
Compensating

Adaptive Mixed Criticality Scheduling

Robert Davis, Alan Burns, Iain Bate

Real-Time Systems Research Group, University of York, UK

◼ Mixed Criticality Systems
◼ Criticality is a designation of the level of assurance against failure needed for a

system component

◼ A mixed criticality system is one that has two or more distinct criticality levels

◼ Tasks are characterized by their criticality level either HI or LO

◼ LO-criticality tasks have a single LO-criticality estimate of their WCET, Ci(LO)

◼ HI-criticality tasks have an additional HI-criticality estimate, Ci(HI)

◼ Academic perspective
◼ Most academic work assumes that if a HI-criticality task executes for Ci(LO) without

completing, then only jobs of HI-criticality tasks need meet their deadlines, and so
jobs of LO-criticality tasks can be dropped in a degraded mode in order to ensure that
HI-criticality tasks meet their deadlines

◼ Industry perspective
◼ However industry takes a differ view of the importance of LO-criticality tasks, with

many practical systems unable to tolerate their abandonment

2

Background: Mixed Criticality Systems

◼ This work
◼ Takes the view that abandoning new jobs of LO-criticality tasks is not acceptable, and

so jobs of both HI- and LO-criticality tasks must always meet their deadlines

◼ We propose the Compensating Adaptive Mixed Criticality (C-AMC) scheduling
scheme that meets these stricter requirements

◼ C-AMC ensures that both HI- and LO-criticality tasks meet their deadlines in normal
(or LO-criticality) mode and also in degraded (or HI-criticality) mode

◼ Once degraded mode is entered, newly released jobs of LO-criticality tasks execute
imprecise versions that provide essential functionality and outputs of sufficient
quality, while reducing overall workload via smaller Ci(HI) execution time budgets
(Ci(HI) ≤ Ci(LO))

◼ This adaptive behavior compensates, at least in part, for the longer execution times
(Ck(HI) ≥ Ck(LO)) that may be exhibited by jobs of HI-criticality tasks, for example
executing error handling code that is not expected to execute during normal mode

3

Introduction: Compensating Adaptive

Mixed Criticality (C-AMC)

◼ Mixed criticality system
◼ Set of N sporadic (or periodic) tasks that execute on a single-core processor

◼ Tasks have constrained deadlines that do not exceed their periods (Di ≤ Ti)

◼ Each task has a unique priority

◼ Two criticality levels: LO and HI

◼ Each task has two execution time budgets Ci(LO) and Ci(HI)

◼ For a HI-criticality task Ck(LO) and Ck(HI) are the low assurance and the high
assurance estimates of the WCET of its primary version, which is the only version
that it executes, hence Ck(HI) ≥ Ck(LO)

◼ For a LO-criticality task Ci(LO) and Ci(HI) are the low assurance estimates of the
WCET of, respectively, its primary version and its imprecise version, hence
Ci(LO) ≥ Ci(HI)

4

System Model

LO-criticality task

Ci(LO)

Ci(HI)

Primary version

Imprecise version

HI-criticality task

Ci(LO)

Ci(HI)

Primary version

Primary version

degraded mode

imprecise version

◼ RTOS
◼ Executes tasks under fixed-priority pre-emptive scheduling

◼ Responsible for transitioning the system between normal and degrade mode

◼ The system switches to degraded mode when a HI-criticality task executes for its
Ck(LO) without completing and switches back to normal mode on an idle instant

◼ Ensures that all jobs of HI-criticality tasks execute their primary version, and that jobs
of LO-criticality tasks released in normal mode also execute their primary version,
while jobs of LO-criticality tasks released in degraded mode execute their imprecise
version

5

System Model

LO-criticality task:

HI-criticality task:

normal mode

time

primary version

normal mode

primary version

◼ Schedulability tests
◼ We derive two schedulability tests for C-AMC based on the AMC-rtb and AMC-max

tests for the AMC scheme. (Recall that the AMC scheme drops LO-criticality jobs in
degraded mode)

◼ In contrast to AMC, the tests for C-AMC check schedulability of both LO- an HI-
criticality tasks in both normal and degraded modes, thus guaranteeing that all jobs of
LO- and HI- criticality tasks meet their deadlines

◼ The C-AMC scheme provides the flexibility to have LO-criticality tasks with 0 ≤
Cj(HI) ≤ Cj(LO), so some LO-criticality tasks could drop jobs (Cj(HI) = 0), others
could run imprecise versions, while others could continue to run primary versions
(Cj(HI) = Cj(LO)). This is all covered by the analysis

6

Analysis for C-AMC

◼ Normal mode

◼ Degraded mode

7

Analysis for C-AMC:

C-AMC-rtb schedulability test

3. Adjusts for the fact that higher priority LO-criticality tasks

released by Ri(LO) can cause interference of Cj(LO) ≥ Cj(HI)

2. Assumes that jobs of all higher priority tasks can cause

interference of Cj(HI) throughout the entire time interval

1. Accounts for the larger of the two

execution time budgets for each task

◼ Avoiding pessimism
◼ C-AMC-rtb test is somewhat pessimistic, since it includes the larger contribution of

Cj(HI) from jobs of HI-criticality tasks over the entire response time Ri(HI)
(effectively assuming a mode change at time s = 0) and also the larger contribution of
Cj(LO) from jobs of LO-criticality tasks over Ri(LO) (effectively assuming a mode
change at time s = Ri(LO)); however, the mode change cannot simultaneously be both
as early as possible and as late as possible

◼ The C-AMC-max test seeks to eliminate this pessimism by considering the various
different times at which the mode change could take place and taking the maximum
response time over all of those values of s

◼ Normal mode
◼ Same as C-AMC-rtb

8

Analysis for C-AMC:

C-AMC-max schedulability test

◼ Degraded mode

◼ Interference from higher priority LO-criticality tasks

◼ Interference from higher priority HI-criticality tasks

9

Analysis for C-AMC:

C-AMC-max schedulability test

1. Larger Cj(LO) contribution

up to the mode change at time s

2. Larger Cj(HI) contribution

after the mode change at time s

◼ Degraded mode

◼ Putting it all together

◼ Take maximum over all values of s corresponding to releases of higher
priority LO-criticality tasks before Ri(LO)

10

Analysis for C-AMC:

C-AMC-max schedulability test

◼ C-AMC tests
◼ C-AMC-valid necessary feasibility test that checks that utilization does not exceed 1

in either normal or degraded mode, and ignores the mode change transition

◼ C-AMC-ubhl feasibility condition that checks schedulability in both normal and
degraded mode assuming FPPS, ignoring the mode change transition

◼ C-AMC-max schedulability test

◼ C-AMC-rtb schedulability test

◼ AMC tests
◼ AMC-valid necessary feasibility test that checks that utilization does not exceed 1 in

either normal or degraded mode, and ignores the mode change transition

◼ AMC-ubhl feasibility condition that checks schedulability in both normal and
degraded mode assuming FPPS, ignoring the mode change transition

◼ AMC-max schedulability test

◼ AMC-rtb schedulability test

◼ Optimal Priority Assignment

◼ Using Audsley’s algorithm, which is optimal for all of these tests

11

Experimental Evaluation

◼ Task parameters
◼ Varied over a wide range of different settings using a set of controlling parameters

◼ CP is the Criticality Proportion – the proportion of tasks that were designated HI-
criticality (default 0.5)

◼ CF is the Criticality Factor – the ratio between the utilization of HI-criticality tasks
assuming their Cj(HI) values versus assuming their Cj(LO) values (default 2.0)

◼ XF is the Compensating Factor – the ratio between the utilization of LO-criticality
tasks assuming their Cj(HI) values versus assuming their Cj(LO) values (default 0.5)

◼ See the paper for full details of task set generation

12

Experimental Evaluation

◼ Varying task set utilization
◼ C-AMC-max has a small but useful

advantage over C-AMC-rtb

◼ The C-AMC scheme provides
substantial improvements over the
single criticality default (FPPS)

◼ Performance of the tests follows the
dominance relations between them

◼ Comparison with AMC shows that
as expected there is a performance
penalty in providing truly graceful
degradation

13

Results: Success ratio

◼ Varying Criticality Proportion
◼ CP is the proportion of HI-criticality

tasks, so CP=0 and CP=1 are single
criticality systems where the
schedulability tests reduce to those
for FPPS

◼ For CP in the range [0.1,0.4], the
C-AMC-rtb and C-AMC-max tests
provide significant gains over a
single criticality approach. This is a
result of the workload reduction due
to executing imprecise versions

14

Results: Weighted schedulability

◼ Varying Criticality Factor
◼

◼ A smaller value of CF in the range
[1.1,1.8] results in a smaller workload
from HI-criticality tasks in degraded
mode that can be more effectively
compensated for by the reduction in
workload of LO-criticality tasks

◼ CF =1 means that the workload from
HI-criticality tasks does not increase
in degraded mode, and hence that
mode is never actually entered, so
effectively we have a single criticality
system

15

Results: Weighted schedulability

◼ Varying Compensating Factor
◼

◼ AMC drops LO-criticality jobs in
degraded mode, hence XF has no
impact on AMC schedulability
(horizontal lines on the graph)

◼ When XF=0, C-AMC still guarantees
schedulability of LO-criticality jobs
that execute across the mode change,
whereas AMC does not. This explains
the difference in -rtb and -max
schedulability test performance at this
point. By contrast the -valid and -ubhl
feasibility tests ignore the transition
and so are the same in this case

◼ As expected, the smaller the value of
XF, the greater the improvement in
performance for C-AMC compared to
the single criticality baseline

16

Results: Weighted schedulability

◼ Varying both XF and CF
◼ XF and CF varied in opposition to

each other such that the utilization in
degraded mode is held constant

◼ When XF =1 and CF =1 the workload
for both LO- and HI-criticality tasks
remains constant and hence we have a
single criticality system

◼ As CF increases and XF decreases the
workload change across the transition
from normal to degraded mode
becomes larger and harder to
schedule. In this case C-AMC
substantially improves upon the single
criticality baseline

◼ Note the -ubhl feasibility tests only
consider schedulability in normal and
degraded mode and not across the
transition, hence the horizontal lines
on the graph 17

Results: Weighted schedulability

◼ Varying both XF and CP
◼ XF and CP varied in opposition to

each other.

◼ Here, the utilization in degraded mode
is held constant for XF > 0.5 (CF was
set to 1.5 to achieve this), but then
increases as XF gets smaller and CP
larger, due to an increased proportion
of HI-criticality tasks that cannot be
fully compensated for

◼ At either extreme, we have a single
criticality system (CP=0 or CP=1)

◼ At intermediate values, the decrease in
workload due to running imprecise
versions of LO-criticality tasks
compensates at least partially for the
increase in workload of HI-criticality
tasks in degraded mode. Thus C-AMC
improves upon the performance of the
single criticality baseline 18

Results: Weighted schedulability

◼ Varying range of task periods
◼ Range of task periods 10R varied from

100.25=1.77 to 104=10,000

◼ As expected for schemes based on
FPPS schedulability improves as the
range of task periods increases

◼ For small ranges ≤10, the -max test
shows minimal if any improvement
over the -rtb test. The reason for this
is that when all tasks have roughly the
same period, both tests include just
one job of each higher priority task at
its larger execution time

◼ For larger ranges ≥1,000 the -max test
provides a larger improvement over
the -rtb test

19

Results: Weighted schedulability

◼ Perspectives
◼ Academic research often assumes that jobs of LO-criticality tasks can be dropped in

order to ensure that HI-criticality tasks will meet their deadlines

◼ Industry, however, takes a different view of the importance of LO-criticality tasks,
with many practical systems unable to tolerate their abandonment

◼ This work
◼ Introduced the Compensating Adaptive Mixed Criticality (C-AMC) scheduling

scheme

◼ Under C-AMC, jobs of LO-criticality tasks that are released in degraded mode
execute imprecise versions. These imprecise versions are able to provide outputs of
sufficient quality, while also reducing the overall workload

◼ This compensates, at least in part, for the overload due to HI-criticality tasks, which
while always executing their primary versions, may also run error handling code that
is not expected to execute during normal operation

20

Conclusions: Summary

◼ Compensating Adaptive Mixed Criticality (C-AMC)
◼ Ensures that both HI- and LO-criticality tasks meet their deadlines in both normal and

degraded modes

◼ Supports a form of degradation that is genuinely graceful, while reducing LO-
criticality workload to compensate for unexpected increases in HI-criticality workload

◼ The C-AMC-rtb and C-AMC-max tests substantially improve schedulability
compared to the single criticality baseline that is common practice in industry

◼ The C-AMC scheme provides a viable migration path for industry to make an
evolutionary transition from current practice, which is predominantly based on fixed-
priority pre-emptive scheduling

◼ C-AMC addresses one of the key open issues identified in the survey of research into
mixed criticality systems by adding “support for limited low-criticality functionality

in higher criticality modes, avoiding the abandonment problem.”

21

Conclusions: Contribution

22

Discussion and Questions?

Compensating

Adaptive Mixed

Criticality (C-AMC)

rob.davis@york.ac.uk

