
82

A Survey of Research into Mixed Criticality Systems

ALAN BURNS, University of York
ROBERT I. DAVIS, University of York

This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007,
up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include
single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous
scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship
between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant
scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards.

CCS Concepts: •Computer systems organization→ Real-time system specification; •Software and its engineering→
Real-time schedulability; Real-time systems software;

Additional Key Words and Phrases: Real-Time Systems, Mixed Criticality Systems, Scheduling

ACM Reference Format:
Alan Burns and Robert I. Davis, 2017, A Survey of Research into Mixed Criticality Systems. ACM Trans. Embedd. Comput.
Syst. 50, 6, Article 82 (December 2017), 35 pages.
DOI: 0000001.0000001

1. INTRODUCTION
An increasingly important trend in the design of real-time embedded systems is the integration of
components with different levels of criticality onto a common computing platform. At the same
time, these platforms are migrating from single-core to multi-core hardware, and in the future to
many-core architectures. Criticality is a designation of the level of assurance needed against failure
for a system component. Mixed Criticality Systems (MCS) are systems that have components of
two or more distinct criticality levels, for example safety-critical, mission-critical and non-critical.

Most of the complex embedded systems found in the automotive and avionics sectors are evolving
into MCS in order to meet stringent non-functional requirements relating to cost, space, weight, heat
generation, and power consumption, the latter being of particular relevance to mobile systems.

The fundamental research question underlying MCS is how, in a disciplined way, to reconcile
the conflicting requirements of partitioning for safety assurance and sharing for efficient resource
usage. This question gives rise to theoretical problems in modeling and verification, and systems
problems relating to the design and implementation of the hardware and run-time software.

A key aspect of MCS is that parameters, such as the worst-case execution time (WCET) estimates
for tasks, become dependent on the criticality level of the components they belong to. Thus the
same code may have a higher WCET estimate if it is defined to be safety critical rather than mission
critical, as a higher level of assurance is required. This property of MCS significantly undermines
or modifies many of the standard scheduling results.

A commonly used exemplar of a MCS is an unmanned aerial vehicle. In order to operate in
civilian airspace, the safety-critical flight control software must be certified by a civil aviation
authority. By contrast, mission-critical software associated with capturing and processing images
must be ‘fit for purpose’ and can be signed off by the system’s designers. Other software, such as a

The research that went into writing this survey was funded, in part, by the ESPRC grants, MCC (EP/K011626/1) and MCCps
(EP/P003664/1). EPSRC Research Data Management: No new primary data was created during this study.
Author’s addresses: A. Burns and R.I. Davis, Department of Computer Science, University of York.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
c© 2017 ACM. 1539-9087/2017/12-ART82 $15.00
DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:2 A. Burns and R.I.Davis

route planner, is desirable and improves the Quality of Service (QoS) of the system, but is less
critical. The criticality of a component determines the level of rigour applied in the design and
analysis used to determine its correct functionality and resource usage (e.g. processor execution
time, communication bandwidth etc.). As a result, the same component can have more than one
resource-usage profile. If it is used as part of the flight control subsystem then more conservative
assumptions as to its potential resource usage need to be made; if it is part of a mission-critical
activity then lower, though still realistic, resource requirements can be assumed. Put simply, all
safety-critical software must meet its timing requirements when conservative assumptions are
made; and all mission-critical components must meet their requirements when more realistic
assumptions are made for all of the software. This crucial property, of being able to take a
criticality specific view of resource usage, makes the verification task more complex, but opens up
the possibility of much more efficient resource usage.

A simplistic contrived example illustrates this tradeoff. Consider a system with just two
components, A and B. Component A is safety critical and needs a 2-core platform to guarantee its
temporal behaviour, when analysed using the conservative techniques prescribed for this level of
criticality. Component B is mission critical and needs a 1-core platform. It would therefore seem
that a 3-core platform is required. However, if A is also analysed as if it were mission critical,
i.e. using the same techniques applied to B, then it may only require a single core. Hence a 2-core
system is sufficient for the mission; a saving of one whole core and its associated cost, heat and
power consumption. In the unlikely event that A needs more than one core then B will be
abandoned and A will have both cores, thus satisfying the safety case for A. By contrast in normal
operation, both A and B will run adequately on the 2-core platform.

This very simple example hides most of the important details of the resource usage model and
the necessary verification. Nevertheless, it highlights the advantages that can accrue from the
verification techniques currently being developed for MCSs. It also points to the need for run-time
monitoring and protection mechanisms that will protect A from B and that can abandon B if either
A or B operates outside the assumptions encapsulated in their mission-critical profiles.

The first paper on the verification of MCS was published by Vestal [2007]1. It employed a
somewhat restrictive work-flow model, focused on a single processor and made use of Response
Time Analysis [Joseph and Pandya 1986; Audsley et al. 1993] for fixed priority (FP) scheduling.
Vestal [2007] showed that neither rate monotonic [Liu and Layland 1973] nor deadline
monotonic [Leung and Whitehead 1982] priority assignment was optimal for MCS; however the
optimal priority assignment algorithm of Audsley [2001] was found to be applicable. This paper
was followed by publications by Baruah and Vestal [2008] and Huber et al. [2008]. The first of
these papers generalises Vestal’s model. It contains the important result that Earliest Deadline First
(EDF) scheduling does not dominate fixed priority scheduling when there is more than one
criticality level, and that there are feasible systems that cannot be scheduled by EDF. This is in
direct contrast to the case with just one criticality level [Dertouzos 1974]. The second paper
addresses multi-processor issues and virtualisation. It focuses on resource management via
encapsulation and monitoring, assumes time-triggered applications and a trusted network layer.

Further impetus to defining MCS as a distinct research topic came from the white paper produced
by Barhorst et al. [2009], the keynote talk that Baruah gave at the 2010 ECRTS conference2, and a
workshop report from the European Commission [Thompson 2012]. Since then, the research topic
has led to a wealth of publications (reviewed in this survey), as well as the establishment of a peer-

1The term Mixed Criticality had been used before 2007 to address issues of non-interference in non-federated architectures
such as IMA [Hill and Lake 2000]; Vestal changed the focus of research by concentrating on real-time performance. Systems
with more than one criticality level that only aim to give complete isolation are called multiple-criticality systems; the use of
mixed-criticality implies some tradeoff between isolation and integration that involves resource sharing.
2Available from the conference web site: http://ecrts.eit.uni-kl.de/index.php?id=53.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

http://ecrts.eit.uni-kl.de/index.php?id=53

A Survey of Research into Mixed Criticality Systems 82:3

reviewed Workshop on Mixed Criticality Systems (WMC)3 at the RTSS conference, and a series of
Dagstuhl Seminars on MCS4.

This survey covers the considerable body of research into MCS stemming from the model
presented by Vestal [2007]. Industry practice and safety standards provide a somewhat different
perspective on MCS; these differences are discussed in Section 7.6.

The survey is organised along the lines of the major research topics within the area of MCS.
In Section 2 we consider mixed criticality models. Section 3 covers research into single processor
systems, while Section 4 reviews research targeting multiprocessor systems. More realistic models
are covered in Section 5, with systems issues covered in Section 6. Section 7 links research on MCS
to other research topics and industry practice. The survey concludes with Section 8 which outlines
a number of open problems and areas where further research is needed.

2. MIXED CRITICALITY MODELS
Inevitably not all papers on mixed criticality have used the same system or task model. Below we
describe a model that is generally applicable and relates to the main results considered in this survey.

A system is defined as a finite set of components K. Each component has a criticality level L
designated by the system designer, and contains a finite set of sporadic tasks. Each task τi is defined
by its period (or minimum inter-arrival time), deadline, worst-case execution time (WCET) and
criticality level: (Ti, Di, Ci, Li). Each task gives rise to a potentially unbounded sequence of jobs.

The primary concern with the implementation of MCS is one of separation. Tasks from different
components must not be allowed to interfere with each other. In particular, appropriate mechanisms
must be used to prevent jobs of a task τi from executing for more than the WCET estimate Ci, and
to ensure that the task does not generate jobs that are closer together than its minimum inter-arrival
time Ti.

The requirement to protect the operation of one component from the faults of another applies to all
systems that host multiple applications. It is however of particular significance when components
have different criticality levels, since without such protection all components would need to be
engineered to the standards of the highest criticality level, potentially massively increasing costs.

After concerns about partitioning comes the need to use resources efficiently. This is facilitated
by noting that the task parameters are criticality dependent, in particular the WCET estimate, Ci,
is derived by a process dictated by the criticality level. The higher the criticality level the more
conservative the verification process, and hence the larger the value of Ci. This was the observation
at the heart of the seminal work by Vestal [2007].

For systems executing on hardware platforms with deterministic behaviour, any particular task
will have a single actual WCET; however, this value typically cannot be determined with complete
certainty. This uncertainty is primarily epistemic, i.e. uncertainty in what we know or do not know
about the system, rather than aleatory, i.e. uncertainty in the system itself. Although it is reasonable
to assume confidence increases and uncertainty decreases with larger estimates of WCET, this may
not be universally true [Graydon and Bate 2013]. It would certainly be hard to estimate what increase
in confidence would result from say a 10% increase in all WCET estimates.

The focus on different WCET estimates was extended to task periods in a series of subsequent
papers [Burns and Baruah 2011; Baruah 2012a; Baruah and Burns 2011; Baruah 2013b; Baruah
and Chattopadhyay 2013; Burns and Davis 2013; Zhang et al. 2015; Baruah 2016b]. Here, tasks are
viewed as event handlers; the higher the criticality level the more events must be handled, and hence
the task must execute more frequently even if it does not execute for longer.

In MCS a task is typically defined by: (~T , D, ~C, L), where ~C and ~T are vectors of values, one
per criticality level, with the constraints that:

L1 > L2⇒ C(L1) ≥ C(L2)

3https://gsathish.github.io/wmc2016/
4http://www.dagstuhl.de/17131

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

http://www.dagstuhl.de/17131

82:4 A. Burns and R.I.Davis

L1 > L2⇒ T (L1) ≤ T (L2)
for any two criticality levels L1 and L2, where L1 is the higher level.

Note the completion of the model, making deadlines criticality dependent [Baruah and Burns
2011], has not yet been addressed in detail; however, it would have the constraint that:

L1 > L2⇒ D(L1) ≥ D(L2)

Thus a task may have a safety-critical deadline and an earlier Quality of Service (QoS) one.
The three inequalities given above each have the property that a task can progress from satisfying

its L2 constraints, and hence also its L1 constraints, to satisfying only its L1 constraints.
Another feature of many of the papers considered in this survey is that the system is considered

to execute in a number of criticality modes. A system starts in the lowest criticality mode. If all
jobs behave according their low-criticality constraints then the system stays in that mode; however,
if any job attempts to execute for a longer time, or more frequently, than is acceptable in low-
criticality mode then a criticality mode change occurs. Ultimately the system may change to the
highest criticality mode. Some papers allow the criticality mode to move down as well as up, while
others restrict the model to increases in criticality mode only. We return to this issue in Section 5.

Finally, many papers restrict themselves to just two criticality levels; high (HI) and low (LO)
with HI > LO. MCS with just two criticality levels are referred to as dual-criticality systems.
Where modes are used, the system is either in a low-criticality mode or a high-criticality mode. The
set of task parameters is typically given by: (Ti, Di, Ci(HI), Ci(LO), Li). At the other extreme
are the models in which any number of modes are allowed and the movement between modes is
represented by a Directed Acyclic Graph (DAG) [Ekberg and Yi 2014; Ekberg et al. 2013; Ekberg
and Yi 2015b]5.

3. SINGLE PROCESSOR ANALYSIS
In this section, we look at research into single processor MCS. This includes work on scheduling
using fixed priority and EDF, shared resources, and finally static and synchronous approaches.

A number of papers have considered the restricted problem of scheduling a finite set of mixed
criticality jobs with criticality-dependent execution times on a single processor [Baruah et al. 2010b;
Li and Baruah 2010a; Baruah et al. 2012; Park and Kim 2011; Baruah et al. 2010; Li and Baruah
2010b; Socci et al. 2013a; Gu et al. 2013; Socci et al. 2015b; Baruah et al. 2016].

The mixed criticality schedulability problem (preemptive or non-preemptive) is strongly NP-
hard [Baruah et al. 2010, 2012; Baruah 2012b; Hanzálek et al. 2016] even when there are only two
criticality levels. Hence only sufficient rather than exact analysis is possible in practice. A list of
open problems on the complexity of scheduling MCS is given by Ekberg and Yi [2015a].

For approaches and tests that are only sufficient, an assessment of their quality is possible if a
speedup factor [Kalyanasundaram and Pruhs 2000] can be computed. A speedup factor of X(X ≥
1) for schedulability test S implies that a task set that is feasible on a processor of speed 1 will be
deemed schedulable by test S if the processor’s speed is increased to X .

For fixed priority scheduling of mixed criticality jobs, a priority assignment scheme and test has
been found by Baruah et al. [2010a, 2011, 2012] and Li and Baruah [2010b] with a speed up factor
of SL (for L criticality levels), where SL is the root of the equation xL = (1 + x)L−1. For L = 2

the result is S2 = (1 +
√
5)/2 which is equal to the golden ratio, φ ≈ 1.618. This can be compared

with a priority partitioning approach, where all high-criticality jobs have priorities higher than all
low-criticality jobs, which has no finite speedup factor. For EDF scheduled systems, Baruah et al.
[2010a] also showed that a finite set of independent jobs scheduled on m identical multiprocessors
is schedulable with a speed-up factor of φ+ 1 + 1/m.

5 There are many other works on scheduling DAGs; however, we restrict the scope here to those specifically addressing
MCS.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:5

Considering the sporadic task model, for single criticality systems there are well known bounds
on task set utilisation under both fixed priority and EDF scheduling [Liu and Layland 1973]. In the
mixed criticality case, although the definition of utilisation is not straightforward when tasks can
have more than one worst-case execution time, it is possible to give an effective definition and to
derive a least upper bound (LUB(k)) in terms of the utilisation at some criticality level k. Santos-Jr
et al. [2015] derive a number of such useful results. They construct a task set that is unschedulable
during a criticality mode change and has a LUB arbitrarily close to 0. They also show that when
tasks have harmonic periods the LUB can reach 1 for a single processor system. Between these
two extremes, if the higher criticality tasks do not have periods that are longer than those of lower
criticality tasks then the LUB lies is in the range ln(2) to 2(

√
2− 1).

3.1. Fixed Priority Scheduling
In this section we review fixed priority scheduling for MCS, including research based on applying
Response-Time Analysis (RTA), slack stealing, and period transformation.

3.1.1. RTA-Based approaches. The approach of Vestal [2007] was formalised by Dorin et al.
[2010] who proved that the priority assignment algorithm of Audsley [2001] is optimal in that case.
Dorin et al. [2010] also extended the model to include release jitter, and showed how sensitivity
analysis could be applied.

Vestal’s approach allows the priorities of high- and low-criticality tasks to be interleaved;
however, all tasks still have to be evaluated as if they were of the highest criticality. Baruah and
Burns [2011] introduced a scheme called Static Mixed Criticality (SMC) which monitors task
execution times and prevents execution time budget over-runs, permitting higher resource usage.
This is a crucial issue in mixed criticality scheduling; the introduction of more trusted components
facilitates higher utilisation of the available resources.

Burns and Baruah [2011] and Baruah et al. [2011b] further extended this approach. The system’s
run-time behaviour is either low-criticality (which relies on all execution times being bounded by the
low-criticality values and guarantees that all deadlines are met) or high-criticality (where only high-
criticality tasks are guaranteed but the rely condition6 is weakened, i.e. the bound on high-criticality
execution times is increased). Change in the system’s criticality mode, from low to high, is triggered
by a run-time monitor detecting that the stronger rely condition has been violated. This change in
criticality mode has a number of similarities to systems that move between different operational
modes, although there are also some significant differences [Graydon and Bate 2013; Burns 2014].
In the high-criticality mode there are fewer tasks, but they have longer execution times or shorter
periods. The literature on mode change protocols highlights one important problem: a system can
be schedulable in every mode, but not schedulable during a mode change [Tindell et al. 1992]. This
is also true of systems that change criticality mode.

Baruah et al. [2011b] showed that the Adaptive Mixed Criticality (AMC) protocol (dropping all
low-criticality jobs if any task executes for more than its C(LO) WCET estimate7), out-performs
other fixed priority schemes. The analysis for AMC is based on Response-Time Analysis
(RTA) [Joseph and Pandya 1986; Audsley et al. 1993]. For any task, τi, first its low-criticality
response-time (R(LO)) is computed using low-criticality parameters for all the tasks. A criticality
mode change must occur before this time if the task is to be impacted by the change, otherwise it
will have completed execution. The worst-case response time in the high criticality mode (R(HI))
is computed by noting that all low-criticality tasks must have been abandoned by time R(LO). The
paper contains two methods for computing R(HI), AMC-rtb involves a single upper bound, and
AMC-max looks at all the possible criticality mode change points before R(LO) and computes the
worst-case. The latter is more accurate, though still not exact; however, the gain is not significant
and the AMC-rtb test is effective in most cases. An optimal priority assignment algorithm is

6A rely condition formalises the assumptions required for the guarantees to be valid [Jones 1983].
7First proposed by Baruah et al. [2010].

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:6 A. Burns and R.I.Davis

defined for AMC [Baruah et al. 2011b] which maximises the priority of high criticality tasks,
subject to the system being schedulable. This assignment algorithm derives from work on robust
priority assignment [Davis and Burns 2007].

The AMC approach was extended by Zhao et al. [2013a,b] to incorporate preemption
thresholds [Saksena and Wang 2000] into the model. They demonstrated a reduction in stack usage
and improved performance for some parameter ranges. Another approach to combining AMC and
existing scheduling theory was taken by Burns and Davis [2014]. They considered the use of
deferred preemption [Burns 1994] demonstrating a significant improvement over fully preemptive
AMC. Here, the gain in schedulability is obtained by having a final non-preemptive region (FNPR)
at the end of C(LO) and C(HI) execution, and by combining the assignment of priority and the
determination of the size of this FNPR [Davis and Bertogna 2012].

In keeping with a number of papers on MCS, the above work on AMC was restricted to
dual-criticality systems. Fleming and Burns [2013] extended these models to an arbitrary number
of criticality levels, focusing particularly on five criticality levels as this is the maximum found in
automotive and avionics standards. They observed that AMC-rtb remains a good approximation to
AMC-max, while AMC-max became computational expensive with an increased number of
criticality levels. They concluded that AMC-rtb represented an adequate and effective form of
analysis. A relatively minor improvement to AMC-max was published by Huang et al. [2014a]
(referred to as AMC-IA); however there may be cases where their analysis is unsound8.

One characteristic of all the AMC schemes discussed above is that tasks do not change their
priority after a criticality mode change. Baruah et al. [2013] considered the case where the Priority
May Change (PMC) and provided a simple form of sufficient analysis for this approach. Evaluations
show that the analysis for PMC performs similarly to AMC-rtb, though neither dominates the other.
An improved scheme, GFP (Generalised Fixed Priority) was proposed by Chen et al. [2016]. They
assign three priorities to each task using a heuristic; one for each of the two criticality levels, and one
for the transition between the criticality modes. They demonstrate an improvement over AMC-rtb.

Similar to the WCET estimate (C), the period parameter (T) can also vary with criticality level.
An application may consist of event handlers and have different levels of constraint on the arrival
patterns of the associated events. The higher the criticality level, the closer together the events are
assumed to arrive, and hence the smaller the minimum inter-arrival time (T). Baruah and
Chattopadhyay [2013] reformulated the SMC and AMC analysis for this model. Criticality specific
periods are also addressed by Burns and Davis [2013] and Baruah [2016b], and also by Zhang
et al. [2015] who derived an improved analysis referred to as SAMC (Sufficient AMC).

3.1.2. Slack scheduling. An alternative approach to scheduling dual-criticality systems using
fixed priorities is to use a slack scheduling scheme. Niz et al. [2009] first explore this scheme
where low-criticality jobs run in the slack generated by high-criticality jobs when the latter only
consume their low criticality execution time budgets. One difficulty with this approach is to
incorporate sporadic tasks. At what point can the slack of a non-appearing sporadic task be
allocated to low-criticality jobs? Even for periodic tasks, ensuring schedulability of high-criticality
tasks in all circumstances is not straightforward. Niz et al. [2009] compute the time at which a
high-criticality task must be released to ensure that it will meet its deadline (a concept similar to
that used in dual-priority scheduling [Davis and Wellings 1995]). However, Huang et al. [2012]
demonstrated that if a low-criticality high priority task executes beyond its deadline, then a
high-criticality low priority task could miss its deadline. They show that either the low-criticality
task must be aborted at its deadline or more practically its priority must be reduced to a
background level. They then derive a sound analysis. Niz et al. [2013] and Niz and Phan [2014]
subsequently modified the enforcement rule in their model to remove the problem and improved its
performance.

8This is the topic of on-going discussions.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:7

While slack is usually generated by tasks not executing for their full execution time budget, it
is also produced by jobs arriving less frequently than anticipated in the worst-case. [Neukirchner
et al. 2013b,a] adapt and extend a number of schemes for monitoring such activation patterns. Hu
et al. [2016b] also consider budget management, and produce an effective scheme for minimising
the overheads associated with slack management.

For a dual-criticality system, C(LO) values must be known; however, once schedulability has
been established, Santy et al. [2012] show that it is possible to derive, using sensitivity
analysis [Punnekkat et al. 1997; Bini et al. 2006], a scaling factor F (F > 1) such that the system
remains schedulable with all C(LO) values replaced by F · C(LO). Using these scaled values at
run-time increases the robustness of the system, since the low-criticality tasks will be able to
execute for a greater time before a criticality mode change is triggered. Scaling can also be applied
to the C(HI) values. Völp et al. [2015] look at an alternative means of obtaining C(LO) and
C(HI) values; they do not consider them to be estimates of WCET, but rather budgets set by some
design optimisation process. As scaling involves changing a task’s execution time budget, and this
influences priority assignment, it is possible to extend this approach by also allowing priorities to
change as the system is made more robust [Burns and Baruah 2013]. A more dynamic budget
management scheme is used by Gu and Easwaran [2016] to postpone criticality mode changes.
Issues of robustness are also addressed by Herman et al. [2012].

3.1.3. Period transformation. As Vestal [2007] noted, an older protocol, called period
transformation(PT) [Sha et al. 1986, 1987], is also applicable to the mixed criticality scheduling
problem. Period transformation splits a task with period T and execution time C into N parts so
that the revised task has parameters T/N and C/N . Assuming all tasks have deadlines equal to
their periods, then if all high-criticality tasks are transformed so that their new periods are shorter
than those of the low-criticality tasks and rate monotonic priority assignment [Liu and Layland
1973] is used, then the tasks will be partitioned by priority, with the high-criticality tasks having
the higher priorities. This is referred to as criticality monotonic priority ordering. The scheme can
easily be extended to task sets with constrained deadlines (D < T).

Period transformation introduces extra overheads from the increased number of context switches,
and these could be excessive if there are low-criticality tasks with short deadlines. If overheads
are ignored then period transformation performs well. Baruah and Burns [2013] show that this is
primarily due to the inherent property of period transformation to deliver tasks sets with harmonic
periods, which are more likely to be schedulable.

For multiple criticality levels a number of transformations may be required to generate a criticality
monotonic priority ordering [Fleming and Burns 2013]. For example, assume there are three tasks
(H, M, and L) with criticality levels implied by their names, and periods of 14, 36 and 16. First the
period of M must be divided by 3 to get a period of 12 (so less than 16), but then the period of H
must be divided by 2 to move it below the new period of M. As a result the transformed periods
become 7, 12 and 16. It also seems that the theoretical benefit of period transformation diminishes
with an increased number of criticality levels [Fleming and Burns 2013].

3.2. EDF Scheduling
Baruah and Vestal [2008] were the first to consider EDF scheduling for MCS. Park and Kim [2011]
later introduced a slack-based mixed criticality scheme for EDF scheduled jobs which they called
CBEDF (Criticality Based EDF). CBEDF makes use of a combination of off- and on-line analysis to
run high-criticality jobs as late as possible, and low-criticality jobs in the generated slack. In effect
utilising an older protocol developed by Chetto and Chetto [1989] for running soft real-time tasks
in the ‘gaps’ produced by running hard real-time tasks so that they just meet their deadlines.

A more complete analysis for EDF scheduled systems was presented by Guan et al. [2011] and
Ekberg and Yi [2012]. They assigned two relative deadlines to each high-criticality task. One
deadline is the ‘real’ deadline of the task, the other is an artificial earlier deadline that is effectively
used to increase the priority of high-criticality tasks enabling them to execute before low-criticality

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:8 A. Burns and R.I.Davis

ones. When the criticality mode of the system changes from low to high, due to a high-criticality
task exceeding its low-criticality budget C(LO), all low-criticality tasks are abandoned and the
high-criticality tasks revert to their real deadlines. Guan et al. [2011] and Ekberg and Yi [2012]
demonstrate that this approach provides a clear improvement over previous schemes, including
those for fixed priority scheduling of MCS. Later work by Ekberg and Yi [2014] generalises the
model to include changes to all task parameters and to incorporate more than two criticality levels.
Tighter analysis was provided by Easwaran [2013], although it is not clear that this method scales
to more than two criticality levels. Further improvements were presented by Yao et al. [2014].
They use a more efficient schedulability test for EDF, called QPA [Zhang and Burns 2008], and a
genetic algorithm to find more effective artificial deadlines.

A similar scheme, called EDF-VD (EDF - with virtual deadlines), was presented by Baruah
et al. [2011a, 2015] for dual-criticality systems. With EDF-VD, high-criticality tasks have their
deadlines reduced if necessary during low-criticality mode; however, unlike the previous
approaches, all deadlines are reduced by the same factor. Both theoretical results and empirical
evaluations demonstrate that EDF-VD is an effective scheme. EDF-VD was shown to have a
speedup factor of φ ≈ 1.618 for single processor systems [Baruah et al. 2011a], with this bound
later improved to 4/3 (1.333) [Baruah et al. 2012]. Further formal analysis of EDF-VD was
provided by Li [2013], Muller and Masrur [2014] and Gu and Easwaran [2014].

An intermediate approach that uses just two scaling factors is provided by Masrur et al. [2015];
their motivation being to develop an efficient scheme that could be used at run-time. Later work
by Baruah [2016c] has generalised the underlying model to include criticality-specific values for
period and deadline as well as WCET.

EDF scheduling of MCS was also addressed by Lipari and Buttazzo [2013] using a reservation-
based approach. Here sufficient budget is reserved for the high-criticality tasks; however, if they
only make use of what is assumed by their low-criticality requirements, i.e. C(LO), then a set of
low-criticality tasks can also be guaranteed. Again only two criticality levels are assumed. In effect
low-criticality tasks run in the capacity that is reclaimed from high-criticality tasks. Deadlines for
the high-criticality tasks are chosen to maximise the amount of capacity reclaiming.

A different approach to using spare capacity was derived by Su and Zhu [2013] and Su et al.
[2013], exploiting the elastic task model [Buttazzo et al. 1998] in which the period of a task can
change. They proposed a minimum level of service for each low-criticality task τi that is defined
by a maximum period, Tmax

i . The complete system must be schedulable when all high-criticality
tasks execute for their C(HI) WCETs and all low-criticality tasks for their C(LO) WCETs and
Tmax values. At run-time if high-criticality tasks use less than their C(HI) WCETs then the low-
criticality tasks can run more frequently. Su and Zhu [2013]; Su et al. [2013] demonstrate that for
certain parameter sets their approach outperforms EDF-VD.

3.3. Shared Resources
With MCS it is not clear to what extent data should be permitted to flow between components of
different criticality levels. There are strong objections to data flowing from low- to high-criticality
applications unless the high-criticality component is able to deal with potentially unreliable
data [Sha 2009], which happens with some security protocols [Biba 1977]. Even with data flowing
in the other direction there is still the issue of not allowing a high-criticality task to be delayed by a
low-criticality one that has either locked a shared resource for longer than expected or is executing
at a raised priority level for too long.

Sharing resources within a criticality level is however a necessary part of any practical tasking
model. In single criticality systems a number of priority ceiling protocols have been developed [Sha
et al. 1990; Baker 1990]. These are beginning to be assessed in terms of their effectiveness for use
in MCS. Burns [2013] extended the analysis for fixed priority systems by adding criticality specific
blocking terms into the response-time analysis. He notes that the original form of the priority ceiling
protocol (OPCP) [Sha et al. 1990] has some useful properties when applied to MCS. Resources can
be easily partitioned between criticality levels and starvation of low-criticality tasks while holding

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:9

a lock on a resource can be prevented. With the AMC-OPCP, a task can only suffer direct blocking
if a resource is locked by a lower priority task of the same criticality.

Rather than use a software protocol, Engel [2016] employs Hardware Transactional Memory to
roll back any shared object to a previous state if a low-criticality task overruns its budget while
accessing the object.

For EDF-based scheduling Zhao et al. [2013a, 2015] attempt to integrate the Stack Resource
Protocol (SRP) [Baker 1990] and Preemption Threshold Scheduling [Wang and Saksena 1999]
with approaches to EDF scheduling that involve tasks having more than one deadline. This is not
straightforward as these schemes assume that relative deadlines are fixed.

Alternative approaches have been proposed by Lakshmanan et al. [2011] extending their single
processor zero slack scheduling approach to accommodate task synchronisation across criticality
levels for fixed priority systems. They define two protocols: PCIP (Priority and Criticality
Inheritance Protocol) and PCCP (Priority and Criticality Ceiling Protocol). Both of these protocols
use the concept of criticality inheritance. This is also used by Zhao et al. [2014] in their HLC-PCP
(Highest-Locker Criticality Priority Ceiling Protocol) which is applied to the fixed priority AMC
scheme. For a dual-criticality system they define three modes of execution, low- and
high-criticality modes plus an intermediate mode which covers the time during which
low-criticality tasks are allowed to continue to execute if they are holding a lock on a resource that
is shared with a high-criticality task.

A more systematic scheme has been proposed by Brandenburg [2014]. Here all shared resources
are placed in resource servers and all access to these servers is via a MC-IPC protocol. As a result
only these servers and the support for the MC-IPC protocol have to be developed to the standards
required by the highest criticality level. Resource users can be of any criticality level, including
non-critical. Data sharing within the context of the MC2 architecture (see Section 4) is addressed
by Chisholm et al. [2016].

3.4. Static and Synchronous Scheduling
The change from one criticality mode to another can be captured in a static schedule by switching
between previously computed schedules; one per criticality level. This idea was first explored by
Baruah and Fohler [2011]. Later, Socci et al. [2013b] showed how these Time-Triggered (TT)
tables can be produced via first simulating the behaviour one would obtain from the equivalent
fixed priority schedule. Construction of the tables via tree search is addressed by Theis et al. [2013]
and Socci et al. [2015b], and via the use of linear programming (LP) by Jan et al. [2014]. For
legacy systems, Theis and Fohler [2013] show how an existing single table may be used to support
MCS.

A particularly simple table driven approach is to use a cyclic executive, this is investigated for
multiprocessor systems [Baruah and Burns 2014; Burns et al. 2015; Burns and Baruah 2015;
Fleming and Burns 2015; Fleming et al. 2016; Fleming and Burns 2016] in which the change from
minor cycle to minor cycle is synchronised as is the change from executing code of one criticality
level to that of another. Both global and partitioned approaches are investigated, as are systems that
use fewer processors for the high-criticality work [Fleming and Burns 2016].

This use of tables is extended to synchronous reactive programs by Baruah [2012b, 2013a]. Here
a DAG (Directed Acyclic Graph) of basic blocks that execute according to the synchrony
assumption is produced that implements a dual-criticality program. The synchronous approach is
also considered by Yip et al. [2014] and by Cohen et al. [2014]; the latter proving an application of
mixed criticality from the railway industry, and giving an example of why data needs to flow
between criticality levels. An initial study, within the context of multiprocessor federated systems
is provided by Baruah [2016a].

Most analysis for MCS assumes a constant speed processor, but there are situations in which the
speed of the processor is not known precisely, for example with asynchronous circuitry. Baruah
and Guo [2013] consider power issues that could lead to a processor having variable speed. As the
processor slows down, so the execution times of the tasks increase. Baruah and Guo [2013]

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:10 A. Burns and R.I.Davis

simplify the model by assuming two basic speeds, normal and degraded. At the normal speed a
scheduling table is used; at the degraded speed only high-criticality jobs are executed under EDF
scheduling. This work has been extended [Guo and Baruah 2014; Baruah and Guo 2014; Guo
2016] to include a more expressive model and issues of processor self-monitoring (or not), and a
probabilistic approach to performance variation. Guo and Baruah [2015] have also considered
systems which have uncertainty in both execution times and processor speed.

4. MULTIPROCESSOR ANALYSIS
The first paper to discuss mixed criticality within the context of multiprocessor or multi-core
platforms was by Anderson et al. [2009], later extended by Mollison et al. [2010]. Five levels of
criticality were identified; going from level-A (the highest) to level-E (the lowest). They envisaged
an implementation scheme, which they called MC2, that uses a static schedule for level-A,
partitioned preemptive EDF for level-B, global preemptive EDF for levels C and D, and finally
global best-effort scheduling for level-E. They considered only harmonic workloads, but allowed
slack to move between containers. Each processor has a container (server) for each criticality level,
and a two-level hierarchical scheduler (see Section 7.3). Later work by Herman et al. [2012] and
Chisholm et al. [2015] evaluates the OS-induced overheads associated with multiprocessor
platforms. They also experimented with isolation techniques for LLC (last level cache) and
DRAM. Further, Kim et al. [2016] demonstrated the benefits of having different isolation
techniques for each criticality level using MC2. The MC2 framework was also used by Bommert
[2013] to support segmented mixed criticality parallel tasks. Parallel jobs are also considered by
Liu et al. [2014].

In the remainder of this section we first look at task allocation (with global or partitioned
scheduling), then consider analysis, and finally communications and other systems resources.

4.1. Task Allocation
The issue of allocation was addressed by Lakshmanan et al. [2010] by extending their single
processor slack scheduling approach to partitioned multiprocessor systems employing a
Compress-on-Overload packing scheme. Allocation in a distributed architecture was addressed by
Tamas-Selicean and Pop [2011a,c,b, 2015] in the context of static schedules and temporal
partitioning. They observed that scheduling can sometimes be improved by increasing the
criticality of some tasks so that single-criticality partitions become better balanced. This increase
comes at a cost and so they employ search/optimisation routines such as Simulated
Annealing [Tamas-Selicean and Pop 2011b; Giannopoulou et al. 2015] and Tabu
search [Tamas-Selicean and Pop 2011a,c]) to obtain schedulability with minimum resource usage.
Zhang et al. [2013] used genetic algorithms for task placement in security-sensitive MCS, with the
objective of minimising energy consumption “while satisfying strict security and timing
constraints”. A tool-set to aid partitioning was provided by Alonso et al. [2014].

A more straightforward investigation of task allocation was undertaken by Kelly et al. [2011].
They considered partitioned homogeneous multiprocessors and compared First-Fit and Best-Fit
schemes, with pre-ordering of the tasks based on either Decreasing Utilization or Decreasing
Criticality. They used the original analysis of Vestal [2007] to test for schedulability on each
processor, and concluded that in general First-Fit Decreasing Criticality was best.

A comprehensive evaluation of many possible schemes was reported by Rodriguez et al. [2013].
They consider EDF scheduling and used the analysis framework of EDF-VD (see Section 3.2).
One of their conclusions was to highlight the effectiveness of a combined criticality-aware scheme
in which high-criticality tasks are allocated Worst-Fit and low-criticality tasks First-Fit, both in
Decreasing Density order. The same result is reported by Gu et al. [2014]. They additionally note
that if there are some very ‘heavy’ low-criticality tasks (i.e. high utilisation or density) then space
must be reserved for them before the high-criticality tasks are allocated. Partitioning with EDF-VD
is also addressed by Han et al. [2016].

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:11

A global allocation scheme for MCS is proposed by Gratia et al. [2014, 2015]. They adapt the
RUN scheduler [Regnier et al. 2011], which uses a hierarchy of servers, to accommodate high- and
low-criticality tasks. The latest version of their scheduler (GMC-RUN) [Gratia et al. 2015] has been
extended to deal with more than two criticality levels.

Between fully partitioned and fully global scheduling is the class of schemes referred to as semi-
partitioned. Adaptation of semi-partitioned schemes to MCS has been addressed by Al-Bayati et al.
[2015]. This approach uses two allocations for the two criticality modes. high-criticality tasks do not
migrate. During a mode change, carry-over low-criticality jobs are dropped and new low-criticality
jobs executing on a different processor are given extended deadlines/periods, i.e. they utilise the
elastic task model. A different approach is taken by Xu and Burns [2015]; here a mode change in
one processor results in low-criticality jobs migrating to a different processor that has not suffered a
criticality mode change. No deadlines are missed. If all processors suffer such a mode change then
at least the timing requirements of all high-criticality tasks are still met.

With dual-criticality fault tolerant systems, a scheme in which high-criticality tasks are replicated
(duplicated) while low-criticality tasks are not is investigated by Axer et al. [2011] for independent
periodic tasks running on a multiprocessor system-on-chip. They provide reliability analysis that is
used to inform task allocation.

A more theoretical approach, that is not directly implementable, is proposed by Lee et al. [2014]
with their MC-Fluid model. A fluid task model [Baruah et al. 1996; Holman and Anderson 2005]
executes each task at a rate proportional to its utilisation. If one ignores the cost of slicing up tasks
in this way then the scheme delivers an optimal means of scheduling multiprocessor platforms.
To produce a mixed criticality version of the fluid task model the fact that tasks do not have a
single utilisation needs to be addressed. This is done by Lee et al. [2014] who also produce an
implementable version of the model that performs well in simulation studies. Lee et al. [2014]
showed that the speedup factor for the MC-Fluid scheduling algorithm is φ ≈ 1.618. Baruah et al.
[2015b, 2016] derived a simplified fluid scheduling algorithm which they call MCF. Two further
algorithms, MC-Sort and MC-slope, were later proposed by Ramanathan and Easwaran [2015] and
Ramanathan et al. [2016].

All the above work is focussed on standard single threaded tasks. In addition there has been some
studies on MCS with parallel tasks [Liu et al. 2014; Li et al. 2016].

4.2. Schedulability Analysis
For globally scheduled systems, where jobs can migrate from one processor to another, Li and
Baruah [2012] take the multiprocessor scheme fpEDF [Baruah 2004] and combine it with their
EDF-VD approach (see Section 3.2). Extensions of this work by Baruah et al. [2014] compare the
use of partitioned versus global scheduling for MCS. They show that partitioning combined with
EDF-VD yields a speedup factor of 8/3 − 4/3m for the dual-criticality scheduling problem on m
processors. As noted in van der Ster’s abstract in [Baruah et al. 2015a], an alternative theoretical
approach, is to view the problem as one of vector scheduling [Chekuri and Khanna 2004] where
each dimension corresponds to a criticality level. Combined with EDF-VD, this yields a speedup
factor of 4/3 ≈ 1.333 for any m. By comparison, Baruah et al. [2014] show that combining EDF-
VD with the global scheduling algorithm fpEDF yields a speedup factor of

√
5−1 ≈ 1.236. Despite

the global approach having a better speedup factor, the interim conclusion from empirical evaluation
is that partitioning is the more effective approach in practice [Baruah et al. 2014].

Notwithstanding this result, Pathan [2012] derives analysis for globally scheduled fixed priority
systems. He adopts the AMC approach [Baruah et al. 2011b] (see Section 3.1) and integrates this
analysis for multiprocessor scheduling.

A different and novel approach to multi-core scheduling of MCS is provided by Kritikakou et al.
[2013]. They identify that a high-criticality task will suffer interference from a low-criticality task
running on a different core due to the use of shared buses and memory controllers etc. They
monitor the execution time of the high-criticality task and can identify when no further interference

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:12 A. Burns and R.I.Davis

can be tolerated. At this point they abort the low-criticality task even though it is not directly
interfering. An implementation on a multi-core platform demonstrated the effective performance of
their scheme [Kritikakou et al. 2014b]. Extensions to deal with precedence constraints were given
by Socci et al. [2015a] but only for jobs (not tasks).

4.3. Communication and other Resources
With a more complete platform such as a multiprocessor or System on Chip (SoC), for example
with a NoC (Network-on-Chip), more resources have to be shared between criticality levels. The
first design issue is therefore one of partitioning, how to ensure the behaviour of lower criticality
components does not adversely impact on the behaviour of higher criticality components.
Pellizzoni et al. [2009] were the first to consider the deployment of MCS on multi-core and
many-core platforms. They defined an Architectural Analysis and Design Language (AADL) for
mixed criticality applications that facilitates system monitoring and budget enforcement of all
computation and communication. Later Obermaisser et al. [2014] and Obermaisser and Weber
[2014] introduced a system model with gateways and end-to-end channels over hierarchical,
heterogeneous and mixed criticality networks.

For a bus-based architecture it is necessary to control access to the bus so that applications on
one core do not impact unreasonably on applications on other cores, whether of different or indeed
the same criticality level. Pellizzoni et al. [2010] showed that a task can suffer a 300% increase in
its WCET due to memory access interference even when it only spends 10% of its time on fetching
from external memory on a 8-core system. To counter this, Yun et al. [2012] proposed a memory
throttling scheme for MCS. Kotaba et al. [2013] also proposed a monitoring and control protocol
to prevent processes flooding any shared communication media be it a bus or network. Kritikakou
et al. [2014a] considered a scenario in which there are a few high-criticality tasks that can suffer
indirect interference from many lower criticality tasks. Their approach attempts to allow as much
parallelism as possible, commensurate with the high-criticality tasks retaining their temporal
validity. Hassan and Patel [2016] claim an improved bus arbitrator, called Carb, that is more
criticality aware. Bounding the interference that a safety-critical task can suffer from lower
criticality tasks using the same shared communication resources on a multi-core platform is also
addressed by Nowotsch et al. [2014].

Within the time-triggered model of distributed computation and communication MCS are often
viewed as having both time-triggered and event-triggered activities, also referred to as synchronous
and asynchronous [Pop et al. 2002; Steiner 2011]. The time-triggered traffic is deemed to have the
highest criticality. The event-triggered traffic can either be viewed as best-effort or can be given
some level of assurance if its impact on the system is bounded, referred to by Steiner [2011] as
rate-constrained. Protocols that support this distinction can be implemented on TTEthernet.

Another TDMA-based approach, though this time built into the Real-Time Ethernet protocol, is
proposed by Carvajal and Fischmeister [2013] in their open-source framework, Atacama. Cilku
et al. [2015] describe a TDMA-based bus arbitration scheme. Novak et al. [2016a] propose a
scheduling algorithm for time-triggered traffic that minimises jitter while allowing high-criticality
messages to be re-transmitted following failure at the expense of low-criticality messages which
are abandoned. Novak et al. [2016b] also consider how to produce an effective static schedule
when there are unforeseen re-transmissions.

A reconfigurable SDRAM controller is proposed by Goossens et al. [2013c] to schedule
concurrent memory requests to the same physical memory. They use a TDMA approach to share
the controller’s bandwidth. A key aspect of this controller is that it can adapt to changes in the
run-time characteristics of the applications. For example, a criticality mode change which results in
more bandwidth being assigned to the higher criticality tasks can be accommodated. Criticality
aware DRAMs are also addressed by Jalle et al. [2014] in the context of a Space case study in
which there are two criticality levels.

Virtual devices are adopted by Ecco et al. [2014] to isolate critical tasks (which are guaranteed)
from non-critical tasks that, although not guaranteed, perform adequately. Each virtual device

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:13

represents a group of DRAM banks and supports one critical task and any number of non-critical
tasks. All critical tasks run on dedicated cores, and hence the only potential source of interference
between criticality levels is from the interconnect. By use of virtual devices, the critical tasks
benefit from interference-free memory access. DRAMs are also the focus of the work by Hassan
et al. [2015] and Awan et al. [2016].

Kim et al. [2015] propose a priority-based DRAM controller for MCS that separates critical and
non-critical memory accesses. They demonstrate improved performance for the non-critical traffic.
A similar approach and result is provided by Goossens et al. [2013a] with their open-page policy.

Giannopoulou et al. [2013, 2015] use a different time-triggered approach. They partition access
to the multiprocessor bus so that at any given time only memory accesses from tasks of the same
criticality can occur. This may introduce some inefficiencies; however, it has the advantage that it
reduces the temporal modelling of a mixed criticality shared bus to that of a single criticality shared
bus. In later work Huang et al. [2015] generalise the approach by introducing the notion of isolation
scheduling. The problems involved in using a shared bus has lead Giannopoulou et al. [2015] to also
include a Network-on-Chip (NoC) in their later work.

Baruah and Burns [2014], Burns et al. [2015], Burns and Baruah [2015], and Fleming and Burns
[2015] apply a one criticality at a time approach to MCS scheduled using a cyclic executive; they
considered both partitioned and global allocation of jobs to frames.

Tobuschat et al. [2013] have developed a NoC explicitly to support MCS. Their IDAMC
protocol uses a back suction technique [Diemer and Ernst 2010] to maximise the bandwidth given
to low-criticality or non-critical messages while ensuring that high-criticality messages arrive by
their deadlines. The more familiar wormhole routing scheme [Ni and McKinley 1993] for a NoC
has been expanded by Burns et al. [2014] and Indrusiak et al. [2015] to provide support for mixed
criticality traffic. Response-time analysis, already available for such protocols [Shi and Burns
2008], is augmented to allow the size and frequency of traffic to be criticality dependent.
Wormhole routing is also used by Hollstein et al. [2015] to provide complete separation of
mixed-criticality code; they also support run-time adaptability following any fault identified by a
Built-In Self Test.

On-chip networks require reliable/trusted interfaces to prevent babbling behaviour [Broster and
Burns 2003]. This is provided via a time-triggered extension layer for a mixed-criticality NoC
by Ahmadian and Obermaisser [2015]. Dynamic control of a mixed-criticality NoC is considered
by Kostrzewa et al. [2015]. Control over I/O contention via an Ethernet-based criticality-aware
NoC is advocated by Abdallah et al. [2016]. NoC security, in which high-criticality messages need
more protection than those of low-criticality, is considered by Papastefanakis et al. [2016].

An alternative to using a NoC for all traffic (task to task communication and task to off-chip
memory) was proposed by Audsley [2013] and Gomony et al. [2016]. They advocate the use of a
separate memory hierarchy to link each core to off-chip memory. A criticality aware protocol is then
used to pass requests and data through a number of efficient multiplexers. If the volume of requests
and data is criticality dependent then analysis similar to that used for processor scheduling can be
applied. The separation of execution time from memory-access time is explored by Li and Wang
[2016]. They demonstrate that this distinction improves schedulability.

Controller Area Network (CAN) [Bosch 1991] is a widely used network for real-time
applications, particularly in the automotive domain. It has been the subject of considerable
attention with response time analysis derived by Davis et al. [2007] for what is effectively a fixed
priority non-preemptive protocol. The use of CAN in mixed criticality applications has been
addressed by Burns and Davis [2013]. In this work it is the period of the traffic flows and the fault
model that changes between criticality levels. A MixedCAN protocol was developed that uses a
Trusted Network Component to police the traffic that nodes are allowed to send over the network.

Herber et al. [2013] also addressed the CAN protocol. They replaced the physical network
controller with a set of virtual controllers that facilitate spacial separation. A weighted round robin
scheduler in then used to give temporal isolation. Their motivation is to support virtualisation in an

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:14 A. Burns and R.I.Davis

automotive platform. They do not however use criticality specific parameters for the different
applications hosted on the same device.

Other protocols that have been considered in terms of their support for MCS include
FlexRay [Goswami et al. 2012] and switched Ethernet [Cros et al. 2014, 2015]. In the latter work,
a change in criticality mode is broadcast to the entire system by adding a new field to the IEEE
1588 PTP (Precision Time Protocol).

Addisu et al. [2013] consider JPEG2000 Video streaming over a wireless sensor network. With
such a network the available bandwidth varies in an unpredictable way. They propose a bandwidth
allocation scheme that is criticality aware.

Finally, Jin et al. [2015, 2016] provide delay analysis for fixed priority scheduling in sensor
networks.

5. MORE REALISTIC MCS MODELS
The abstract behavioural model described in Section 2 has been very useful in allowing key
properties of mixed criticality systems to be derived, but it is open to criticism from systems
engineers that it does not match their expectations. In particular:
— In the high-criticality mode, low-criticality tasks should not be abandoned. Some level of service

should be maintained if at all possible, as low-criticality tasks are still important.
— For systems which operate for long periods of time it should be possible for the system to

return to the normal low-criticality mode when the conditions are appropriate. In this mode all
functionality should be provided.

In some MCS it may be acceptable to provide only limited timing guarantees following a
criticality mode change, and hence no online controls are required [von der Brüggen et al. 2016];
however, where abandonment of all low-criticality tasks is not acceptable, then a number of
reconfigurations are possible:
(1) Let any low criticality job that has started run to completion; this is in effect what is assumed

by many forms of analysis [Baruah et al. 2011b].
(2) Reduce the priorities of the low-criticality tasks [Baruah and Burns 2011], or similar for EDF

scheduling by changing task deadlines [Huang et al. 2013, 2014].
(3) Increase the periods and deadlines of low-criticality jobs [Su et al. 2013; Su and Zhu 2013; Jan

et al. 2013; Su et al. 2014, 2016a], referred to as task stretching or the elastic task model.
(4) Impose only weakly-hard constraints on the low-criticality tasks [Gettings et al. 2015].
(5) Decrease the computation times of low-criticality tasks [Burns and Baruah 2013]
(6) Move some low-criticality tasks to a different processor that has not experienced a criticality

mode change [Xu and Burns 2015].
(7) Abandon low-criticality work in a disciplined sequence [Fleming and Burns 2014; Huang et al.

2013; Gu et al. 2015; Ren and Phan 2015].
The fifth approach leads to a modification to the system model; whereas for high-criticality tasks

we have C(HI) ≥ C(LO), for low-criticality tasks we now have C(HI) ≤ C(LO). For some
C(HI) = 0 i.e. they are abandoned, for others a lower level of service can be guaranteed, while yet
others may be able to continue with no change in budget.

The final approach is addressed by Fleming and Burns [2014]; they introduce a further notion
into the standard model; tasks are allocated to applications and each application is assigned an
importance level by the system designer. Low-criticality tasks are then abandoned in inverse order
of importance. Huang et al. [2013] also introduce an extension to the standard model via an ICG
(Interference Constraint Graph) used to capture which tasks need to be dropped when particular
higher criticality tasks exceed their allocated criticality-aware execution times. Controlled
abandonment via the use of partitioning is advocated by Mahdiani and Masrur [2016] in the
context of EDF-VD scheduling.

A specific approach is advocated by Su et al. [2016b], whereby low-criticality tasks have two
periods, short and long, and two priorities. On the criticality mode change the tasks switch to their
longer periods and new priorities. Analysis is provided to show that all modes are schedulable.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:15

A flexible scheme utilising hierarchical scheduling is proposed by Easwaran and Shin [2014].
They differentiate between minor violations of low-criticality execution time which can be dealt
with within a component via an internal mode change and more extensive violations that requires a
system-wide external mode change. In doing so they introduce a new mixed-criticality resource
interface model for component-based system which supports isolation, virtualisation and
compositionality.

In keeping with operational mode changes a simple protocol for controlling the time of the change
of mode back to low criticality is to wait until the system is idle, i.e. has no application tasks to run,
and then the change can safely be made [Tindell and Alonso 1996]. This approach is extended
by Santy et al. [2013] to produce a somewhat more efficient scheme that can be applied to globally
scheduled multiprocessor systems in which an idle tick may never occur. With a dual criticality
system that has just transitioned into the high-criticality mode, and hence no low-criticality jobs are
executing, the protocol first waits until the highest priority high-criticality job completes, then it
waits until the next highest priority job is similarly inactive. This continues until the lowest priority
job is inactive; it is then safe to reintroduce all of the low-criticality tasks. Obviously if there is a
further violation of the C(LO) bound then the recovery protocol is restarted. The authors call this
Safe Criticality Reduction.

A more aggressive scheme for returning a MCS back to its low-criticality mode is proposed by
Bate et al. [2015, 2016], referred to as the bailout protocol. Here, high-criticality tasks take out a
loan if they execute for more than their C(LO) estimate. Other tasks repay the loan by either not
executing at all or by executing for less time than budgeted. When the loan is repaid and a further
condition met, the system returns to low-criticality mode. The authors demonstrate that the bailout
protocol returns the system to the low-criticality mode much quicker than the simple ‘wait for idle
tick’ scheme, and results in far few deadline misses and un-started jobs for low-criticality tasks.

As well as experiencing a criticality mode change a system can, of course, be structured to behave
in a number of operational or behavioural modes. As indicated earlier, Burns [2014] compares and
contrasts these two forms of mode change. Niz and Phan [2014] note that the criticality of a task
can depend on the behavioural mode of the system. They develop schedulability analysis for this
dependency and consider the static allocation of such tasks to multiprocessor platforms.

Another aspect of the ‘standard model’ for MCS that can be argued to be unrealistic is the idea
that a system with five criticality levels would also have five different estimates of WCET for its
most critical tasks. An augmented model has been proposed [Burns 2015; Niz et al. 2009] that
restricts each task to having just two WCET estimates. So, in the general case where there are
V criticality levels, L1 to LV (with L1 being the highest criticality), each task just has two C
values. One represents its estimated WCET at its own criticality level (Ci(Li)) and the other is
an estimate at the base (i.e., lowest) criticality level (Ci(LV)). It follows that if a job is of the
lowest criticality level (i.e., Li = LV) then it only has one WCET parameter. For all other jobs,
C(Li) ≥ C(LV). The two parameters of this augmented model seem to be sufficiently expressive
to capture most of the key properties of MCS. However, Baruah and Guo [2015] showed that: “The
Burns model is strictly less expressive than the Vestal model. Determining whether a given instance
can be scheduled correctly remains NP-hard in the strong sense. Lower bounds on schedulability,
as quantified using the speedup factor metric, are no better for the Burns model than for the Vestal
model.”

6. SYSTEMS ISSUES
A fundamental issue with MCS is separation. Many of the theoretical papers reviewed here assume
various levels of run-time monitoring and control; however, few consider how the required
mechanisms can be implemented. Neukirchner et al. [2011] addressed this issue, focusing on
memory protection, timing fault containment, admission control and (re-)configuration
middleware. Their framework [Farrall et al. 2013] is aimed at supporting AUTOSAR conforming
applications within the automotive domain.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:16 A. Burns and R.I.Davis

A detailed study of the overheads for two common implementation schemes for MCS is
presented by Sigrist et al. [2014]. They conclude that overheads of up to 97% can be encountered
and recommend that scheduling models be extended to include parameters that capture the impact
of run-time overheads.

The issue of monitoring is also addressed by Motruk et al. [2012] in the context of their IDAMC
(Integrated Dependable Architecture for Many Cores). This work builds on more general work on
separation, isolation and monitoring for SoC/NoC architectures. Alonso et al. [2013], Trujillo et al.
[2013, 2014], and Cilku et al. [2014, 2015] address virtualisation in terms of Model Driven
Engineering for MCS. Virtualisation has also been investigated by Goossens et al. [2013b] “to
allow independent design, verification and execution” using their CompSOC architecture.
Paravirtualisation of legacy RTOSs to provide the necessary memory isolation is considered by
Armbrust et al. [2014].

Hypervisor technology is also being used to provide an appropriate level of isolation in MCS.
Larrucea et al. [2016] use it to minimise interference via modelling patterns of execution.
Evripidou and Burns [2016] employ different execution-time servers (deferrable server for
event-triggered work, and periodic server for periodic work) under the control of a hypervisor to
bound the overheads associated with using server technology. If there is a criticality mode change
then the deferrable servers are transposed to more efficient but less responsive periodic servers. A
general hypervisor architecture for multi-core MCS is presented by Pérez et al. [2017].

The development of purpose built FPGA-based hardware is being undertaken with the aim of
reducing the cost of certification for MCS on multiprocessor architectures via the use of open
source hardware and software [Pop et al. 2013; Nevalainen et al. 2013; Mendez et al. 2013]. Other
research looking at systems built on FPGA platforms includes the development of a
criticality-aware scrubbing mechanism that improves system reliability by up to 79% [Santos et al.
2014]. Scrubbing is a technique for recovering from single event upsets that affect FPGA platforms
in harsh environments such as space.

Many MCS papers have, either explicitly or implicitly, focused on issues of safety and
reliability. Criticality can however also refer to security. Within this domain it is usual to have
different security levels, hence much of the extensive literature on security is relevant, but outside
of the scope of this survey. Some work is nevertheless applicable to both safety and security, for
example the definition of a separation kernel for a system-on-chip built using a time-triggered
architecture [Wasicek et al. 2010]. Such a separation kernel has been developed by Li et al. [2013],
West et al. [2016], and Missimer et al. [2016]. This kernel can host guest operating systems, such
as Linux or their own RTOS QUEST-V. The kernel partitions the available cores into Sandboxes
that have different criticality levels. The architecture is aimed at achieving efficient resource
partitioning and performance isolation. One means of achieving this is for interrupts to go directly
to the appropriate partition, so that they do not have to be first handled by the hypervisor.

PikeOS [Kaiser 2007] also employs a separation microkernel [Saidi et al. 2015] to provide “a
powerful and efficient paravirtualization real-time operating system” for a partitioned multi-core
platform. Lyons and Heiser [2014] show how the high-assurance microkernel sel 4. model can be
extended to cater for mixed criticality. Virtual Machines (VMs) that are appropriate for real-time
Java-based MCS have been designed by Ziarek and Blanton [2015] and Hamza et al. [2015].

To implement the criticality mode change it is necessary for the run-time system to support
execution time monitoring, the set of modes, and the mode changes. Baruah and Burns [2011]
show how this can be achieved within the facilities provided by the Ada programming language.
Kim and Jin [2014] do the same for a standard RTOS.

A further operating system designed to support mixed criticality is Kron-OS [David et al. 2014].
This controls the execution of RSFs (Repetitive Sequence of Frames) that are partitioned between
two criticality levels.

As an alternative to using an RTOS to give the right level of protection and resource sharing,
Zimmer et al. [2014] designed a processor (FlexPRET) to directly support MCS. They use fine-
grained multi-threading and scratchpad memory to give protection to hard real-time tasks while

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:17

increasing the resource utilisation of soft tasks. In effect soft tasks can safely exploit the spare
capacity generated by the hard tasks at the cycle level. A more focused scheme aimed at partitioning
the cache is described by Lesage et al. [2012]. A Least Critical (LC) cache replacement policy is
evaluated by Kumar et al. [2014]. The effective use of cache is also considered by Chrisholm et al.
[2015] for a multi-core platform.

A hardware platform that supports applications of different criticality levels must manage its
I/O functions in a partitioned and hence safe and secure way. If lower criticality work can cause
interrupts to occur at any time then unpredictable overheads may be incurred by high-criticality
applications. This often overlooked topic is addressed by Paulitsch et al. [2015].

Although research on MCS has generated many different approaches, there have been few
empirical benchmarks or comparative studies. One useful study was published by Huang et al.
[2012]. They compared the scheme of Vestal [2007] with its optimal priority assignment, their
improved slack scheduling scheme and period transformation. They conclude that Vestal’s
approach and period transformation usually, although not always, outperform slack scheduling;
and that there are additional though not excessive overheads with period transformation and slack
scheduling. Later Fleming and Burns [2013] compared Vestal’s approach, AMC (see Section 3.1)
and period transformation for multiple criticality levels. As the number of criticality levels
increased the relative advantage of period transformation was observed to decrease, even when
overheads are ignored. This observation was also supported by Huang et al. [2014a] who updated
their study and concluded that AMC-based scheduling gave the best performance for fixed priority
sporadic task systems. This study also looked at the overheads involved in a user-space
implementation of AMC on top of Linux (without kernel modifications).

The need for useful benchmarks is noted in a number of papers. One industrially inspired case
study is provided by Harbin et al. [2015]. The use of realistic simulations to evaluate scheduling
schemes is discussed by Bate et al. [2015, 2016], Griffin et al. [2015] and Ittershagen et al. [2015]. A
brief comparison of approaches to multiprocessor scheduling of MCS is provided by Osmolovskiy
et al. [2016]. The evaluation of communications within MCS is considered by the work of Napier
et al. [2016] and Petrakis et al. [2016].

Another systems issue of crucial importance in many mobile embedded systems is power
consumption. The work of Broekaert et al. [2013] allocates and monitors power budgets for
different criticality levels. If a crucial Virtual Machine (VM) “overpassed its power budget during
its time partition, the extra power consumed will be removed from the initial power budget of the
next low critical VM scheduled”. Energy consumption is also addressed by Legout et al. [2013].
They trade energy usage with deadline misses of low-criticality tasks, and claim a 17% reduction
in energy with deadline misses kept below 4%. The objective of minimising energy usage is used
by Zhang et al. [2013] to drive task allocation in a multiprocessor system. A slightly different
approach is taken by Huang et al. [2014b]. They advocate the use of Dynamic Voltage and
Frequency Scaling (DVFS) to increase the speed of the processor if high-criticality tasks need
more than their C(LO) requirement. Hence low-criticality jobs are not abandoned, but more
energy is used. They integrate their approach with the EDF-VD scheduling scheme (see Section
3.2) and have since addressed multi-core platforms [Narayana et al. 2016]. This approach is
extended by Ali et al. [2015] who propose a new dynamic power-aware scheduling scheme for
hardware with discrete frequency levels. DVFS management is also addressed by Haririan and
Garcia-Ortiz [2015] in their provision of a simulation framework for power management.

Where energy is limited or indeed the system is energy neutral, then criticality-aware energy
usage becomes crucially important [Völp et al. 2014]. ENOS [Wagemann et al. 2016] is an
experimental OS that addresses mixed resources (time and energy) and mixed criticality. It
transforms the system through a series of ‘energy modes’ including one that ensures all state is
safely stored in persistent memory before system blackout. Energy harvesting in the context of a
battery-less real-time system is considered by Asyaban et al. [2016]. They propose a scheduling
scheme that satisfies both temporal and success-ratio constraints while addressing uncertainty in
the platform’s power management. Even where energy is not limited, isolation in terms of power

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:18 A. Burns and R.I.Davis

usage and temperature control is important; an issue that has been addressed in the context of
heterogeneous MPSoCs [Grüttner 2017].

Complex MCS also present a number of significant challenges at the specification and design
stage. Herrera et al. [2013, 2015] propose a modelling and design framework for MCS hosted on
Systems-on-Chip and/or Systems-of-Systems. They present a core ontology but freely admit that
there is considerable work to do before a sound engineering process is available for system
builders/architects. Giannopoulou et al. [2016] support the development of MCS on multi-core
platforms via the development of an appropriate tool chain. This group has also considered the
mapping and design of fault-tolerant MCS to multicore platforms [Giannopoulou et al. 2014; Zeng
et al. 2016].

7. LINKS TO OTHER RESEARCH TOPICS
In this section, we explore the links between research into MCS, and other related topics.

7.1. Hard and Soft Tasks
Although the label “Mixed Criticality Systems (MCS)” is relatively new, many older results and
approaches can be reused and reinterpreted under this umbrella term. In particular, systems in
which there are tasks with hard and soft real-time constraints have been studied since the 1980s.
Hard tasks must be guaranteed, while soft tasks are then given the best possible service. Soft tasks
are usually unbounded, in terms of their execution time or their arrival frequency, and hence must
be constrained to execute only from within some form of execution-time server. Such servers have
a bounded impact on the hard tasks. A number of different servers have been proposed in the
literature. The major ones for fixed priority systems are the Periodic Server, the Deferrable Server,
the Priority Exchange Server (all described by Lehoczky et al. [1987]), and the Sporadic
Server [Sprunt et al. 1988]. These servers have equivalent protocols for dynamic priority (EDF)
systems; and some EDF specific ones exist such as the Constant Bandwidth server [Abeni and
Buttazzo 1998]. The ability to run soft tasks in the slack provided by the hard tasks is also
supported by Static Slack Stealing [Lehoczky and Ramos-Thuel 1992], Dynamic Slack
Stealing [Davis et al. 1993], and Dual-Priority schemes [Davis and Wellings 1995].

The standard servers only deal with the isolation / partitioning aspect of MCS. To support
sharing of processing resources there must be some means of moving capacity from the under
utilised servers of high-criticality tasks to the under provisioned servers of lower criticality tasks.
The Extended Priority Exchange server [Sprunt et al. 1988] as well as work on making use of gain
time [Davis 1995], show how this can be achieved. These ideas have been incorporated into
protocols aimed at providing support for low criticality tasks in MCS [Niz et al. 2009; Bate et al.
2015]. The idea of slack stealing has been used as a basis for scheduling MCS (see Section 3.1.2).

Run-time adaptability for MCS has been addressed by Hu et al. [2015, 2016a]. They present an
approach to adaptively shape at runtime the inflowing workload from low-criticality tasks based on
the actual demand of high-criticality tasks. This improves the QoS of low-criticality tasks, but it not
clear what level of guarantee is provided for these tasks. An alternative scheme, with the same aim,
is given by Hikmet et al. [2016].

7.2. Fault Tolerant Systems
Fault tolerant systems (FTS) typically have means of identifying a fault and then recovering before
there is a system failure. Various recovery techniques have been proposed including exception
handling, recovery blocks, check-points, task re-execution and task replication. If following a fault
extra work has to be undertaken then it follows that some existing work will need to be abandoned,
or at least postponed. Further, this work must be less important than the tasks that are being
re-executed. It follows that many fault tolerant systems are in effect MCS.

Timeouts are often used to identify a fault. A job not completing before a deadline is evidence
of some internal problem. Earlier warning can come from noting that a job is trying to execute
for more than its execution time budget. Execution time monitoring is therefore common in safety

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:19

critical systems that are required to have some level of fault tolerance. Again this points to common
techniques being required in FTS and MCS.

As noted earlier in the discussion on CAN (Section 4.3), a fault model can be criticality
dependent [Burns and Davis 2013]. A task may, for example, be required to survive one fault if it is
mission critical, but two faults if it is safety critical. The difference between execution time budgets
at different criticality levels, may be a result of the inclusion or not of recovery techniques in the
WCET estimates of the tasks.

Although there is this clear link between FTS and MCS there has not as yet been much work
published that directly addresses fault-tolerant MCS. Exceptions being the work of Huang et al.
[2014] and a paper by Pathan [2014] that both focus on service adaptation and the scheduling of
fault-tolerant MCS; and a four mode model developed by Al-Bayati et al. [2016]. Zonal Hazard
Analysis and Fault Hazard Analysis [Thekkilakattil et al. 2014b] and Error-Burst
models [Thekkilakattil et al. 2014a] can be used to deliver both flexibility and real-time guarantees
for the most critical tasks. Thekkilakattl et al. [2015] also consider the link between MCS and the
tolerance of permanent faults. Lin et al. [2014] attempt to integrate mixed criticality with the use of
primary and backup executions in both of the two criticality modes they consider. Islam et al.
[2006], in a paper that preceded that of Vestal [2007], looked at combining different levels of
replication for different levels of criticality.

As highlighted already in this survey, many models and protocols for mixed criticality behaviour
allow the system to move through a sequence of criticality modes. With a dual-criticality system the
system starts in the low-criticality mode in which all deadlines of all tasks are guaranteed, but can
then transition to the high-criticality mode in which only the high-criticality tasks are guaranteed
It may, or may not, later return to the low-criticality mode when it is safe to do so. Burns [2014]
compared these criticality mode changes with the more familiar system (operational) mode changes.
He concludes that the low-criticality mode behaviour should be considered as the ‘normal’ expected
behaviour. A move away from this mode is best classified as a fault; with all other modes being
considered forms of graceful degradation. A move back to the fully functional low-criticality mode
is closest in nature to an operational mode change. Such a mode change is planned for but may
never occur.

7.3. Hierarchical Scheduling
One means of implementing MCS where strong partitioning is needed between applications is to
use a hierarchical (typically two-level) scheduler. A trusted base scheduler assigns budgets to each
application. Within each application a secondary scheduler manages the tasks of the application.
There are a number of relevant results for such resource containment schemes (e.g. [Saewong et al.
2002; Shin and Lee 2003; Davis and Burns 2005; Lipari and Bini 2005; Davis and Burns 2006;
Zhang and Burns 2007; Checconi et al. 2009]). Both single processor and multiprocessor platforms
can support hierarchical scheduling.

Unfortunately when hierarchical scheduling is applied to MCS there is a loss of
performance [Lackorzynski et al. 2012]. A simple interface providing a single budget and
replenishment period, which is often associated with virtualisation or the use of a
hypervisor [Alonso et al. 2013]), is too inflexible to cater for a system that needs to switch between
criticality modes. To provide a more efficient scheme, Lackorzynski et al. [2012] proposed
‘flattening’ the hierarchy by exposing some of the internal structure of the scheduled applications.
They developed the notion of a scheduling context, which they apply to MCS [Volp et al. 2013]. In
effect they assign more than one budget to each ‘guest’ OS. As a result, applications that would
otherwise not be schedulable are shown to utilise criticality to meet all deadlines. An alternative
approach is provided by Groesbrink et al. [2013, 2014]. They allow budgets to move between
virtual machines executing on a hypervisor that is itself executing on a multi-core platform. The
hypervisor controls access to the processor, the memory, and shared I/O devices. Yet another
scheme is described by Marinescu et al. [2012]. They are more concerned with partitioning as
opposed to resource usage, and address distributed heterogeneous architectures. Hypervisors are

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:20 A. Burns and R.I.Davis

also used by Cilku and Puschner [2013] to give temporal and spacial separation on a
multiprocessor platform. Perez et al. [2013] use a hierarchical scheduler to statically partition a
mixed criticality wind power system requiring certification under the IEC-61508 standard. A
hypervisor for a mixed criticality on-board satellite software system is discussed by Salazar et al.
[2014], and Alonso et al. [2015], and one for general control systems is addressed by Crespo et al.
[2014]. The issue of minimising the overheads of a hypervisor is considered by Blin et al. [2016].

7.4. Cyber Physical Systems and Internet of Things
In parallel with the development of a distinct branch of research covering MCS has been the
identification of Cyber Physical Systems (CPS) as a useful focus for system development. Not
surprisingly it has been noted that many CPS are also MCS. For example Schneider et al. [2013]
note that many CPS contain a combination of deadline-critical and QoS-critical tasks. They
propose a layered scheme in which QoS is maximised while hard deadline tasks are guaranteed.
Izosimov and Levholt [2015] use safety-critical CPS to explore how metrics can be used to map
potential hazards and risks from top-level design down to mixed criticality components on a
multi-core architecture. Issues of composability within open CPS are introduced in a short paper
by Lee et al. [2016].

Maurer and Kirner [2015] consider the specification of cross-criticality interfaces (CCI) that
define the level of communication allowed between open subsystems/components in CPS. Lee
et al. [2015] also look at interfaces and composition for mixed criticality CPS.

The link between the Internet of Things (IoT) and MCS is made by Kamienski et al. [2016] in the
context of development methods for energy management in public buildings. Smart buildings are
also the focus of the work by Dimopoulos et al. [2016] on a context-aware management architecture.

7.5. Probabilistic real-time systems
In MCS, the WCET of a task is expressed as a function of the criticality level (e.g. C(LO) and
C(HI)) with larger values for the WCET estimate obtained for higher criticality levels. Research
into probabilistic hard real-time systems can be viewed as extending this model to a continuum or at
least a large number of discrete values [Edgar and Burns 2001]. Instead of a number of single values
for WCET estimates with different levels of confidence, the worst-case execution time is expressed
as a probability distribution, referred to as a pWCET.

The exceedance function (or 1 - CDF9) for the pWCET gives the probability that the task will
exceed the specified execution time budget on any given run [Cucu-Grosjean 2013]. Conversely,
the exceedance function may be used to determine the execution time budget required such that the
probability of overrunning that budget does not exceed a specified probability.

Probabilistic analysis provides an alternative treatment for mixed criticality systems, where high-
criticality tasks are specified as having an extremely low acceptable failure rate (e.g. 10−9 per hour),
whereas a higher failure rate (e.g. 10−6 or 10−7 per hour) is permitted for lower criticality tasks.
Probabilistic worst-case execution times [Cucu-Grosjean et al. 2012; Cazorla et al. 2013; Davis et al.
2013; Altmeyer et al. 2015] and the probabilistic worst-case response times [Dı́az et al. 2002; López
et al. 2008; Maxim and Cucu-Grosjean 2013] derived from them provide a match to requirements
specified in this way. These techniques can potentially be used to show that pathological cases with
very high execution times / high response times have a provably very low probability of occurring,
thus avoiding the need to over-provision compute resources to handle these cases.

Just as MCS research has expanded from a focus on execution times to one that includes arrival
rates for sporadic tasks, so probabilistic analysis has been developed for the case where the arrival
rate of tasks is described by a probability distribution [Maxim and Cucu-Grosjean 2013]. This work
forms the basis for a further link between MCS and probabilistic analysis. Indeed Masrur [2016]
uses random jitter on the arrival time of low-criticality tasks to improve schedulability.

9Cumulative Distribution Function.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:21

Guo et al. [2015] demonstrate the usefulness of a probabilistic framework in their analysis of
an EDF scheduled system in which there is a permitted but low probability of timing faults. The
chances of a high-criticality task executing for more than its low-criticality execution time budget
C(LO) is also expressed as a probability. Santinelli and George [2015] also explore the probability
space of WCETs for MCS. Probabilistic analyses for the SMC and AMC schemes are derived by
Maxim et al. [2016]. A Markov decision process is used by Alahmad and Gopalakrishnan [2016]
to model job releases in MCS. Probabilistic analysis is also used to investigate the safety of each
criticality level by Draskovic et al. [2016].

7.6. Industry Practice and Safety Standards
This survey covers the considerable body of research into MCS stemming from the model presented
by Vestal [2007]. Industry practice and safety standards; however, provide a somewhat different
perspective on MCS. There are different meanings assumed for some of the commonly used terms,
and different objectives. This disconnect has been discussed in a number of papers [Graydon and
Bate 2013], [Esper et al. 2015], [Paulitsch et al. 2015] and [Ernst and Natale 2016].

From an industry perspective, criticality relates to the functional safety of an application, see,
for example, the IEC 61508, DO-178B and DO-178C, DO-254 and ISO 26262 standards. Typical
names for criticality levels are ASILs (Automotive Safety and Integrity Levels), DALs (Design
Assurance Levels or Development Assurance Levels) and SILs (Safety Integrity Levels).

Determining the criticality of an application (or system function implemented via both hardware
and software) is done via a system safety assessment that involves Failure Modes and Effects
Analysis (FMAE). The criticality level typically depends on (i) an evaluation of the consequences
of a failure, (ii) the probability that the failure occurs, and (iii) the provision of means to mitigate
or cope with the fault. Hence the criticality level of an application may not necessary reflect the
severity or consequences of failure. An example given by Esper et al. [2015] and Ernst and Natale
[2016] comes from ISO 26262. If the probability of failure occurrence is very low, the ASIL level
assigned may be low, despite severe consequences if a failure actually happens. A different
application with a high probability of failure may be assigned a higher ASIL despite having lower
severity consequences. With this interpretation, the idea of dropping low-criticality functionality in
favour of completing that of higher criticality does not hold; the consequences would be more
severe. ISO 26262 also permits high-criticality applications to be composed from lower criticality
components with diverse implementations, again dropping one of the lower criticality components
would remove the diversity and undermine the safety argument for the high-criticality function.
The message here is that the criticality level is not the same as the importance of the application.
Functionality that has low criticality cannot simply be dropped.

The standards require that “sufficient independence” or “freedom from interference” is
demonstrated between functions of different criticality levels in both spatial and timing domains. If
this is not done, then the whole system needs to be designed and developed according to methods
appropriate for the highest criticality level involved, which would be untenable in practice for cost
reasons. It remains a significant challenge to achieve the necessary separation, while also providing
an efficient means of sharing resources. This is particularly apposite with the advent of multi-core
and many-core platforms.

8. DIRECTIONS FOR FUTURE WORK
As identified in the introduction, the fundamental issue with MCS is how to reconcile the differing
needs of separation (for safety) and sharing (for efficient resource usage). These concerns have lead
to somewhat of a bifurcation in the resulting research. Much of the implementation and systems
work has concentrated on how to safely partition a system so that high-criticality components can
at least run on hardware systems where computational and communication resources are otherwise
shared. By comparison, the more theoretical and scheduling research has largely focused on how
criticality-specific WCETs can be utilised to deliver systems that are schedulable at each criticality
level with a high processor utilisation. Unfortunately these two areas of research are not easily

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:22 A. Burns and R.I.Davis

integrated. Flexible scheduling requires as a minimum dynamic partitioning. Certified systems
require complete separation or at least static partitioning. Future work must address this mismatch.

A second topic for future work is a move away from a processor-centric view of MCS to one
that incorporates other shared resources, for example communication; particularly on a multi-core
or many-core platform. Can a shared bus provide the required separation, or is a Network-on-Chip
protocol required? Work has only recently begun to address these issues.

What becomes clear from reading the extensive literature that has been produced since the
seminal paper by Vestal [2007], is that MCS present a collection of interesting issues that are both
theoretically intriguing and challenging from the perspective of implementation. We finish this
survey by listing open issues identified from reading the extensive research literature. (Many of
these issues were presented by Alan Burns in his keynote talk at the Dagsthul Seminar on Mixed
Criticality Systems on Multicore/Manycore Platforms in March 2015).
(1) Holistic analysis is needed considering all system resources, particularly communications

buses, networks, and access to memory, as well as the processor(s).
(2) Appropriate models of system overheads and task dependencies are required, and need to be

integrated into the analysis. In particular, attention needs to be paid to how overheads arising
from tasks of one criticality level may impact tasks of different (particularly higher) criticality.

(3) More work is needed to integrate run-time behaviour, i.e. monitoring and control, with the
assumptions made during static analysis and verification.

(4) Effective protocols are needed for sharing information between criticality levels.
(5) There are a number of open issues with regards to graceful degradation and fault recovery. These

include timely recovery back to the low-criticality mode of operation, and support for limited
low-criticality functionality in higher criticality modes, avoiding the abandonment problem.

(6) To be of practical use, techniques need to scale to more than two (possibly up to five) levels of
criticality.

(7) Better WCET analysis is needed to reduce the sound C(HI) and C(LO) estimates used, and
to improve the confidence in these values.

(8) Much of the existing research has looked at mixed criticality within a single scheduling
scheme; however, further work is needed on integrating different schemes (e.g. cyclic
executives for safety-critical applications, fixed priority for mission-critical applications, on the
same processor).

(9) Mechanisms are needed to tightly bound the impact of lower criticality tasks on those of higher
criticality, independent of the behaviour or misbehaviour of the former, without significantly
compromising performance, which may happen if strict isolation is enforced.

(10) Time composability is needed across different criticality levels, so that the timing behaviour
of tasks determined in isolation can be used when they are composed during system integration.

(11) So far there has been little work on security as an aspect of criticality in real-time systems.
(12) Probabilistic and statistical methods are a good match to requirements specified in terms of

failure rates for different criticality levels; however, little work has been done on applying these
techniques to MCS.

(13) Openly available benchmarks and case studies are needed for the evaluation of MCS
techniques and analysis.

(14) For research on MCS to have real impact it will be necessary to influence the relevant standards
in the various application domains (e.g. automotive, aerospace).

Returning to the fundamental question underlying MCS research: how, in a disciplined way, to
reconcile the conflicting requirements of partitioning for safety assurance and sharing for efficient
resource usage. As yet we do not have the structures (models, methods, protocols, analysis etc.)
needed to allow the tradeoffs between partitioning and separation to be properly evaluated. It is
clear that MCS will continue to be a focus for practical and theoretical work for some time to come.

Acknowledgements
The authors would like to thank Sanjoy Baruah for a number of very useful discussions on MCS.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:23

REFERENCES
L. Abdallah, M. Jan, J. Ermont, and C. Fraboul. 2016. I/O contention aware mapping of multi-criticalities real-time

applications over many-core architectures. In Proc. WiP, RTAS. 25–28.
L. Abeni and G. Buttazzo. 1998. Integrating Multimedia Applications in Hard Real-Time Systems. In Proc. of the Real-Time

Systems Symposium. Madrid, Spain, 3–13.
A. Addisu, L. George, V. Sciandra, and M. Agueh. 2013. Mixed Criticality Scheduling Applied to JPEG2000 Video

Streaming Over Wireless Multimedia Sensor Networks. In Proc. WMC, RTSS. 55–60.
H. Ahmadian and R. Obermaisser. 2015. Time-Triggered Extension Layer for On-Chip Network Interfaces in Mixed-

Criticality Systems. In Proc. Digital System Design (DSD). IEEE, 693–699.
Z. Al-Bayati, J. Caplan, B.H. Meyer, and H. Zeng. 2016. A four-mode model for efficient fault-tolerant mixed-criticality

systems. In Proc. DATE. IEEE, 97–102.
Z. Al-Bayati, Q. Zhao, A. Youssef, H. Zeng, and Z. Gu. 2015. Enhanced partitioned scheduling of Mixed-Criticality Systems

on multicore platforms. In 20th Asia and South Pacific Design Automation Conference (ASP-DAC). 630–635.
B. Alahmad and S. Gopalakrishnan. 2016. A Risk-Constrained Markov Decision Process Approach to Scheduling Mixed-

Criticality Job Sets. In Proc 4th WMC (RTSS). https://hal.archives-ouvertes.fr/hal-01403223
I. Ali, J. Seo, and K.H. Kim. 2015. A Dynamic Power-Aware Scheduling of Mixed-Criticality Real-Time Systems.

In Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and
Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM). 438–445.

A. Alonso, J.A. de la Puente, J. Zamorano, M.A. de Miguel, E. Salazar, and J. Garrido. 2015. Safety Concept for a Mixed
Criticality On-Board Software System. IFAC-PapersOnLine 48, 10 (2015), 240–245.

A. Alonso, C. Jouvray, S. Trujillo, M.A. de Miguel, C. Grepet, and J. Simo. 2013. Towards Model-Driven Engineering for
Mixed-Criticality Systems: MultiPARTES Approach. In Proceedings of the Conference on Design, Automation and Test
in Europe, WICERT (DATE).

A. Alonso, E. Salazar, and M.A. de Miguel. 2014. A Toolset for the Development of Mixed-Criticality Partitioned Systems.
In HiPEAC Workshop.

S. Altmeyer, L. Cucu-Grosjean, and R.I. Davis. 2015. Static probabilistic timing analysis for real-time systems using random
replacement caches. Real-Time Systems 51, 1 (2015), 77–123.

J.H. Anderson, S.K. Baruah, and B.B. Brandenburg. 2009. Multicore Operating-System Support for Mixed Criticality. In
Proc. of the Workshop on Mixed Criticality: Roadmap to Evolving UAV Certification, San Francisco.

E. Armbrust, J. Song, G. Bloom, and G. Parmer. 2014. On Spatial Isolation for Mixed-Criticality, Embedded Systems. In
Proc. 2nd Workshop on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 15–20.

S. Asyaban, M. Kargahi, L. Thiele, and M. Mohaqeqi. 2016. Analysis and Scheduling of a Battery-Less Mixed-Criticality
System with Energy Uncertainty. ACM Transactions on Embedded Computing Systems (TECS) 16, 1 (2016), 23.

N.C. Audsley. 2001. On Priority Assignment in Fixed Priority Scheduling. Inform. Process. Lett. 79, 1 (2001), 39–44.
N.C. Audsley. 2013. Memory Architectures for NoC-based Real-Time Mixed Criticality Systems. In Proc. WMC, RTSS.

37–42.
N.C. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. 1993. Applying New Scheduling Theory to Static

Priority Preemptive Scheduling. Software Engineering Journal 8, 5 (1993), 284–292.
M.A. Awan, K. Bletsas, P. Souto, B. Akesson, E. Tovar, and J. Ali. 2016. Mixed-criticality scheduling with memory

regulation. In Proc. WiP, ECRTS. 22.
P. Axer, M. Sebastian, and R. Ernst. 2011. Reliability analysis for MPSoCs with mixed-critical, hard real-time constraints.

In Proceedings of the seventh IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis (CODES+ISSS ’11). ACM, 149–158.

T.P. Baker. 1990. A Stack-Based Resource Allocation Policy for Realtime Processes. In Proc. IEEE Real-Time Systems
Symposium (RTSS). 191–200.

J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy, J. Scoredos, P. Stanfill, D. Stuart, and R. Urzi. 2009.
White Paper: A Research Agenda for Mixed-Criticality Systems. (April 2009). Available at http://www.cse.wustl.edu/˜
cdgill/CPSWEEK09 MCAR.

S.K. Baruah. 2004. Optimal utilization bounds for fixed priority scheduling of periodic task systems on identical
multiprocessors. IEEE Transactions on Software Engineering 53, 6 (2004).

S.K. Baruah. 2012a. Certification-cognizant scheduling of tasks with pessimistic frequency specification. In Proc. 7th IEEE
International Symposium on Industrial Embedded Systems (SIES’12). 31–38.

S.K. Baruah. 2012b. Semantic-preserving implementation of multirate mixed criticality synchronous programs. In Proc.
RTNS.

S. Baruah. 2013a. Implementing mixed-criticality synchronous reactive programs upon uniprocessor platforms. Real-Time
Systems Journal 49, 6 (2013).

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

https://hal.archives-ouvertes.fr/hal-01403223

82:24 A. Burns and R.I.Davis

S.K. Baruah. 2013b. Response-time analysis of mixed criticality systems with pessimistic frequency specification. Technical
Report. University of North Carolina at Chapel Hill.

S.K Baruah. 2016a. The Federated Scheduling of Systems of Mixed-Criticality Sporadic DAG Tasks. In Proc. Real-Time
Systems Symposium (RTSS). IEEE, 227–236.

S.K. Baruah. 2016b. Schedulability analysis of mixed-criticality systems with multiple frequency specifications. In Proc.
International Conference on Embedded Software (EMSOFT). ACM, 24.

S.K. Baruah. 2016c. Scheduling analysis for a general model of mixed-criticality recurrent real-time tasks. In Proc. IEEE
RTSS. 25–34.

S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and L. Stougie. 2010. Scheduling Real-
Time Mixed-Criticality Jobs. In Proc. of the 35th International Symposium on the Mathematical Foundations of Computer
Science (Lecture Notes in Computer Science), P. Hlinený and A.ı́n Kucera (Eds.), Vol. 6281. Springer, 90–101.

S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and L. Stougie. 2011. Mixed-Criticality
Scheduling. In 10th Workshop on Models and Algorithms for Planning and Scheduling Problems (MAPSP), Nymburk,
Czech Republic. 1–3.

S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and L. Stougie. 2012. Scheduling
Real-Time Mixed-Criticality Jobs. IEEE Trans. Comput. 61, 8 (2012), 1140–1152.

S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster, and L. Stougie. 2015. Preemptive
Uniprocessor Scheduling of Mixed-Criticality Sporadic Task Systems. Journal of the ACM (JACM) 62, 2 (2015), 14.

S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster, and L. Stougie. 2012. The
preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems. In Proc. of ECRTS,
Pisa. 145–154.

S.K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. van der Ster, and L. Stougie. 2011a. Mixed-Criticality
Scheduling of Sporadic Task Systems. In Proc. of the 19th Annual European Symposium on Algorithms (ESA 2011) LNCS
6942, Saarbruecken, Germany. 555–566.

S.K. Baruah and A. Burns. 2011. Implementing Mixed Criticality Systems in Ada. In Proc. of Reliable Software Technologies
- Ada-Europe 2011, A. Romanovsky (Ed.). Springer, 174–188.

S.K. Baruah and A. Burns. 2013. Fixed-priority scheduling of dual-criticality systems. In Proc. 21st RTNS. ACM, 173–182.
S. Baruah and A. Burns. 2014. Achieving temporal isolation in multiprocessor mixed-criticality systems. In Proc. 2nd

Workshop on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 21–26.
S. Baruah, A. Burns, and R.I. Davis. 2013. An Extended Fixed Priority Scheme for Mixed Criticality Systems. In Proc.

ReTiMiCS, RTCSA, L. George and G. Lipari (Eds.). 18–24.
S.K. Baruah, A. Burns, and R. I. Davis. 2011b. Response-Time Analysis for Mixed Criticality Systems. In IEEE Real-Time

Systems Symposium (RTSS). 34–43.
S. Baruah and B. Chattopadhyay. 2013. Response-time analysis of mixed criticality systems with pessimistic frequency

specification. In Proc. RTCSA.
S.K. Baruah, B. Chattopadhyay, H. Li, and I. Shin. 2014. Mixed-criticality Scheduling on Multiprocessors. Real-Time

Systems Journal 50 (2014), 142–177.
S.K. Baruah, A. Easwaran, and Z. Guo. 2015b. MC-Fluid: Simplified and Optimally Quantified. In Proc. IEEE Real-Time

Systems Symposium (RTSS). 327–337.
S.K. Baruah, A. Easwaran, and Z. Guo. 2016. Mixed-Criticality Scheduling to Minimize Makespan. In LIPIcs-Leibniz

International Proceedings in Informatics, Vol. 65.
S.K. Baruah and G. Fohler. 2011. Certification-cognizant time-triggered scheduling of mixed-criticality systems. In Proc. of

IEEE Real-time Systems Symposium 2011.
S. Baruah and Z. Guo. 2013. Mixed-criticality scheduling upon varying-speed processors. In Proc. IEEE 34th Real-Time

Systems Symposium. 68–77.
S. Baruah and Z. Guo. 2014. Scheduling mixed-criticality implicit-deadline sporadic task systems upon a varying-speed

processor. In Proc. IEEE Real-Time Systems Symposium. IEEE, 31–400.
S.K. Baruah and Z. Guo. 2015. Mixed-criticality job models: a comparison. In Proc. 3rd Workshop on Mixed Criticality

Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 1–5.
S.K. Baruah, H. Li, and L. Stougie. 2010a. Mixed-criticality scheduling: Improving resource-augmented results.. In

Computers and Their Applications, ISCA. 217–223.
S.K. Baruah, H. Li, and L. Stougie. 2010b. Towards the design of certifiable mixed-criticality systems. In Proc. of the IEEE

Real-Time Technology and Applications Symposium (RTAS). IEEE, 13–22.
S.K. Baruah and S. Vestal. 2008. Schedulability Analysis of Sporadic Tasks with Multiple Criticality Specifications. In

ECRTS. 147–155.
S. K. Baruah, A. Burns, and Z. Guo. 2016. Scheduling Mixed-criticality systems to guarantee some service under all non-

erroneous behaviours. In Proc. ECRTS. 131–140.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:25

S. K Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. 1996. Proportionate progress: A notion of fairness in resource
allocation. Algorithmica 15, 6 (1996), 600–625.

S. K. Baruah, L. Cucu-Grosjean, R. I. Davis, and C. Maiza. 2015a. Mixed Criticality on Multicore/Manycore Platforms
(Dagstuhl Seminar 15121). Dagstuhl Reports 5, 3 (2015), 84–142. DOI:http://dx.doi.org/10.4230/DagRep.5.3.84

I. Bate, A. Burns, and R.I. Davis. 2015. A Bailout Protocol for Mixed Criticality Systems. In Proc. 27th ECRTS. 259–268.
I. Bate, A. Burns, and R. I. Davis. 2016. An Enhanced Bailout Protocol for Mixed Criticality Embedded Software. IEEE

Transactions on Software Engineering PP, 99 (2016).
K.J. Biba. 1977. Integrity Considerations for Secure Computer Systems. Mtr-3153. Mitre Corporation.
E. Bini, M. Di Natale, and G.C. Buttazzo. 2006. Sensitivity analysis for fixed-priority real-time systems. In Proc. ECRTS.

13–22.
A. Blin, C. Courtaud, J. Sopena, and G. Muller. 2016. Maximizing Parallelism without exploding deadlines in a mixed-

criticality embedded system. In Proc. ECRTS. 109–119.
M. Bommert. 2013. Schedule-aware Distributed of Parallel Load in a Mixed Criticality Environment. In Proc. JRWRTC,

RTNS. 21–24.
Bosch. 1991. CAN Specification version 2.0. Technical Report. Postfach 30 02 40, D-70442 Stuttgart.
B.B. Brandenburg. 2014. A Synchronous IPC Protocol for Predicatable Access to Shared Resources in Mixed-Criticality

Systems. In Proc. IEEE Real-Time Systems Symposium. IEEE, 196–206.
F. Broekaert, A. Fritsch, L. Sa, and S. Tverdyshev. 2013. Towards power-efficient mixed-critical systems. In Proc. of

OSPERT 2013. 30–35.
I. Broster and A. Burns. 2003. An Analysable Bus-Guardian for Event-Triggered Communication. In Proc. of the 24th

Real-time Systems Symposium. Computer Society, IEEE, Cancun, Mexico, 410–419.
A. Burns. 1994. Preemptive Priority Based Scheduling: An Appropriate Engineering Approach. In Advances in Real-Time

Systems, S.H. Son (Ed.). Prentice-Hall, 225–248.
A. Burns. 2013. The Application of the Original Priority Ceiling Protocol to Mixed Criticality Systems. In Proc. ReTiMiCS,

RTCSA, L. George and G. Lipari (Eds.). 7–11.
A. Burns. 2014. System Mode Changes - General and Criticality-Based. In Proc. 2nd Workshop on Mixed Criticality Systems

(WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 3–8.
A. Burns. 2015. An Augmented Model for Mixed Criticality. In Mixed Criticality on Multicore/Manycore Platforms

(Dagstuhl Seminar 15121), Davis Baruah, Cucu-Grosjean and Maiza (Eds.). Vol. 5(3). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 92–93.

A. Burns and S. Baruah. 2011. Timing Faults and Mixed Criticality Systems. In Dependable and Historic Computing, Jones
and Lloyd (Eds.). Vol. LNCS 6875. Springer, 147–166.

A. Burns and S. Baruah. 2013. Towards A More Practical Model for Mixed Criticality Systems. In Proc. 1st Workshop on
Mixed Criticality Systems (WMC), RTSS. 1–6.

A. Burns and S.K. Baruah. 2015. Semi-partitioned Cyclic Executives for Mixed Criticality Systems. In Proc. 3rd Workshop
on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 36–41.

A. Burns and R.I. Davis. 2013. Mixed Criticality on Controller Area Network. In Proc. Euromicro Conference on Real-Time
Systems (ECRTS). 125–134.

A. Burns and R.I. Davis. 2014. Adaptive Mixed Criticality Scheduling with Deferred Preemption. In Proc. IEEE Real-Time
Systems Symposium. IEEE, 21–30.

A. Burns, T. Fleming, and S. Baruah. 2015. Cyclic executives, multi-core platforms and mixed-criticality applications. In
Proc. 27th ECRTS. 3–12.

A. Burns, J. Harbin, and L.S. Indrusiak. 2014. A Wormhole NoC Protocol for Mixed Criticality Systems. In Proc. IEEE
Real-Time Systems Symposium. IEEE, 184–195.

G. Buttazzo, G. Lipari, and L. Abeni. 1998. Elastic Task Model for Adaptive Rate Control. In IEEE Real-Time Systems
Symposium. 286–295.

G. Carvajal and S. Fischmeister. 2013. An open platform for mixed-criticality real-time ethernet. In Proceedings of the
Conference on Design, Automation and Test in Europe (Proc. DATE). 153–156.

F.J. Cazorla, E. Quiones, T. Vardanega, L. Cucu-Grosjean, B. Triquet, G. Bernat, E.D. Berger, J. Abella, F. Wartel, M.
Houston, L. Santinelli, L. Kosmidis, C. Lo, and D. Maxim. 2013. PROARTIS: Probabilistically Analyzable Real-Time
Systems. ACM Trans. Embedded Comput. Syst. 12, 2 (2013), 94.

F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari. 2009. Hierarchical Multiprocessor CPU Reservations for the Linux
Kernel. In Proc. of 5th International Workshop on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT 2009).

C. Chekuri and S. Khanna. 2004. On Multidimensional Packing Problems. SIAM J. Comput. 33, 4 (April 2004), 837–851.
DOI:http://dx.doi.org/10.1137/S0097539799356265

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

http://dx.doi.org/10.4230/DagRep.5.3.84
http://dx.doi.org/10.1137/S0097539799356265

82:26 A. Burns and R.I.Davis

Y. Chen, K.G. Shin, and H. Xiong. 2016. Generalizing fixed-priority scheduling for better schedulability in mixed-criticality
systems. Inform. Process. Lett. 116, 8 (2016), 508–512.

H. Chetto and M. Chetto. 1989. Some Results of the Earliest Deadline Scheduling Algorithm. IEEE Transactions on
Software Engineering 15, 10 (1989), 1261–1269.

M. Chisholm, N. Kim, B.C. Ward, N. Otterness, J.H. Anderson, and F.D. Smith. 2016. Reconciling the tension between
hardware isolation and data sharing in mixed-criticality, multicore systems. In Proc. Real-Time Systems Symposium
(RTSS). IEEE, 57–68.

M. Chisholm, B. C. Ward, N. Kim, and J. H. Anderson. 2015. Cache Sharing and Isolation Tradeoffs
in Multicore Mixed-Criticality Systems. In 2015 IEEE Real-Time Systems Symposium. 305–316.
DOI:http://dx.doi.org/10.1109/RTSS.2015.36

M. Chrisholm, B. Ward, N. Kim, and J. Anderson. 2015. Cache-Sharing and Isolation Tradeoffs in Multicore Mixed-
Criticality Systems. In Proc. IEEE Real-Time Systems Symposium (RTSS). 305–316.

B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro. 2014. A Memory Arbitration Scheme for Mixed-Criticality
Multocore Platforms. In Proc. 2nd Workshop on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis
(Eds.). 27–32.

B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro. 2015. A TDMA-Based arbitration scheme for mixed-criticality
multicore platforms. In Proc EBCCSP. IEEE, 1–6.

B. Cilku and P. Puschner. 2013. Towards Temporal and Spatial Isolation in Memory Hierarchies for Mixed-Criticality
Systems with Hypervisors. In Proc. ReTiMiCS, RTCSA, L. George and G. Lipari (Eds.). 25–28.

A. Cohen, V. Perrelle, D. Potop-Butucaru, E. Soubiran, and Z. Zhang. 2014. Mixed-criticality in Railway Systems: A
Case Study on Signaling Application. Ada User Journal, Proc of Workshop on Mixed Criticality for Industrial Systems
(WMCIS’2014) 35, 2 (2014), 138–143.

A. Crespo, A. Alonso, M. Marcos, J.A. Puente, and P. Balbastre. 2014. Mixed Criticality in Control Systems. In Proc. 19th
World Congress The Federation of Automatic Control. 12261–12271.

O. Cros, F. Fauberteau, L. George, and X. Li. 2014. Mixed-Criticality over switched Ethernet networks. Ada User Journal,
Proc of Workshop on Mixed Criticality for Industrial Systems (WMCIS’2014) 35, 2 (2014), 138–143.

O. Cros, L. George, and X.Li. 2015. A protocol for mixed-criticality management in switched ethernet networks. In Proc.
3rd Workshop on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 12–17.

L. Cucu-Grosjean. 2013. Independence - a misunderstood property of and for probabilistic real-time systems. In In Real-Time
Systems: the past, the present and the future, N. Audsley and S.K. Baruah (Eds.). 29–37.

L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis, J. Abella, E. Mezzetti, E. Quiones, and F.J.
Cazorla. 2012. Measurement-Based Probabilistic Timing Analysis for Multi-path Programs.. In Proc. 24th Euromicro
Conference on Real-Time Systems (ECRTS). 91–101.

V. David, A. Barbot, and D. Chabrol. 2014. Dependable Real-Time System and Mixed Criticality: Seeking Safety, Flexibility
and Efficiency with Kron-OS. Ada User Journal 35, 4 (2014), 259–265.

R.I. Davis. 1995. On exploiting spare capacity in hard real-time systems. Ph.D. Dissertation. University of York, UK.

R.I. Davis and M. Bertogna. 2012. Optimal Fixed Priority Scheduling with Deferred Pre-emption. In Proc. IEEE Real-Time
Systems Symposium. 39–50.

R.I. Davis and A. Burns. 2005. Hierarchical Fixed Priority Preemptive Scheduling. In Proc. of IEEE Real-Time Systems
Symposium (RTSS). 389–398.

R.I. Davis and A. Burns. 2006. Resource Sharing in Hierarchical Fixed Priority Preemptive Systems. In Proceeding IEEE
Real-Time Systems Symposium (RTSS).

R.I. Davis and A. Burns. 2007. Robust Priority Assignment for Fixed Priority Real-Time Systems. In Proc. of IEEE Real-
Time Systems Symposium (RTSS).

R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. 2007. Controller Area Network (CAN) Schedulability Analysis: Refuted,
Revisited and Revised. Journal of Real-Time Systems 35, 3 (2007), 239–272.

R.I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean. 2013. Analysis of Probabilistic Cache Related
Pre-emption Delays. In ECRTS. 129–138.

R.I. Davis, K. Tindell, and A. Burns. 1993. Scheduling Slack Time in Fixed Priority Preemptive Systems. In Proc. 14th
IEEE Real-Time Systems Symposium.

R.I. Davis and A. J. Wellings. 1995. Dual Priority Scheduling. In Proc. 16th IEEE Real-Time Systems Symposium. 100–109.

M. L. Dertouzos. 1974. Control Robotics: The Procedural Control of Physical Processes.. In IFIP Congress (2002-01-03).
807–813.

J.L. Dı́az, D.F. Garcia, K. Kim, C.G. Lee, L.L. Bello, J.M. López, and O. Mirabella. 2002. Stochastic Analysis of Periodic
Real-Time Systems. In IEEE Real-Time Systems Symposium (RTSS).

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

http://dx.doi.org/10.1109/RTSS.2015.36

A Survey of Research into Mixed Criticality Systems 82:27

J. Diemer and R. Ernst. 2010. Back Suction: Service Guarantees for Latency-Sensitive On-chip Networks. In Proceedings of
the 2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip (Proc. NOCS ’10). IEEE Computer Society,
155–162.

A.C. Dimopoulos, G. Bravos, G. Dimitrakopoulos, M. Nikolaidou, V. Nikolopoulos, and D. Anagnostopoulos. 2016. A
multi-core context-aware management architecture for mixed-criticality smart building applications. In Proc. System of
Systems Engineering Conference (SoSE). IEEE, 1–6.

F. Dorin, P. Richard, M. Richard, and J. Goossens. 2010. Schedulability and sensitivity analysis of multiple criticality tasks
with fixed-priorities. Real-Time Systems Journal 46, 3 (2010), 305–331.

S. Draskovic, P. Huang, and L. Thiele. 2016. On the Safety of Mixed-Criticality Scheduling. In Proc. 4th WMC (RTSS). 6.
A. Easwaran. 2013. Demand-based Scheduling of Mixed-Criticality Sporadic Tasks on One Processor. In Proc. IEEE 34th

Real-Time Systems Symposium. 78–87.
A. Easwaran and I. Shin. 2014. Compositional Mixed-Criticality Scheduling. CRTS 2014 (2014).
L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst. 2014. A mixed critical memory controller using bank privatization and fixed

priority scheduling. In Proc. Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE, 1–10.
S. Edgar and A. Burns. 2001. Statistical Analysis of WCET for Scheduling. In Proc. 22nd IEEE Real-Time Systems

Symposium.
P. Ekberg, M. Stigge, N. Guan, and W. Yi. 2013. State-Based Mode Switching with Applications to Mixed Criticality

Systems. In Proc. WMC, RTSS. 61–66.
P. Ekberg and W. Yi. 2012. Bounding and Shaping the Demand of Mixed-Criticality Sporadic Task Systems. In ECRTS.

135–144.
P. Ekberg and W. Yi. 2014. Bounding and Shaping the Demand of Generalized Mixed-Criticality Sporadic Task Systems.

Journal of Real-Time Systems 50 (2014), 48–86.
P. Ekberg and W. Yi. 2015a. A Note on Some Open Problems in Mixed-Criticality Scheduling. In Proc. RTOPS, 27th ECRTS.

1–2.
P. Ekberg and W. Yi. 2015b. Schedulability analysis of a graph-based task model for mixed-criticality systems. Real-Time

Systems (2015), 1–37.
B. Engel. 2016. Tightening Critical Section Bounds in Mixed-Criticality Systems through Preemptible Hardware

Transactional Memory. In Proc. OSPERT. 17–22.
R. Ernst and M. Di Natale. 2016. Mixed Criticality Systems?A History of Misconceptions? IEEE Design & Test 33, 5

(2016), 65–74.
A. Esper, G. Neilissen, V. Neils, and E. Tovar. 2015. How Realistic is the mixed-criticality real-time system model. In 23rd

International Conference on Real-Time Networks and Systems (RTNS 2015). 139–148.
C. Evripidou and A. Burns. 2016. Scheduling for Mixed-Criticality Hypervisor Systems in the Automotive Domain. In Proc.

4th WMC (RTSS). 6.
G. Farrall, C. Stellwag, J. Diemer, and R. Ernst. 2013. Hardware and Software Support for Mixed-Criticality Multicore

Systems. In Proceedings of the Conference on Design, Automation and Test in Europe, WICERT (DATE).
T. Fleming, S.K. Baruah, and A. Burns. 2016. Improving the Schedulability of Mixed Criticality Cyclic Executives via

Limited Task Splitting. In Proc. of the 24th International Conference RTNS. ACM, 277–286.
T. Fleming and A. Burns. 2013. Extending Mixed Criticality Scheduling. In Proc. WMC, RTSS. 7–12.
T. Fleming and A. Burns. 2014. Incorporating The Notion of Importance into Mixed Criticality Systems. In Proc. 2nd

Workshop on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 33–38.
T. Fleming and A. Burns. 2015. Investigating Mixed Criticality Cyclic Executive Schedule Generation. In Proc. 3rd

Workshop on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 42–47.
T. Fleming and A. Burns. 2016. Utilising Asymmetric Parallelism in Multi-Core MCS Implemented via Cyclic Executives.

In Proc. 4th WMC (RTSS). 6.
O. Gettings, S. Quinton, and R.I. Davis. 2015. Mixed Criticality Systems with Weakly-Hard Constraints. In 23rd

International Conference on Real-Time Networks and Systems (RTNS 2015). 237–246.
G. Giannopoulou, P. Huang, A. Gomez, and L. Thiele. 2015. Mixed-Criticality runtime mechanisms and evaluation on

multicore. In Proc. RTAS.
Georgia Giannopoulou, Peter Poplavko, Dario Socci, Pengcheng Huang, Nikolay Stoimenov, Paraskevas Bourgos, Lothar

Thiele, Marius Bozga, Saddek Bensalem, Sylvain Girbal, and others. 2016. DOL-BIP-Critical: A tool chain for rigorous
design and implementation of mixed-criticality multi-core systems. Technical Report. Technical report 363, ETH Zurich,
Laboratory TIK.

G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. 2013. Scheduling of Mixed-Criticality Applications on Resource-
Sharing Multicore Systems. In Proc. Int. Conference on Embedded Software (EMSOFT). Montreal.

G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. 2014. Mapping mixed-criticality applications on multi-core
architectures. In Proc. Design, Automation and Test in Europe Conference and Exhibition (DATE). IEEE, 1–6.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:28 A. Burns and R.I.Davis

G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. D. de Dinechin. 2015. Mixed-criticality scheduling on cluster-
based manycores with shared communication and storage resources. Real-Time Systems (2015), 1–51.

M. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens. 2016. A Globally Arbitrated Memory Tree for Mixed-
Time-Criticality Systems. IEEE Trans. Comput. (2016).

K. Goossens, A. Azevedo, K. Chandrasekar, M.D. Gomony, S. Goossens, M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A.B.
Nejad, A. Nelson, and S. Sinha. 2013b. Virtual Execution Platforms for Mixed-Time-Criticality Systems: The CompSOC
Architecture and Design Flow. SIGBED Rev. 10, 3 (2013), 23–34.

S. Goossens, B. Akesson, and K. Goossens. 2013a. Conservative open-page policy for mixed time-criticality memory
controllers. In Proc. DATE. 525–530.

S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. 2013c. A reconfigurable real-time SDRAM controller for mixed
time-criticality systems. In Int’l Conf. on Hardware/Software Codesign and System Synthesis (CODES+ISSS).

D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty. 2012. Time-triggered implementations of mixed-criticality
automotive software. In Proceedings of the Conference on Design, Automation and Test in Europe (Proc. DATE). 1227–
1232.

R. Gratia, T. Robert, and L. Pautet. 2014. Adaptation of RUN to Mixed-Criticality Systems. In Proc. 8th Junior Researcher
Workshop on Real-Time Computing, RTNS.

R. Gratia, T. Robert, and L. Pautet. 2015. Generalized Mixed-Criticality Scheduling based on RUN. In 23rd International
Conference on Real-Time Networks and Systems (RTNS 2015). 267–276.

P. Graydon and I. Bate. 2013. Safety Assurance Driven Problem Formulation for Mixed-Criticality Scheduling. In Proc.
WMC, RTSS. 19–24.

D. Griffin, I. Bate, B. Lesage, and F. Soboczenski. 2015. Evaluating Mixed Criticality Scheduling Algorithms with Realistic
Workloads. In Proc. 3rd Workshop on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.).
24–29.

S. Groesbrink, L. Almeida, M. de Sousa, and S.M. Petters. 2014. Towards Certifiable Adaptive Reservations for Hypervisor-
based Virtualization. In Proc. of the 20th Real-Time and Embedded Technology and Applications Symposium (RTAS).

S. Groesbrink, S. Oberthr, and D. Baldin. 2013. Architecture for Adaptive Resource Assignment to Virtualized Mixed-
Criticality Real-Time Systems. In Special Issue on the 4th Workshop on Adaptive and Reconfigurable Embedded Systems
(APRES 2012), Vol. 10(1). ACM SIGBED Review.

K. Grüttner. 2017. Empowering Mixed-Criticality System Engineers in the Dark Silicon Era: Towards Power and
Temperature Analysis of Heterogeneous MPSoCs at System Level. In Model-Implementation Fidelity in Cyber Physical
System Design. Springer, 57–90.

C. Gu, N. Guan, Q. Deng, and W. Yi. 2014. Partitioned mixed-criticality scheduling on multiprocessor platforms. In Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2014. IEEE, 1–6.

C. Gu, N. Guan, Q. Deng1, and W. Yi. 2013. Improving OCBP-based Scheduling for Mixed-Criticality Sporadic Task
Systems. In Proc. RTCSA.

X. Gu and A. Easwaran. 2014. Optimal Speedup Bound for 2-Level Mixed-Criticality Arbitrary Deadline Systems. In
Proceedings RTSOPS (ECRTS). 15–16.

X. Gu and A. Easwaran. 2016. Dynamic Budget Management with Service Guarantees for Mixed-Criticality Systems. In
Proc. Real-Time Systems Symposium (RTSS). IEEE, 47–56.

X. Gu, K.-M. Phan, A. Easwaran, and I. Shin. 2015. Resource Efficient Isolation Mechanisms in Mixed-Criticality
Scheduling. In Proc. 27th ECRTS. IEEE, 13–24.

N. Guan, P. Ekberg, M. Stigge, and W. Yi. 2011. Effective and Efficient Scheduling of Certifiable Mixed-Criticality Sporadic
Task Systems. In IEEE RTSS. 13–23.

Z. Guo. 2016. Mixed-Criticality Scheduling on Varying-Speed Platforms with Bounded Performance Drop Rate. In Proc
SMARTCOMP. IEEE, 1–3.

Z. Guo and S. Baruah. 2014. Implementing Mixed-criticality Systems Upon a Preemptive Varying-speed Processor. Leibniz
Transactions on Embedded Systems 1, 2 (2014), 03–103:19.

Z. Guo and S.K. Baruah. 2015. The concurrent consideration of uncertainty in WCETs and processor speeds in mixed
criticality systems. In 23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 247–256.

Z. Guo, L. Santinelli, and K. Yang. 2015. EDF Schedulability Analysis on Mixed-Criticality Systems with Permitted Failure
Probability. In Proc. RTCSA.

H. Hamza, A. Hughes, and R. Kirner. 2015. On the Design of a Java Virtual Machine for Mixed-Criticality Systems. In
Proc. JTRES. ACM.

J.J. Han, X. Tao, D. Zhu, and H. Aydin. 2016. Criticality-Aware Partitioning for Multicore Mixed-Criticality Systems. In
Proc. Parallel Processing (ICPP). IEEE, 227–235.

Z. Hanzálek, T. Tunys, and P. Sucha. 2016. An analysis of the non-preemptive mixed-criticality match-up scheduling
problem. Journal of Scheduling (2016), 1–7.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:29

J. Harbin, T. Fleming, L.S. Indrusiak, and A. Burns. 2015. GMCB: An industrial benchmark for use in real-time mixed-
criticality networks-on-chip. In Proc. WATERS, 27th ECRTS.

P. Haririan and A. Garcia-Ortiz. 2015. A framework for hardware-based DVFS management in multicore mixed-criticality
systems. In Proc. 10th Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC). IEEE, 1–7.

M. Hassan and H. Patel. 2016. Criticality-and requirement-aware bus arbitration for multi-core mixed criticality systems. In
Proc RTAS. IEEE, 1–11.

M. Hassan, H. Patel, and R. Pellizzoni. 2015. A framework for scheduling DRAM memory accesses for multi-core mixed-
time critical systems. In Proc. RTAS. IEEE, 307–316.

C. Herber, A. Richter, H. Rauchfuss, and A. Herkersdorf. 2013. Spatial and Temporal Isolation of Virtual CAN Controllers.
In Proc. VtRES, RTCSA.

J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson. 2012. RTOS Support for Multicore Mixed-Criticality
Systems. In Proc. of the 18th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).

F. Herrera, S.H.A. Niaki, and I. Sander. 2013. Towards a Modelling and Design Framework for Mixed-Criticality SoCs and
Systems-of-Systems. In Proc. 16th Euromicro Conf. on Digital Systems Design. 989–996.

F. Herrera, P. Penil, and E. Villar. 2015. A Model-based, Single-Source approach to Design-Space Exploration and Synthesis
of Mixed-Criticality Systems. In Proc. SCOPES. 88–91.

M. Hikmet, M.M. Kuo, P.S. Roop, and P. Ranjitkar. 2016. Mixed-Criticality Systems as a Service for Non-Critical Tasks. In
Proc. ISORC. 221–228.

M.G. Hill and T.W. Lake. 2000. Non-Interference Analysis for Mixed Criticality Code in Avionics Systems. In Proceedings
of the 15th IEEE international conference on Automated software engineering. IEEE Computer Society, 257–260.

T. Hollstein, S.P Azad, T. Kogge, and B. Niazmand. 2015. Mixed-criticality NoC partitioning based on the
NoCDepend dependability technique. In Proc. 10th Symposium on Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC). IEEE, 1–8.

P. Holman and J.H. Anderson. 2005. Adapting Pfair scheduling for symmetric multiprocessors. Journal of Embedded
Computing 1, 4 (2005), 543–564.

B. Hu, K. Huang, G. Chen, L. Cheng, and A. Knoll. 2015. Adaptive runtime shaping for mixed-criticality systems. In Proc.
12th International Conference on Embedded Software, EMSOFT. IEEE Press, 11–20.

B. Hu, K. Huang, G. Chen, L. Cheng, and A. Knoll. 2016a. Adaptive workload management in mixed-criticality systems.
ACM Transactions on Embedded Computing Systems (TECS) 16, 1 (2016), 14.

B. Hu, K. Huang, P. Huang, L. Thiele, and A. Knoll. 2016b. On-the-fly fast overrun budgeting for mixed-criticality systems.
In Proc. International Conference on Embedded Software (EMSOFT). IEEE, 1–10.

H-M. Huang, C. Gill, and C. Lu. 2012. Implementation and Evaluation of Mixed Criticality Scheduling Approaches for
Periodic Tasks. In Proc. of the IEEE Real-Time Technology and Applications Symposium (RTAS). 23–32.

H-M. Huang, C. Gill, and C. Lu. 2014a. Implementation and Evaluation of Mixed Criticality Scheduling Approaches for
Sporadic Tasks. ACM Trans. Embedded Systems 13 (2014), 126:1– 126:25.

P. Huang, G. Giannopoulou, R. Ahmed, D.B. Bartolini, and L. Thiele. 2015. An Isolation Scheduling Model for Multicores.
In Proc. IEEE Real-Time Systems Symposium (RTSS). 141–152.

P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. 2013. Service Adaptions for Mixed-Criticality Systems. Technical
Report 350. ETH Zurich, Laboratory TIK.

P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. 2014. Service Adaptions for Mixed-Criticality Systems. In 19th
Asia and South Pacific Design Automation Conference (ASP-DAC). Singapore.

P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele. 2014b. Energy efficient DVFS scheduling for mixed-criticality systems.
In Proc. Embedded Software (EMSOFT). IEEE, 1–10.

P. Huang, P. Kumar, N. Stoimenov, and L. Thiele. 2013. Interference Constraint GraphA new specification for mixed-
criticality systems. In Proc. 18th Emerging Technologies and Factory Automation (ETFA). IEEE, 1–8.

P. Huang, H. Yang, and L. Thiele. 2014. On the scheduling of fault-tolerant mixed-criticality systems. In Proc. Design
Automation Conference (DAC). IEEE, 1–6.

B. Huber, C. El Salloum, and R. Obermaisser. 2008. A resource management framework for mixed-criticality embedded
systems. In 34th IEEE IECON. 2425–2431.

L.S. Indrusiak, J. Harbin, and A. Burns. 2015. Average and Worst-Case Latency Improvements in Mixed-Criticality
Wormhole Networks-on-Chip. In Proc. 27th ECRTS. IEEE, 47–56.

S. Islam, R. Lindstrom, and N.Suri. 2006. Dependability driven integration of mixed criticality SW components. In 9th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed Computing, ISORC 2006. 11.

P. Ittershagen, K. Gruttner, and W. Nebel. 2015. Mixed-criticality system modelling with dynamic execution mode switching.
In 2015 Forum on Specification and Design Languages (FDL). 1–6.

V. Izosimov and E. Levholt. 2015. Mixed Criticality metric for safety-critical Cyber-Physical systems on multicore
archiectures. MEDIAN: Methods 2, 8 (2015).

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

82:30 A. Burns and R.I.Davis

J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and F.J. Cazorla. 2014. A Dual-Criticality Memory Controler
(DCmc): Proposal and Evaluation of a Space Case Study. In Proc. IEEE Real-Time Systems Symposium. IEEE, 207–217.

M. Jan, L. Zaourar, V. Legout, and L. Pautet. 2014. Handling Criticality Mode Change in Time-Triggered Systems through
Linear Programming. Ada User Journal, Proc of Workshop on Mixed Criticality for Industrial Systems (WMCIS’2014)
35, 2 (2014), 138–143.

M. Jan, L. Zaourar, and M. Pitel. 2013. Maximizing the Execution Rate of Low Criticality Tasks in Mixed Criticality System.
In Proc. 1st WMC, RTSS. 43–48.

X. Jin, J. Wang, and P. Zeng. 2015. End-to-end delay analysis for mixed-criticality WirelessHART networks. Automatica
Sinica, IEEE/CAA Journal of 2, 3 (2015), 282–289.

X. Jin, C. Xia, H. Xu, J. Wang, and P. Zeng. 2016. Mixed Criticality Scheduling for Industrial Wireless Sensor Networks.
Sensors 16, 9 (2016), 1376.

C.B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs. Transactions on Programming
Languages and System 5, 4 (1983), 596–619.

M. Joseph and P. Pandya. 1986. Finding Response Times in a Real-Time System. BCS Computer Journal 29, 5 (1986),
390–395.

R. Kaiser. 2007. The PikeOS concept history and design,. Technical Report white paper. SYSGO.
B. Kalyanasundaram and K. Pruhs. 2000. Speed is as powerful as clairvoyance. Journal of the ACM (JACM) 47, 4 (2000),

617–643.
C. Kamienski, M. Jentsch, M. Eisenhauer, J. Kiljander, E. Ferrera, P. Rosengren, J. Thestrup, E. Souto, W. S. Andrade, and D.

Sadok. 2016. Application development for the Internet of Things: A context-aware mixed criticality systems development
platform. Computer Communications (2016).

O.R. Kelly, H. Aydin, and B. Zhao. 2011. On Partitioned Scheduling of Fixed-Priority Mixed-Criticality Task Sets. In IEEE
10th International Conference on Trust, Security and Privacy in Computing and Communications. 1051–1059.

H. Kim, D. Broman, E. Lee, M. Zimmer, A. Shrivastava, and J. Oh. 2015. A predictable and command-level priority-
based DRAM controller for mixed-criticality systems. In Proc. Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 317–326.

N. Kim, B.C. Ward, M. Chisholm, C-Y. Fu, J.H. Anderson, and F.D. Smith. 2016. Attacking the one-out-of-m multicore
problem by combining hardware management with mixed-criticality provisioning. In Proc RTAS). IEEE, 1–12.

Young-Seung Kim and Hyun-Wook Jin. 2014. Towards a practical implementation of criticality
mode change in RTOS. In Emerging Technology and Factory Automation (ETFA), 2014 IEEE. 1–4.
DOI:http://dx.doi.org/10.1109/ETFA.2014.7005318

A. Kostrzewa, S. Saidi, and R. Ernst. 2015. Dynamic Control for Mixed-Criticality Networks-on-Chip. In Proc. IEEE
Real-Time Systems Symposium (RTSS). 317–326.

O. Kotaba, J. Nowotschy, M. Paulitschy, S.M. Petters, and H. Theiling. 2013. Multicore In Real-Time Systems Temporal
Isolation Challenges Due To Shared Resources. In Proceedings of the Conference on Design, Automation and Test in
Europe, WICERT (DATE).

A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange, M. Roy, and F. Vargas. 2013. MONITORING ON-LINE TIMING
INFORMATION TO SUPPORT MIXED-CRITICAL WORKLOADS. In WiP, RTSS. 9–10.

A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, and C. Rochange. 2014a. Run-time Control to Increase Task Parallelism in
Mixed-Critical Systems. In ECRTS. 119–128.

A. Kritikakou, C. Pagetti, C. Rochange, M. Roy, M. Faugre, S. Girbal, and D.G. Prez. 2014b. Distributed run-time WCET
controller for concurrent critical tasks in mixed-critical systems. In Proc. RTNS.

N.G. Kumar, S. Vyas, R.K. Cytron, C.D. Gill, J. Zambreno, and P.H. Jones. 2014. Cache design for mixed criticality real-time
systems. In Proc. ICCD. IEEE, 513–516.

A. Lackorzynski, A. Warg, M. Voelp, and H. Haertig. 2012. Flattening Hierarchical Scheduling. In Proc. ACM EMSOFT.
93–102.

K. Lakshmanan, D. de Niz, and R. Rajkumar. 2011. Mixed-Criticality Task Synchronization in Zero-Slack Scheduling. In
IEEE RTAS. 47–56.

K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno. 2010. Resource Allocation in Distributed Mixed-Criticality
Cyber-Physical Systems. In ICDCS. 169–178.

A. Larrucea, I. Martinez, V. Brocal, S. Peirò, H. Ahmadian, J. Perez, and R. Obermaisser. 2016. DREAMS: Cross-Domain
Mixed-Criticality Patterns. In Proc. 4th WMC (RTSS). 6.

J. Lee, H.S. Chwa, A. Easwaran, I. Shin, and I. Lee. 2015. Towards Compositional Mixed-Criticality Real-Time scheduling
in Open Systems. In Proc. 8th Workshop on Compositional Real-Time Systems (CRTS), RTSS, L. Almeida and D. de Niz
(Eds.).

J. Lee, H.S. Chwa, A. Easwaran, I. Shin, and I. Lee. 2016. Towards compositional mixed-criticality real-time scheduling in
open systems: invited paper. ACM SIGBED Review 13, 3 (2016), 49–51.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

http://dx.doi.org/10.1109/ETFA.2014.7005318

A Survey of Research into Mixed Criticality Systems 82:31

J. Lee, K-M. P, Z Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee. 2014. MC-Fluid: Fluid Model-based Mixed-Criticality
Scheduling on Multiprocessors. In Proc. IEEE Real-Time Systems Symposium. IEEE, 41–52.

V. Legout, M. Jan, and L. Pautet. 2013. Mixed-Criticality Multiprocessor Real-Time Systems: Energy Consumption vs
Deadline Misses. In Proc. ReTiMiCS, RTCSA, L. George and G. Lipari (Eds.). 1–6.

J.P. Lehoczky and S. Ramos-Thuel. 1992. An Optimal Algorithm for Scheduling Soft-Aperiodic Tasks Fixed-Priority
Preemptive systems. In Proc. 13th IEEE Real-Time Systems Symposium. 110–123.

J.P. Lehoczky, L. Sha, and J.K. Strosnider. 1987. Enhanced Aperiodic Responsiveness in a Hard Real-Time Environment.
In Proc. 8th IEEE Real-Time Systems Symposium. 261–270.

B. Lesage, I. Puaut, and A. Seznec. 2012. PRETI: Partitioned real-time shared cache for mixed-criticality real-time systems.
In Proc. 20th RTNS. 171–180.

J. Y-T. Leung and J. Whitehead. 1982. On the Complexity of Fixed-Priority Scheduling of Periodic Real-Time Tasks.
Performance Evaluation (Netherlands) 2, 4 (Dec. 1982), 237–250.

H. Li. 2013. Scheduling Mixed-Criticality Real-Time Systems. Ph.D. Dissertation. The University of North Carolina at
Chapel Hill.

H. Li and S.K. Baruah. 2010a. An algorithm for scheduling certifiable mixed-criticality sporadic task systems. In Proc. of
the Real-Time Systems Symposium. IEEE Computer Society Press, San Diego, CA, 183–192.

H. Li and S.K. Baruah. 2010b. Load-based schedulability analysis of certifiable mixed-criticality systems. In Proc. EMSOFT.
ACM Press, 99–107.

H. Li and S.K. Baruah. 2012. Global mixed-criticality scheduling on multiprocessors. In Proc, ECRTS. IEEE Computer
Society Press, 99–107.

J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. 2016. Mixed-Criticality Federated Scheduling for Parallel Real-
Time Tasks. In Proc. RTAS. IEEE, 1–12.

Y. Li, R. West, and E. Missimer. 2013. The Quest-V Separation Kernel for Mixed Criticality Systems. In Proc. 1st WMC,
RTSS. 31–36.

Z. Li and L. Wang. 2016. Memory-Aware Scheduling for Mixed-Criticality Systems. In IProc ICCSA. Springer, LNCS 9787,
140–156.

J. Lin, A.M.K. Cheng, D. Steel, and M.Y.-C. Wu. 2014. Scheduling Mixed-Criticality Real-Time Tasks with Fault Tolerance.
In Proc. 2nd Workshop on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 39–44.

G. Lipari and E. Bini. 2005. A methodology for designing hierarchical scheduling systems. J. Embedded Comput. 1, 2
(2005), 257–269.

G. Lipari and G. Buttazzo. 2013. Resource Reservation for Mixed Criticality Systems. In Proceeding of Workshop on
Real-Time Systems: the past, the present, and the future. York, UK, 60–74.

C.L. Liu and J.W. Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment. JACM
20, 1 (1973), 46–61.

G. Liu, Y. Lu, S. Wang, and Z. Gu. 2014. Partitioned Multiprocessor Scheduling of Mixed-Criticality Parallel Jobs. In Proc.
Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE.

J. López, J. Dı́az, J. Entrialgo, and D. Garcı́a. 2008. Stochastic analysis of real-time systems under preemptive priority-driven
scheduling. Real-Time Systems (2008), 180–207.

A. Lyons and G. Heiser. 2014. Mixed-Criticality Support in a High-Assurance, General-Purpose Microkernel. In Proc. 2nd
Workshop on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 9–14.

M. Mahdiani and A. Masrur. 2016. Introducing Utilization Caps into Mixed-Criticality Scheduling. In Proc. Digital System
Design (DSD). IEEE, 388–395.

S.O. Marinescu, D. Tamas-Selicean, V. Acretoaie, and P. Pop. 2012. Timing Analysis of Mixed-Criticality Hard Real-Time
Applications Implemented on Distributed Partitioned Architectures. In 17th IEEE International Conference on Emerging
Technologies and Factory Automation.

A. Masrur. 2016. A probabilistic scheduling framework for mixed-criticality systems. In Proc. DAC. ACM, 132.
A. Masrur, D. Muller, and M. Werner. 2015. Bi-Level Deadline Scaling for Admission Control in Mixed-Criticality Systems.

In Proc. 21st IEEE Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE, 100–109.
S. Maurer and R. Kirner. 2015. Cross-criticality interfaces for cyber-physical systems. In 2015

International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP). 1–8.
DOI:http://dx.doi.org/10.1109/EBCCSP.2015.7300670

D. Maxim and L. Cucu-Grosjean. 2013. Response time analysis for fixed-priority tasks with multiple probabilistic
parameters. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th. IEEE, 224–235.

D. Maxim, R.I. Davis, L. Cucu-Grosjean, and A. Easwaran. 2016. Probabilistic Analysis for Mixed Criticality Scheduling
with SMC and AMC. In Proc. 4th WMC (RTSS). 6.

M. Mendez, J.L.G. Rivas, D.F. Garca-Valdecasas, and J. Diaz. 2013. Open platform for mixed-criticality applications. In
Proceedings of the Conference on Design, Automation and Test in Europe, WICERT (DATE).

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

http://dx.doi.org/10.1109/EBCCSP.2015.7300670

82:32 A. Burns and R.I.Davis

E. Missimer, K. Missimer, and R. West. 2016. Mixed-Criticality Scheduling with I/O. In Proc. ECRTS. 120–130.
M. Mollison, J. Erickson, J. Anderson, S.K. Baruah, and J. Scoredos. 2010. Mixed Criticality Real-Time Scheduling for

Multicore Systems. In Proc. of the 7th IEEE International Conference on Embedded Software and Systems. 1864–1871.
B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic. 2012. IDAMC: A Many-Core Platform with Run-

Time Monitoring for Mixed-Criticality. Ninth IEEE International Symposium on High-Assurance Systems Engineering
(HASE’05) (2012), 24–31.

D. Muller and A. Masrur. 2014. The Scheduling Region of two-level Mixed-Criticality Systems based on EDF-VD. In
Proceedings of the Conference on Design, Automation and Test in Europe (Proc. DATE). 978–981.

K. Napier, O. Horst, and C. Prehofer. 2016. Comparably Evaluating Communication Performance within Mixed-Criticality
Systems. In Proc. 4th WMC (RTSS). 6.

S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R.V. Prasad. 2016. Exploring energy saving for mixed-criticality
systems on multi-cores. In Proc. RTAS. IEEE, 1–12.

M. Neukirchner, P. Axer, T. Michaels, and R. Ernst. 2013a. Monitoring of Workload Arrival Functions for Mixed-Criticality
Systems. In Proc. IEEE 34th Real-Time Systems Symposium. 88–96.

M. Neukirchner, S. Quinton, and K. Lampka. 2013b. Multi-Mode Monitoring for Mixed-Criticality Real-time Systems. In
Int’l Conf. on Hardware/Software Codesign and System Synthesis (CODES+ISSS).

M. Neukirchner, S. Stein, H. Schrom, J. Schlatow, and R. Ernst. 2011. Contract-based dynamic task management for mixed-
criticality systems. IEEE, 18–27.

R. Nevalainen, U. Kremer, O. Slotosch, D. Truscan, and V. Wong. 2013. Impact of multicore platforms in hardware and
software certification. In Proceedings of the Conference on Design, Automation and Test in Europe, WICERT (DATE).

L.M. Ni and P.K. McKinley. 1993. A survey of wormhole routing techniques in direct networks. Computer 26, 2 (Feb 1993),
62–76.

D.de Niz, K. Lakshmanan, and R. Rajkumar. 2009. On the Scheduling of Mixed-Criticality Real-Time Task Sets. In Real-
Time Systems Symposium. IEEE Computer Society, 291–300.

D.de Niz and L.T.X. Phan. 2014. Partitioned scheduling of multi-modal mixed-criticality real-time systems on multiprocessor
platforms. In Proc. Real-Time and Embedded Technology and Applications Symposium (RTAS). 111–122.

D.de Niz, L. Wrage, A. Rowe, and R. Rajkumar. 2013. Utility-Based Resource Overbooking For Cyber-Physical Systems.
In Proc. RTCSA.

A. Novak, P. Sucha, and Z. Hanzalek. 2016a. Efficient Algorithm for Jitter Minimization in Time-Triggered Periodic Mixed-
Criticality Message Scheduling Problem. In Proc. RTNS. ACM, 23–31.

A. Novak, P. Sucha, and Z. Hanzalek. 2016b. On Solving Non-preemptive Mixed-criticality Match-up Scheduling Problem
with Two and Three Criticality Levels. arXiv preprint arXiv:1610.07384 (2016).

J. Nowotsch, M. Paulitsch, D. Bhler, H. Theiling, S. Wegener, and M. Schmidt. 2014. Multi-core Interference-Sensitive
WCET Analysis Leveraging Runtime Resource Capacity Enforcement. In ECRTS. 109–118.

R. Obermaisser, Z. Owda, M. Abuteir, H. Ahmadian, and D. Wber. 2014. End-to-end Real-Time COmmunication in Mixed-
Criticality Systems based on Netowrked Multicore Chips. In Proc 17th Euromicor Conference on Digital Systems Design.
IEEE, 293–302.

R. Obermaisser and D. Weber. 2014. Architectures for mixed-criticality systems based on networked multi-core chips. In
Proc. ETFA. 1–10.

S. Osmolovskiy, I. Fedorov, V. Vinogradov, E. Ivanova, and D. Shakurov. 2016. Mixed-criticality scheduling in real-time
multiprocessor systems. In Proc. Conference of Open Innovations Association and Seminar on Information Security and
Protection of Information Technology (FRUCT-ISPIT). 257–265.

E. Papastefanakis, X. Li, and L. George. 2016. A mixed criticality approach for the security of critical flows in a network-
on-chip. ACM SIGBED Review 13, 4 (2016), 67–72.

T. Park and S Kim. 2011. Dynamic Scheduling Algorithm and its Schedulability Analysis for Certifiable Dual-Criticality
Systems. In Proc. ACM EMSOFT. 253–262.

R.M. Pathan. 2012. Schedulability analysis of Mixed Criticality Systems on Multiprocessors. In Proc. of ECRTS, Pisa.
309–320.

R.M. Pathan. 2014. Fault-tolerant and real-time scheduling for mixed-criticality systems. Journal of Real-Time Systems 50,
4 (2014), 509–547.

M. Paulitsch, O.M. Duarte, H. Karray, K. Mueller, D. Muench, and J. Nowotsch. 2015. Mixed-Criticality Embedded
Systems–A Balance Ensuring Partitioning and Performance. In Euromicro Conference on Digital System Design (DSD).
IEEE, 453–461.

R. Pellizzoni, P. Meredith, M-Y. Nam, M. Sun, M. Caccamo, and L. Sha. 2009. Handling mixed-criticality in SoC-based
real-time embedded systems. In Proc. of the 7th ACM international conference on Embedded software, EMSOFT. ACM
Press, 235–244.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

A Survey of Research into Mixed Criticality Systems 82:33

R. Pellizzoni, A. Schranzhofery, J. Cheny, M. Caccamo, and L. Thiele. 2010. Worst case delay analysis for memory
interference in multicore systems. In Design, Automation Test in Europe Conference Exhibition (DATE). 741–746.

H. Pérez, J.J. Gutiérrez, S. Peiró, and A. Crespo. 2017. Distributed architecture for developing mixed-criticality systems in
multi-core platforms. Journal of Systems and Software 123 (2017), 145–159.

J. Perez, D. Gonzalez, S. Trujillo, T. Trapman, and J. M. Garate. 2013. A Safety Concept for a Wind Power Mixed Criticality
Embedded System Based on Multicore Partitioning. In Proc. 1st WMC, RTSS. 25–30.

P. Petrakis, M. Abuteir, M.D. Grammatikakis, K. Papadimitriou, R. Obermaisser, Z. Owda, A. Papagrigoriou, M. Soulie, and
M. Coppola. 2016. On-chip networks for mixed-criticality systems. In Proc. Application-specific Systems, Architectures
and Processors (ASAP. IEEE, 164–169.

P. Pop, L. Tsiopoulos, S. Voss, O. Slotosch, C. Ficek, U. Nyman, and A. Ruiz. 2013. Methods and tools for reducing
certification costs of mixed-criticality applications on multi-core platforms: the RECOMP approach. In Proceedings of
the Conference on Design, Automation and Test in Europe, WICERT (DATE).

T. Pop, P. Eles, and Z. Peng. 2002. Holistic scheduling and analysis of mixed time/event-triggered distributed embedded
systems. In Proceedings of the tenth international symposium on Hardware/software codesign (CODES ’02). ACM, 187–
192.

S. Punnekkat, R.I Davis, and A. Burns. 1997. Sensitivity Analysis of Real-Time Task Sets. In Proc. of the Conference of
Advances in Computing Science - ASIAN ’97. Springer, 72–82.

S. Ramanathan and A. Easwaran. 2015. MC-Fluid: rate assignment strategies. In Proc. 3rd Workshop on Mixed Criticality
Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 6–11.

S. Ramanathan, X. Gu, and A. Easwaran. 2016. The Feasibility Analysis of Mixed-Criticality Systems. In Proc. RTOPS,
ECRTS.

P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt. 2011. RUN: Optimal multiprocessor real-time scheduling via
reduction to uniprocessor. In Real-Time Systems Symposium (RTSS). IEEE, 104–115.

J. Ren and L.T.X. Phan. 2015. Mixed-Criticality Scheduling on Multiprocessors using Task Grouping. In Proc. 27th ECRTS.
IEEE, 25–36.

P. Rodriguez, L. George, Y. Abdeddaim, and J. Goossens. 2013. Multi-Criteria Evaluation of Partitioned EDF-VD for Mixed
Criticality Systems Upon Identical Processors. In Proc. 1st WMC, RTSS. 49–54.

S. Saewong, R. Rajkumar, J.P. Lehoczky, and M.H. Klein. 2002. Analysis of Hierarchical Fixed- Priority Scheduling. In
Proc. of the 14th Euromicro Conference on Real-Time Systems (ECRTS). 173–181.

S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B.D. de Dinechin. 2015. The shift to multicores in real-time and safety-critical
systems. In Proc. 10th International Conference on Hardware/Software Codesign and System Synthesis. IEEE Press,
220–229.

M. Saksena and Y. Wang. 2000. Scaleable Real-Time Systems Design Using Preemption Thresholds. In Proceeding 21st
IEEE Real-Time Systems Symposium. 25–34.

E. Salazar, A. Alejandro, and J. Garrido. 2014. Mixed-criticality design of a satellite software system. In Proc. 19th World
Congress The Federation of Automatic Control. 12278–12283.

L. Santinelli and L. George. 2015. Probabilities and Mixed-Criticalities: the Probabilistic C-Space. In Proc. 3rd Workshop
on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 30–35.

R. Santos, S. Venkataraman, A. Das, and A. Kumar. 2014. Criticality-aware scrubbing mechanism for SRAM-
based FPGAs. In 2014 24th International Conference on Field Programmable Logic and Applications (FPL). 1–8.
DOI:http://dx.doi.org/10.1109/FPL.2014.6927476

J. A. Santos-Jr, G. Lima, and K. Bletsas. 2015. Considerations on the Least Upper Bound for Mixed-Criticality Real-Time
Systems. In 5th Brazilian Symposium on Computing Systems Engineering (SBESC).

F. Santy, L. George, P. Thierry, and J. Goossens. 2012. Relaxing Mixed-Criticality Scheduling Strictness for Task Sets
Scheduled with FP. In Proc. of the Euromicro Conference on Real-Time Systems. 155–165.

F. Santy, G. Raravi, G. Nelissen, V. Nelis, P. Kumar, J. Goossens, and E. Tovar. 2013. Two protocols to reduce the criticality
level of multiprocessor mixed-criticality systems. In Proc. RTNS. ACM, 183–192.

R. Schneider, D. Goswami, A. Masrur, M. Becker, and S. Chakraborty. 2013. Multi-layered scheduling of mixed-criticality
cyber-physical systems. Journal of Systems Architecture 59, 10, Part D (2013), 1215 – 1230.

L. Sha. 2009. Resilient Mixed Criticality Systems. CrossTalk The Journal of Defense Software Engineering (October 2009),
9–14.

L. Sha, J.P. Lehoczky, and R. Rajkumar. 1986. Solutions For Some Practical Problems in Prioritizing Preemptive Scheduling.
In Proc. 7th IEEE Real-Time Sytems Symposium.

L. Sha, J.P. Lehoczky, and R. Rajkumar. 1987. Task Scheduling in Distributed Real-Time Systems. In Proc. of IEEE
Industrial Electronics Conference.

L. Sha, R. Rajkumar, and J.P. Lehoczky. 1990. Priority Inheritance Protocols: An Approach to Real-Time Synchronisation.
IEEE Trans. Comput. 39, 9 (1990), 1175–1185.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

http://dx.doi.org/10.1109/FPL.2014.6927476

82:34 A. Burns and R.I.Davis

Z. Shi and A. Burns. 2008. Real-time communication analysis for on-chip networks with wormhole switching. In Proc. of
the 2nd ACM/IEEE International Symposium on Networks-on-Chip(NoCS). 161–170.

Insik Shin and Insup Lee. 2003. Periodic resource model for compositional real-time guarantees. In RTSS 2003. 24th IEEE
Real-Time Systems Symposium, 2003. 2–13. DOI:http://dx.doi.org/10.1109/REAL.2003.1253249

L. Sigrist, G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. 2014. Mapping Mixed-Criticality Applications on
multi-core architectures. In Proc. DATE. 1–6.

D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. 2013a. Mixed Critical Earliest Deadline First. In Proc. Euromicro
Conference on Real-Time Systems (ECRTS).

D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. 2013b. Time-Triggered Mixed Critical Scheduler. In Proc. WMC, RTSS.
67–72.

D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. 2015a. Multiprocessor Scheduling of Precedence-constrained
Mixed-Critical Jobs. In 2015 IEEE 18th International Symposium on Real-Time Distributed Computing. 198–207.
DOI:http://dx.doi.org/10.1109/ISORC.2015.18

D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. 2015b. Time-Triggered Mixed-Critical Scheduler on Single- and Multi-
processor Platforms. Technical Report TR-2015-8. Verimag.

B. Sprunt, J. Lehoczky, and L. Sha. 1988. Exploiting Unused Periodic Time For Aperiodic Service Using the Extended
Priority Exchange Algorithm. In Proc. 9th IEEE Real-Time Systems Symposium. 251–258.

W. Steiner. 2011. Synthesis of Static Communication Schedules for Mixed-Criticality Systems. 2012 IEEE 15th
International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops (2011),
11–18.

H. Su, P. Deng, D. Zhu, and Q. Zhu. 2016a. Fixed-Priority Dual-Rate Mixed-Criticality Systems: Schedulability Analysis
and Performance Optimization. In Proc. Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE,
59–68.

H. Su, P. Deng, D. Zhu, and Q. Zhu. 2016b. Fixed-Priority Dual-Rate Mixed-Criticality Systems: Schedulability Analysis
and Performance Optimization. In IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). 59–68.

H. Su, N. Guan, and D. Zhu. 2014. Service guarantee exploration for mixed-criticality systems. In Proc. Embedded and
Real-Time Computing Systems and Applications (RTCSA). IEEE, 1–10.

H. Su and D. Zhu. 2013. An elastic mixed-criticality task model and its scheduling algorithm. In Proceedings of the
Conference on Design, Automation and Test in Europe (DATE). 147–152.

H. Su, D. Zhu, and D. Mosse. 2013. Scheduling Algorithms for Elastic Mixed-Criticality Tasks in Multicore Systems. In
Proc. RTCSA.

D. Tamas-Selicean and P. Pop. 2011a. Design Optimisation of mixed criticality real-time applications on cost-constrained
partitioned architectures. In Real-Time Systems Symposium (RTSS). 24–33.

D. Tamas-Selicean and P. Pop. 2011b. Optimization of Time-Partitions for mixed criticality real-time distributed embedded
systems. In 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing Workshops. 2–10.

D. Tamas-Selicean and P. Pop. 2011c. Task Mapping and Partition Allocation for mixed criticality real-time systems. In
IEEE Pacific Rim Int. Sym. on Dependable Computing. 282–283.

D. Tamas-Selicean and P. Pop. 2015. Design Optimisation of mixed criticality real-time applications on cost-constrained
partitioned architectures. ACM Transactions on Embedded Systems 14, 3 (2015), 50:1–50:29.

J. Theis and G. Fohler. 2013. Mixed Criticality Scheduling in Time-Triggered Legacy Systems. In Proc. WMC, RTSS. 73–78.
J. Theis, G. Fohler, and S. Baruah. 2013. Schedule Table Generation of Time-Triggered Mixed Criticality Systems. In Proc.

WMC, RTSS. 79–84.
A. Thekkilakattil, R. Dobrin, and S. Punnekkat. 2014a. Fault Tolerant Scheduling of Mixed Criticality Real-Time Tasks

under Error Bursts. In The International Conference on Information and Communication Technologies ICICT’14. Elsevier
Procedia Computer Science.

A. Thekkilakattil, R. Dobrin, and S. Punnekkat. 2014b. Mixed criticality scheduling in fault-tolerant distributed real-time
systems. In Embedded Systems (ICES), 2014 International Conference on. IEEE, 92–97.

A Thekkilakattl, A. Burns, R. Dobrin, and S. Punnekkat. 2015. Mixed Criticality Systems: Beyond Transient Faults. In Proc.
3rd Workshop on Mixed Criticality Systems (WMC), RTSS, L. Cucu-Grosjean and R. Davis (Eds.). 18–23.

H. Thompson. 2012. Mixed Criticality Systems. http://cordis.europa.eu/fp7/ict/embedded-systems-
engineering/documents/sra-mixed-criticality-systems.pdf. EU, ICT.

K. Tindell and A Alonso. 1996. A very simple protocol for mode changes in priority preemptive systems. Technical Report.
Universidad Politecnica de Madrid.

K. Tindell, A. Burns, and A. J. Wellings. 1992. Mode Changes in Priority Preemptive Scheduled Systems. In Proc. Real
Time Systems Symposium. Phoenix, Arizona, 100–109.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

http://dx.doi.org/10.1109/REAL.2003.1253249
http://dx.doi.org/10.1109/ISORC.2015.18

A Survey of Research into Mixed Criticality Systems 82:35

S. Tobuschat, P. Axer, R. Ernst, and J. Diemer. 2013. IDAMC: A NoC for Mixed Criticality Systems. In Proc. RTCSA.
S. Trujillo, A. Crespo, and A. Alonso. 2013. MultiPARTES: Multicore Virtualization for Mixed-Criticality Systems. In

Digital System Design (DSD), 2013 Euromicro Conference on. 260–265.
S. Trujillo, A. Crespo, A. Alonso, and J. Perez. 2014. MultiPARTES: Multi-core partitioning and virtualization for easing

the certification of mixed-criticality systems. Microprocessors and Microsystems (online version) (2014).
S. Vestal. 2007. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution Time Assurance. In

Proc. of the IEEE Real-Time Systems Symposium (RTSS). 239–243.
M. Völp, M. Hähnel, and A. Lackorzynski. 2014. Has energy surpassed timeliness? scheduling energy-constrained mixed-

criticality systems. In Proc. RTAS. IEEE, 275–284.
M. Volp, A. Lackorzynski, and H. Hartig. 2013. On the Expressiveness of Fixed Priority Scheduling Contexts for Mixed

Criticality Scheduling. In Proc. WMC, RTSS. 13–18.
M. Völp, M. Roitzsch, and H. Härtig. 2015. Towards an Interpretation of Mixed Criticality for Optimistic Scheduling. In

21st IEEE RTAS, Work-in-Progress. 15–16.
G. von der Brüggen, K-H. Chen, W-H. Huang, and J-J. Chen. 2016. Systems with Dynamic Real-Time Guarantees in

Uncertain and Faulty Execution Environments. In Proc. Real-Time Systems Symposium (RTSS). IEEE, 303–314.
P. Wagemann, T. Distler, H. Janker, P. Raffeck, and V. Sieh. 2016. A Kernel for Energy-Neutral Real-Time Systems with

Mixed Criticalities. In Proc. RTAS. IEEE, 1–12.
Y. Wang and M. Saksena. 1999. Scheduling fixed-priority tasks with preemption threshold. In 6th Real-Time Computing

Systems and Applications (RTCSA). IEEE, 328–335.
A. Wasicek, C. El-Salloum, and H. Kopetz. 2010. A System-on-a-Chip Platform for Mixed-Criticality Applications. In

3th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC).
210–216.

R. West, Y. Li, E. Missimer, and M. Danish. 2016. A Virtualized Separation Kernel for Mixed-Criticality Systems. ACM
Transactions on Computer Systems (TOCS) 34, 3 (2016), 8.

H. Xu and A. Burns. 2015. Semi-partitioned Model for Dual-core Mixed Criticality System. In 23rd International Conference
on Real-Time Networks and Systems (RTNS 2015). 257–266.

C. Yao, L. Qiao, L. Zheng, and X. Huagang. 2014. Efficient schedulability analysis for mixed-criticality systems under
deadline-based scheduling. Chinese Journal of Aeronautics (2014).

E. Yip, M.M.Y Kuo, D. Broman, and P.S Roop. 2014. Relaxing the Synchronous Approach for Mixed-Criticality Systems.
In Proc. Real-Time and Embedded Technology and Application Symposium (RTAS). IEEE, 89–100.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. 2012. Memory Access Control in Multiproccessor for real-time
mixed criticality. In Proc. of ECRTS, Pisa. 299–308.

L. Zeng, P. Huang, and L. Thiele. 2016. Towards the design of fault-tolerant mixed-criticality systems on multicores. In
Proc. Compilers, Architectures and Synthesis for Embedded Systems. ACM, 6.

F. Zhang and A. Burns. 2007. Analysis of Hierarchical EDF Preemptive Scheduling. In Proc. of IEEE Real-Time Systems
Symposium (RTSS). 423–435.

F. Zhang and A. Burns. 2008. Schedulability Analysis for Real-Time Systems with EDF Scheduling. IEEE Transaction on
Computers 58, 9 (2008), 1250–1258.

N. Zhang, C. Xu, J. Li, and M. Peng. 2015. A Sufficient Response-time Analysis for Mixed Criticality Systems with
Pessimistic Period. Journal of Computational Information Systems 11, 6 (2015), 1955–1964.

X. Zhang, J. Zhan, W. Jiang, Y. Ma, and K. Jiang. 2013. Design Optimization of Security-Sensitive Mixed-Criticality Real-
Time Embedded Systems. In Proc. ReTiMiCS, RTCSA, L. George and G. Lipari (Eds.). 12–17.

Q. Zhao, Z. Gu, and H. Zeng. 2013a. Integration of Resource Synchronization and Preemption-Thresholds into EDF-Based
Mixed-Criticality Scheduling Algorithm. In Proc. RTCSA.

Q. Zhao, Z. Gu, and H. Zeng. 2013b. PT-AMC: Integrating Preemption Thresholds into Mixed-Criticality Scheduling. In
Proc. DATE. 141–146.

Q. Zhao, Z. Gu, and H. Zeng. 2014. HLC-PCP: A Resource Synchronization Protocol for Certifiable Mixed Criticality
Scheduling. Embedded Systems Letters, IEEE 6, 1 (2014).

Q. Zhao, Z. Gu, and H. Zeng. 2015. Resource Synchronization and Preemption Thresholds Within Mixed-Criticality
Scheduling. ACM Transactions on Embedded Computing Systems (TECS) 14, 4 (2015), 81.

L. Ziarek and E. Blanton. 2015. The Fiji MultiVM Archiecture. In Proc. JTRES. ACM.
M. Zimmer, D.Broman, C. Shaver, and E.A. Lee. 2014. FlexPRET: A Processor Platform for Mixed-Criticality Systems. In

Proc. RTAS. 101–110.

ACM Transactions on Embedded Computing Systems, Vol. 50, No. 6, Article 82, Publication date: December 2017.

	Introduction
	Mixed Criticality Models
	Single Processor Analysis
	Fixed Priority Scheduling
	RTA-Based approaches
	Slack scheduling
	Period transformation

	EDF Scheduling
	Shared Resources
	Static and Synchronous Scheduling

	Multiprocessor Analysis
	Task Allocation
	Schedulability Analysis
	Communication and other Resources

	More Realistic MCS Models
	Systems Issues
	Links to other Research Topics
	Hard and Soft Tasks
	Fault Tolerant Systems
	Hierarchical Scheduling
	Cyber Physical Systems and Internet of Things
	Probabilistic real-time systems
	Industry Practice and Safety Standards

	Directions for Future Work

