 160 and we reset the BRT to 8μs. Since the
number of cache sets (N) remains the same, increasing UC

means increasing the number of ECBs of tasks. Figure 5 shows
again a weighted schedulability ratio. FPPS and FPTS with
CRPD are both able to schedule considerably more task sets
than FPNS. This is due to the limited number of cache sets,
which limits the overall pre-emption costs. Hence, increasing
UC will have a negligible impact (see the scale change of
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the total cache utilizations from 40 and onwards). However,
only by increasing simultaneously the block reload time and
the total cache utilization we have been able to pull down the
performance of FPTS with CRPD to the performance of FPNS.

In the fourth experiment, we vary the number of cache
sets (N). Figure 6 shows the weighted schedulability ratio.
As N increases, the total number of ECBs being used by
tasks also increases and, contrary to the third experiment,
more of these ECBs fit into the cache. Hence, the pre-emption
costs increases when more blocks need to be reloaded. The
schedulability ratios of FPPS and FPTS with CRPD therefore
decrease. FPPS will eventually be unable to schedule any
tasks. The performance of FPTS, however, converges to the
performance of FPNS, i.e. with FPNS task sets are unaffected
by the increased pre-emption costs. We recall that FPTS with
CRPD still outperforms FPNS, because, after assigning the
highest possible pre-emption thresholds to tasks using our
OTA, some of the remaining pre-emptions in the system may
effectively come for free due to the limited overlap between
the UCBs of some tasks and the ECBs of others.

In the fifth experiment, we vary the range of the task periods
in steps of increasing orders of magnitude (see Figure 7). Since
we generate computation times depending on the task periods, a
larger range of the periods results in a larger computation time
for some tasks. The performance of FPNS therefore quickly
drops, because computation times of tasks with a large period
may exceed the periods (and the constrained deadlines) of other
tasks in the system. For the same reason, however, we may be
unable to assign a pre-emption threshold to tasks with a large
period and long computation time other than its regular priority.
The performance of FPPS with CRPD therefore approaches
the performance of FPTS with CRPD. At the other extreme,
when the range of task periods is small, then FPTS with CRPD
provides performance close to that of FPPS without CRPD.
This is because with a small range of periods and deadlines,
the OTA algorithm can set pre-emption thresholds such that
most tasks cannot pre-empt each other, thus greatly reducing
CRPD. Overall, FPTS provides consistently high performance
irrespective of the range of task periods.

Finally, we increase the number of tasks (see Figure 8).
This leads to an improved performance of FPTS with CRPD



relative to FPPS with CRPD. This has two reasons: (i) as the
cache utilization remains constant, the ECBs per task decrease
and (ii) by increasing the number of tasks, the individual task
utilizations and execution times decrease, thus decreasing the
potential blocking times. This gives the OTA algorithm more
freedom to set pre-emption thresholds such that most tasks
cannot pre-empt each other, again greatly reducing CRPD.

X. Conclusions

In this paper, we integrated analysis of cache related pre-
emption delays (CRPD) into response time analysis for fixed
priority scheduling of tasks with pre-emption thresholds (FPTS)
and arbitrary deadlines. Further, we introduced an Optimal
Threshold Assignment (OTA) algorithm that minimizes the
effects of CRPD given an initial set of task priorities. The
analysis we provided generalizes existing analysis for FPPS
with constrained deadlines and CRPD described in [3], and
covers the most effective approaches presented in that paper, in
particular the ECB-Union and UCB-Union Multiset approaches.

We presented a comparative evaluation of the performance
of the schedulability tests for FPTS and FPPS with and without
CRPD. Interestingly, we found that the theoretical performance
advantage that FPTS has over FPPS when there are no CRPD
is extended significantly when CRPD are taken into account.
Further, even when the overheads (block reload times) affecting
CRPD are increased to very high levels, FPTS still retains a
performance advantage over FPNS (which it also dominates).
This is due to the limited overlap between the UCBs of some
tasks and the ECBs of others, meaning that some pre-emptions
effectively come for free (i.e. no CRPD).

Our results indicate that FPTS can rightly be viewed
as a potential successor to FPPS as a defacto standard in
industry, where it is already supported by both OSEK [1] and
AUTOSAR [2] compliant operating systems.

There are a number of ways in which this work can be
extended. Firstly, the layout of tasks in memory has already
been shown to have a substantial effect on CRPD [27]. The
combination of pre-emption thresholds and task layout provides
additional opportunities for CRPD reduction. Secondly, our
OTA algorithm assumes that task priorities are provided. The
problem of optimally assigning both priorities and thresholds
using a computationally tractable method remains open.
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