ConvolutionalFixedSum: Uniformly Generating
Random Values with a Fixed Sum Subject to
Arbitrary Constraints

David Griffin
University of York, UK
david.griffin@york.ac.uk

Abstract—This paper addresses the problem of uniform ran-
dom generation of vectors of values with a fixed sum, subject
to upper and lower constraints on the individual component
values. Solutions to this problem are used extensively in the
generation of tasksets, specifically task utilization values, in
support of the performance assessment of schedulability tests
for real-time systems. This paper introduces a general-purpose
solution in the form of an Inverse Volume Ratio Sampling
method that is applicable provided that it is possible to determine
the ratio of the volume below a given hyperplane to the total
volume of the valid region in n-dimensional space, as demarcated
by the constraints and the fixed sum. An efficient approach
is derived for volume calculation using numerical convolution,
thus instantiating the ConvolutionalFixedSum algorithm, which
provides a user-specified level of precision, while scaling at
O(n*log(n)). A stringent uniformity test is developed, called
the slices test, which is able to fully explore the extent of the
valid region in each of the n dimensions. The slices test reveals
that while the outputs of UUnifast and ConvolutionalFixedSum
form uniform distributions, in some cases the outputs of prior
state-of-the-art algorithms do not.

I. INTRODUCTION

Assessing the performance of schedulability tests in real-
time systems requires the use of tasksets with uniformly
generated random utilization values that sum to a fixed value,
i.e., the total utilization. Without this property of uniformity,
bias can occur in the testing process [3], meaning that the
results can become invalid and potentially misleading. How-
ever, the problem of creating such uniformly generated random
utilization values is non-trivial, and several intuitive but naive
approaches can lead to non-uniform distributions [3[], [4]].
The first commonly used algorithm to address these issues
in real-time systems was UUnifast [3], [4], derived by Bini
and Buttazzo in 2004. UUnifast solves the problem for single
processor systems, where the task utilization values generated
are between 0 and 1, and the total utilization is no greater than
1. Hence, there are no constraints on the individual utilization
values, except for the fixed sum itself.

The problem of creating uniformly generated random val-
ues with a fixed sum becomes harder as more constraints
are added. Generating such values to support assessment of
schedulability analyses for multiprocessor systems requires
that the utilization of each task is constrained, between 0 and
1, so that the task fits on a single processor; however, unlike

Robert I. Davis
University of York, UK
rob.davis@york.ac.uk

in the single processor case, the total utilization can greatly
exceed this value. The UUnifast-Discard algorithm [9], [LO],
developed by Davis and Burns in 2009, addressed this problem
via a simple extension to earlier work. UUnifast-Discard has
the drawback that it is not fully scalable, in particular it is
not viable when the average number of tasks per processor
is low. This issue was subsequently addressed in 2009, when
Emberson et al. identified the RandFixedSum algorithm [11],
originally developed in 2006 as a MATLAB routine by
Stafford [35]]. Nevertheless, RandFixedSum is unable to deal
with individual constraints applied to the utilization of each
task, such as those needed to support performance assessment
of schedulability analyses for mixed-criticality systems [5].

The more general problem, with both upper and lower
constraints on individual task utilizations, was first addressed
by the Dirichlet Rescale Algorithm (DRS) [14], derived by
Griffin et al. in 2020. Unfortunately, as subsequently shown in
the evaluation in Section the outputs of the DRS algorithm
can form a non-uniform distribution in the case where one
constraint is sufficiently small. The DRS algorithm also has
high complexity and is thus expensive to compute, compared
to RandFixedSum and UUnifast.

In this paper, we introduce the Inverse Volume Ratio Sam-
pling (IVoRS) method for uniform random sampling from
a constrained region of m-dimensional space. This general-
purpose method is applicable provided that it is possible to
determine the ratio of the volume below a given hyperplane
to the total volume of the valid region in n-dimensional space,
as demarcated by the constraints. Root-finding algorithms
such as Interpolate-Truncate-Project (ITP) [29] can invert this
calculation, providing a way to sample via inverse transform
sampling To illustrate IVoRS, we show that the UUnifast
algorithm is a specific case of the IVORS method.

To provide uniform sampling from an n-dimensional valid
region demarcated by upper and lower constraints, we in-
troduce the ConvolutionalFixedSum algorithm, which utilizes
the IVoRS method in conjunction with a convolution-based
volume calculation and ITP. Two implementations of Convo-
lutionalFixedSum are provided: an analytical method, which
scales at O(2"), and a numerical approximation, which pro-
vides uniformity to a user-specified level of precision, and
scales at O(n3log(n)).

https://orcid.org/0000-0002-4077-0005
https://orcid.org/0000-0002-5772-0928

Alternative approaches that were briefly considered in-
clude Gibbs sampling [13], which is an application of the
Metropolis-Hastings algorithm [17]. Gibbs sampling is effec-
tive if the conditional probability distribution is fast to sample
from. However, for the problem considered, this distribution
takes exponential time to calculate, and the valid region is
a complex shape; an n-dimensional hull of up to 2" points.
Further, Gibbs sampling uses a warm-up’ period to converge
to the target distribution. These properties render Gibbs sam-
pling inefficient in this case. In addition, the output from
these methods is auto-correlated and therefore not necessarily
appropriate in this context.

To verify that the outputs from the ConvolutionalFixedSum
algorithm form a uniform distribution, we developed a highly
sensitive uniformity test, called the slices test. The slices test
divides the valid region into a number of slices of equal
volume, and compares the number of points generated in each
of these slices to the expected number via a X2 test [34]]. As the
slices span the full volume of the valid region, the slices test
is sensitive to non-uniformity wherever it occurs. The slices
test was used to evaluate both analytical and numerical Con-
volutionalFixedSum algorithms, with both passing a stringent
array of tests. These tests were also applied to the UUnifast,
RandFixedSum, and DRS algorithms. The outputs of UUnifast
and RandFixedSum were verified as uniform; however, the
outputs of DRS were shown to be non-uniform in some cases.

Runtime performance assessment of the numerical Convo-
lutionalFixedSum algorithm shows that it improves upon the
performance of the DRS algorithm by several orders of magni-
tude. Further, with optimizations to select when convolution-
based volume calculation is appropriate, ConvolutionalFixed-
Sum can employ a UUnifast-like mode to provide comparable
performance to UUnifast in cases with no constraints.

ConvolutionalFixedSum supersedes the DRS algorithm. It
provides an effective solution that supports appropriate taskset
generation, when constraints are applied per task. As shown
in Section V of [14] this can improve understanding of
scheduling policies that were previously evaluated using less
sophisticated methods. ConvolutionalFixedSum has a wide
range of potential uses. It is applicable to problems where
modeling of an unbiased partitioning of a fixed resource is
required, subject to individual constraints. Diverse examples
include packet and message scheduling in telecommunications,
the division of an overall budget or investment into different
categories in economics, and bed allocation between depart-
ments in a hospital setting [21]].

A. Organization

The remainder of the paper is organized as follows: Sec-
tion [lI| reviews the literature on the problem of uniformly
generating vectors of random values with a fixed sum, from
the perspective of real-time systems. Section derives the
IVoRS method for uniform sampling from a valid region
demarcated by upper and lower constraints in n-dimensional
space. Section [[V|illustrates how the IVORS method works by
using it to derive the UUnifast algorithm. Section |V| provides

a method based on convolution and Fast-Fourier Transforms
(FFT) to calculate the volume ratio required, thus instantiating
the ConvolutionalFixedSum algorithm. Section evaluates
the uniformity of the outputs from ConvolutionalFixedSum and
the existing state-of-the-art algorithms. The run-time perfor-
mance of ConvolutionalFixedSum is also compared to that of
the DRS algorithm. Section [VII]concludes with a summary and
directions for future work. The Appendix gives an account of
the implementation issues that cause the outputs from the DRS
algorithm to form a non-uniform distribution in some cases.

II. RELATED WORK

When assessing the performance of schedulability tests [8]]
for real-time systems, it is necessary to ensure that the input
data used is free from bias. However, this problem has a
non-trivial constraint: that the total utilization, U, is divided
between n tasks. This results in the distribution of utilization
values to each task being non-uniform. Therefore, it is not
sufficient to simply allocate random numbers from a uniform
distribution, as would be the case when randomly selecting
a point on a square, cube, or hypercube. Indeed, no linear
transformation is capable of generating a uniform distribution,
as demonstrated by the UScale algorithm, the outputs of which
were shown to be non-uniform and a cause of bias [3]], [4].

In 2004, Bini and Buttazzo derived the UUnifast algorithm
[3l], [4]]. This was the first algorithm within the real-time sys-
tems community that solved the uniformity problem. UUnifast
works by recognizing that the probability of selecting any
given value grows polynomially with the number of tasks,
and so uses an inverse-polynomial transformation to achieve
a uniform distribution. This approach was later identified by
Griffin et al. [14] as being equivalent to sampling from the flat
Dirichlet distribution [30] via the marginal Beta distribution
method [12], which also provided a formal mathematical proof
of uniformity for UUnifast.

While UUnifast solved the problem of sampling utilization
values to support traditional schedulability analyses of single
processor systems, advances in scheduling theory for real-
time systems provided new challenges. Scheduling multipro-
cessor systems provided an additional constraint: while the
total utilization U could potentially be as large as U = m
for m processors, no single threaded task could use more
than one processor, hence the utilization of each individual
task was constrained to be no more than 1. Initially, this
problem was addressed by Davis and Burns [9]], [LO] using a
simple extension to UUnifast called UUnifast-Discard, which
allows for U > 1 and discards outputs when any of the n
components exceeds 1. UUnifast-Discard is effective when
n > U; however, when the number of tasks is low, it becomes
impractical due to the large number of discards required.

The problem of an extra constraint on each task was
addressed by the RandFixedSum algorithm [11] identified
in 2009 by Emberson at al., and originally developed as a
MATLAB routine by Stafford [35] in 2006. RandFixedSum
exploits the symmetry of the problem to sample from the valid
region demarcated by the constraints; however, it has higher

complexity O(n?), in both execution time and memory space
than UUnifast, and lacks a formal proof.

While RandFixedSum only supports a single constraint on
task utilizations, individual constraints restricting the utiliza-
tion values of individual tasks are required to support as-
sessment of schedulability analyses when task utilizations are
multi-valued or can be decomposed into multiple constituent
parts. This occurs with mixed-criticality systems [S], multi-
core systems [23], with typical and worst-case execution
times [31]], [1]], self-suspensions [6], and resource locking. As
an example, in mixed-criticality systems each task designated
as high-criticality typically has both high-criticality and low-
criticality execution time budgets. These correspond to a high-
criticality utilization and a smaller low-criticality utilization
for the task. When uniformly generating random values for
the tasks’ low-criticality utilizations, these values must not
exceed the corresponding high-criticality utilizations already
chosen. Thus, the latter values effectively form individual per-
task upper constraints. Alternatively, generating low-criticality
utilization values first, results in a set of individual per-task
lower constraints on the high-criticality utilization values.

Naive approaches could be employed to the above problem,
such as the UAdd algorithm [14]]. Using UAdd, high-criticality
tasks can be considered as having two uniformly sampled
components, with the first of these components designated as
the low-criticality utilization, and the sum of the two compo-
nents designated as the high-criticality utilization. While this
ensures that the model of mixed-criticality systems is met, the
Central Limit Theorem [2]] shows that the sum of two or more
uniformly distributed variables does not itself form a uniform
distribution. Alternatively, the UUnifast-Discard approach [9],
[10] could be used. In this context, UUnifast-Discard would
generate sets of values using UUnifast, discarding any that
break the constraints given to it. This is guaranteed to result
in a uniform distribution of points that meet the constraints;
however, this comes at the expense of discarding a large num-
ber of points, to the point where the algorithm is impractical.
For example, if the constraints are [1,1072,1073], then only
about 1 in 5000 of all generated points will be accepted.

The Dirichlet Rescale Algorithm (DRS) [14] was designed
to address these issues, thus supporting individual constraints
on task utilization values. The DRS algorithm works by
observing that affine transformations preserve the uniformity
of points sampled across the transformed space. Therefore, it is
possible to sample a point using the flat Dirichlet distribution
and then apply linear transformations (rescaling) until that
point lies within the valid region, provided that those linear
transformations always include the entire valid region. While
the DRS algorithm is computationally expensive, as it always
moves towards a solution this was deemed by the authors to be
an acceptable trade-off. Unfortunately, the DRS algorithm has
multiple issues. The issue of complexity was acknowledged by
the authors. Each rescale operation has O(n?) complexity, and
many rescales may be required. While the DRS algorithm does
not have a formal proof of complexity, it was observed [14]]
to have exponential scaling with respect to n.

A more insidious problem is that the DRS algorithm
does not always manage to generate a uniform distribution.
The uniformity test used by Griffin et al. [14] only provides
evidence of uniformity around the center of the region. The
slices test, defined in this paper, is a far more effective test
of uniformity close to the edges of the valid region. Using
the slices test, the outputs of the DRS algorithm are shown,
in Section to be non-uniform. The reasons for this non-
uniformity are discussed in the Appendix.

III. IVORS: SAMPLING FROM A UNIFORM MULTIVARIATE
DISTRIBUTION OF FINITE ARBITRARY SHAPE

In order to sample from a distribution, two things are
required: firstly, a definition of the distribution, and secondly
an algorithm to sample from it. To accomplish the latter,
inverse transform sampling [34] is typically used for univariate
distributions: a random number is generated in the range [0, 1],
and then this value is transformed by the distribution’s Inverse
Cumulative Distribution Function (ICDF) [34].

The logic of inverse transform sampling is as follows: for
a given distribution and = € [0, 1], the ICDF at point = gives
a value y such that the proportion of the distribution below y
is x. Therefore, it is possible to transform a point x from
one distribution A to a point from another distribution B
by transforming = by the Cumulative Distribution Function
(CDF) of A and the ICDF of B. Using the notation F4 to
denote the CDF of the random variable A, The resulting point,
y = F5'(Fa(z)) has the same properties with respect to
distribution B as x has with respect to distribution A. As
the CDF of uniform random numbers in the range [0, 1] is the
identity function, and uniform univariate random values can be
generated by a number of means, inverse transform sampling
can be trivially applied to generate univariate random values
that follow a given distribution, provided that the distribution’s
ICDF is known.

This intuition can also be applied to multivariate distri-
butions, by applying it to the inverse marginal CDF, as can
be seen in the marginal-beta distribution method of sampling
from the Dirichlet distribution [12| p.585], or the UUnifast
algorithm [3l], [4], [14]. A marginal distribution is the dis-
tribution of a single variate, regardless of the values taken
by other variates. Traditionally, marginal distributions were
computed for discrete valued data by summing the frequencies
of each value a variate took in the margins of a table, hence
the name [34].

When using inverse transform sampling and the inverse
marginal CDF to sample from a multivariate distribution,
the process can be thought of as splitting the problem into
a sequence of 1-dimensional sampling problems. Given the
random variable to sample X = (X;...X,,), and a function
rand(), which returns a random value in the range [0, 1], the
first variate can be sampled from the inverse marginal CDF as
follows:

x1 = inverse(marginal(Xy, Fx))(rand()) ()

For subsequent variates, the CDF becomes conditional on the
variates that have already been sampled, leading to sampling
from an inverse marginal conditional CDF as follows:

r; = inverse(marginal(X;, Fx | x,=z, vj<i)(rand())
2)
Therefore, to sample from a uniform distribution with a finite
arbitrary shape, it only remains to show how the inverse
marginal conditional CDF can be calculated.

To begin with, we first define the CDF by exploiting the
Probability Density Function (PDF) of the distribution. A PDF
defines the density of the probability distribution at a given
point, and can be used to calculate the relative likelihood of a
point being chosen. The PDF can be defined in relation to the
CDF, since the CDF is the integral of the PDF. However, in
the case of the uniform distribution, there is an extra piece of
information: since every point is equally likely, the PDF is a
constant for any point that is part of the distribution, and zero
otherwise. Denoting the PDF of the distribution of X as fx,
we can define the PDF and CDF of a univariate distribution
as follows:

fx(z) =

c if z is a valid value of X
0 otherwise

. (3)
Fx(z) = /_ fx(u)du

Where the value of ¢ depends on the distribution X, and in
particular, the finite shape that defines the valid values of X.
This can the be generalized to a multivariate distribution by
integrating over each variate:

c if x is a valid value of X
fx(x) =

0 otherwise

= [[i ?

However, as fx is either ¢ or 0, we can simplify (4)) using the
validity function Vx, which is 1 if x is a valid value of X, and
zero otherwise. As fx(x) = ¢Vx(x), Fx can be rewritten as
follows:

Fy(x) = c / o / Ve (U)dusdun (5

As Fx is a CDF, the domain of Fx 1is, by definition,
[0,1]. As the function Vx(x) > 0 V¥x, the integrals of each
variate between —oo and an upper limit are non-negative and
monotonically increasing as that upper limit increases. As Vx
is non-zero only on a finite region, it follows that the integral
of Vx must have an upper limit. Therefore, c is the inverse
of the maximum value that this integral can take. Substituting
for ¢ in (3], it follows that:

fj;o ff;o Vx (U)duy...duy,
ffooo ffooo Vx (U)duy ...duy,

Intuitively, the integral over the function Vx can be viewed
as a way of calculating the volume of the valid region

Fx(x) =

(6)

below the point specified by the upper limits of the integral.
Therefore, using vol(X) to denote the volume of the space of
valid values of X, the CDF can also be specified as:

vol (X|X; < x;)
vol(X)

Thus Fx can be determined solely in relation to the validity
function Vx, with no dependence on the PDF.

Next, we define the marginal conditional CDF required
by (2). This is achieved by observing that as variates are
sampled and become fixed, the dimensionality of the valid
region for the unsampled variates decreases. For example, in
a 3-dimensional problem, if one value is fixed, then the plane
on which the remaining variates lie is 2-dimensional. Hence,
the marginal conditional CDF of the 'th variate, F'x, can be
written as follows:

Fx(x) = @)

FXi (1’1) =
ffooo ffooo ffooo Vx(U|U] = U7V] S z)duzduz+1dun
®)

or as a volume ratio:
’UOl(X‘Xj = I]VJ S ’i, Xi S l‘z)
’UOl(X|Xj = $JVj § Z)

Fx,(x;) = 9

Finally, we come to inverting the marginal conditional
CDF for use in inverse transform sampling. Unfortunately,
analytically calculating the inverse of an arbitrary function
is not possible; however, numerically finding the inverse of
a function is a well-studied field. Several fundamental statis-
tical distributions, such as the beta and gamma distributions
have no exact distribution for their inverse, and yet iterative
methods can be used to approximate them [18]], [26], [22].
Therefore, for this problem we employ a root finding algorithm
to calculate the inverse of the marginal conditional CDF
at the point specified by inverse transform sampling. Any
root finding method could be used, for example Newton’s
method [19] or Binary Search [20]. We use the ITP algorithm
[29], as it combines the efficiency of Newton’s method with
the guaranteed convergence and complexity bound of Binary
Search.

Putting all of this together gives the Inverse Volume Ratio
Sampling (IVoRS) method, listed in Algorithm [I| The IVoRS
method can sample from a uniform distribution defined over
a given valid region of n-dimensional space, provided only
that it is possible to calculate the ratio of the volume of a
subsection of the region to the volume of the entire region.

As an example, we demonstrate the generation of a uni-
formly selected point within a solid 3-dimensional shape
consisting of ten unit cubes shown in Figure |l Here, the
valid values for each variate depend on the values for the
other variates, meaning that it is not possible to calculate the
variates independently. However, as the shape is made up of
cubes, it is possible to calculate a hyperplane such that a given
ratio of the volume lies beneath that hyperplane. Applying the

Algorithm 1 IVoRS Algorithm

Algorithm 2 UUnifast Algorithm

Input: p, the initial valid region, and vr (P, z), a function
that calculates the volume below x of a given region P.

Output: p, a uniformly sampled point from the region
described by p and vr.

1I: p < H

2: for k € [0,n] do

3: r — a random number in [0, 1]

4; Set A such that vr(p,A\) =r > Use root finding if

necessary
p — p intersected with the hyperplane x=; = A
append \ to p

end for

return p

® W

Input: U, the total utilization to allocate, and N, the
number of tasks
Output: p a list of length N containing a uniformly
sampled point that divides U into N components
I p<+ |
2: k+0
3: while K < (N — 1) do
4 r«U- random()ﬁ
5: append U —r to p
6 U+r
7: end while
8: append U to p
9: return p

/

S |
x./‘\ y v

0.72 split 0.45 split
af x=1.8 at y=0.9

0.31 split
at z=0.62

Fig. 1: Demonstrating Uniform CDFs from Volume Ratios

IVoRS method, we can calculate the inverse marginal CDF of
the uniform distribution.

We begin by using the inverse marginal CDF to apply
inverse transform sampling to the marginal distribution of the
x axis. In Algorithm([I] Line[3] we generate the random number
0.72, and then on Line |4] calculate that 0.72 of the volume of
the shape lies below the hyperplane x = 1.8. Next, on Line
[the valid region is intersected with the hyperplane = = 1.8,
reducing the problem to a 2-dimensional problem along the y
and z axes. Considering the y axis, we follow the same steps to
apply inverse transform sampling to the marginal distribution
of y, conditional on x = 1.8. We generate 0.45 as our random
number, and calculate that 0.45 of the area of this shape lies
below y = 0.9. Finally, considering the z axis, we intersect the
shape with x = 1.8,y = 0.9. The resulting line represents the
marginal distribution of z, conditional on x = 1.8,y = 0.9.
We generate our final random number of 0.31, and calculate
that 0.31 of the length of the line lies below z = 0.62. The
uniformly sampled random point is therefore [1.8,0.9,0.62].

IV. IVORS IMPLEMENTATION OF UUNIFAST

To illustrate how the IVORS method works, we now use it to
derive the UUnifast algorithm. A pseudocode implementation
of UUnifast is given below in Algorithm

The UUnifast algorithm selects a uniform random point
such that each component is greater than zero and the com-
ponents sum to a given value U. Geometrically, for a vector
of length n, this can be represented by a simplex in n + 1

dimensional space where the vertices of the simplex are at the
intersection of the axes at the value U. This simplex lies on
the hyperplane X7"_jz; = U.

The volume of the valid region can be found by observing
that when U = 1, the valid region is the standard simplex and
therefore for an arbitrary U, the volume is a scaled form of
the volume of the standard simplex, which is given by:

vn+1

n!

vol(n) = (10)

Scaling the standard simplex in each dimension by the same
factor gives the UUnifast simplex for total utilization U. Such
scaling also gives a formula for calculating the volume of a
standard simplex by it’s “height” h i.e., the difference between
two parallel hyperplanes that enclose the simplex.

vn+1

volp(h,n) = h" "

Y

To obtain the volume ratio, it is necessary to find the volume
below a hyperplane of the form z; = c. Cutting off the top of
a simplex in this manner results in a more complex shape;
however, the portion that is cut off is guaranteed to be a
simplex of height U — z;. Therefore, it is simpler to calculate
the volume below a hyperplane by subtracting the volume
above it from the entire volume. The volume ratio used for
the CDF in the IVoRS method can thus be written as:
volp (U, n) — volp(U — z,n)

volp (U, n)
ur— (U —x)"

e (12)

U—],‘ n
:1—
(7%
Vn+tl

Note, that when calculating the volume ratio, the term 7=
cancels out, since every component is a simplex volume
calculated via its height, eliminating the need to calculate n!

To complete the derivation of the UUnifast algorithm using
the IVoRS method, it remains to calculate the inverse CDF.
In general, the IVORS method uses root finding algorithms
to accomplish this; however, in this case the function can be

VRuvUniFast(x,U,n) =

rearranged to achieve an analytical solution, where x is the
returned value of the inverse CDF and y is a uniform random
number in the range [0, 1]:

13)

With the final step holding since y is a uniform random number
in the range [0, 1], and therefore the distribution of y and
(1 — y) are identical, given that the function k : [0,1] —
[0,1],k(y) =1 — y is a continuous bijective function.

To show this is the same as the iterative step of UUnifast,
we note that x is the variate appended to p in Algorithm [2]
Hence, + = U — r, and rewriting y as the result from the
function random() in Algorithm [2| we can show equivalence
as follows:

e=U-Uy)=U—r (14)
r= U(random()%)

Letting n = N — k, corresponding to the k’th iteration of
UUnifast, this matches the assignment to r in Algorithm
Hence, UUnifast performs an equivalent calculation to the
IVoRS method using this volume calculation.

V. CONVOLUTIONALFIXEDSUM

In this section, we show how to calculate the volume of
the valid region of a simplex demarcated by upper and lower
constraints. We assume that the problem has been converted
into a canonical form, where the lower constraints are all
zero, the total utilization is 1, and the upper constraints
have been scaled accordingly. Later, we show how the same
transformations used by the DRS algorithm [14]] can be applied
to convert any valid problem to and from this form.

To calculate the required volume, we borrow, and deci-
pher, due to somewhat non-standard notation, a trick from
Wolpert and Wolf [37], as follows. The integral of a function
H(x) =[]}, hi(z;), where z; are the components of x, over
the scaled standard simplex can be written in the form:

1->07 1 T;
/ H(x)dxp—1dx,—o - dx;

I
15)

Note that, as expected, this describes the volume of an n — 1
dimensional simplex as the variable x,, is not integrated over,
and z,, = 1 — Z?;ll x;. By defining a shorthand term o =
1- Zi:ll x;, and expanding H(x) to the h;(z;) functions,
we arrive at the following:

1 On—2 Op—1 N
/ / / Hhi(zi)dxn—ldxn—2 .
0 0 0 el

dzi (16)

Noting that, by definition, z,, = 0, = 0,1 — T,—1, and that
the variables x...x,,_o are constant multiplicands with respect
to an integral over x,_; and therefore can be extracted from
the integration, we can rewrite @ as follows:

[e

/ hn—l(xn—l)hn(o'n—l - -rn—l)dxn—l
0

da)‘n_g dxl (17)

Convolution, denoted by ®, is a commutative operator applied
to two functions as follows:

/f
:/0 g)f(t —v)dv = (g f)(t)

Recognizing that the middle line of (17) is the convolution of
hp—1 and h,, over o,_1, we can perform a substitution and
further unraveling of the integral product to arrive at:

1 On—3 n—3
/ / H hi(as)
0 0 i=1

/ hn,—Z(xn—Z) : (hn—l & hn)(an—Q - xn—Q)dxn—Q
0
dri (19)

(f®g) (v (t —v)d

(18)

dmn_3 e

Finally, we recognize that this rule can be applied inductively,
as the middle line of is the convolution of h,,_s and
(hn—1 ® hy,) over o,_s. Noting that convolution is commuta-
tive, and denoting multiple convolutions by), we can rewrite
the integral of the function H(x) over the scaled standard

simplex as:
(@ m) 0
i=1

where the value 1, comes from the outermost integral of @I),
determining the value to convolve over. Therefore, to calculate
the volume of the valid region, we need to supply a function
of the correct form, which takes the value 1 within the valid
region, and 0 everywhere else. We define the function Ve (x)
as follows, where uc is the vector of upper constraints:

(20)

(%) = [[vue, (2:) @1)
1 0<z<uc
Vue, (7) = s (22)
' 0 otherwise
By construction, Vye(x) = 1 if and only if x is between

the lower constraints (assumed to be zero) and the upper
constraints, and therefore lies within the valid region. Note
that V,c(x) is integrable everywhere on R. By construction,
Vae(x) is of the correct form to be used in the above volume
calculation, and can therefore be used to calculate volumes
via convolution. Substituting into yields the following
function for the volume of a valid region, vor:

In order to calculate volume ratios for the IVoRS method, it
suffices to use the same process, but modifying the constraints
on the first variate to obtain the volume for a subsection of
the valid region. For this, we define a modification function
m which constructs the appropriate modified constraint vector
as follows:

m(uc,w) = (min(ucy, w), ucsy, ...ucy) (23)

The modified constraint vector enables the volume of the valid
region below w to be calculated. A volume ratio function,
o, 5> appropriate for use in the IVORS method, can then be
defined as:

vor(m(uc, w))

vry ;. (uc, w) = (24)

vor(uc)

Finally, we relax the simplifying assumption that the lower
constraints are all 0 and the total utilization is 1. To do this,
we use the method employed by the DRS algorithm [14]]. The
lower constraints are subtracted from the corresponding upper
constraints and the total utilization, and the upper constraints
are scaled so that the total utilization is 1. (The inverse of
this transformation is subsequently applied to the generated
point to obtain the output from ConvolutionalFixedSum). The
vr,;, function can be extended into the vrys function, which
encompasses the additional parameters required by the initial
transformation as follows:

(ue; —le; € [1,n] Vi) >
U—>isle v
(25)

where n is the number of tasks, and equates to the length
of the vectors lc and uc. Finally, we observe that the first
three parameters U,lc, and uc describe the shape of the
valid region, and can therefore be expressed as a single
parameter P. Utilizing the form vr.s(P, w), the function can
be employed in the IVORS method, see Algorithm (1} forming
the ConvolutionalFixedSum algorithm, with ITP [29] used to
find the required volume ratio. To compute the convolution in
(??), two methods are possible: Analytical and Numerical.

A. Analytical Method

Wolpert and Wolf [37] use their technique in conjunction
with the Laplace Transform [32], since in the Laplace domain
convolution behaves as function multiplication, making the
operation trivial. However, while it is possible to recover
functions from the Laplace domain, the function may become
more complicated. In the case of the ConvolutionalFixedSum
algorithm, again making the simplifying assumption that lc =
0 and U = 1, the functions v,., can be implemented with a
step function, which is a well-studied function with regards
to the Laplace transform [32]. However, once the functions
are multiplied within the Laplace domain, factored and then
recovered by a package such as SymPy [27], the convolution
of n step functions comprises 2" step function This is

Urcfs(U; lC, uc, w) = Ur;:fs <

11 the lower constraints are not normalized to zero, this becomes 22" step
functions, since for each set of upper constraints, each set of lower constraints
must be checked.

expected, since each upper constraint can interact with every
other upper constraint, giving a total of 2 combinations of
upper constraints to take into account.

Algorithm 3 Analytical Convolution

Input: uc, a vector of length n containing the upper
constraints.
Output: c, the value of the convolution at 1, giving the
volume of the valid region described by uc.
1: ¢+ 0
A+ {l..n}
: fora C A do
if >, ., uc; <U then

2 > Set of values from 1 to n
3

4

5: ==, uc)
6 1|afc’

7

8

9

n—1)
cCc+ —
end if
: end for
: return ¢

A generic version of the analytical convolution algorithm is
given in Algorithm [3} As can be seen on Line [3] every subset
of the constraints must be checked individually. Including the
empty set, there are 2™ subsets of A (the set of values from
1 to n). Line [checks to see if a given set of constraints is
applicable, i.e. the constraints intersect with the valid region.
If so, Line [3] calculates the volume of this intersection and
Line [6] updates the current volume. Note that if the number
of constraints that make up a region is odd, its volume
is subtracted from the valid region, otherwise it is added.
This can be explained by analogy to the volume calculation,
considering what each region represents:

1) For O constraints, the volume is the entire upper con-

straint simplex, and should therefore be added.

2) For 1 constraint, the volume is a corner of the upper con-
straints simplex that is greater than an upper constraint,
and should therefore be subtracted.

3) For 2 constraints, the volume is the intersection of two of
the previous constraints, and should therefore be added
to correct for the double counting that occurred in the
previous step for 1 constraint.

and so on.

As the complexity of Algorithm [3|is O(2"), it is unfortu-
nately intractable for large n, especially as the use of the ITP
algorithm for calculating the inverse CDF results in multiple
calls to the volume calculation. This leads us to the numerical
approximation for convolution.

B. Numerical Approximation

Convolution is frequently used in signal processing [33],
and so numerical methods for convolution are well studied.
It is possible to approximate the convolution of functions by
transforming the functions into signals. These signals can then
be sampled, numerically convolved, and then an approximation
of the convolution returned. To accomplish this, the first step
is to define the functions v (x), which encode the functions
Vyue(x) as signals with s samples.

(26)

. 1 0< o< [min(uc,1)-s+ 3]
(z) = :
0 otherwise

We can then construct signals by sampling the functions v;,.
over the range [0, s]. As expected, the number of samples s
controls the accuracy of the numerical approximation. While
this calculation uses a canonical form where U = 1, the actual
value of U is however important in terms of precision. For
example, s = 1000 and U = 1 yields 3 decimal places of
precision, whereas s = 1000 and U = 10 only yields 2
decimal places of precision. As experiments assessing the
performance of scheduling algorithms may require a fixed
degree of accuracy, the sample length s can be specified
in terms of a required granularity € and U. This results in
setting s = [Ue]. With this formulation, the total utilization
U affects the runtime of the numerical approximation, since
larger values of U lead to commensurately larger sample sizes.

To avoid excluding any part of the valid region, the signals
used represent a volume slightly larger than that of the
valid region. This can result in the ConvolutionalFixedSum
algorithm initially generating a point that lies outside of the
valid region. If this happens, then the point is discarded, and
the algorithm retries, generating a new point. In practice,
retries are a rare event that occurs with a probability that is
inversely proportional to the signal size. For example, in our
experiments, the retry rate was approximately 0.1%, with a
negligible effect on performance.

Once the sampled signals are obtained, than they can be
convolved. As with the analytical method, a transformation
exists that reduces convolution to pairwise multiplication: the
Fourier Transform [32]. The Fast Fourier Transform (FFT)
[7] is the most efficient method for this, with complexity of
O(slog(s)), with optimizations available for real valued data.
Once all of the signals are transformed by FFT, then they can
be multiplied, the inverse FFT applied, and the result of the
convolution extracted at the end of the sampled interval. An
outline of this approach is given in Algorithm [4]

Algorithm 4 Numerical Convolution
Input: uc, a vector of length n containing the upper
constraints, s, the number of samples to use
Output: c, the value of the convolution, giving the volume
of the valid region described by uc.
1: conv fft([v,. (z) |z € [0, s]])
for y € [2...n] do
conv < conv O fft([vy, (z) |z € [0, s]])
end for
¢ < ifft(conv)[s]
return c

A o

The complexity of the numerical method of volume calcu-
lation is O(n? slog(sn)), which makes it far more appropriate
than the analytical method for use with large n. When used
with the IVORS method, this results in a total complexity

of O(n? slog(sn)) for the numerical ConvolutionalFixedSum
algorithrrﬂ

There are some practical concerns when implementing
the numerical method of convolution that relate to floating
point precision. Firstly, it is important to sort the constraints
from largest to smallest, as precision is expressed relative to
the largest constraint under consideration. By processing the
largest constraints first, for which smaller constraints have
less impact, error from the numerical approximation can be
minimized. Similarly, normalizing the convolved signal after
each convolution reduces the effect of large values causing
error. Finally, as FFT libraries implement circular convolution
[25], it is necessary to pad the signal for each convolution.

To improve performance, best practice techniques were
employed, taken from state of the art implementations of
convolution [16]], as well as the academic literature [24]]. This
included ensuring that all arrays were trimmed of leading and
trailing zeros, and no unnecessary convolutions were carried
out. We also implemented a caching strategy, exploiting the
fact that when searching for a root to calculate the inverse
CDF only one constraint is changed. Hence, caching the
convolution of the remaining constraints reduces the number of
convolutions required significantly. Without this optimization,
the algorithm would have had a complexity of O(n*log(n))
rather than O(n3log(n)).

C. Example of applying ConvolutionalFixedSum

Figure [2] shows an illustrative example of how the Convolu-
tionalFixedSum algorithm solves a 3-dimensional problem. In
this example, we assume a total utilization of 1.0, represented
by the green simplex. There are three upper constraints,
x < 0.5,y < 0.7,z < 0.8, and implicit lower constraints of
x,y,z > 0, represented by the red simplex. The valid region
is the intersection of the two simplicies. The algorithm begins
by solving for the largest constraint in the z axis. To perform
inverse transform sampling, a random number is generated in
the range [0, 1]; in this case 0.59. ITP is then used with either
the analytical or numerical volume ratio calculation to find the
value of z such that 0.59 of the volume of the valid region lies
below z. To a precision of three decimal places, ITP makes
an initial guess of 0.250, before refining this value to 0.324,
then 0.289, before finally reaching an answer of 0.290. Hence,
z = 0.290 is selected. The = and y coordinates are simpler to
solve for, as the line defined by z = 0.290 only need be split at
a randomly selected point. Solving for y, the value of y must
lie between 0.210 and 0.7. (The lower bound occurs because
allocating y < 0.210 would cause x = 1.0 — z —y > 0.5,
breaking the constraint on). Once again, a random number is
generated for inverse-transform sampling, this time 0.12. The
line segment is therefore split such that 0.12 of the length of
the line is before the point, thus obtaining y = 0.269. Finally,
solving x+y-+2z = 1 gives = 0.441. The uniformly sampled
random point is therefore [0.441,0.269, 0.290].

2An optimization to O(n? log(n) slog(sn)log(s)) is theoretically possi-
ble, but has not yet been implemented.

T g) - Region covering 0.52
™ of valid region

\. ITP Solution z=0.290

™ . Solution splitting line
/ z=0.290 around 0.12

A W

Fig. 2: Application of ConvolutionalFixedSum to the con-
straints [z < 0.4,y < 0.7,z < 0.8]

VI. EVALUATION

This section evaluates the uniformity of the outputs of the
ConvolutionalFixedSum, DRS, RandFixedSum and UUnifast
algorithms. To reduce the number of variables, our evaluation
only considers problems in their canonical form, i.e. U = 1
and Ic = 0, since all problems can be transformed to
this form. The validity of the numerical approximation used
in ComvolutionalFixedSum is also investigated. Finally, the
runtime performance of the numerical ConvolutionalFixedSum
algorithm is determined, considering different sample sizes.

A. Uniformity Testing: the Slices Test

To verify that the outputs from a given algorithm form a uni-
form distribution, we developed a highly sensitive uniformity
test, called the slices test, which utilizes volume calculations.
In each of the n dimensions, the slices test divides the valid
region into k slices of equal volume with the slice boundaries
defined by hyperplanes parallel to the axes. N points are then
generated by the algorithm, and allocated to the appropriate
containing slice. Since each slice has the same volume, the
expected number of points in each slice is N/k, subject to
statistical variation. A Chi-squared (x?) test [34] is then used
to determine how likely the observed distribution is to occur,
assuming the null hypothesis of a uniform distribution. The
slices test has the advantage that it explores the whole of the
valid region in each dimension and is sensitive to any non-
uniformity at the edges, as well as to any gradient effects.

Figures [3] and [4] illustrate the slices test showing a uniform
distribution for UUnifast and ConvolutionalFixedSum respec-
tively. Note, the normalized density is given by the number
of points contained in each slice divided by the expected
number N/k. In each figure the density is close to 1, subject to
statistical variation. The distribution of points to slices shown
in these figures pass the x? test, indicating uniformity.

To calculate the volume of the slices, the inverse CDF
from ConvolutionalFixedSum was used. This allowed each
slice to be expressed as being bounded by ICDF (%) and
ICDF(EEL) for k € [0,10). To calculate the slices, the
analytical method was used. To verify that these slices were

Normalised
Point
Density

1.06

7 AXis

0.997

0.963

0.929

Fig. 3: Slices uniformity test in 3 dimensions for UUnifast.
Range of Normalized Point Density Values [0.929, 1.06].

Normalised
Point
Density

1.04

1.02

0.987

0.969

Fig. 4: Slices uniformity test in 3 dimensions for Convolu-
tionalFixedSum. Range of Normalized Point Density Values
[0.970, 1.04].

correct, the slices test was conducted on the provably uniform
UUnifast algorithm; if the slices were incorrect, then the slices
test would fail UUnifast, creating a contradiction.

We used the slices test to evaluate the uniformity of the
outputs from the ConvolutionalFixedSum, DRS, RandFixed-
Sum and UUnifast algorithms. In each case N = 10,000
points were generated across £ = 10 slices in each of n
dimensions. Further, the number of dimensions (tasks) was
varied in the range [3,15], with the total utilization set to
U = 1. In addition, the following parameters were used:

o UUnifast: No other parameters

e RandFixedSum: Single upper constraint drawn from a

uniform distribution between [+ 1]. The lower bound
of this distribution is chosen to ensure sufficient volume
in the valid region for the slices test to be effective.

e DRS and ConvolutionalFixedSum: Upper constraints gen-

erated by UUnifast with a fixed sum of 1.5.
e Numerical ConvolutionalFixedSum: Signal size s =
10,000

Each test was repeated 1000 times, thus 117,000 x? tests

B Observed Distribution
—— X2 (9 DoF)

0.10

0.08

0.06

0.04

0.02

0.00
0 5 10 15 20 25 30

Fig. 5: Distribution of x? values for
117,000 UUnifast experiments

B Observed Distribution
—— %2 (9 DoF)

0.10

0 5 10 15 20 25 30

6: Distribution of x2 values
for 117,000 analytical Convolutional-
FixedSum experiments

mmm Observed Distribution
—— X2 (9 DoF)

0.10

mmm Observed Distribution
—— X2 (9 DoF)

0.10

B Observed Distribution
—— %2 (9 DoF)

0.10

0.08

0.06

0.04

0.02

0.00
0 5 10 15 20 25 30

Fig. 7: Distribution of X2 values
for 117,000 numerical Convolutional-
FixedSum experiments

0.08 0.08

0.06 0.06
0.04 0.04

0.02 0.02

0.00 0.00

0 5 10 15 20 25 30

0 25 50

Fig. 8: Distribution of x? values for
117,000 RandFixedSum experiments

were run on each algorithm. To run these tests 117,000,000
points were generated by each algorithm (10,000 for each of
the 1,000 experiments for each n € [3,15)).

To evaluate the 117,000 X2 tests, the distribution of the ob-
served 2 test statistic was plotted against the x? distribution
with 9 Degrees of Freedom (9-DoF). These distributions were
then compared using the Kolmogorov-Smirnov (KS) test [34]
to determine if the observed cumulative distribution differed
from the x? distribution with a significance of 0.05.

Figure [5| shows the distribution of the observed x? statistic
vs. the x? (9-DoF) distribution for UUnifast. The results from
UUnifast produce values matching the x? (9-DoF) distribution
and pass the KS-test with a p-value of 0.45. Figure [§] similarly
shows that the results from the analytical ConvolutionalFixed-
Sum algorithm also pass the KS-test with a p-value of 0.70.

The 2 results for the numerical ConvolutionalFixedSum
algorithm, shown in Figure [7] show a similar result, and again
passes the KS-test with a p-value of 0.66. However, note that
the numerical ConvolutionalFixedSum algorithm is an approxi-
mation. For this experiment, a signal size of 10,000 was used;
however, with a signal size of 1,000, the approximation is
insufficient and fails the KS-test with a p-value of ~ 10733,
(See Section [VI-D] for a discussion of best practice in using
the numerical ConvolutionalFixedSum algorithm).

Figure [8] shows the distribution of the observed x? statistic
vs. the x? (9-DoF) distribution for RandFixedSum, again
showing the expected distribution and passing the KS-test with

Fig. 9: Distribution of x? values distri-
bution for 117,000 DRS experiments

seconds/taskset

10-1 CFS, analytical
—— CFS, samples=1000

102 —— CFS, samples=3000
—— CFS, samples=10000
—— DRS

1073

10 20 30 40 50

75 100 125 150 Number of Tasks

Fig. 10: Performance of Convolution-
alFixedSum and DRS algorithms

a p-value of 0.23.

0.876 0.9

Fig. 11: Slices test illustrating non-uniformity of DRS. Range
of Normalized Point Density Values [0.878, 1.21].

Finally, Figure [9] illustrates that the outputs from the DRS
algorithm lack uniformity. In this case, the observed Y2
distribution fails the KS-test (p-value 0). Examining the data
in detail reveals that as the number of constraints increases,
so the non-uniformity also increases. This is expected as the
number of constraints increases, so the probability of smaller
constraints increases since the constraints sum to 1.5. The
presence of very small constraints appears to cause issues
for the DRS algorithm. This is forced in Figure [TI] which
shows a 3-dimensional view of a 4-dimensional problem with
constraints [1.0,1.0,0.25,107%]. As the dimension not shown
has a constraint with a tiny magnitude, it should not impact
uniformity with respect to the remaining dimensions; however,
Figure [I1] shows a clear gradient, and a significantly greater
variation in normalized point density than observed in Figures

[and] The distribution of points to slices shown in this
figure fails the x? test, indicating non-uniformity.

B. Validity Testing

The analytical ConvolutionalFixedSum algorithm was stress
tested by conducting checks as part of the slices test to
ensure that the slices returned were of equal volume. As each
slice is constructed by the difference between two sets of
constraints, this validity test is able to determine if analytical
Convolutional FixedSum is behaving as expected. For some sets
of constraints, the validity test did not pass due to floating point
precision issues, which are largely unavoidable. Algorithm
(Lines [5] and [6) sums values across a potentially very wide
range. Our implementation uses Kahan-Babushka-Neumaier
summation [28] to mitigate error, which is detectable by
monitoring the compensation term in the Kahan-BabuShka-
Neumaier sum. This is performed automatically within the
Convolutional FixedSum algorithm. Using this method, approx-
imately 0.3% of the generated sets of points have observable
floating point error. However, such non-uniformity is confined
to the dimensions with the smallest upper constraints, which
were observed to have an upper constraint < 3.3 x 107°, with
dimensions that have larger constraints unaffected. Hence, the
absolute deviation from uniformity across the whole of the
valid region is negligible.

To stress test the validity of the numerical Convolutional-
FixedSum algorithm, we conducted tests by comparing the nu-
merical volume calculation to the analytical convolution with
a single constraint set, which is equivalent to the derivation
of UUnifast in Section This method is used for testing
the maximum value of n as the numerical convolution based
slices test may be subject to similar degradation with large
n, invalidating the test. From these tests, we observed that
the volume calculation used in the numerical Convolution-
alFixedSum algorithm with 10,000 samples provides a good
approximation of the UUnifast volume ratio calculation until
n = 50. Given that the worst case for numerical convolution
is maximizing the signal, this provides confidence that the
numerical ConvolutionalFixedSum algorithm provides good
accuracy up to at least n = 50. Beyond n = 50, numerical
ConvolutionalFixedSum begins to degrade due to floating point
accuracy limitations.

C. Performance Testing

Figure |10| shows the runtime performance of the Convolu-
tionalFixedSum and DRS algorithms when run on a Raspberry
Pi 4. The Pi 4 was chosen as a readily available computer
for replicability of results, while providing sufficient computa-
tional power. Observe that increasing the sample size s, while
necessary for accuracy, is relatively expensive leading to a
polynomial increase in runtime, O(slog(s)). The numerical
ConvolutionalFixedSum algorithm, however, still significantly
outperforms the DRS algorithm, and is approximately two
orders of magnitude faster with the default sample size of
s = 10,000. The runtime of the analytical ConvolutionalFixed-
Sum algorithm grows exponentially, with a slight deviation

around n = 17, likely due to the memory architecture of
the Raspberry Pi 4, indicating that it is ill-suited to problems
where n is substantially greater than 20.

The UUnifast and RandFixedSum algorithms have complex-
ities of O(n) and O(n?) respectively, both are substantially
faster than ConvolutionalFixedSum and should be used if the
flexibility to cater for individual constraints is not required.

D. Best Practice when using ConvolutionalFixedSum

The ConvolutionalFixedSum algorithm can exhibit limited
non-uniformity arising from accuracy issues, due to the inher-
ent approximation of numerical convolution, e.g., too small
a sample size, and due to how floating point precision af-
fects the implementation of both analytical and numerical
convolution. This section discusses best practice in mitigating
these issues. In the implementation of analytical convolution,
a check has been implemented that detects if floating point
error may be of concern. This check can sometimes give false
positives, indicating potential floating point errors when they
are none, but not false negatives, which would indicate that
accuracy is fine, when it is not. Floating point error typically
occurs when the canonical form of an upper constraint is
very small. This was encountered in our experiments when
a single constraint was < 3.3 x 107°. It can also occur
when there are multiple somewhat larger constraints. Any
dimension affected by floating point error will have values
that may not be completely uniform, but other dimensions
will not be affected. This issue can therefore be mitigated
by removing dimensions with a very small range of potential
values from the problem description, and instead treating those
values as fixed. Alternatively, users may choose to accept the
non-uniformity in very small dimensions, given that the impact
on overall uniformity across the whole of the valid region is
negligible.

For numerical ConvolutionalFixedSum, a signal size that is
too small to represent the constraints accurately can compro-
mise uniformity. This can be completely avoided by ensuring
that the signal size is at least [10- mmég;?;;(ffé;lq)} |i,j €
[1,n], where x is the number of decimal places of precision
required. For example, with U = 1, a minimum range
min(uc; — le;) = 0.01, and z = 2 decimal places of
accuracy, equates to a minimum recommended signal size
of s = 10,000. Alternatively, the slices test can be used
to check for accuracy. In the event that it is not possible
to use analytical convolution to calculate the volume of the
slices, e.g., for large n, numerical convolution can be used,
with a sample size that is 10 times larger than that used by
the numerical ConvolutionalFixedSum algorithm, albeit with a
higher probability of false negatives occurring.

VII. CONCLUSIONS

Work on this paper originally started with an assessment of
the DRS algorithm that revealed an issue with the uniformity
of its outputs. On further investigation, this non-uniformity
appeared to be due to insurmountable implementation issues.
Having identified the need for an alternative algorithm, we

designed the IVoRS method. This method employs standard
techniques for drawing from a multivariate distribution with
volume calculation and root finding algorithms to allow sam-
pling from any region whose volume can be calculated.

Having established the IVORS method, we showed how the
UUnifast algorithm can be derived via the IVoRS method,
providing an alternative proof of correctness for UUnifast. We
then derived a method for calculating the volume of the valid
region and sections of it using convolution, thus instantiating
the ConvolutionalFixedSum algorithm. As the analytical form
of ConvolutionalFixedSum has a complexity of O(2"), we also
developed a numerical approximation that uses Fast Fourier
Transforms to achieve a complexity of O(n?log(n)).

To demonstrate the correctness of ConvolutionalFixedSum,
we developed the highly sensitive slices test for uniformity
that provides an effective test over the entire valid region. To
verify that this test was correct, we applied it to the UUnifast
algorithm, which is proven to produce outputs that follow a
uniform distribution. We used the slices test to verify that
the outputs from the RandFixedSum algorithm also follow a
uniform distribution, while those from the DRS algorithm do
not. Both the analytical and numerical ConvolutionalFixed-
Sum algorithms were shown to provide outputs that follow
a uniform distribution. The accuracy of both methods under
extreme conditions was also investigated, and best practices
for avoiding floating point error in the analytical method
and approximation error in the numerical method devised.
Performance testing showed that the analytical Convolutional-
FixedSum algorithm is tractable for small values of n < 20.
For larger values of n, the numerical ConvolutionalFixedSum
algorithm provides substantially better scaling, and is therefore
the practical choice.

In summary, ConvolutionalFixedSum presents a precise, but
O(2") analytical method and a more tractable O(n?log(n))
numerical approximation, with the required statistical tests
provided to show that neither method suffers from the sub-
stantial non-uniformity issues of DRS. We recommend that
the use of the DRS algorithm is deprecated, and replaced
by ConvolutionalFixedSum, which provides both superior per-
formance and uniformity. All source code for the analytical
and numerical ConvolutionalFixedSum algorithms, and the
evaluation methods is available online [15]].

As further work, we intend to produce a version of Convolu-
tionalFixedSum that takes advantage of GPUs for performing
convolution, and examine extensions to support task sets of
size greater than 50. We also intend to produce a version of
the algorithm that directly supports a discrete version of the
problem. This requires that a vector of n values is generated
that sum to within some small error ¢ of a fixed value, and
that the values produced are from a discrete lattice.

Finally, while this paper was under review, we were con-
tacted by the authors of [36]. They had independently shown,
both analytically and empirically, that the DRS algorithm
can produce outputs that are not uniformly distributed. They
proposed a revision of the algorithm called DRSC that resolves
this issue. However, the current version of DRSC achieves this

at substantial computational cost, with complexity that lies
between that of the DRS and UUniFast-Discard algorithms,
reducing its viability for large n and for small normalized
constraints. The DRSC algorithm [36] also adds support for
multivariate constraints, such as x; + x5 < 1.

APPENDIX: UNIFORMITY ISSUES WITH DRS

When investigating the observed lack of uniformity in the
DRS algorithm, we focused on the use of floating point as
this was noted as a potential weakness [14] in the DRS
implementation. The issues we found included:

o Floating Point Error: The mitigation used in the DRS
algorithm checks if the sum of the generated values is
within a parameter € of the total required. However, this
assumes that all floating point errors are in the same
direction, which is not necessarily the case.

« Finite Entropy: The double precision floating points used
by the DRS algorithm encode 53 bits of entropy, since
they are within the range [0, 1]. This places a hard limit
on the number of rescales that can be performed before
the randomness of the initial point is exhausted.

From our experiments, we concluded that the issues with the
DRS algorithm can potentially be mitigated by: (i) ensuring
that the € parameter is substantially smaller than the small-
est constraint, and (ii) limiting the maximum magnitude of
rescales applied to counter concerns about floating point error
and finite entropy. Both mitigations increase the probability
of retrying. As DRS already appears to scale exponentially, as
shown in Figure [T0] increasing the probability of retrying will
increase the runtime further. An alternative mitigation using
arbitrary precision floating points was considered, which does
not increase the probability of retrying, but this was deemed
not to be computationally tractable. Therefore, while the DRS
algorithm can theoretically be fixed, the fixes are not practical
and hence we cannot recommend its use.

ACKNOWLEDGMENTS

This research was funded in part by the MARCH Project
(EP/V006029/1), Innovate UK SCHEME project (10065634)
and the CHEDDAR Communications hub (EP/Y037421/1,
EP/Y036514/1, EP/X040518/1). EPSRC Research Data Man-
agement: No new primary data was created during this study.

REFERENCES

[1] Sanjoy K. Baruah. Rapid routing with guaranteed delay bounds. In 2018
IEEE Real-Time Systems Symposium, RTSS 2018, Nashville, TN, USA,
December 11-14, 2018, pages 13-22. IEEE Computer Society, 2018.
doi:10.1109/RTSS.2018.00012,

[2] Patrick Billingsley. Convergence of Probability Measures, volume 23.
Wiley Series in Probability and Statistics, 1999. |doi1:10.1002/
9780470316962,

[3] Enrico Bini and Giorgio C. Buttazzo. Biasing effects in schedula-
bility measures. In 16th Euromicro Conference on Real-Time Sys-
tems (ECRTS 2004), 30 June - 2 July 1004, Catania, Italy, Proceed-
ings, pages 196-203. IEEE Computer Society, 2004. URL: https:/
doi.ieeecomputersociety.org/10.1109/ECRTS.2004.7, |[do1:10.1109/
ECRTS.2004.7!

https://doi.org/10.1109/RTSS.2018.00012
https://doi.org/10.1002/9780470316962
https://doi.org/10.1002/9780470316962
https://doi.ieeecomputersociety.org/10.1109/ECRTS.2004.7
https://doi.ieeecomputersociety.org/10.1109/ECRTS.2004.7
https://doi.org/10.1109/ECRTS.2004.7
https://doi.org/10.1109/ECRTS.2004.7

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Enrico Bini and Giorgio C. Buttazzo. Measuring the perfor-
mance of schedulability tests. Real Time Syst., 30(1-2):129-154,
2005. URL: https://doi.org/10.1007/s11241-005-0507-9, |[doi:10.
1007/511241-005-0507-9.

Alan Burns and Robert I. Davis. A survey of research into mixed
criticality systems. ACM Comput. Surv., 50(6):82:1-82:37, 2018. |do1i :
10.1145/3131347.

Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang,
Bjorn B. Brandenburg, Konstantinos Bletsas, Cong Liu, Pascal Richard,
Frédéric Ridouard, Neil C. Audsley, Raj Rajkumar, Dionisio de Niz,
and Georg von der Briiggen. Many suspensions, many problems: a
review of self-suspending tasks in real-time systems. Real Time Syst.,
55(1):144-207, 2019. URL: https://doi.org/10.1007/s11241-018-9316-9,
doi:10.1007/S11241-018-9316-9.

James W. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex fourier series. Mathematics of Computation,
19(90):297-301, 1965. URL: http://www.jstor.org/stable/2003354,
Robert I. Davis. On the evaluation of schedulability tests for real-
time scheduling algorithms. In Proceedings International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), July 2016. URL: https://waters2016.inria.tr/files/2017/02/
WATERS16-proceedings- final.pdf#page=4.

Robert I. Davis and Alan Burns. Priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems. In
Theodore P. Baker, editor, Proceedings of the 30th IEEE Real-Time
Systems Symposium, RTSS 2009, Washington, DC, USA, 1-4 December
2009, pages 398-409. IEEE Computer Society, 2009. doi:10.1109/
RTSS.2009.31.

Robert I. Davis and Alan Burns. Improved priority assignment for
global fixed priority pre-emptive scheduling in multiprocessor real-time
systems. Real Time Syst., 47(1):1-40, 2011. URL: https://doi.org/10.
1007/s11241-010-9106-5, /do1:10.1007/S11241-010-9106-5.
Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for
the synthesis of multiprocessor tasksets. In Proceedings International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS), pages 6—11, July 2010. URL: jhttps://retis.sssup.
it/waters2010/waters2010.pdf#page=6.

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.
Bayesian data analysis (3rd edn)., volume 23. Chapman & Hall/CRC,
2021.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distribu-
tions, and the bayesian restoration of images. IEEE Trans. Pattern Anal.
Mach. Intell., 6(6):721-741, 1984. |doi:10.1109/TPAMI.1984.
4767596

David Griffin, Iain Bate, and Robert I. Davis. Generating utilization
vectors for the systematic evaluation of schedulability tests. In 41st
IEEE Real-Time Systems Symposium, RTSS 2020, Houston, TX, USA,
December 1-4, 2020, pages 76-88. IEEE, 2020. |doi:10.1109/
RTSS49844.2020.00018.

David Griffin and Robert I. Davis. ConvolutionalFixedSum Software,
March 2025. URL: https://github.com/dgdguk/convolutionalfixedsum/,
doi:10.5281/zenodo.15107012}

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernandez del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357-362, September 2020. doi:
10.1038/s41586-020-2649-2,

W. K. Hastings. Monte carlo sampling methods using markov
chains and their applications. Biometrika, 57(1):97-109, 04
1970. arXiv:https://academic.oup.com/biomet/
article-pdf/57/1/97/23940249/57-1-97.pdf,
doi:10.1093/biomet/57.1.97.

Dhivya Prabhu K, Sanjeev Singh, and V. Antony Vijesh. A
third-order iterative algorithm for inversion of cumulative cen-
tral beta distribution. Numer. Algorithms, 94(3):1331-1353, 2023.
URL: https://doi.org/10.1007/s11075-023-01537-6, |do1:10.1007/
S11075-023-01537-6.

Carl T Kelley. Solving nonlinear equations with Newton’s method.
SIAM, 2003.

[20]

[21]

(22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

(31]

(32]
(33]
[34]

[35]

[36]

[37]

Donald E. Knuth. The Art of Computer Programming, Volume III:
Sorting and Searching. Addison-Wesley, 1973.

Jie Li, Sichen Li, Jun Luo, and Haihui Shen. Simulation optimization
for inpatient bed allocation with sharing. Journal of Systems Science and
Systems Engineering, 2024./doi:10.1007/s11518-024-5625-9.
Alberto Llera and Christian Beckmann. Estimating an inverse gamma
distribution. 05 2016. |do1:10.48550/arXiv.1605.01019.
Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joél Goossens, Sebas-
tian Altmeyer, and Robert I. Davis. A survey of timing verification
techniques for multi-core real-time systems. ACM Comput. Surv.,
52(3):56:1-56:38, 2019. [doi1:10.1145/3323212]

Filip Markovic, Alessandro Vittorio Papadopoulos, and Thomas Nolte.
On the convolution efficiency for probabilistic analysis of real-time
systems. In Bjorn B. Brandenburg, editor, 33rd Euromicro Conference
on Real-Time Systems, ECRTS 2021, July 5-9, 2021, Virtual Conference,
volume 196 of LIPIcs, pages 16:1-16:22. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2021. URL: |https://doi.org/10.4230/LIPIcs.
ECRTS.2021.16,/do1:10.4230/LIPICS.ECRTS.2021.16,

Clare D McGillem and George R Cooper. Continuous and discrete
signal and system analysis. Saunders College Publishing, 1991.

M. E. Mead. Generalized inverse gamma distribution and
its application in reliability. Communications in Statistics
- Theory and Methods, 44(7):1426-1435, 2015. arXiv:
https://doi.org/10.1080/03610926.2013.768667,
do1:10.1080/03610926.2013.768667. .
Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondiej Certik,
Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov,
Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E.
Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam
Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R.
Terrel, Stépa’m Roucka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,
Robert Cimrman, and Anthony Scopatz. Sympy: symbolic computing
in python. PeerJ Computer Science, 3:¢103, January 2017. [doi:10.
7717/peerj-cs.103,

A. Neumaier. Rundungsfehleranalyse einiger verfahren zur summation
endlicher summen. ZAMM - Journal of Applied Mathematics and
Mechanics / Zeitschrift fiir Angewandte Mathematik und Mechanik,
54(1):39-51, 1974. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/zamm.19740540106, |[do1:10.1002/zamm.19740540106.
Ivo E. D. Oliveira and Ricardo H. C. Takahashi. An enhancement of the
bisection method average performance preserving minmax optimality.
ACM Trans. Math. Softw., 47(1):5:1-5:24, 2021. doi:10.1145/
3423597

Ingram Olkin and Herman Rubin. Multivariate beta distributions
and independence properties of the wishart distribution. Annals of
Mathematical Statistics, 35(1):261-269, March 1964. doi:10.1214/
aoms/1177703748.

Sophie Quinton, Matthias Hanke, and Rolf Ernst. Formal analysis of
sporadic overload in real-time systems. In Wolfgang Rosenstiel and
Lothar Thiele, editors, 2012 Design, Automation & Test in Europe
Conference & Exhibition, DATE 2012, Dresden, Germany, March 12-
16, 2012, pages 515-520. IEEE, 2012. doi1:10.1109/DATE.2012.
6176523\

Laurent Schwartz. Mathematics for the Physical Sciences. Addison-
Wesley Publishing Company, 1966.

Steven W. Smith. The scientist and engineer’s guide to digital signal
processing. California Technical Publishing, USA, 1997.

Murray R Spiegel and Larry J Stephens. Schaum’s outline of statistics.
McGraw Hill Professional, 2017.

Roger Stafford. Random vectors with fixed sum. Techni-
cal Report Available at https://www.mathworks.com/matlabcentral/
fileexchange/9700-random- vectors-with-fixed-sum, MathWorks, 2006.
Rick S. H. Willemsen, Wilco van den Heuvel, and Michel van de Velden.
Generating random vectors satisfying linear and nonlinear constraints,
2025. URL: https://arxiv.org/abs/2501.16936| arXiv:2501.16936l
David H. Wolpert and David R. Wolf. Estimating functions of proba-
bility distributions from a finite set of samples. Phys. Rev. E, 52:6841—
6854, Dec 1995. URL: https://link.aps.org/doi/10.1103/PhysRevE.52.
6841, do1:10.1103/PhysRevE.52.6841.

https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/S11241-005-0507-9
https://doi.org/10.1007/S11241-005-0507-9
https://doi.org/10.1145/3131347
https://doi.org/10.1145/3131347
https://doi.org/10.1007/s11241-018-9316-9
https://doi.org/10.1007/S11241-018-9316-9
http://www.jstor.org/stable/2003354
https://waters2016.inria.fr/files/2017/02/WATERS16-proceedings-final.pdf#page=4
https://waters2016.inria.fr/files/2017/02/WATERS16-proceedings-final.pdf#page=4
https://doi.org/10.1109/RTSS.2009.31
https://doi.org/10.1109/RTSS.2009.31
https://doi.org/10.1007/s11241-010-9106-5
https://doi.org/10.1007/s11241-010-9106-5
https://doi.org/10.1007/S11241-010-9106-5
https://retis.sssup.it/waters2010/waters2010.pdf#page=6
https://retis.sssup.it/waters2010/waters2010.pdf#page=6
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTSS49844.2020.00018
https://github.com/dgdguk/convolutionalfixedsum/
https://doi.org/10.5281/zenodo.15107012
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1007/s11075-023-01537-6
https://doi.org/10.1007/S11075-023-01537-6
https://doi.org/10.1007/S11075-023-01537-6
https://doi.org/10.1007/s11518-024-5625-9
https://doi.org/10.48550/arXiv.1605.01019
https://doi.org/10.1145/3323212
https://doi.org/10.4230/LIPIcs.ECRTS.2021.16
https://doi.org/10.4230/LIPIcs.ECRTS.2021.16
https://doi.org/10.4230/LIPICS.ECRTS.2021.16
https://arxiv.org/abs/https://doi.org/10.1080/03610926.2013.768667
https://arxiv.org/abs/https://doi.org/10.1080/03610926.2013.768667
https://doi.org/10.1080/03610926.2013.768667
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19740540106
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19740540106
https://doi.org/10.1002/zamm.19740540106
https://doi.org/10.1145/3423597
https://doi.org/10.1145/3423597
https://doi.org/10.1214/aoms/1177703748
https://doi.org/10.1214/aoms/1177703748
https://doi.org/10.1109/DATE.2012.6176523
https://doi.org/10.1109/DATE.2012.6176523
https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://arxiv.org/abs/2501.16936
https://arxiv.org/abs/2501.16936
https://link.aps.org/doi/10.1103/PhysRevE.52.6841
https://link.aps.org/doi/10.1103/PhysRevE.52.6841
https://doi.org/10.1103/PhysRevE.52.6841

	Introduction
	Organization

	Related Work
	IVoRS: Sampling from a Uniform Multivariate Distribution of finite arbitrary shape
	IVoRS implementation of UUniFast
	ConvolutionalFixedSum
	Analytical Method
	Numerical Approximation
	Example of applying ConvolutionalFixedSum

	Evaluation
	Uniformity Testing: the Slices Test
	Validity Testing
	Performance Testing
	Best Practice when using ConvolutionalFixedSum

	Conclusions
	References

